1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Main bcache entry point - handle a read or a write request and decide what to 4 * do with it; the make_request functions are called by the block layer. 5 * 6 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com> 7 * Copyright 2012 Google, Inc. 8 */ 9 10 #include "bcache.h" 11 #include "btree.h" 12 #include "debug.h" 13 #include "request.h" 14 #include "writeback.h" 15 16 #include <linux/module.h> 17 #include <linux/hash.h> 18 #include <linux/random.h> 19 #include <linux/backing-dev.h> 20 21 #include <trace/events/bcache.h> 22 23 #define CUTOFF_CACHE_ADD 95 24 #define CUTOFF_CACHE_READA 90 25 26 struct kmem_cache *bch_search_cache; 27 28 static void bch_data_insert_start(struct closure *cl); 29 30 static unsigned int cache_mode(struct cached_dev *dc) 31 { 32 return BDEV_CACHE_MODE(&dc->sb); 33 } 34 35 static bool verify(struct cached_dev *dc) 36 { 37 return dc->verify; 38 } 39 40 static void bio_csum(struct bio *bio, struct bkey *k) 41 { 42 struct bio_vec bv; 43 struct bvec_iter iter; 44 uint64_t csum = 0; 45 46 bio_for_each_segment(bv, bio, iter) { 47 void *d = kmap(bv.bv_page) + bv.bv_offset; 48 49 csum = bch_crc64_update(csum, d, bv.bv_len); 50 kunmap(bv.bv_page); 51 } 52 53 k->ptr[KEY_PTRS(k)] = csum & (~0ULL >> 1); 54 } 55 56 /* Insert data into cache */ 57 58 static void bch_data_insert_keys(struct closure *cl) 59 { 60 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl); 61 atomic_t *journal_ref = NULL; 62 struct bkey *replace_key = op->replace ? &op->replace_key : NULL; 63 int ret; 64 65 /* 66 * If we're looping, might already be waiting on 67 * another journal write - can't wait on more than one journal write at 68 * a time 69 * 70 * XXX: this looks wrong 71 */ 72 #if 0 73 while (atomic_read(&s->cl.remaining) & CLOSURE_WAITING) 74 closure_sync(&s->cl); 75 #endif 76 77 if (!op->replace) 78 journal_ref = bch_journal(op->c, &op->insert_keys, 79 op->flush_journal ? cl : NULL); 80 81 ret = bch_btree_insert(op->c, &op->insert_keys, 82 journal_ref, replace_key); 83 if (ret == -ESRCH) { 84 op->replace_collision = true; 85 } else if (ret) { 86 op->status = BLK_STS_RESOURCE; 87 op->insert_data_done = true; 88 } 89 90 if (journal_ref) 91 atomic_dec_bug(journal_ref); 92 93 if (!op->insert_data_done) { 94 continue_at(cl, bch_data_insert_start, op->wq); 95 return; 96 } 97 98 bch_keylist_free(&op->insert_keys); 99 closure_return(cl); 100 } 101 102 static int bch_keylist_realloc(struct keylist *l, unsigned int u64s, 103 struct cache_set *c) 104 { 105 size_t oldsize = bch_keylist_nkeys(l); 106 size_t newsize = oldsize + u64s; 107 108 /* 109 * The journalling code doesn't handle the case where the keys to insert 110 * is bigger than an empty write: If we just return -ENOMEM here, 111 * bch_data_insert_keys() will insert the keys created so far 112 * and finish the rest when the keylist is empty. 113 */ 114 if (newsize * sizeof(uint64_t) > block_bytes(c) - sizeof(struct jset)) 115 return -ENOMEM; 116 117 return __bch_keylist_realloc(l, u64s); 118 } 119 120 static void bch_data_invalidate(struct closure *cl) 121 { 122 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl); 123 struct bio *bio = op->bio; 124 125 pr_debug("invalidating %i sectors from %llu", 126 bio_sectors(bio), (uint64_t) bio->bi_iter.bi_sector); 127 128 while (bio_sectors(bio)) { 129 unsigned int sectors = min(bio_sectors(bio), 130 1U << (KEY_SIZE_BITS - 1)); 131 132 if (bch_keylist_realloc(&op->insert_keys, 2, op->c)) 133 goto out; 134 135 bio->bi_iter.bi_sector += sectors; 136 bio->bi_iter.bi_size -= sectors << 9; 137 138 bch_keylist_add(&op->insert_keys, 139 &KEY(op->inode, 140 bio->bi_iter.bi_sector, 141 sectors)); 142 } 143 144 op->insert_data_done = true; 145 /* get in bch_data_insert() */ 146 bio_put(bio); 147 out: 148 continue_at(cl, bch_data_insert_keys, op->wq); 149 } 150 151 static void bch_data_insert_error(struct closure *cl) 152 { 153 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl); 154 155 /* 156 * Our data write just errored, which means we've got a bunch of keys to 157 * insert that point to data that wasn't successfully written. 