1 /* 2 * Main bcache entry point - handle a read or a write request and decide what to 3 * do with it; the make_request functions are called by the block layer. 4 * 5 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com> 6 * Copyright 2012 Google, Inc. 7 */ 8 9 #include "bcache.h" 10 #include "btree.h" 11 #include "debug.h" 12 #include "request.h" 13 #include "writeback.h" 14 15 #include <linux/module.h> 16 #include <linux/hash.h> 17 #include <linux/random.h> 18 #include <linux/backing-dev.h> 19 20 #include <trace/events/bcache.h> 21 22 #define CUTOFF_CACHE_ADD 95 23 #define CUTOFF_CACHE_READA 90 24 25 struct kmem_cache *bch_search_cache; 26 27 static void bch_data_insert_start(struct closure *); 28 29 static unsigned cache_mode(struct cached_dev *dc, struct bio *bio) 30 { 31 return BDEV_CACHE_MODE(&dc->sb); 32 } 33 34 static bool verify(struct cached_dev *dc, struct bio *bio) 35 { 36 return dc->verify; 37 } 38 39 static void bio_csum(struct bio *bio, struct bkey *k) 40 { 41 struct bio_vec bv; 42 struct bvec_iter iter; 43 uint64_t csum = 0; 44 45 bio_for_each_segment(bv, bio, iter) { 46 void *d = kmap(bv.bv_page) + bv.bv_offset; 47 csum = bch_crc64_update(csum, d, bv.bv_len); 48 kunmap(bv.bv_page); 49 } 50 51 k->ptr[KEY_PTRS(k)] = csum & (~0ULL >> 1); 52 } 53 54 /* Insert data into cache */ 55 56 static void bch_data_insert_keys(struct closure *cl) 57 { 58 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl); 59 atomic_t *journal_ref = NULL; 60 struct bkey *replace_key = op->replace ? &op->replace_key : NULL; 61 int ret; 62 63 /* 64 * If we're looping, might already be waiting on 65 * another journal write - can't wait on more than one journal write at 66 * a time 67 * 68 * XXX: this looks wrong 69 */ 70 #if 0 71 while (atomic_read(&s->cl.remaining) & CLOSURE_WAITING) 72 closure_sync(&s->cl); 73 #endif 74 75 if (!op->replace) 76 journal_ref = bch_journal(op->c, &op->insert_keys, 77 op->flush_journal ? cl : NULL); 78 79 ret = bch_btree_insert(op->c, &op->insert_keys, 80 journal_ref, replace_key); 81 if (ret == -ESRCH) { 82 op->replace_collision = true; 83 } else if (ret) { 84 op->error = -ENOMEM; 85 op->insert_data_done = true; 86 } 87 88 if (journal_ref) 89 atomic_dec_bug(journal_ref); 90 91 if (!op->insert_data_done) { 92 continue_at(cl, bch_data_insert_start, op->wq); 93 return; 94 } 95 96 bch_keylist_free(&op->insert_keys); 97 closure_return(cl); 98 } 99 100 static int bch_keylist_realloc(struct keylist *l, unsigned u64s, 101 struct cache_set *c) 102 { 103 size_t oldsize = bch_keylist_nkeys(l); 104 size_t newsize = oldsize + u64s; 105 106 /* 107 * The journalling code doesn't handle the case where the keys to insert 108 * is bigger than an empty write: If we just return -ENOMEM here, 109 * bio_insert() and bio_invalidate() will insert the keys created so far 110 * and finish the rest when the keylist is empty. 