xref: /openbmc/linux/drivers/md/bcache/request.c (revision 9977a8c3497a8f7f7f951994f298a8e4d961234f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Main bcache entry point - handle a read or a write request and decide what to
4  * do with it; the make_request functions are called by the block layer.
5  *
6  * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
7  * Copyright 2012 Google, Inc.
8  */
9 
10 #include "bcache.h"
11 #include "btree.h"
12 #include "debug.h"
13 #include "request.h"
14 #include "writeback.h"
15 
16 #include <linux/module.h>
17 #include <linux/hash.h>
18 #include <linux/random.h>
19 #include <linux/backing-dev.h>
20 
21 #include <trace/events/bcache.h>
22 
23 #define CUTOFF_CACHE_ADD	95
24 #define CUTOFF_CACHE_READA	90
25 
26 struct kmem_cache *bch_search_cache;
27 
28 static void bch_data_insert_start(struct closure *);
29 
30 static unsigned cache_mode(struct cached_dev *dc)
31 {
32 	return BDEV_CACHE_MODE(&dc->sb);
33 }
34 
35 static bool verify(struct cached_dev *dc)
36 {
37 	return dc->verify;
38 }
39 
40 static void bio_csum(struct bio *bio, struct bkey *k)
41 {
42 	struct bio_vec bv;
43 	struct bvec_iter iter;
44 	uint64_t csum = 0;
45 
46 	bio_for_each_segment(bv, bio, iter) {
47 		void *d = kmap(bv.bv_page) + bv.bv_offset;
48 		csum = bch_crc64_update(csum, d, bv.bv_len);
49 		kunmap(bv.bv_page);
50 	}
51 
52 	k->ptr[KEY_PTRS(k)] = csum & (~0ULL >> 1);
53 }
54 
55 /* Insert data into cache */
56 
57 static void bch_data_insert_keys(struct closure *cl)
58 {
59 	struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
60 	atomic_t *journal_ref = NULL;
61 	struct bkey *replace_key = op->replace ? &op->replace_key : NULL;
62 	int ret;
63 
64 	/*
65 	 * If we're looping, might already be waiting on
66 	 * another journal write - can't wait on more than one journal write at
67 	 * a time
68 	 *
69 	 * XXX: this looks wrong
70 	 */
71 #if 0
72 	while (atomic_read(&s->cl.remaining) & CLOSURE_WAITING)
73 		closure_sync(&s->cl);
74 #endif
75 
76 	if (!op->replace)
77 		journal_ref = bch_journal(op->c, &op->insert_keys,
78 					  op->flush_journal ? cl : NULL);
79 
80 	ret = bch_btree_insert(op->c, &op->insert_keys,
81 			       journal_ref, replace_key);
82 	if (ret == -ESRCH) {
83 		op->replace_collision = true;
84 	} else if (ret) {
85 		op->status		= BLK_STS_RESOURCE;
86 		op->insert_data_done	= true;
87 	}
88 
89 	if (journal_ref)
90 		atomic_dec_bug(journal_ref);
91 
92 	if (!op->insert_data_done) {
93 		continue_at(cl, bch_data_insert_start, op->wq);
94 		return;
95 	}
96 
97 	bch_keylist_free(&op->insert_keys);
98 	closure_return(cl);
99 }
100 
101 static int bch_keylist_realloc(struct keylist *l, unsigned u64s,
102 			       struct cache_set *c)
103 {
104 	size_t oldsize = bch_keylist_nkeys(l);
105 	size_t newsize = oldsize + u64s;
106 
107 	/*
108 	 * The journalling code doesn't handle the case where the keys to insert
109 	 * is bigger than an empty write: If we just return -ENOMEM here,
110 	 * bio_insert() and bio_invalidate() will insert the keys created so far
111 	 * and finish the rest when the keylist is empty.
112 	 */
113 	if (newsize * sizeof(uint64_t) > block_bytes(c) - sizeof(struct jset))
114 		return -ENOMEM;
115 
116 	return __bch_keylist_realloc(l, u64s);
117 }
118 
119 static void bch_data_invalidate(struct closure *cl)
120 {
121 	struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
122 	struct bio *bio = op->bio;
123 
124 	pr_debug("invalidating %i sectors from %llu",
125 		 bio_sectors(bio), (uint64_t) bio->bi_iter.bi_sector);
126 
127 	while (bio_sectors(bio)) {
128 		unsigned sectors = min(bio_sectors(bio),
129 				       1U << (KEY_SIZE_BITS - 1));
130 
131 		if (bch_keylist_realloc(&op->insert_keys, 2, op->c))
132 			goto out;
133 
134 		bio->bi_iter.bi_sector	+= sectors;
135 		bio->bi_iter.bi_size	-= sectors << 9;
136 
137 		bch_keylist_add(&op->insert_keys,
138 				&KEY(op->inode, bio->bi_iter.bi_sector, sectors));
139 	}
140 
141 	op->insert_data_done = true;
142 	bio_put(bio);
143 out:
144 	continue_at(cl, bch_data_insert_keys, op->wq);
145 }
146 
147 static void bch_data_insert_error(struct closure *cl)
148 {
149 	struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
150 
151 	/*
152 	 * Our data write just errored, which means we've got a bunch of keys to
153 	 * insert that point to data that wasn't succesfully written.
154 	 *
155 	 * We don't have to insert those keys but we still have to invalidate
156 	 * that region of the cache - so, if we just strip off all the pointers
157 	 * from the keys we'll accomplish just that.