158 * 159 * We don't have to insert those keys but we still have to invalidate 160 * that region of the cache - so, if we just strip off all the pointers 161 * from the keys we'll accomplish just that. 162 */ 163 164 struct bkey *src = op->insert_keys.keys, *dst = op->insert_keys.keys; 165 166 while (src != op->insert_keys.top) { 167 struct bkey *n = bkey_next(src); 168 169 SET_KEY_PTRS(src, 0); 170 memmove(dst, src, bkey_bytes(src)); 171 172 dst = bkey_next(dst); 173 src = n; 174 } 175 176 op->insert_keys.top = dst; 177 178 bch_data_insert_keys(cl); 179 } 180 181 static void bch_data_insert_endio(struct bio *bio) 182 { 183 struct closure *cl = bio->bi_private; 184 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl); 185 186 if (bio->bi_status) { 187 /* TODO: We could try to recover from this. */ 188 if (op->writeback) 189 op->status = bio->bi_status; 190 else if (!op->replace) 191 set_closure_fn(cl, bch_data_insert_error, op->wq); 192 else 193 set_closure_fn(cl, NULL, NULL); 194 } 195 196 bch_bbio_endio(op->c, bio, bio->bi_status, "writing data to cache"); 197 } 198 199 static void bch_data_insert_start(struct closure *cl) 200 { 201 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl); 202 struct bio *bio = op->bio, *n; 203 204 if (op->bypass) 205 return bch_data_invalidate(cl); 206 207 if (atomic_sub_return(bio_sectors(bio), &op->c->sectors_to_gc) < 0) 208 wake_up_gc(op->c); 209 210 /* 211 * Journal writes are marked REQ_PREFLUSH; if the original write was a 212 * flush, it'll wait on the journal write. 213 */ 214 bio->bi_opf &= ~(REQ_PREFLUSH|REQ_FUA); 215 216 do { 217 unsigned int i; 218 struct bkey *k; 219 struct bio_set *split = &op->c->bio_split; 220 221 /* 1 for the device pointer and 1 for the chksum */ 222 if (bch_keylist_realloc(&op->insert_keys, 223 3 + (op->csum ? 1 : 0), 224 op->c)) { 225 continue_at(cl, bch_data_insert_keys, op->wq); 226 return; 227 } 228 229 k = op->insert_keys.top; 230 bkey_init(k); 231 SET_KEY_INODE(k, op->inode); 232 SET_KEY_OFFSET(k, bio->bi_iter.bi_sector); 233 234 if (!bch_alloc_sectors(op->c, k, bio_sectors(bio), 235 op->write_point, op->write_prio, 236 op->writeback)) 237 goto err; 238 239 n = bio_next_split(bio, KEY_SIZE(k), GFP_NOIO, split); 240 241 n->bi_end_io = bch_data_insert_endio; 242 n->bi_private = cl; 243 244 if (op->writeback) { 245 SET_KEY_DIRTY(k, true); 246 247 for (i = 0; i < KEY_PTRS(k); i++) 248 SET_GC_MARK(PTR_BUCKET(op->c, k, i), 249 GC_MARK_DIRTY); 250 } 251 252 SET_KEY_CSUM(k, op->csum); 253 if (KEY_CSUM(k)) 254 bio_csum(n, k); 255 256 trace_bcache_cache_insert(k); 257 bch_keylist_push(&op->insert_keys); 258 259 bio_set_op_attrs(n, REQ_OP_WRITE, 0); 260 bch_submit_bbio(n, op->c, k, 0); 261 } while (n != bio); 262 263 op->insert_data_done = true; 264 continue_at(cl, bch_data_insert_keys, op->wq); 265 return; 266 err: 267 /* bch_alloc_sectors() blocks if s->writeback = true */ 268 BUG_ON(op->writeback); 269 270 /* 271 * But if it's not a writeback write we'd rather just bail out if 272 * there aren't any buckets ready to write to - it might take awhile and 273 * we might be starving btree writes for gc or something. 274 */ 275 276 if (!op->replace) { 277 /* 278 * Writethrough write: We can't complete the write until we've 279 * updated the index. But we don't want to delay the write while 280 * we wait for buckets to be freed up, so just invalidate the 281 * rest of the write. 282 */ 283 op->bypass = true; 284 return bch_data_invalidate(cl); 285 } else { 286 /* 287 * From a cache miss, we can just insert the keys for the data 288 * we have written or bail out if we didn't do anything. 289 */ 290 op->insert_data_done = true; 291 bio_put(bio); 292 293 if (!bch_keylist_empty(&op->insert_keys)) 294 continue_at(cl, bch_data_insert_keys, op->wq); 295 else 296 closure_return(cl); 297 } 298 } 299 300 /** 301 * bch_data_insert - stick some data in the cache 302 * @cl: closure pointer. 303 * 304 * This is the starting point for any data to end up in a cache device; it could 305 * be from a normal write, or a writeback write, or a write to a flash only 306 * volume - it's also used by the moving garbage collector to compact data in 307 * mostly empty buckets. 308 * 309 * It first writes the data to the cache, creating a list of keys to be inserted 310 * (if the data had to be fragmented there will be multiple keys); after the 311 * data is written it calls bch_journal, and after the keys have been added to 312 * the next journal write they're inserted into the btree. 313 * 314 * It inserts the data in op->bio; bi_sector is used for the key offset, 315 * and op->inode is used for the key inode. 316 * 317 * If op->bypass is true, instead of inserting the data it invalidates the 318 * region of the cache represented by op->bio and op->inode. 319 */ 320 void bch_data_insert(struct closure *cl) 321 { 322 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl); 323 324 trace_bcache_write(op->c, op->inode, op->bio, 325 op->writeback, op->bypass); 326 327 bch_keylist_init(&op->insert_keys); 328 bio_get(op->bio); 329 bch_data_insert_start(cl); 330 } 331 332 /* Congested? */ 333 334 unsigned int bch_get_congested(struct cache_set *c) 335 { 336 int i; 337 long rand; 338 339 if (!c->congested_read_threshold_us && 340 !c->congested_write_threshold_us) 341 return 0; 342 343 i = (local_clock_us() - c->congested_last_us) / 1024; 344 if (i < 0) 345 return 0; 346 347 i += atomic_read(&c->congested); 348 if (i >= 0) 349 return 0; 350 351 i += CONGESTED_MAX; 352 353 if (i > 0) 354 i = fract_exp_two(i, 6); 355 356 rand = get_random_int(); 357 i -= bitmap_weight(&rand, BITS_PER_LONG); 358 359 return i > 0 ? i : 1; 360 } 361 362 static void add_sequential(struct task_struct *t) 363 { 364 ewma_add(t->sequential_io_avg, 365 t->sequential_io, 8, 0); 366 367 t->sequential_io = 0; 368 } 369 370 static struct hlist_head *iohash(struct cached_dev *dc, uint64_t k) 371 { 372 return &dc->io_hash[hash_64(k, RECENT_IO_BITS)]; 373 } 374 375 static bool check_should_bypass(struct cached_dev *dc, struct bio *bio) 376 { 377 struct cache_set *c = dc->disk.c; 378 unsigned int mode = cache_mode(dc); 379 unsigned int sectors, congested = bch_get_congested(c); 380 struct task_struct *task = current; 381 struct io *i; 382 383 if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) || 384 c->gc_stats.in_use > CUTOFF_CACHE_ADD || 385 (bio_op(bio) == REQ_OP_DISCARD)) 386 goto skip; 387 388 if (mode == CACHE_MODE_NONE || 389 (mode == CACHE_MODE_WRITEAROUND && 390 op_is_write(bio_op(bio)))) 391 goto skip; 392 393 /* 394 * Flag for bypass if the IO is for read-ahead or background, 395 * unless the read-ahead request is for metadata (eg, for gfs2). 396 */ 397 if (bio->bi_opf & (REQ_RAHEAD|REQ_BACKGROUND) && 398 !(bio->bi_opf & REQ_PRIO)) 399 goto skip; 400 401 if (bio->bi_iter.bi_sector & (c->sb.block_size - 1) || 402 bio_sectors(bio) & (c->sb.block_size - 1)) { 403 pr_debug("skipping unaligned io"); 404 goto skip; 405 } 406 407 if (bypass_torture_test(dc)) { 408 if ((get_random_int() & 3) == 3) 409 goto skip; 410 else 411 goto rescale; 412 } 413 414 if (!congested && !dc->sequential_cutoff) 415 goto rescale; 416 417 spin_lock(&dc->io_lock); 418 419 hlist_for_each_entry(i, iohash(dc, bio->bi_iter.bi_sector), hash) 420 if (i->last == bio->bi_iter.bi_sector && 421 time_before(jiffies, i->jiffies)) 422 goto found; 423 424 i = list_first_entry(&dc->io_lru, struct io, lru); 425 426 add_sequential(task); 427 i->sequential = 0; 428 found: 429 if (i->sequential + bio->bi_iter.bi_size > i->sequential) 430 i->sequential += bio->bi_iter.bi_size; 431 432 i->last = bio_end_sector(bio); 433 i->jiffies = jiffies + msecs_to_jiffies(5000); 434 task->sequential_io = i->sequential; 435 436 hlist_del(&i->hash); 437 hlist_add_head(&i->hash, iohash(dc, i->last)); 438 list_move_tail(&i->lru, &dc->io_lru); 439 440 spin_unlock(&dc->io_lock); 441 442 sectors = max(task->sequential_io, 443 task->sequential_io_avg) >> 9; 444 445 if (dc->sequential_cutoff && 446 sectors >= dc->sequential_cutoff >> 9) { 447 trace_bcache_bypass_sequential(bio); 448 goto skip; 449 } 450 451 if (congested && sectors >= congested) { 452 trace_bcache_bypass_congested(bio); 453 goto skip; 454 } 455 456 rescale: 457 bch_rescale_priorities(c, bio_sectors(bio)); 458 return false; 459 skip: 460 bch_mark_sectors_bypassed(c, dc, bio_sectors(bio)); 461 return true; 462 } 463 464 /* Cache lookup */ 465 466 struct search { 467 /* Stack frame for bio_complete */ 468 struct closure cl; 469 470 struct bbio bio; 471 struct bio *orig_bio; 472 struct bio *cache_miss; 473 struct bcache_device *d; 474 475 unsigned int insert_bio_sectors; 476 unsigned int recoverable:1; 477 unsigned int write:1; 478 unsigned int read_dirty_data:1; 479 unsigned int cache_missed:1; 480 481 unsigned long start_time; 482 483 struct btree_op op; 484 struct data_insert_op iop; 485 }; 486 487 static void bch_cache_read_endio(struct bio *bio) 488 { 489 struct bbio *b = container_of(bio, struct bbio, bio); 490 struct closure *cl = bio->bi_private; 491 struct search *s = container_of(cl, struct search, cl); 492 493 /* 494 * If the bucket was reused while our bio was in flight, we might have 495 * read the wrong data. Set s->error but not error so it doesn't get 496 * counted against the cache device, but we'll still reread the data 497 * from the backing device. 498 */ 499 500 if (bio->bi_status) 501 s->iop.status = bio->bi_status; 502 else if (!KEY_DIRTY(&b->key) && 503 ptr_stale(s->iop.c, &b->key, 0)) { 504 atomic_long_inc(&s->iop.c->cache_read_races); 505 s->iop.status = BLK_STS_IOERR; 506 } 507 508 bch_bbio_endio(s->iop.c, bio, bio->bi_status, "reading from cache"); 509 } 510 511 /* 512 * Read from a single key, handling the initial cache miss if the key starts in 513 * the middle of the bio 514 */ 515 static int cache_lookup_fn(struct btree_op *op, struct btree *b, struct bkey *k) 516 { 517 struct search *s = container_of(op, struct search, op); 518 struct bio *n, *bio = &s->bio.bio; 519 struct bkey *bio_key; 520 unsigned int ptr; 521 522 if (bkey_cmp(k, &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0)) <= 0) 523 return MAP_CONTINUE; 524 525 if (KEY_INODE(k) != s->iop.inode || 526 KEY_START(k) > bio->bi_iter.bi_sector) { 527 unsigned int bio_sectors = bio_sectors(bio); 528 unsigned int sectors = KEY_INODE(k) == s->iop.inode 529 ? min_t(uint64_t, INT_MAX, 530 KEY_START(k) - bio->bi_iter.bi_sector) 531 : INT_MAX; 532 int ret = s->d->cache_miss(b, s, bio, sectors); 