111 */ 112 if (newsize * sizeof(uint64_t) > block_bytes(c) - sizeof(struct jset)) 113 return -ENOMEM; 114 115 return __bch_keylist_realloc(l, u64s); 116 } 117 118 static void bch_data_invalidate(struct closure *cl) 119 { 120 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl); 121 struct bio *bio = op->bio; 122 123 pr_debug("invalidating %i sectors from %llu", 124 bio_sectors(bio), (uint64_t) bio->bi_iter.bi_sector); 125 126 while (bio_sectors(bio)) { 127 unsigned sectors = min(bio_sectors(bio), 128 1U << (KEY_SIZE_BITS - 1)); 129 130 if (bch_keylist_realloc(&op->insert_keys, 2, op->c)) 131 goto out; 132 133 bio->bi_iter.bi_sector += sectors; 134 bio->bi_iter.bi_size -= sectors << 9; 135 136 bch_keylist_add(&op->insert_keys, 137 &KEY(op->inode, bio->bi_iter.bi_sector, sectors)); 138 } 139 140 op->insert_data_done = true; 141 bio_put(bio); 142 out: 143 continue_at(cl, bch_data_insert_keys, op->wq); 144 } 145 146 static void bch_data_insert_error(struct closure *cl) 147 { 148 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl); 149 150 /* 151 * Our data write just errored, which means we've got a bunch of keys to 152 * insert that point to data that wasn't succesfully written. 153 * 154 * We don't have to insert those keys but we still have to invalidate 155 * that region of the cache - so, if we just strip off all the pointers 156 * from the keys we'll accomplish just that. 157 */ 158 159 struct bkey *src = op->insert_keys.keys, *dst = op->insert_keys.keys; 160 161 while (src != op->insert_keys.top) { 162 struct bkey *n = bkey_next(src); 163 164 SET_KEY_PTRS(src, 0); 165 memmove(dst, src, bkey_bytes(src)); 166 167 dst = bkey_next(dst); 168 src = n; 169 } 170 171 op->insert_keys.top = dst; 172 173 bch_data_insert_keys(cl); 174 } 175 176 static void bch_data_insert_endio(struct bio *bio, int error) 177 { 178 struct closure *cl = bio->bi_private; 179 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl); 180 181 if (error) { 182 /* TODO: We could try to recover from this. */ 183 if (op->writeback) 184 op->error = error; 185 else if (!op->replace) 186 set_closure_fn(cl, bch_data_insert_error, op->wq); 187 else 188 set_closure_fn(cl, NULL, NULL); 189 } 190 191 bch_bbio_endio(op->c, bio, error, "writing data to cache"); 192 } 193 194 static void bch_data_insert_start(struct closure *cl) 195 { 196 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl); 197 struct bio *bio = op->bio, *n; 198 199 if (atomic_sub_return(bio_sectors(bio), &op->c->sectors_to_gc) < 0) { 200 set_gc_sectors(op->c); 201 wake_up_gc(op->c); 202 } 203 204 if (op->bypass) 205 return bch_data_invalidate(cl); 206 207 /* 208 * Journal writes are marked REQ_FLUSH; if the original write was a 209 * flush, it'll wait on the journal write. 210 */ 211 bio->bi_rw &= ~(REQ_FLUSH|REQ_FUA); 212 213 do { 214 unsigned i; 215 struct bkey *k; 216 struct bio_set *split = op->c->bio_split; 217 218 /* 1 for the device pointer and 1 for the chksum */ 219 if (bch_keylist_realloc(&op->insert_keys, 220 3 + (op->csum ? 1 : 0), 221 op->c)) { 222 continue_at(cl, bch_data_insert_keys, op->wq); 223 return; 224 } 225 226 k = op->insert_keys.top; 227 bkey_init(k); 228 SET_KEY_INODE(k, op->inode); 229 SET_KEY_OFFSET(k, bio->bi_iter.bi_sector); 230 231 if (!bch_alloc_sectors(op->c, k, bio_sectors(bio), 232 op->write_point, op->write_prio, 233 op->writeback)) 234 goto err; 235 236 n = bio_next_split(bio, KEY_SIZE(k), GFP_NOIO, split); 237 238 n->bi_end_io = bch_data_insert_endio; 239 n->bi_private = cl; 240 241 if (op->writeback) { 242 SET_KEY_DIRTY(k, true); 243 244 for (i = 0; i < KEY_PTRS(k); i++) 245 SET_GC_MARK(PTR_BUCKET(op->c, k, i), 246 GC_MARK_DIRTY); 247 } 248 249 SET_KEY_CSUM(k, op->csum); 250 if (KEY_CSUM(k)) 