158 	 */
159 
160 	struct bkey *src = op->insert_keys.keys, *dst = op->insert_keys.keys;
161 
162 	while (src != op->insert_keys.top) {
163 		struct bkey *n = bkey_next(src);
164 
165 		SET_KEY_PTRS(src, 0);
166 		memmove(dst, src, bkey_bytes(src));
167 
168 		dst = bkey_next(dst);
169 		src = n;
170 	}
171 
172 	op->insert_keys.top = dst;
173 
174 	bch_data_insert_keys(cl);
175 }
176 
177 static void bch_data_insert_endio(struct bio *bio)
178 {
179 	struct closure *cl = bio->bi_private;
180 	struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
181 
182 	if (bio->bi_status) {
183 		/* TODO: We could try to recover from this. */
184 		if (op->writeback)
185 			op->status = bio->bi_status;
186 		else if (!op->replace)
187 			set_closure_fn(cl, bch_data_insert_error, op->wq);
188 		else
189 			set_closure_fn(cl, NULL, NULL);
190 	}
191 
192 	bch_bbio_endio(op->c, bio, bio->bi_status, "writing data to cache");
193 }
194 
195 static void bch_data_insert_start(struct closure *cl)
196 {
197 	struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
198 	struct bio *bio = op->bio, *n;
199 
200 	if (op->bypass)
201 		return bch_data_invalidate(cl);
202 
203 	if (atomic_sub_return(bio_sectors(bio), &op->c->sectors_to_gc) < 0)
204 		wake_up_gc(op->c);
205 
206 	/*
207 	 * Journal writes are marked REQ_PREFLUSH; if the original write was a
208 	 * flush, it'll wait on the journal write.
209 	 */
210 	bio->bi_opf &= ~(REQ_PREFLUSH|REQ_FUA);
211 
212 	do {
213 		unsigned i;
214 		struct bkey *k;
215 		struct bio_set *split = op->c->bio_split;
216 
217 		/* 1 for the device pointer and 1 for the chksum */
218 		if (bch_keylist_realloc(&op->insert_keys,
219 					3 + (op->csum ? 1 : 0),
220 					op->c)) {
221 			continue_at(cl, bch_data_insert_keys, op->wq);
222 			return;
223 		}
224 
225 		k = op->insert_keys.top;
226 		bkey_init(k);
227 		SET_KEY_INODE(k, op->inode);
228 		SET_KEY_OFFSET(k, bio->bi_iter.bi_sector);
229 
230 		if (!bch_alloc_sectors(op->c, k, bio_sectors(bio),
231 				       op->write_point, op->write_prio,
232 				       op->writeback))
233 			goto err;
234 
235 		n = bio_next_split(bio, KEY_SIZE(k), GFP_NOIO, split);
236 
237 		n->bi_end_io	= bch_data_insert_endio;
238 		n->bi_private	= cl;
239 
240 		if (op->writeback) {
241 			SET_KEY_DIRTY(k, true);
242 
243 			for (i = 0; i < KEY_PTRS(k); i++)
244 				SET_GC_MARK(PTR_BUCKET(op->c, k, i),
245 					    GC_MARK_DIRTY);
246 		}
247 
248 		SET_KEY_CSUM(k, op->csum);
249 		if (KEY_CSUM(k))
250 			bio_csum(n, k);
251 
252 		trace_bcache_cache_insert(k);
253 		bch_keylist_push(&op->insert_keys);
254 
255 		bio_set_op_attrs(n, REQ_OP_WRITE, 0);
256 		bch_submit_bbio(n, op->c, k, 0);
257 	} while (n != bio);
258 
259 	op->insert_data_done = true;
260 	continue_at(cl, bch_data_insert_keys, op->wq);
261 	return;
262 err:
263 	/* bch_alloc_sectors() blocks if s->writeback = true */
264 	BUG_ON(op->writeback);
265 
266 	/*
267 	 * But if it's not a writeback write we'd rather just bail out if
268 	 * there aren't any buckets ready to write to - it might take awhile and
269 	 * we might be starving btree writes for gc or something.
270 	 */
271 
272 	if (!op->replace) {
273 		/*
274 		 * Writethrough write: We can't complete the write until we've
275 		 * updated the index. But we don't want to delay the write while
276 		 * we wait for buckets to be freed up, so just invalidate the
277 		 * rest of the write.
278 		 */
279 		op->bypass = true;
280 		return bch_data_invalidate(cl);
281 	} else {
282 		/*
283 		 * From a cache miss, we can just insert the keys for the data
284 		 * we have written or bail out if we didn't do anything.
285 		 */
286 		op->insert_data_done = true;
287 		bio_put(bio);
288 
289 		if (!bch_keylist_empty(&op->insert_keys))
290 			continue_at(cl, bch_data_insert_keys, op->wq);
291 		else
292 			closure_return(cl);
293 	}
294 }
295 
296 /**
297  * bch_data_insert - stick some data in the cache
298  *
299  * This is the starting point for any data to end up in a cache device; it could
300  * be from a normal write, or a writeback write, or a write to a flash only
301  * volume - it's also used by the moving garbage collector to compact data in
302  * mostly empty buckets.
303  *
304  * It first writes the data to the cache, creating a list of keys to be inserted
305  * (if the data had to be fragmented there will be multiple keys); after the
306  * data is written it calls bch_journal, and after the keys have been added to
307  * the next journal write they're inserted into the btree.