533 534 if (ret != MAP_CONTINUE) 535 return ret; 536 537 /* if this was a complete miss we shouldn't get here */ 538 BUG_ON(bio_sectors <= sectors); 539 } 540 541 if (!KEY_SIZE(k)) 542 return MAP_CONTINUE; 543 544 /* XXX: figure out best pointer - for multiple cache devices */ 545 ptr = 0; 546 547 PTR_BUCKET(b->c, k, ptr)->prio = INITIAL_PRIO; 548 549 if (KEY_DIRTY(k)) 550 s->read_dirty_data = true; 551 552 n = bio_next_split(bio, min_t(uint64_t, INT_MAX, 553 KEY_OFFSET(k) - bio->bi_iter.bi_sector), 554 GFP_NOIO, &s->d->bio_split); 555 556 bio_key = &container_of(n, struct bbio, bio)->key; 557 bch_bkey_copy_single_ptr(bio_key, k, ptr); 558 559 bch_cut_front(&KEY(s->iop.inode, n->bi_iter.bi_sector, 0), bio_key); 560 bch_cut_back(&KEY(s->iop.inode, bio_end_sector(n), 0), bio_key); 561 562 n->bi_end_io = bch_cache_read_endio; 563 n->bi_private = &s->cl; 564 565 /* 566 * The bucket we're reading from might be reused while our bio 567 * is in flight, and we could then end up reading the wrong 568 * data. 569 * 570 * We guard against this by checking (in cache_read_endio()) if 571 * the pointer is stale again; if so, we treat it as an error 572 * and reread from the backing device (but we don't pass that 573 * error up anywhere). 574 */ 575 576 __bch_submit_bbio(n, b->c); 577 return n == bio ? MAP_DONE : MAP_CONTINUE; 578 } 579 580 static void cache_lookup(struct closure *cl) 581 { 582 struct search *s = container_of(cl, struct search, iop.cl); 583 struct bio *bio = &s->bio.bio; 584 struct cached_dev *dc; 585 int ret; 586 587 bch_btree_op_init(&s->op, -1); 588 589 ret = bch_btree_map_keys(&s->op, s->iop.c, 590 &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0), 591 cache_lookup_fn, MAP_END_KEY); 592 if (ret == -EAGAIN) { 593 continue_at(cl, cache_lookup, bcache_wq); 594 return; 595 } 596 597 /* 598 * We might meet err when searching the btree, If that happens, we will 599 * get negative ret, in this scenario we should not recover data from 600 * backing device (when cache device is dirty) because we don't know 601 * whether bkeys the read request covered are all clean. 602 * 603 * And after that happened, s->iop.status is still its initial value 604 * before we submit s->bio.bio 605 */ 606 if (ret < 0) { 607 BUG_ON(ret == -EINTR); 608 if (s->d && s->d->c && 609 !UUID_FLASH_ONLY(&s->d->c->uuids[s->d->id])) { 610 dc = container_of(s->d, struct cached_dev, disk); 611 if (dc && atomic_read(&dc->has_dirty)) 612 s->recoverable = false; 613 } 614 if (!s->iop.status) 615 s->iop.status = BLK_STS_IOERR; 616 } 617 618 closure_return(cl); 619 } 620 621 /* Common code for the make_request functions */ 622 623 static void request_endio(struct bio *bio) 624 { 625 struct closure *cl = bio->bi_private; 626 627 if (bio->bi_status) { 628 struct search *s = container_of(cl, struct search, cl); 629 630 s->iop.status = bio->bi_status; 631 /* Only cache read errors are recoverable */ 632 s->recoverable = false; 633 } 634 635 bio_put(bio); 636 closure_put(cl); 637 } 638 639 static void backing_request_endio(struct bio *bio) 640 { 641 struct closure *cl = bio->bi_private; 642 643 if (bio->bi_status) { 644 struct search *s = container_of(cl, struct search, cl); 645 struct cached_dev *dc = container_of(s->d, 646 struct cached_dev, disk); 647 /* 648 * If a bio has REQ_PREFLUSH for writeback mode, it is 649 * speically assembled in cached_dev_write() for a non-zero 650 * write request which has REQ_PREFLUSH. we don't set 651 * s->iop.status by this failure, the status will be decided 652 * by result of bch_data_insert() operation. 653 */ 654 if (unlikely(s->iop.writeback && 655 bio->bi_opf & REQ_PREFLUSH)) { 656 pr_err("Can't flush %s: returned bi_status %i", 657 dc->backing_dev_name, bio->bi_status); 658 } else { 659 /* set to orig_bio->bi_status in bio_complete() */ 660 s->iop.status = bio->bi_status; 661 } 662 s->recoverable = false; 663 /* should count I/O error for backing device here */ 664 bch_count_backing_io_errors(dc, bio); 665 } 666 667 bio_put(bio); 668 closure_put(cl); 669 } 670 671 static void bio_complete(struct search *s) 672 { 673 if (s->orig_bio) { 674 generic_end_io_acct(s->d->disk->queue, bio_op(s->orig_bio), 675 &s->d->disk->part0, s->start_time); 676 677 trace_bcache_request_end(s->d, s->orig_bio); 678 s->orig_bio->bi_status = s->iop.status; 679 bio_endio(s->orig_bio); 680 s->orig_bio = NULL; 681 } 682 } 683 684 static void do_bio_hook(struct search *s, 685 struct bio *orig_bio, 686 bio_end_io_t *end_io_fn) 687 { 688 struct bio *bio = &s->bio.bio; 689 690 bio_init(bio, NULL, 0); 691 __bio_clone_fast(bio, orig_bio); 692 /* 693 * bi_end_io can be set separately somewhere else, e.g. the 694 * variants in, 695 * - cache_bio->bi_end_io from cached_dev_cache_miss() 696 * - n->bi_end_io from cache_lookup_fn() 697 */ 698 bio->bi_end_io = end_io_fn; 699 bio->bi_private = &s->cl; 700 701 