251 bio_csum(n, k); 252 253 trace_bcache_cache_insert(k); 254 bch_keylist_push(&op->insert_keys); 255 256 n->bi_rw |= REQ_WRITE; 257 bch_submit_bbio(n, op->c, k, 0); 258 } while (n != bio); 259 260 op->insert_data_done = true; 261 continue_at(cl, bch_data_insert_keys, op->wq); 262 return; 263 err: 264 /* bch_alloc_sectors() blocks if s->writeback = true */ 265 BUG_ON(op->writeback); 266 267 /* 268 * But if it's not a writeback write we'd rather just bail out if 269 * there aren't any buckets ready to write to - it might take awhile and 270 * we might be starving btree writes for gc or something. 271 */ 272 273 if (!op->replace) { 274 /* 275 * Writethrough write: We can't complete the write until we've 276 * updated the index. But we don't want to delay the write while 277 * we wait for buckets to be freed up, so just invalidate the 278 * rest of the write. 279 */ 280 op->bypass = true; 281 return bch_data_invalidate(cl); 282 } else { 283 /* 284 * From a cache miss, we can just insert the keys for the data 285 * we have written or bail out if we didn't do anything. 286 */ 287 op->insert_data_done = true; 288 bio_put(bio); 289 290 if (!bch_keylist_empty(&op->insert_keys)) 291 continue_at(cl, bch_data_insert_keys, op->wq); 292 else 293 closure_return(cl); 294 } 295 } 296 297 /** 298 * bch_data_insert - stick some data in the cache 299 * 300 * This is the starting point for any data to end up in a cache device; it could 301 * be from a normal write, or a writeback write, or a write to a flash only 302 * volume - it's also used by the moving garbage collector to compact data in 303 * mostly empty buckets. 304 * 305 * It first writes the data to the cache, creating a list of keys to be inserted 306 * (if the data had to be fragmented there will be multiple keys); after the 307 * data is written it calls bch_journal, and after the keys have been added to 308 * the next journal write they're inserted into the btree. 309 * 310 * It inserts the data in s->cache_bio; bi_sector is used for the key offset, 311 * and op->inode is used for the key inode. 312 * 313 * If s->bypass is true, instead of inserting the data it invalidates the 314 * region of the cache represented by s->cache_bio and op->inode. 315 */ 316 void bch_data_insert(struct closure *cl) 317 { 318 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl); 319 320 trace_bcache_write(op->c, op->inode, op->bio, 321 op->writeback, op->bypass); 322 323 bch_keylist_init(&op->insert_keys); 324 bio_get(op->bio); 325 bch_data_insert_start(cl); 326 } 327 328 /* Congested? */ 329 330 unsigned bch_get_congested(struct cache_set *c) 331 { 332 int i; 333 long rand; 334 335 if (!c->congested_read_threshold_us && 336 !c->congested_write_threshold_us) 337 return 0; 338 339 i = (local_clock_us() - c->congested_last_us) / 1024; 340 if (i < 0) 341 return 0; 342 343 i += atomic_read(&c->congested); 344 if (i >= 0) 345 return 0; 346 347 i += CONGESTED_MAX; 348 349 if (i > 0) 350 i = fract_exp_two(i, 6); 351 352 rand = get_random_int(); 353 i -= bitmap_weight(&rand, BITS_PER_LONG); 354 355 return i > 0 ? i : 1; 356 } 357 358 static void add_sequential(struct task_struct *t) 359 { 360 ewma_add(t->sequential_io_avg, 361 t->sequential_io, 8, 0); 362 363 t->sequential_io = 0; 364 } 365 366 static struct