308  *
309  * It inserts the data in s->cache_bio; bi_sector is used for the key offset,
310  * and op->inode is used for the key inode.
311  *
312  * If s->bypass is true, instead of inserting the data it invalidates the
313  * region of the cache represented by s->cache_bio and op->inode.
314  */
315 void bch_data_insert(struct closure *cl)
316 {
317 	struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
318 
319 	trace_bcache_write(op->c, op->inode, op->bio,
320 			   op->writeback, op->bypass);
321 
322 	bch_keylist_init(&op->insert_keys);
323 	bio_get(op->bio);
324 	bch_data_insert_start(cl);
325 }
326 
327 /* Congested? */
328 
329 unsigned bch_get_congested(struct cache_set *c)
330 {
331 	int i;
332 	long rand;
333 
334 	if (!c->congested_read_threshold_us &&
335 	    !c->congested_write_threshold_us)
336 		return 0;
337 
338 	i = (local_clock_us() - c->congested_last_us) / 1024;
339 	if (i < 0)
340 		return 0;
341 
342 	i += atomic_read(&c->congested);
343 	if (i >= 0)
344 		return 0;
345 
346 	i += CONGESTED_MAX;
347 
348 	if (i > 0)
349 		i = fract_exp_two(i, 6);
350 
351 	rand = get_random_int();
352 	i -= bitmap_weight(&rand, BITS_PER_LONG);
353 
354 	return i > 0 ? i : 1;
355 }
356 
357 static void add_sequential(struct task_struct *t)
358 {
359 	ewma_add(t->sequential_io_avg,
360 		 t->sequential_io, 8, 0);
361 
362 	t->sequential_io = 0;
363 }
364 
365 static struct hlist_head *iohash(struct cached_dev *dc, uint64_t k)
366 {
367 	return &dc->io_hash[hash_64(k, RECENT_IO_BITS)];
368 }
369 
370 static bool check_should_bypass(struct cached_dev *dc, struct bio *bio)
371 {
372 	struct cache_set *c = dc->disk.c;
373 	unsigned mode = cache_mode(dc);
374 	unsigned sectors, congested = bch_get_congested(c);
375 	struct task_struct *task = current;
376 	struct io *i;
377 
378 	if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) ||
379 	    c->gc_stats.in_use > CUTOFF_CACHE_ADD ||
380 	    (bio_op(bio) == REQ_OP_DISCARD))
381 		goto skip;
382 
383 	if (mode == CACHE_MODE_NONE ||
384 	    (mode == CACHE_MODE_WRITEAROUND &&
385 	     op_is_write(bio_op(bio))))
386 		goto skip;
387 
388 	/*
389 	 * Flag for bypass if the IO is for read-ahead or background,
390 	 * unless the read-ahead request is for metadata (eg, for gfs2).
391 	 */
392 	if (bio->bi_opf & (REQ_RAHEAD|REQ_BACKGROUND) &&
393 	    !(bio->bi_opf & REQ_META))
394 		goto skip;
395 
396 	if (bio->bi_iter.bi_sector & (c->sb.block_size - 1) ||
397 	    bio_sectors(bio) & (c->sb.block_size - 1)) {
398 		pr_debug("skipping unaligned io");
399 		goto skip;
400 	}
401 
402 	if (bypass_torture_test(dc)) {
403 		if ((get_random_int() & 3) == 3)
404 			goto skip;
405 		else
406 			goto rescale;
407 	}
408 
409 	if (!congested && !dc->sequential_cutoff)
410 		goto rescale;
411 
412 	spin_lock(&dc->io_lock);
413 
414 	hlist_for_each_entry(i, iohash(dc, bio->bi_iter.bi_sector), hash)
415 		if (i->last == bio->bi_iter.bi_sector &&
416 		    time_before(jiffies, i->jiffies))
417 			goto found;
418 
419 	i = list_first_entry(&dc->io_lru, struct io, lru);
420 
421 	add_sequential(task);
422 	i->sequential = 0;
423 found:
424 	if (i->sequential + bio->bi_iter.bi_size > i->sequential)
425 		i->sequential	+= bio->bi_iter.bi_size;
426 
427 	i->last			 = bio_end_sector(bio);
428 	i->jiffies		 = jiffies + msecs_to_jiffies(5000);
429 	task->sequential_io	 = i->sequential;
430 
431 	hlist_del(&i->hash);
432 	hlist_add_head(&i->hash, iohash(dc, i->last));
433 	list_move_tail(&i->lru, &dc->io_lru);
434 
435 	spin_unlock(&dc->io_lock);
436 
437 	sectors = max(task->sequential_io,
438 		      task->sequential_io_avg) >> 9;
439 
440 	if (dc->sequential_cutoff &&
441 	    sectors >= dc->sequential_cutoff >> 9) {
442 		trace_bcache_bypass_sequential(bio);
443 		goto skip;
444 	}
445 
446 	if (congested && sectors >= congested) {
447 		trace_bcache_bypass_congested(bio);
448 		goto skip;
449 	}
450 
451 rescale:
452 	bch_rescale_priorities(c, bio_sectors(bio));
453 	return false;
454 skip:
455 	bch_mark_sectors_bypassed(c, dc, bio_sectors(bio));
456 	return true;
457 }
458 
459 /* Cache lookup */
460 
461 struct search {
462 	/* Stack frame for bio_complete */
463 	struct closure		cl;
464 
465 	struct bbio		bio;
466 	struct bio		*orig_bio;
467 	struct bio		*cache_miss;
468 	struct bcache_device	*d;
469 
470 	unsigned		insert_bio_sectors;
471 	unsigned		recoverable:1;
472 	unsigned		write:1;
473 	unsigned		read_dirty_data:1;
474 	unsigned		cache_missed:1;
475 
476 	unsigned long		start_time;
477 
478 	struct btree_op		op;
479 	struct data_insert_op	iop;
480 };
481 
482 static void bch_cache_read_endio(struct bio *bio)
483 {
484 	struct bbio *b = container_of(bio, struct bbio, bio);
485 	struct closure *cl = bio->bi_private;
486 	struct search *s = container_of(cl, struct search, cl);
487 
488 	/*
489 	 * If the bucket was reused while our bio was in flight, we might have
490 	 * read the wrong data. Set s->error but not error so it doesn't get
491 	 * counted against the cache device, but we'll still reread the data
492 	 * from the backing device.