bio_cnt_set(bio, 3); 702 } 703 704 static void search_free(struct closure *cl) 705 { 706 struct search *s = container_of(cl, struct search, cl); 707 708 atomic_dec(&s->d->c->search_inflight); 709 710 if (s->iop.bio) 711 bio_put(s->iop.bio); 712 713 bio_complete(s); 714 closure_debug_destroy(cl); 715 mempool_free(s, &s->d->c->search); 716 } 717 718 static inline struct search *search_alloc(struct bio *bio, 719 struct bcache_device *d) 720 { 721 struct search *s; 722 723 s = mempool_alloc(&d->c->search, GFP_NOIO); 724 725 closure_init(&s->cl, NULL); 726 do_bio_hook(s, bio, request_endio); 727 atomic_inc(&d->c->search_inflight); 728 729 s->orig_bio = bio; 730 s->cache_miss = NULL; 731 s->cache_missed = 0; 732 s->d = d; 733 s->recoverable = 1; 734 s->write = op_is_write(bio_op(bio)); 735 s->read_dirty_data = 0; 736 s->start_time = jiffies; 737 738 s->iop.c = d->c; 739 s->iop.bio = NULL; 740 s->iop.inode = d->id; 741 s->iop.write_point = hash_long((unsigned long) current, 16); 742 s->iop.write_prio = 0; 743 s->iop.status = 0; 744 s->iop.flags = 0; 745 s->iop.flush_journal = op_is_flush(bio->bi_opf); 746 s->iop.wq = bcache_wq; 747 748 return s; 749 } 750 751 /* Cached devices */ 752 753 static void cached_dev_bio_complete(struct closure *cl) 754 { 755 struct search *s = container_of(cl, struct search, cl); 756 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk); 757 758 search_free(cl); 759 cached_dev_put(dc); 760 } 761 762 /* Process reads */ 763 764 static void cached_dev_cache_miss_done(struct closure *cl) 765 { 766 struct search *s = container_of(cl, struct search, cl); 767 768 if (s->iop.replace_collision) 769 bch_mark_cache_miss_collision(s->iop.c, s->d); 770 771 if (s->iop.bio) 772 bio_free_pages(s->iop.bio); 773 774 cached_dev_bio_complete(cl); 775 } 776 777 static void cached_dev_read_error(struct closure *cl) 778 { 779 struct search *s = container_of(cl, struct search, cl); 780 struct bio *bio = &s->bio.bio; 781 782 /* 783 * If read request hit dirty data (s->read_dirty_data is true), 784 * then recovery a failed read request from cached device may 785 * get a stale data back. So read failure recovery is only 786 * permitted when read request hit clean data in cache device, 787 * or when cache read race happened. 788 */ 789 if (s->recoverable && !s->read_dirty_data) { 790 /* Retry from the backing device: */ 791 trace_bcache_read_retry(s->orig_bio); 792 793 s->iop.status = 0; 794 do_bio_hook(s, s->orig_bio, backing_request_endio); 795 796 /* XXX: invalidate cache */ 797 798 /* I/O request sent to backing device */ 799 closure_bio_submit(s->iop.c, bio, cl); 800 } 801 802 continue_at(cl, cached_dev_cache_miss_done, NULL); 803 } 804 805 static void cached_dev_read_done(struct closure *cl) 806 { 807 struct search *s = container_of(cl, struct search, cl); 808 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk); 809 810 /* 811 * We had a cache miss; cache_bio now contains data ready to be inserted 812 * into the cache. 813 * 814 * First, we copy the data we just read from cache_bio's bounce buffers 815 * to the buffers the original bio pointed to: 816 */ 817 818 if (s->iop.bio) { 819 bio_reset(s->iop.bio); 820 s->iop.bio->bi_iter.bi_sector = 821 s->cache_miss->bi_iter.bi_sector; 822 bio_copy_dev(s->iop.bio, s->cache_miss); 823 s->iop.bio->bi_iter.bi_size = s->insert_bio_sectors << 9; 824 bch_bio_map(s->iop.bio, NULL); 825 826 bio_copy_data(s->cache_miss, s->iop.bio); 827 828 bio_put(s->cache_miss); 829 s->cache_miss = NULL; 830 } 831 832 if (verify(dc) && s->recoverable && !s->read_dirty_data) 833 bch_data_verify(dc, s->orig_bio); 834 835 bio_complete(s); 836 837 if (s->iop.bio && 838 !test_bit(CACHE_SET_STOPPING, &s->iop.c->flags)) { 839 BUG_ON(!s->iop.replace); 840 closure_call(&s->iop.cl, bch_data_insert, NULL, cl); 841 } 842 843 continue_at(cl, cached_dev_cache_miss_done, NULL); 844 } 845 846 static void cached_dev_read_done_bh(struct closure *cl) 847 { 848 struct search *s = container_of(cl, struct search, cl); 849 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk); 850 851 bch_mark_cache_accounting(s->iop.c, s->d, 852 !s->cache_missed, s->iop.bypass); 853 trace_bcache_read(s->orig_bio, !s->cache_missed, s->iop.bypass); 854 855 if (s->iop.status) 856 continue_at_nobarrier(cl, cached_dev_read_error, bcache_wq); 857 else if (s->iop.bio || verify(dc)) 858 continue_at_nobarrier(cl, cached_dev_read_done, bcache_wq); 859 else 860 continue_at_nobarrier(cl, cached_dev_bio_complete, NULL); 861 } 862 863 static int cached_dev_cache_miss(struct btree *b, struct search *s, 864 struct bio *bio, unsigned int sectors) 865 { 866 int ret = MAP_CONTINUE; 867 unsigned int reada = 0; 868 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk); 869 struct bio *miss, *cache_bio; 870 871 s->cache_missed = 1; 872 873 if (s->cache_miss || s->iop.bypass) { 874 miss = bio_next_split(bio, sectors, GFP_NOIO, &s->d->bio_split); 875 ret = miss == bio ? MAP_DONE : MAP_CONTINUE; 876 goto out_submit; 877 } 878 879 if (!