hlist_head *iohash(struct cached_dev *dc, uint64_t k) 367 { 368 return &dc->io_hash[hash_64(k, RECENT_IO_BITS)]; 369 } 370 371 static bool check_should_bypass(struct cached_dev *dc, struct bio *bio) 372 { 373 struct cache_set *c = dc->disk.c; 374 unsigned mode = cache_mode(dc, bio); 375 unsigned sectors, congested = bch_get_congested(c); 376 struct task_struct *task = current; 377 struct io *i; 378 379 if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) || 380 c->gc_stats.in_use > CUTOFF_CACHE_ADD || 381 (bio->bi_rw & REQ_DISCARD)) 382 goto skip; 383 384 if (mode == CACHE_MODE_NONE || 385 (mode == CACHE_MODE_WRITEAROUND && 386 (bio->bi_rw & REQ_WRITE))) 387 goto skip; 388 389 if (bio->bi_iter.bi_sector & (c->sb.block_size - 1) || 390 bio_sectors(bio) & (c->sb.block_size - 1)) { 391 pr_debug("skipping unaligned io"); 392 goto skip; 393 } 394 395 if (bypass_torture_test(dc)) { 396 if ((get_random_int() & 3) == 3) 397 goto skip; 398 else 399 goto rescale; 400 } 401 402 if (!congested && !dc->sequential_cutoff) 403 goto rescale; 404 405 if (!congested && 406 mode == CACHE_MODE_WRITEBACK && 407 (bio->bi_rw & REQ_WRITE) && 408 (bio->bi_rw & REQ_SYNC)) 409 goto rescale; 410 411 spin_lock(&dc->io_lock); 412 413 hlist_for_each_entry(i, iohash(dc, bio->bi_iter.bi_sector), hash) 414 if (i->last == bio->bi_iter.bi_sector && 415 time_before(jiffies, i->jiffies)) 416 goto found; 417 418 i = list_first_entry(&dc->io_lru, struct io, lru); 419 420 add_sequential(task); 421 i->sequential = 0; 422 found: 423 if (i->sequential + bio->bi_iter.bi_size > i->sequential) 424 i->sequential += bio->bi_iter.bi_size; 425 426 i->last = bio_end_sector(bio); 427 i->jiffies = jiffies + msecs_to_jiffies(5000); 428 task->sequential_io = i->sequential; 429 430 hlist_del(&i->hash); 431 hlist_add_head(&i->hash, iohash(dc, i->last)); 432 list_move_tail(&i->lru, &dc->io_lru); 433 434 spin_unlock(&dc->io_lock); 435 436 sectors = max(task->sequential_io, 437 task->sequential_io_avg) >> 9; 438 439 if (dc->sequential_cutoff && 440 sectors >= dc->sequential_cutoff >> 9) { 441 trace_bcache_bypass_sequential(bio); 442 goto skip; 443 } 444 445 if (congested && sectors >= congested) { 446 trace_bcache_bypass_congested(bio); 447 goto skip; 448 } 449 450 rescale: 451 bch_rescale_priorities(c, bio_sectors(bio)); 452 return false; 453 skip: 454 bch_mark_sectors_bypassed(c, dc, bio_sectors(bio)); 455 return true; 456 } 457 458 /* Cache lookup */ 459 460 struct search { 461 /* Stack frame for bio_complete */ 462 struct closure cl; 463 464 struct bbio bio; 465 struct bio *orig_bio; 466 struct bio *cache_miss; 467 struct bcache_device *d; 468 469 unsigned insert_bio_sectors; 470 unsigned recoverable:1; 471 unsigned write:1; 472 unsigned read_dirty_data:1; 473 474 unsigned long start_time; 475 476 struct btree_op op; 477 struct data_insert_op iop; 478 }; 479 480 static void bch_cache_read_endio(struct bio *bio, int error) 481 { 482 struct bbio *b = container_of(bio, struct bbio, bio); 483 struct closure *cl = bio->bi_private; 484 struct search *s = container_of(cl, struct search, cl); 485 486 /* 487 * If the bucket was reused while our bio was in flight, we might have 488 * read the wrong data. Set s->error but not error so it doesn't get 489 * counted against the cache device, but we'll still reread the data 490 * from the backing device. 