493 	 */
494 
495 	if (bio->bi_status)
496 		s->iop.status = bio->bi_status;
497 	else if (!KEY_DIRTY(&b->key) &&
498 		 ptr_stale(s->iop.c, &b->key, 0)) {
499 		atomic_long_inc(&s->iop.c->cache_read_races);
500 		s->iop.status = BLK_STS_IOERR;
501 	}
502 
503 	bch_bbio_endio(s->iop.c, bio, bio->bi_status, "reading from cache");
504 }
505 
506 /*
507  * Read from a single key, handling the initial cache miss if the key starts in
508  * the middle of the bio
509  */
510 static int cache_lookup_fn(struct btree_op *op, struct btree *b, struct bkey *k)
511 {
512 	struct search *s = container_of(op, struct search, op);
513 	struct bio *n, *bio = &s->bio.bio;
514 	struct bkey *bio_key;
515 	unsigned ptr;
516 
517 	if (bkey_cmp(k, &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0)) <= 0)
518 		return MAP_CONTINUE;
519 
520 	if (KEY_INODE(k) != s->iop.inode ||
521 	    KEY_START(k) > bio->bi_iter.bi_sector) {
522 		unsigned bio_sectors = bio_sectors(bio);
523 		unsigned sectors = KEY_INODE(k) == s->iop.inode
524 			? min_t(uint64_t, INT_MAX,
525 				KEY_START(k) - bio->bi_iter.bi_sector)
526 			: INT_MAX;
527 
528 		int ret = s->d->cache_miss(b, s, bio, sectors);
529 		if (ret != MAP_CONTINUE)
530 			return ret;
531 
532 		/* if this was a complete miss we shouldn't get here */
533 		BUG_ON(bio_sectors <= sectors);
534 	}
535 
536 	if (!KEY_SIZE(k))
537 		return MAP_CONTINUE;
538 
539 	/* XXX: figure out best pointer - for multiple cache devices */
540 	ptr = 0;
541 
542 	PTR_BUCKET(b->c, k, ptr)->prio = INITIAL_PRIO;
543 
544 	if (KEY_DIRTY(k))
545 		s->read_dirty_data = true;
546 
547 	n = bio_next_split(bio, min_t(uint64_t, INT_MAX,
548 				      KEY_OFFSET(k) - bio->bi_iter.bi_sector),
549 			   GFP_NOIO, s->d->bio_split);
550 
551 	bio_key = &container_of(n, struct bbio, bio)->key;
552 	bch_bkey_copy_single_ptr(bio_key, k, ptr);
553 
554 	bch_cut_front(&KEY(s->iop.inode, n->bi_iter.bi_sector, 0), bio_key);
555 	bch_cut_back(&KEY(s->iop.inode, bio_end_sector(n), 0), bio_key);
556 
557 	n->bi_end_io	= bch_cache_read_endio;
558 	n->bi_private	= &s->cl;
559 
560 	/*
561 	 * The bucket we're reading from might be reused while our bio
562 	 * is in flight, and we could then end up reading the wrong
563 	 * data.
564 	 *
565 	 * We guard against this by checking (in cache_read_endio()) if
566 	 * the pointer is stale again; if so, we treat it as an error
567 	 * and reread from the backing device (but we don't pass that
568 	 * error up anywhere).
569 	 */
570 
571 	__bch_submit_bbio(n, b->c);
572 	return n == bio ? MAP_DONE : MAP_CONTINUE;
573 }
574 
575 static void cache_lookup(struct closure *cl)
576 {
577 	struct search *s = container_of(cl, struct search, iop.cl);
578 	struct bio *bio = &s->bio.bio;
579 	struct cached_dev *dc;
580 	int ret;
581 
582 	bch_btree_op_init(&s->op, -1);
583 
584 	ret = bch_btree_map_keys(&s->op, s->iop.c,
585 				 &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0),
586 				 cache_lookup_fn, MAP_END_KEY);
587 	if (ret == -EAGAIN) {
588 		continue_at(cl, cache_lookup, bcache_wq);
589 		return;
590 	}
591 
592 	/*
593 	 * We might meet err when searching the btree, If that happens, we will
594 	 * get negative ret, in this scenario we should not recover data from
595 	 * backing device (when cache device is dirty) because we don't know
596 	 * whether bkeys the read request covered are all clean.