(bio->bi_opf & REQ_RAHEAD) && 880 !(bio->bi_opf & REQ_PRIO) && 881 s->iop.c->gc_stats.in_use < CUTOFF_CACHE_READA) 882 reada = min_t(sector_t, dc->readahead >> 9, 883 get_capacity(bio->bi_disk) - bio_end_sector(bio)); 884 885 s->insert_bio_sectors = min(sectors, bio_sectors(bio) + reada); 886 887 s->iop.replace_key = KEY(s->iop.inode, 888 bio->bi_iter.bi_sector + s->insert_bio_sectors, 889 s->insert_bio_sectors); 890 891 ret = bch_btree_insert_check_key(b, &s->op, &s->iop.replace_key); 892 if (ret) 893 return ret; 894 895 s->iop.replace = true; 896 897 miss = bio_next_split(bio, sectors, GFP_NOIO, &s->d->bio_split); 898 899 /* btree_search_recurse()'s btree iterator is no good anymore */ 900 ret = miss == bio ? MAP_DONE : -EINTR; 901 902 cache_bio = bio_alloc_bioset(GFP_NOWAIT, 903 DIV_ROUND_UP(s->insert_bio_sectors, PAGE_SECTORS), 904 &dc->disk.bio_split); 905 if (!cache_bio) 906 goto out_submit; 907 908 cache_bio->bi_iter.bi_sector = miss->bi_iter.bi_sector; 909 bio_copy_dev(cache_bio, miss); 910 cache_bio->bi_iter.bi_size = s->insert_bio_sectors << 9; 911 912 cache_bio->bi_end_io = backing_request_endio; 913 cache_bio->bi_private = &s->cl; 914 915 bch_bio_map(cache_bio, NULL); 916 if (bch_bio_alloc_pages(cache_bio, __GFP_NOWARN|GFP_NOIO)) 917 goto out_put; 918 919 if (reada) 920 bch_mark_cache_readahead(s->iop.c, s->d); 921 922 s->cache_miss = miss; 923 s->iop.bio = cache_bio; 924 bio_get(cache_bio); 925 /* I/O request sent to backing device */ 926 closure_bio_submit(s->iop.c, cache_bio, &s->cl); 927 928 return ret; 929 out_put: 930 bio_put(cache_bio); 931 out_submit: 932 miss->bi_end_io = backing_request_endio; 933 miss->bi_private = &s->cl; 934 /* I/O request sent to backing device */ 935 closure_bio_submit(s->iop.c, miss, &s->cl); 936 return ret; 937 } 938 939 static void cached_dev_read(struct cached_dev *dc, struct search *s) 940 { 941 struct closure *cl = &s->cl; 942 943 closure_call(&s->iop.cl, cache_lookup, NULL, cl); 944 continue_at(cl, cached_dev_read_done_bh, NULL); 945 } 946 947 /* Process writes */ 948 949 static void cached_dev_write_complete(struct closure *cl) 950 { 951 struct search *s = container_of(cl, struct search, cl); 952 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk); 953 954 up_read_non_owner(&dc->writeback_lock); 955 cached_dev_bio_complete(cl); 956 } 957 958 static void cached_dev_write(struct cached_dev *dc, struct search *s) 959 { 960 struct closure *cl = &s->cl; 961 struct bio *bio = &s->bio.bio; 962 struct bkey start = KEY(dc->disk.id, bio->bi_iter.bi_sector, 0); 963 struct bkey end = KEY(dc->disk.id, bio_end_sector(bio), 0); 964 965 bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys, &start, &end); 966 967 down_read_non_owner(&dc->writeback_lock); 968 if (bch_keybuf_check_overlapping(&dc->writeback_keys, &start, &end)) { 969 /* 970 * We overlap with some dirty data undergoing background 971 * writeback, force this write to writeback 972 */ 973 s->iop.bypass = false; 974 s->iop.writeback = true; 975 } 976 977 /* 978 * Discards aren't _required_ to do anything, so skipping if 979 * check_overlapping returned true is ok 980 * 981 * But check_overlapping drops dirty keys for which io hasn't started, 982 * so we still want to call it. 983 */ 984 if (bio_op(bio) == REQ_OP_DISCARD) 985 s->iop.bypass = true; 986 987 if (should_writeback(dc, s->orig_bio, 988 cache_mode(dc), 989 s->iop.bypass)) { 990 s->iop.bypass = false; 991 s->iop.writeback = true; 992 } 993 994 if (s->iop.bypass) { 995 s->iop.bio = s->orig_bio; 996 bio_get(s->iop.bio); 997 998 if (bio_op(bio) == REQ_OP_DISCARD && 999 !blk_queue_discard(bdev_get_queue(dc->bdev))) 1000 goto insert_data; 1001 1002 /* I/O request sent to backing device */ 1003 bio->bi_end_io = backing_request_endio; 1004 closure_bio_submit(s->iop.c, bio, cl); 1005 1006 } else if (s->iop.writeback) { 1007 bch_writeback_add(dc); 1008 s->iop.bio = bio; 1009 1010 if (bio->bi_opf & REQ_PREFLUSH) { 1011 /* 1012 * Also need to send a flush to the backing 1013 * device. 1014 */ 1015 struct bio *flush; 1016 1017 flush = bio_alloc_bioset(GFP_NOIO, 0, 1018 &dc->disk.bio_split); 1019 if (!flush) { 1020 s->iop.status = BLK_STS_RESOURCE; 1021 goto insert_data; 1022 } 1023 bio_copy_dev(flush, bio); 1024 flush->bi_end_io = backing_request_endio; 1025 flush->bi_private = cl; 1026 flush->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH; 1027 /* I/O request sent to backing device */ 1028 closure_bio_submit(s->iop.c, flush, cl); 1029 } 1030 } else { 1031 s->iop.bio = bio_clone_fast(bio, GFP_NOIO, &dc->disk.bio_split); 1032 /* I/O request sent to backing device */ 1033 bio->bi_end_io = backing_request_endio; 1034 closure_bio_submit(s->iop.c, bio, cl); 1035 } 1036 1037 insert_data: 1038 