491 */ 492 493 if (error) 494 s->iop.error = error; 495 else if (!KEY_DIRTY(&b->key) && 496 ptr_stale(s->iop.c, &b->key, 0)) { 497 atomic_long_inc(&s->iop.c->cache_read_races); 498 s->iop.error = -EINTR; 499 } 500 501 bch_bbio_endio(s->iop.c, bio, error, "reading from cache"); 502 } 503 504 /* 505 * Read from a single key, handling the initial cache miss if the key starts in 506 * the middle of the bio 507 */ 508 static int cache_lookup_fn(struct btree_op *op, struct btree *b, struct bkey *k) 509 { 510 struct search *s = container_of(op, struct search, op); 511 struct bio *n, *bio = &s->bio.bio; 512 struct bkey *bio_key; 513 unsigned ptr; 514 515 if (bkey_cmp(k, &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0)) <= 0) 516 return MAP_CONTINUE; 517 518 if (KEY_INODE(k) != s->iop.inode || 519 KEY_START(k) > bio->bi_iter.bi_sector) { 520 unsigned bio_sectors = bio_sectors(bio); 521 unsigned sectors = KEY_INODE(k) == s->iop.inode 522 ? min_t(uint64_t, INT_MAX, 523 KEY_START(k) - bio->bi_iter.bi_sector) 524 : INT_MAX; 525 526 int ret = s->d->cache_miss(b, s, bio, sectors); 527 if (ret != MAP_CONTINUE) 528 return ret; 529 530 /* if this was a complete miss we shouldn't get here */ 531 BUG_ON(bio_sectors <= sectors); 532 } 533 534 if (!KEY_SIZE(k)) 535 return MAP_CONTINUE; 536 537 /* XXX: figure out best pointer - for multiple cache devices */ 538 ptr = 0; 539 540 PTR_BUCKET(b->c, k, ptr)->prio = INITIAL_PRIO; 541 542 if (KEY_DIRTY(k)) 543 s->read_dirty_data = true; 544 545 n = bio_next_split(bio, min_t(uint64_t, INT_MAX, 546 KEY_OFFSET(k) - bio->bi_iter.bi_sector), 547 GFP_NOIO, s->d->bio_split); 548 549 bio_key = &container_of(n, struct bbio, bio)->key; 550 bch_bkey_copy_single_ptr(bio_key, k, ptr); 551 552 bch_cut_front(&KEY(s->iop.inode, n->bi_iter.bi_sector, 0), bio_key); 553 bch_cut_back(&KEY(s->iop.inode, bio_end_sector(n), 0), bio_key); 554 555 n->bi_end_io = bch_cache_read_endio; 556 n->bi_private = &s->cl; 557 558 /* 559 * The bucket we're reading from might be reused while our bio 560 * is in flight, and we could then end up reading the wrong 561 * data. 562 * 563 * We guard against this by checking (in cache_read_endio()) if 564 * the pointer is stale again; if so, we treat it as an error 565 * and reread from the backing device (but we don't pass that 566 * error up anywhere). 567 */ 568 569 __bch_submit_bbio(n, b->c); 570 return n == bio ? MAP_DONE : MAP_CONTINUE; 571 } 572 573 static void cache_lookup(struct closure *cl) 574 { 575 struct search *s = container_of(cl, struct search, iop.cl); 576 struct bio *bio = &s->bio.bio; 577 int ret; 578 579 bch_btree_op_init(&s->op, -1); 580 581 ret = bch_btree_map_keys(&s->op, s->iop.c, 582 &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0), 583 cache_lookup_fn, MAP_END_KEY); 584 if (ret == -EAGAIN) { 585 continue_at(cl, cache_lookup, bcache_wq); 586 return; 587 } 588 589 closure_return(cl); 590 } 591 592 /* Common code for the make_request functions */ 593 594 static void request_endio(struct bio *bio, int error) 595 { 596 struct closure *cl = bio->bi_private; 597 598 if (error) { 599 struct search *s = container_of(cl, struct search, cl); 600 s->iop.error = error; 601 /* Only cache read errors are recoverable */ 602 s->recoverable = false; 603 } 604 605 bio_put(bio); 606 closure_put(cl); 607 } 608 609 static void bio_complete(struct search *s) 610 { 611 if (s->orig_bio) { 612 generic_end_io_acct(bio_data_dir(s->orig_bio), 613 &s->d->disk->part0, s->start_time); 614 615 trace_bcache_request_end(s->d, s->orig_bio); 616 bio_endio(s->orig_bio, s->iop.error); 617 s->orig_bio = NULL; 618 } 619 } 620 621 static void do_bio_hook(struct search *s, struct bio *orig_bio) 622 { 623 struct bio *bio = &s->bio.bio; 624 625 bio_init(bio); 626 __bio_clone_fast(bio, orig_bio); 627 bio->bi_end_io = request_endio; 628 bio->bi_private = &s->cl; 629 630 bio_cnt_set(bio, 3); 631 } 632 633 static void search_free(struct closure *cl) 634 { 635 struct search *s = container_of(cl, struct search, cl); 636 bio_complete(s); 637 638 if (s->iop.bio) 639 bio_put(s->iop.bio); 640 641 closure_debug_destroy(cl); 642 mempool_free(s, s->d->c->search); 643 } 644 645 static inline struct search *search_alloc(struct bio *bio, 646 struct bcache_device *d) 647 { 648 struct search *s; 649 650 s = mempool_alloc(d->c->search, GFP_NOIO); 651 652 closure_init(&s->cl, NULL); 653 do_bio_hook(s, bio); 654 655 s->orig_bio = bio; 656 s->cache_miss = NULL; 657 s->d = d; 658 s->recoverable = 1; 659 s->write = (bio->bi_rw & REQ_WRITE) != 0; 660 s->read_dirty_data = 0; 661 s->start_time = jiffies; 662 663 s->iop.c = d->c; 664 s->iop.bio = NULL; 665 s->iop.inode = d->id; 666 s->iop.write_point = hash_long((unsigned long) current, 16); 667 s->iop.write_prio = 0; 668 s->iop.error = 0; 669 s->iop.flags = 0; 670 s->iop.flush_journal = (bio->bi_rw & (REQ_FLUSH|REQ_FUA)) != 0; 671 s->iop.wq = bcache_wq; 672 673 return s; 674 } 675 676 /* Cached devices */ 677 678 static void cached_dev_bio_complete(struct closure *cl) 679 { 680 struct search *s = container_of(cl, struct search, cl); 681 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk); 682 683 search_free(cl); 684 cached_dev_put(dc); 685 } 686 687 /* Process reads */ 688 689 static void cached_dev_cache_miss_done(struct closure *cl) 690 { 691 struct search *s = container_of(cl, struct search, cl); 692 693 if (s->iop.replace_collision) 694 bch_mark_cache_miss_collision(s->iop.c, s->d); 695 696 if (s->iop.bio) { 697 int i; 698 struct bio_vec *bv; 699 700 bio_for_each_segment_all(bv, s->iop.bio, i) 701 __free_page(bv->bv_page); 702 } 703 704 cached_dev_bio_complete(cl); 705 } 706 707 static void cached_dev_read_error(struct closure *cl) 708 { 709 struct search *s = container_of(cl, struct search, cl); 710 struct bio *bio = &s->bio.bio; 711 712 if (s->recoverable) { 713 /* Retry from the backing device: */ 714 trace_bcache_read_retry(s->orig_bio); 715 716 s->iop.error = 0; 717 do_bio_hook(s, s->orig_bio); 718 719 /* XXX: invalidate cache */ 720 721 closure_bio_submit(bio, cl, s->d); 722 } 723 724 continue_at(cl, cached_dev_cache_miss_done, NULL); 725 } 726 727 static void cached_dev_read_done(struct closure *cl) 728 { 729 struct search *s = container_of(cl, struct search, cl); 730 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk); 731 732 /* 733 * We had a cache miss; cache_bio now contains data ready to be inserted 734 * into the cache. 