597 	 *
598 	 * And after that happened, s->iop.status is still its initial value
599 	 * before we submit s->bio.bio
600 	 */
601 	if (ret < 0) {
602 		BUG_ON(ret == -EINTR);
603 		if (s->d && s->d->c &&
604 				!UUID_FLASH_ONLY(&s->d->c->uuids[s->d->id])) {
605 			dc = container_of(s->d, struct cached_dev, disk);
606 			if (dc && atomic_read(&dc->has_dirty))
607 				s->recoverable = false;
608 		}
609 		if (!s->iop.status)
610 			s->iop.status = BLK_STS_IOERR;
611 	}
612 
613 	closure_return(cl);
614 }
615 
616 /* Common code for the make_request functions */
617 
618 static void request_endio(struct bio *bio)
619 {
620 	struct closure *cl = bio->bi_private;
621 
622 	if (bio->bi_status) {
623 		struct search *s = container_of(cl, struct search, cl);
624 		s->iop.status = bio->bi_status;
625 		/* Only cache read errors are recoverable */
626 		s->recoverable = false;
627 	}
628 
629 	bio_put(bio);
630 	closure_put(cl);
631 }
632 
633 static void bio_complete(struct search *s)
634 {
635 	if (s->orig_bio) {
636 		generic_end_io_acct(s->d->disk->queue,
637 				    bio_data_dir(s->orig_bio),
638 				    &s->d->disk->part0, s->start_time);
639 
640 		trace_bcache_request_end(s->d, s->orig_bio);
641 		s->orig_bio->bi_status = s->iop.status;
642 		bio_endio(s->orig_bio);
643 		s->orig_bio = NULL;
644 	}
645 }
646 
647 static void do_bio_hook(struct search *s, struct bio *orig_bio)
648 {
649 	struct bio *bio = &s->bio.bio;
650 
651 	bio_init(bio, NULL, 0);
652 	__bio_clone_fast(bio, orig_bio);
653 	bio->bi_end_io		= request_endio;
654 	bio->bi_private		= &s->cl;
655 
656 	bio_cnt_set(bio, 3);
657 }
658 
659 static void search_free(struct closure *cl)
660 {
661 	struct search *s = container_of(cl, struct search, cl);
662 	bio_complete(s);
663 
664 	if (s->iop.bio)
665 		bio_put(s->iop.bio);
666 
667 	closure_debug_destroy(cl);
668 	mempool_free(s, s->d->c->search);
669 }
670 
671 static inline struct search *search_alloc(struct bio *bio,
672 					  struct bcache_device *d)
673 {
674 	struct search *s;
675 
676 	s = mempool_alloc(d->c->search, GFP_NOIO);
677 
678 	closure_init(&s->cl, NULL);
679 	do_bio_hook(s, bio);
680 
681 	s->orig_bio		= bio;
682 	s->cache_miss		= NULL;
683 	s->cache_missed		= 0;
684 	s->d			= d;
685 	s->recoverable		= 1;
686 	s->write		= op_is_write(bio_op(bio));
687 	s->read_dirty_data	= 0;
688 	s->start_time		= jiffies;
689 
690 	s->iop.c		= d->c;
691 	s->iop.bio		= NULL;
692 	s->iop.inode		= d->id;
693 	s->iop.write_point	= hash_long((unsigned long) current, 16);
694 	s->iop.write_prio	= 0;
695 	s->iop.status		= 0;
696 	s->iop.flags		= 0;
697 	s->iop.flush_journal	= op_is_flush(bio->bi_opf);
698 	s->iop.wq		= bcache_wq;
699 
700 	return s;
701 }
702 
703 /* Cached devices */
704 
705 static void cached_dev_bio_complete(struct closure *cl)
706 {
707 	struct search *s = container_of(cl, struct search, cl);
708 	struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
709 
710 	search_free(cl);
711 	cached_dev_put(dc);
712 }
713 
714 /* Process reads */
715 
716 static void cached_dev_cache_miss_done(struct closure *cl)
717 {
718 	struct search *s = container_of(cl, struct search, cl);
719 
720 	if (s->iop.replace_collision)
721 		bch_mark_cache_miss_collision(s->iop.c, s->d);
722 
723 	if (s->iop.bio)
724 		bio_free_pages(s->iop.bio);
725 
726 	cached_dev_bio_complete(cl);
727 }
728 
729 static void cached_dev_read_error(struct closure *cl)
730 {
731 	struct search *s = container_of(cl, struct search, cl);
732 	struct bio *bio = &s->bio.bio;
733 
734 	/*
735 	 * If read request hit dirty data (s->read_dirty_data is true),
736 	 * then recovery a failed read request from cached device may
737 	 * get a stale data back. So read failure recovery is only
738 	 * permitted when read request hit clean data in cache device,
739 	 * or when cache read race happened.
740 	 */
741 	if (s->recoverable && !s->read_dirty_data) {
742 		/* Retry from the backing device: */
743 		trace_bcache_read_retry(s->orig_bio);
744 
745 		s->iop.status = 0;
746 		do_bio_hook(s, s->orig_bio);
747 
748 		/* XXX: invalidate cache */
749 
750 		closure_bio_submit(bio, cl);
751 	}
752 
753 	continue_at(cl, cached_dev_cache_miss_done, NULL);
754 }
755 
756 static void cached_dev_read_done(struct closure *cl)
757 {
758 	struct search *s = container_of(cl, struct search, cl);
759 	struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
760 
761 	/*
762 	 * We had a cache miss; cache_bio now contains data ready to be inserted
763 	 * into the cache.