closure_call(&s->iop.cl, bch_data_insert, NULL, cl); 1039 continue_at(cl, cached_dev_write_complete, NULL); 1040 } 1041 1042 static void cached_dev_nodata(struct closure *cl) 1043 { 1044 struct search *s = container_of(cl, struct search, cl); 1045 struct bio *bio = &s->bio.bio; 1046 1047 if (s->iop.flush_journal) 1048 bch_journal_meta(s->iop.c, cl); 1049 1050 /* If it's a flush, we send the flush to the backing device too */ 1051 bio->bi_end_io = backing_request_endio; 1052 closure_bio_submit(s->iop.c, bio, cl); 1053 1054 continue_at(cl, cached_dev_bio_complete, NULL); 1055 } 1056 1057 struct detached_dev_io_private { 1058 struct bcache_device *d; 1059 unsigned long start_time; 1060 bio_end_io_t *bi_end_io; 1061 void *bi_private; 1062 }; 1063 1064 static void detached_dev_end_io(struct bio *bio) 1065 { 1066 struct detached_dev_io_private *ddip; 1067 1068 ddip = bio->bi_private; 1069 bio->bi_end_io = ddip->bi_end_io; 1070 bio->bi_private = ddip->bi_private; 1071 1072 generic_end_io_acct(ddip->d->disk->queue, bio_op(bio), 1073 &ddip->d->disk->part0, ddip->start_time); 1074 1075 if (bio->bi_status) { 1076 struct cached_dev *dc = container_of(ddip->d, 1077 struct cached_dev, disk); 1078 /* should count I/O error for backing device here */ 1079 bch_count_backing_io_errors(dc, bio); 1080 } 1081 1082 kfree(ddip); 1083 bio->bi_end_io(bio); 1084 } 1085 1086 static void detached_dev_do_request(struct bcache_device *d, struct bio *bio) 1087 { 1088 struct detached_dev_io_private *ddip; 1089 struct cached_dev *dc = container_of(d, struct cached_dev, disk); 1090 1091 /* 1092 * no need to call closure_get(&dc->disk.cl), 1093 * because upper layer had already opened bcache device, 1094 * which would call closure_get(&dc->disk.cl) 1095 */ 1096 ddip = kzalloc(sizeof(struct detached_dev_io_private), GFP_NOIO); 1097 ddip->d = d; 1098 ddip->start_time = jiffies; 1099 ddip->bi_end_io = bio->bi_end_io; 1100 ddip->bi_private = bio->bi_private; 1101 bio->bi_end_io = detached_dev_end_io; 1102 bio->bi_private = ddip; 1103 1104 if ((bio_op(bio) == REQ_OP_DISCARD) && 1105 !blk_queue_discard(bdev_get_queue(dc->bdev))) 1106 bio->bi_end_io(bio); 1107 else 1108 generic_make_request(bio); 1109 } 1110 1111 static void quit_max_writeback_rate(struct cache_set *c, 1112 struct cached_dev *this_dc) 1113 { 1114 int i; 1115 struct bcache_device *d; 1116 struct cached_dev *dc; 1117 1118 /* 1119 * mutex bch_register_lock may compete with other parallel requesters, 1120 * or attach/detach operations on other backing device. Waiting to 1121 * the mutex lock may increase I/O request latency for seconds or more. 1122 * To avoid such situation, if mutext_trylock() failed, only writeback 1123 * rate of current cached device is set to 1, and __update_write_back() 1124 * will decide writeback rate of other cached devices (remember now 1125 * c->idle_counter is 0 already). 1126 */ 1127 if (mutex_trylock(&bch_register_lock)) { 1128 for (i = 0; i < c->devices_max_used; i++) { 1129 if (!c->devices[i]) 1130 continue; 1131 1132 if (UUID_FLASH_ONLY(&c->uuids[i])) 1133 continue; 1134 1135 d = c->devices[i]; 1136 dc = container_of(d, struct cached_dev, disk); 1137 /* 1138 * set writeback rate to default minimum value, 1139 * then let update_writeback_rate() to decide the 1140 * upcoming rate. 1141 */ 1142 atomic_long_set(&dc->writeback_rate.rate, 1); 1143 } 1144 mutex_unlock(&bch_register_lock); 1145 } else 1146 atomic_long_set(&this_dc->writeback_rate.rate, 1); 1147 } 1148 1149 /* Cached devices - read & write stuff */ 1150 1151 static blk_qc_t cached_dev_make_request(struct request_queue *q, 1152 struct bio *bio) 1153 { 1154 struct search *s; 1155 struct bcache_device *d = bio->bi_disk->private_data; 1156 struct cached_dev *dc = container_of(d, struct cached_dev, disk); 1157 int rw = bio_data_dir(bio); 1158 1159 if (unlikely((d->c && test_bit(CACHE_SET_IO_DISABLE, &d->c->flags)) || 1160 dc->io_disable)) { 1161 bio->bi_status = BLK_STS_IOERR; 1162 bio_endio(bio); 1163 return BLK_QC_T_NONE; 1164 } 1165 1166 if (likely(d->c)) { 1167 if (atomic_read(&d->c->idle_counter)) 1168 atomic_set(&d->c->idle_counter, 0); 1169 /* 1170 * If at_max_writeback_rate of cache set is true and new I/O 1171 * comes, quit max writeback rate of all cached devices 1172 * attached to this cache set, and set at_max_writeback_rate 1173 * to false. 