735 * 736 * First, we copy the data we just read from cache_bio's bounce buffers 737 * to the buffers the original bio pointed to: 738 */ 739 740 if (s->iop.bio) { 741 bio_reset(s->iop.bio); 742 s->iop.bio->bi_iter.bi_sector = s->cache_miss->bi_iter.bi_sector; 743 s->iop.bio->bi_bdev = s->cache_miss->bi_bdev; 744 s->iop.bio->bi_iter.bi_size = s->insert_bio_sectors << 9; 745 bch_bio_map(s->iop.bio, NULL); 746 747 bio_copy_data(s->cache_miss, s->iop.bio); 748 749 bio_put(s->cache_miss); 750 s->cache_miss = NULL; 751 } 752 753 if (verify(dc, &s->bio.bio) && s->recoverable && !s->read_dirty_data) 754 bch_data_verify(dc, s->orig_bio); 755 756 bio_complete(s); 757 758 if (s->iop.bio && 759 !test_bit(CACHE_SET_STOPPING, &s->iop.c->flags)) { 760 BUG_ON(!s->iop.replace); 761 closure_call(&s->iop.cl, bch_data_insert, NULL, cl); 762 } 763 764 continue_at(cl, cached_dev_cache_miss_done, NULL); 765 } 766 767 static void cached_dev_read_done_bh(struct closure *cl) 768 { 769 struct search *s = container_of(cl, struct search, cl); 770 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk); 771 772 bch_mark_cache_accounting(s->iop.c, s->d, 773 !s->cache_miss, s->iop.bypass); 774 trace_bcache_read(s->orig_bio, !s->cache_miss, s->iop.bypass); 775 776 if (s->iop.error) 777 continue_at_nobarrier(cl, cached_dev_read_error, bcache_wq); 778 else if (s->iop.bio || verify(dc, &s->bio.bio)) 779 continue_at_nobarrier(cl, cached_dev_read_done, bcache_wq); 780 else 781 continue_at_nobarrier(cl, cached_dev_bio_complete, NULL); 782 } 783 784 static int cached_dev_cache_miss(struct btree *b, struct search *s, 785 struct bio *bio, unsigned sectors) 786 { 787 int ret = MAP_CONTINUE; 788 unsigned reada = 0; 789 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk); 790 struct bio *miss, *cache_bio; 791 792 if (s->cache_miss || s->iop.bypass) { 793 miss = bio_next_split(bio, sectors, GFP_NOIO, s->d->bio_split); 794 ret = miss == bio ? MAP_DONE : MAP_CONTINUE; 795 goto out_submit; 796 } 797 798 if (!(bio->bi_rw & REQ_RAHEAD) && 799 !(bio->bi_rw & REQ_META) && 800 s->iop.c->gc_stats.in_use < CUTOFF_CACHE_READA) 801 reada = min_t(sector_t, dc->readahead >> 9, 802 bdev_sectors(bio->bi_bdev) - bio_end_sector(bio)); 803 804 s->insert_bio_sectors = min(sectors, bio_sectors(bio) + reada); 805 806 s->iop.replace_key = KEY(s->iop.inode, 807 bio->bi_iter.bi_sector + s->insert_bio_sectors, 808 s->insert_bio_sectors); 809 810 ret = bch_btree_insert_check_key(b, &s->op, &s->iop.replace_key); 811 if (ret) 812 return ret; 813 814 s->iop.replace = true; 815 816 miss = bio_next_split(bio, sectors, GFP_NOIO, s->d->bio_split); 817 818 /* btree_search_recurse()'s btree iterator is no good anymore */ 819 ret = miss == bio ? MAP_DONE : -EINTR; 820 821 cache_bio = bio_alloc_bioset(GFP_NOWAIT, 822 DIV_ROUND_UP(s->insert_bio_sectors, PAGE_SECTORS), 823 dc->disk.bio_split); 824 if (!cache_bio) 825 goto out_submit; 826 827 cache_bio->bi_iter.bi_sector = miss->bi_iter.bi_sector; 828 cache_bio->bi_bdev = miss->bi_bdev; 829 cache_bio->bi_iter.bi_size = s->insert_bio_sectors << 9; 830 831 cache_bio->bi_end_io = request_endio; 832 cache_bio->bi_private = &s->cl; 833 834 bch_bio_map(cache_bio, NULL); 835 if (bio_alloc_pages(cache_bio, __GFP_NOWARN|GFP_NOIO)) 836 goto out_put; 837 838 if (reada) 839 bch_mark_cache_readahead(s->iop.c, s->d); 840 841 s->cache_miss = miss; 842 s->iop.bio = cache_bio; 843 bio_get(cache_bio); 844 