764 	 *
765 	 * First, we copy the data we just read from cache_bio's bounce buffers
766 	 * to the buffers the original bio pointed to:
767 	 */
768 
769 	if (s->iop.bio) {
770 		bio_reset(s->iop.bio);
771 		s->iop.bio->bi_iter.bi_sector = s->cache_miss->bi_iter.bi_sector;
772 		bio_copy_dev(s->iop.bio, s->cache_miss);
773 		s->iop.bio->bi_iter.bi_size = s->insert_bio_sectors << 9;
774 		bch_bio_map(s->iop.bio, NULL);
775 
776 		bio_copy_data(s->cache_miss, s->iop.bio);
777 
778 		bio_put(s->cache_miss);
779 		s->cache_miss = NULL;
780 	}
781 
782 	if (verify(dc) && s->recoverable && !s->read_dirty_data)
783 		bch_data_verify(dc, s->orig_bio);
784 
785 	bio_complete(s);
786 
787 	if (s->iop.bio &&
788 	    !test_bit(CACHE_SET_STOPPING, &s->iop.c->flags)) {
789 		BUG_ON(!s->iop.replace);
790 		closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
791 	}
792 
793 	continue_at(cl, cached_dev_cache_miss_done, NULL);
794 }
795 
796 static void cached_dev_read_done_bh(struct closure *cl)
797 {
798 	struct search *s = container_of(cl, struct search, cl);
799 	struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
800 
801 	bch_mark_cache_accounting(s->iop.c, s->d,
802 				  !s->cache_missed, s->iop.bypass);
803 	trace_bcache_read(s->orig_bio, !s->cache_miss, s->iop.bypass);
804 
805 	if (s->iop.status)
806 		continue_at_nobarrier(cl, cached_dev_read_error, bcache_wq);
807 	else if (s->iop.bio || verify(dc))
808 		continue_at_nobarrier(cl, cached_dev_read_done, bcache_wq);
809 	else
810 		continue_at_nobarrier(cl, cached_dev_bio_complete, NULL);
811 }
812 
813 static int cached_dev_cache_miss(struct btree *b, struct search *s,
814 				 struct bio *bio, unsigned sectors)
815 {
816 	int ret = MAP_CONTINUE;
817 	unsigned reada = 0;
818 	struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
819 	struct bio *miss, *cache_bio;
820 
821 	s->cache_missed = 1;
822 
823 	if (s->cache_miss || s->iop.bypass) {
824 		miss = bio_next_split(bio, sectors, GFP_NOIO, s->d->bio_split);
825 		ret = miss == bio ? MAP_DONE : MAP_CONTINUE;
826 		goto out_submit;
827 	}
828 
829 	if (!(bio->bi_opf & REQ_RAHEAD) &&
830 	    !(bio->bi_opf & REQ_META) &&
831 	    s->iop.c->gc_stats.in_use < CUTOFF_CACHE_READA)
832 		reada = min_t(sector_t, dc->readahead >> 9,
833 			      get_capacity(bio->bi_disk) - bio_end_sector(bio));
834 
835 	s->insert_bio_sectors = min(sectors, bio_sectors(bio) + reada);
836 
837 	s->iop.replace_key = KEY(s->iop.inode,
838 				 bio->bi_iter.bi_sector + s->insert_bio_sectors,
839 				 s->insert_bio_sectors);
840 
841 	ret = bch_btree_insert_check_key(b, &s->op, &s->iop.replace_key);
842 	if (ret)
843 		return ret;
844 
845 	s->iop.replace = true;
846 
847 	miss = bio_next_split(bio, sectors, GFP_NOIO, s->d->bio_split);
848 
849 	/* btree_search_recurse()'s btree iterator is no good anymore */
850 	ret = miss == bio ? MAP_DONE : -EINTR;
851 
852 	cache_bio = bio_alloc_bioset(GFP_NOWAIT,
853 			DIV_ROUND_UP(s->insert_bio_sectors, PAGE_SECTORS),
854 			dc->disk.bio_split);
855 	if (!cache_bio)
856 		goto out_submit;
857 
858 	cache_bio->bi_iter.bi_sector	= miss->bi_iter.bi_sector;
859 	bio_copy_dev(cache_bio, miss);
860 	cache_bio->bi_iter.bi_size	= s->insert_bio_sectors << 9;
861 
862 	cache_bio->bi_end_io	= request_endio;
863 	cache_bio->bi_private	= &s->cl;
864 
865 	bch_bio_map(cache_bio, NULL);
866 	if (bch_bio_alloc_pages(cache_bio, __GFP_NOWARN|GFP_NOIO))
867 		goto out_put;
868 
869 	if (reada)
870 		bch_mark_cache_readahead(s->iop.c, s->d);
871 
872 	s->cache_miss	= miss;
873 	s->iop.bio	= cache_bio;
874 	bio_get(cache_bio);
875 	closure_bio_submit(cache_bio, &s->cl);
876 
877 	return ret;
878 out_put:
879 	bio_put(cache_bio);
880 out_submit:
881 	miss->bi_end_io		= request_endio;
882 	miss->bi_private	= &s->cl;
883 	closure_bio_submit(miss, &s->cl);
884 	return ret;
885 }
886 
887 static void cached_dev_read(struct cached_dev *dc, struct search *s)
888 {
889 	struct closure *cl = &s->cl;
890 
891 	closure_call(&s->iop.cl, cache_lookup, NULL, cl);
892 	continue_at(cl, cached_dev_read_done_bh, NULL);
893 }
894 
895 /* Process writes */
896 
897 static void cached_dev_write_complete(struct closure *cl)
898 {
899 	struct search *s = container_of(cl, struct search, cl);
900 	struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
901 
902 	up_read_non_owner(&dc->writeback_lock);
903 	cached_dev_bio_complete(cl);
904 }
905 
906 static void cached_dev_write(struct cached_dev *dc, struct search *s)
907 {
908 	struct closure *cl = &s->cl;
909 	struct bio *bio = &s->bio.bio;
910 	struct bkey start = KEY(dc->disk.id, bio->bi_iter.bi_sector, 0);
911 	struct bkey end = KEY(dc->disk.id, bio_end_sector(bio), 0);
912 
913 	bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys, &start, &end);
914 
915 	down_read_non_owner(&dc->writeback_lock);
916 	if (bch_keybuf_check_overlapping(&dc->writeback_keys, &start, &end)) {
917 		/*
918 		 * We overlap with some dirty data undergoing background
919 		 * writeback, force this write to writeback
920 		 */
921 		s->iop.bypass = false;
922 		s->iop.writeback = true;
923 	}
924 
925 	/*
926 	 * Discards aren't _required_ to do anything, so skipping if
927 	 * check_overlapping returned true is ok
928 	 *
929 	 * But check_overlapping drops dirty keys for which io hasn't started,
930 	 * so we still want to call it.