1174 */ 1175 if (unlikely(atomic_read(&d->c->at_max_writeback_rate) == 1)) { 1176 atomic_set(&d->c->at_max_writeback_rate, 0); 1177 quit_max_writeback_rate(d->c, dc); 1178 } 1179 } 1180 1181 generic_start_io_acct(q, 1182 bio_op(bio), 1183 bio_sectors(bio), 1184 &d->disk->part0); 1185 1186 bio_set_dev(bio, dc->bdev); 1187 bio->bi_iter.bi_sector += dc->sb.data_offset; 1188 1189 if (cached_dev_get(dc)) { 1190 s = search_alloc(bio, d); 1191 trace_bcache_request_start(s->d, bio); 1192 1193 if (!bio->bi_iter.bi_size) { 1194 /* 1195 * can't call bch_journal_meta from under 1196 * generic_make_request 1197 */ 1198 continue_at_nobarrier(&s->cl, 1199 cached_dev_nodata, 1200 bcache_wq); 1201 } else { 1202 s->iop.bypass = check_should_bypass(dc, bio); 1203 1204 if (rw) 1205 cached_dev_write(dc, s); 1206 else 1207 cached_dev_read(dc, s); 1208 } 1209 } else 1210 /* I/O request sent to backing device */ 1211 detached_dev_do_request(d, bio); 1212 1213 return BLK_QC_T_NONE; 1214 } 1215 1216 static int cached_dev_ioctl(struct bcache_device *d, fmode_t mode, 1217 unsigned int cmd, unsigned long arg) 1218 { 1219 struct cached_dev *dc = container_of(d, struct cached_dev, disk); 1220 1221 if (dc->io_disable) 1222 return -EIO; 1223 1224 return __blkdev_driver_ioctl(dc->bdev, mode, cmd, arg); 1225 } 1226 1227 static int cached_dev_congested(void *data, int bits) 1228 { 1229 struct bcache_device *d = data; 1230 struct cached_dev *dc = container_of(d, struct cached_dev, disk); 1231 struct request_queue *q = bdev_get_queue(dc->bdev); 1232 int ret = 0; 1233 1234 if (bdi_congested(q->backing_dev_info, bits)) 1235 return 1; 1236 1237 if (cached_dev_get(dc)) { 1238 unsigned int i; 1239 struct cache *ca; 1240 1241 for_each_cache(ca, d->c, i) { 1242 q = bdev_get_queue(ca->bdev); 1243 ret |= bdi_congested(q->backing_dev_info, bits); 1244 } 1245 1246 cached_dev_put(dc); 1247 } 1248 1249 return ret; 1250 } 1251 1252 void bch_cached_dev_request_init(struct cached_dev *dc) 1253 { 1254 struct gendisk *g = dc->disk.disk; 1255 1256 g->queue->make_request_fn = cached_dev_make_request; 1257 g->queue->backing_dev_info->congested_fn = cached_dev_congested; 1258 dc->disk.cache_miss = cached_dev_cache_miss; 1259 dc->disk.ioctl = cached_dev_ioctl; 1260 } 1261 1262 /* Flash backed devices */ 1263 1264 static int flash_dev_cache_miss(struct btree *b, struct search *s, 1265 struct bio *bio, unsigned int sectors) 1266 { 1267 unsigned int bytes = min(sectors, bio_sectors(bio)) << 9; 1268 1269 swap(bio->bi_iter.bi_size, bytes); 1270 zero_fill_bio(bio); 1271 swap(bio->bi_iter.bi_size, bytes); 1272 1273 bio_advance(bio, bytes); 1274 1275 if (!bio->bi_iter.bi_size) 1276 return MAP_DONE; 1277 1278 return MAP_CONTINUE; 1279 } 1280 1281 static void flash_dev_nodata(struct closure *cl) 1282 { 1283 struct search *s = container_of(cl, struct search, cl); 1284 1285 if (s->iop.flush_journal) 1286 bch_journal_meta(s->iop.c, cl); 1287 1288 continue_at(cl, search_free, NULL); 1289 } 1290 1291 static blk_qc_t flash_dev_make_request(struct request_queue *q, 1292 struct bio *bio) 1293 { 1294 struct search *s; 1295 struct closure *cl; 1296 struct bcache_device *d = bio->bi_disk->private_data; 1297 1298 if (unlikely(d->c && test_bit(CACHE_SET_IO_DISABLE, &d->c->flags))) { 1299 bio->bi_status = BLK_STS_IOERR; 1300 bio_endio(bio); 1301 return BLK_QC_T_NONE; 1302 } 1303 1304 generic_start_io_acct(q, bio_op(bio), bio_sectors(bio), &d->disk->part0); 1305 1306 s = search_alloc(bio, d); 1307 cl = &s->cl; 1308 bio = &s->bio.bio; 1309 1310 trace_bcache_request_start(s->d, bio); 1311 1312 if (!bio->bi_iter.bi_size) { 1313 /* 1314 * can't call bch_journal_meta from under 1315 * generic_make_request 1316 */ 1317 continue_at_nobarrier(&s->cl, 1318 flash_dev_nodata, 1319 bcache_wq); 1320 return BLK_QC_T_NONE; 1321 } else if (bio_data_dir(bio)) { 1322 bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys, 1323 &KEY(d->id, bio->bi_iter.bi_sector, 0), 1324 &KEY(d->id, bio_end_sector(bio), 0)); 1325 1326 s->iop.bypass = (bio_op(bio) == REQ_OP_DISCARD) != 0; 1327 s->iop.writeback = true; 1328 s->iop.bio = bio; 1329 1330 closure_call(&s->iop.cl, bch_data_insert, NULL, cl); 1331 } else { 1332 closure_call(&s->iop.cl, cache_lookup, NULL, cl); 1333 } 1334 1335 continue_at(cl, search_free, NULL); 1336 return BLK_QC_T_NONE; 1337 } 1338 1339 static int flash_dev_ioctl(struct bcache_device *d, fmode_t mode, 1340 unsigned int cmd, unsigned long arg) 1341 { 1342 return -ENOTTY; 1343 } 1344 1345 static int flash_dev_congested(void *data, int bits) 1346 { 1347 struct bcache_device *d = data; 1348 struct request_queue *q; 1349 struct cache *ca; 1350 unsigned int i; 1351 int ret = 0; 1352 1353 for_each_cache(ca, d->c, i) { 1354 q = bdev_get_queue(ca->bdev); 1355 ret |= bdi_congested(q->backing_dev_info, bits); 1356 } 1357 1358 return ret; 1359 } 1360 1361 void bch_flash_dev_request_init(struct bcache_device *d) 1362 { 1363 struct gendisk *g = d->disk; 1364 1365 g->queue->make_request_fn = flash_dev_make_request; 1366 g->queue->backing_dev_info->congested_fn = flash_dev_congested; 1367 d->cache_miss = flash_dev_cache_miss; 1368 d->ioctl = flash_dev_ioctl; 1369 } 1370 1371 void bch_request_exit(void) 1372 { 1373 kmem_cache_destroy(bch_search_cache); 1374 } 1375 1376 int __init bch_request_init(void) 1377 { 1378 bch_search_cache = KMEM_CACHE(search, 0); 1379 if (!bch_search_cache) 1380 return -ENOMEM; 1381 1382 return 0; 1383 } 1384