931 	 */
932 	if (bio_op(bio) == REQ_OP_DISCARD)
933 		s->iop.bypass = true;
934 
935 	if (should_writeback(dc, s->orig_bio,
936 			     cache_mode(dc),
937 			     s->iop.bypass)) {
938 		s->iop.bypass = false;
939 		s->iop.writeback = true;
940 	}
941 
942 	if (s->iop.bypass) {
943 		s->iop.bio = s->orig_bio;
944 		bio_get(s->iop.bio);
945 
946 		if ((bio_op(bio) != REQ_OP_DISCARD) ||
947 		    blk_queue_discard(bdev_get_queue(dc->bdev)))
948 			closure_bio_submit(bio, cl);
949 	} else if (s->iop.writeback) {
950 		bch_writeback_add(dc);
951 		s->iop.bio = bio;
952 
953 		if (bio->bi_opf & REQ_PREFLUSH) {
954 			/* Also need to send a flush to the backing device */
955 			struct bio *flush = bio_alloc_bioset(GFP_NOIO, 0,
956 							     dc->disk.bio_split);
957 
958 			bio_copy_dev(flush, bio);
959 			flush->bi_end_io = request_endio;
960 			flush->bi_private = cl;
961 			flush->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
962 
963 			closure_bio_submit(flush, cl);
964 		}
965 	} else {
966 		s->iop.bio = bio_clone_fast(bio, GFP_NOIO, dc->disk.bio_split);
967 
968 		closure_bio_submit(bio, cl);
969 	}
970 
971 	closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
972 	continue_at(cl, cached_dev_write_complete, NULL);
973 }
974 
975 static void cached_dev_nodata(struct closure *cl)
976 {
977 	struct search *s = container_of(cl, struct search, cl);
978 	struct bio *bio = &s->bio.bio;
979 
980 	if (s->iop.flush_journal)
981 		bch_journal_meta(s->iop.c, cl);
982 
983 	/* If it's a flush, we send the flush to the backing device too */
984 	closure_bio_submit(bio, cl);
985 
986 	continue_at(cl, cached_dev_bio_complete, NULL);
987 }
988 
989 /* Cached devices - read & write stuff */
990 
991 static blk_qc_t cached_dev_make_request(struct request_queue *q,
992 					struct bio *bio)
993 {
994 	struct search *s;
995 	struct bcache_device *d = bio->bi_disk->private_data;
996 	struct cached_dev *dc = container_of(d, struct cached_dev, disk);
997 	int rw = bio_data_dir(bio);
998 
999 	atomic_set(&dc->backing_idle, 0);
1000 	generic_start_io_acct(q, rw, bio_sectors(bio), &d->disk->part0);
1001 
1002 	bio_set_dev(bio, dc->bdev);
1003 	bio->bi_iter.bi_sector += dc->sb.data_offset;
1004 
1005 	if (cached_dev_get(dc)) {
1006 		s = search_alloc(bio, d);
1007 		trace_bcache_request_start(s->d, bio);
1008 
1009 		if (!bio->bi_iter.bi_size) {
1010 			/*
1011 			 * can't call bch_journal_meta from under
1012 			 * generic_make_request
1013 			 */
1014 			continue_at_nobarrier(&s->cl,
1015 					      cached_dev_nodata,
1016 					      bcache_wq);
1017 		} else {
1018 			s->iop.bypass = check_should_bypass(dc, bio);
1019 
1020 			if (rw)
1021 				cached_dev_write(dc, s);
1022 			else
1023 				cached_dev_read(dc, s);
1024 		}
1025 	} else {
1026 		if ((bio_op(bio) == REQ_OP_DISCARD) &&
1027 		    !blk_queue_discard(bdev_get_queue(dc->bdev)))
1028 			bio_endio(bio);
1029 		else
1030 			generic_make_request(bio);
1031 	}
1032 
1033 	return BLK_QC_T_NONE;
1034 }
1035 
1036 static int cached_dev_ioctl(struct bcache_device *d, fmode_t mode,
1037 			    unsigned int cmd, unsigned long arg)
1038 {
1039 	struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1040 	return __blkdev_driver_ioctl(dc->bdev, mode, cmd, arg);
1041 }
1042 
1043 static int cached_dev_congested(void *data, int bits)
1044 {
1045 	struct bcache_device *d = data;
1046 	struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1047 	struct request_queue *q = bdev_get_queue(dc->bdev);
1048 	int ret = 0;
1049 
1050 	if (bdi_congested(q->backing_dev_info, bits))
1051 		return 1;
1052 
1053 	if (cached_dev_get(dc)) {
1054 		unsigned i;
1055 		struct cache *ca;
1056 
1057 		for_each_cache(ca, d->c, i) {
1058 			q = bdev_get_queue(ca->bdev);
1059 			ret |= bdi_congested(q->backing_dev_info, bits);
1060 		}
1061 
1062 		cached_dev_put(dc);
1063 	}
1064 
1065 	return ret;
1066 }
1067 
1068 void bch_cached_dev_request_init(struct cached_dev *dc)
1069 {
1070 	struct gendisk *g = dc->disk.disk;
1071 
1072 	g->queue->make_request_fn		= cached_dev_make_request;
1073 	g->queue->backing_dev_info->congested_fn = cached_dev_congested;
1074 	dc->disk.cache_miss			= cached_dev_cache_miss;
1075 	dc->disk.ioctl				= cached_dev_ioctl;
1076 }
1077 
1078 /* Flash backed devices */
1079 
1080 static int flash_dev_cache_miss(struct btree *b, struct search *s,
1081 				struct bio *bio, unsigned sectors)
1082 {
1083 	unsigned bytes = min(sectors, bio_sectors(bio)) << 9;
1084 
1085 	swap(bio->bi_iter.bi_size, bytes);
1086 	zero_fill_bio(bio);
1087 	swap(bio->bi_iter.bi_size, bytes);
1088 
1089 	bio_advance(bio, bytes);
1090 
1091 	if (!bio->bi_iter.bi_size)
1092 		return MAP_DONE;
1093 
1094 	return MAP_CONTINUE;
1095 }
1096 
1097 static void flash_dev_nodata(struct closure *cl)
1098 {
1099 	struct search *s = container_of(cl, struct search, cl);
1100 
1101 	if (s->iop.flush_journal)
1102 		bch_journal_meta(s->iop.c, cl);
1103 
1104 	continue_at(cl, search_free, NULL);
1105 }
1106 
1107 static blk_qc_t flash_dev_make_request(struct request_queue *q,
1108 					     struct bio *bio)
1109 {
1110 	struct search *s;
1111 	struct closure *cl;
1112 	struct bcache_device *d = bio->bi_disk->private_data;
1113 	int rw = bio_data_dir(bio);
1114 
1115 	generic_start_io_acct(q, rw, bio_sectors(bio), &d->disk->part0);
1116 
1117 	s = search_alloc(bio, d);
1118 	cl = &s->cl;
1119 	bio = &s->bio.bio;
1120 
1121 	trace_bcache_request_start(s->d, bio);
1122 
1123 	if (!bio->bi_iter.bi_size) {
1124 		/*
1125 		 * can't call bch_journal_meta from under
1126 		 * generic_make_request
1127 		 */
1128 		continue_at_nobarrier(&s->cl,
1129 				      flash_dev_nodata,
1130 				      bcache_wq);
1131 		return BLK_QC_T_NONE;
1132 	} else if (rw) {
1133 		bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys,
1134 					&KEY(d->id, bio->bi_iter.bi_sector, 0),
1135 					&KEY(d->id, bio_end_sector(bio), 0));
1136 
1137 		s->iop.bypass		= (bio_op(bio) == REQ_OP_DISCARD) != 0;
1138 		s->iop.writeback	= true;
1139 		s->iop.bio		= bio;
1140 
1141 		closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
1142 	} else {
1143 		closure_call(&s->iop.cl, cache_lookup, NULL, cl);
1144 	}
1145 
1146 	continue_at(cl, search_free, NULL);
1147 	return BLK_QC_T_NONE;
1148 }
1149 
1150 static int flash_dev_ioctl(struct bcache_device *d, fmode_t mode,
1151 			   unsigned int cmd, unsigned long arg)
1152 {
1153 	return -ENOTTY;
1154 }
1155 
1156 static int flash_dev_congested(void *data, int bits)
1157 {
1158 	struct bcache_device *d = data;
1159 	struct request_queue *q;
1160 	struct cache *ca;
1161 	unsigned i;
1162 	int ret = 0;
1163 
1164 	for_each_cache(ca, d->c, i) {
1165 		q = bdev_get_queue(ca->bdev);
1166 		ret |= bdi_congested(q->backing_dev_info, bits);
1167 	}
1168 
1169 	return ret;
1170 }
1171 
1172 void bch_flash_dev_request_init(struct bcache_device *d)
1173 {
1174 	struct gendisk *g = d->disk;
1175 
1176 	g->queue->make_request_fn		= flash_dev_make_request;
1177 	g->queue->backing_dev_info->congested_fn = flash_dev_congested;
1178 	d->cache_miss				= flash_dev_cache_miss;
1179 	d->ioctl				= flash_dev_ioctl;
1180 }
1181 
1182 void bch_request_exit(void)
1183 {
1184 	if (bch_search_cache)
1185 		kmem_cache_destroy(bch_search_cache);
1186 }
1187 
1188 int __init bch_request_init(void)
1189 {
1190 	bch_search_cache = KMEM_CACHE(search, 0);
1191 	if (!bch_search_cache)
1192 		return -ENOMEM;
1193 
1194 	return 0;
1195 }
1196