closure_bio_submit(cache_bio, &s->cl, s->d); 845 846 return ret; 847 out_put: 848 bio_put(cache_bio); 849 out_submit: 850 miss->bi_end_io = request_endio; 851 miss->bi_private = &s->cl; 852 closure_bio_submit(miss, &s->cl, s->d); 853 return ret; 854 } 855 856 static void cached_dev_read(struct cached_dev *dc, struct search *s) 857 { 858 struct closure *cl = &s->cl; 859 860 closure_call(&s->iop.cl, cache_lookup, NULL, cl); 861 continue_at(cl, cached_dev_read_done_bh, NULL); 862 } 863 864 /* Process writes */ 865 866 static void cached_dev_write_complete(struct closure *cl) 867 { 868 struct search *s = container_of(cl, struct search, cl); 869 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk); 870 871 up_read_non_owner(&dc->writeback_lock); 872 cached_dev_bio_complete(cl); 873 } 874 875 static void cached_dev_write(struct cached_dev *dc, struct search *s) 876 { 877 struct closure *cl = &s->cl; 878 struct bio *bio = &s->bio.bio; 879 struct bkey start = KEY(dc->disk.id, bio->bi_iter.bi_sector, 0); 880 struct bkey end = KEY(dc->disk.id, bio_end_sector(bio), 0); 881 882 bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys, &start, &end); 883 884 down_read_non_owner(&dc->writeback_lock); 885 if (bch_keybuf_check_overlapping(&dc->writeback_keys, &start, &end)) { 886 /* 887 * We overlap with some dirty data undergoing background 888 * writeback, force this write to writeback 889 */ 890 s->iop.bypass = false; 891 s->iop.writeback = true; 892 } 893 894 /* 895 * Discards aren't _required_ to do anything, so skipping if 896 * check_overlapping returned true is ok 897 * 898 * But check_overlapping drops dirty keys for which io hasn't started, 899 * so we still want to call it. 900 */ 901 if (bio->bi_rw & REQ_DISCARD) 902 s->iop.bypass = true; 903 904 if (should_writeback(dc, s->orig_bio, 905 cache_mode(dc, bio), 906 s->iop.bypass)) { 907 s->iop.bypass = false; 908 s->iop.writeback = true; 909 } 910 911 if (s->iop.bypass) { 912 s->iop.bio = s->orig_bio; 913 bio_get(s->iop.bio); 914 915 if (!(bio->bi_rw & REQ_DISCARD) || 916 blk_queue_discard(bdev_get_queue(dc->bdev))) 917 closure_bio_submit(bio, cl, s->d); 918 } else if (s->iop.writeback) { 919 bch_writeback_add(dc); 920 s->iop.bio = bio; 921 922 if (bio->bi_rw & REQ_FLUSH) { 923 /* Also need to send a flush to the backing device */ 924 struct bio *flush = bio_alloc_bioset(GFP_NOIO, 0, 925 dc->disk.bio_split); 926 927 flush->bi_rw = WRITE_FLUSH; 928 flush->bi_bdev = bio->bi_bdev; 929 flush->bi_end_io = request_endio; 930 flush->bi_private = cl; 931 932 closure_bio_submit(flush, cl, s->d); 933 } 934 } else { 935 s->iop.bio = bio_clone_fast(bio, GFP_NOIO, dc->disk.bio_split); 936 937 closure_bio_submit(bio, cl, s->d); 938 } 939 940 closure_call(&s->iop.cl, bch_data_insert, NULL, cl); 941 continue_at(cl, cached_dev_write_complete, NULL); 942 } 943 944 static void cached_dev_nodata(struct closure *cl) 945 { 946 struct search *s = container_of(cl, struct search, cl); 947 struct bio *bio = &s->bio.bio; 948 949 if (s->iop.flush_journal) 950 bch_journal_meta(s->iop.c, cl); 951 952 /* If it's a flush, we send the flush to the backing device too */ 953 closure_bio_submit(bio, cl, s->d); 954 955 continue_at(cl, cached_dev_bio_complete, NULL); 956 } 957 958 /* Cached devices - read & write stuff */ 959 960 static void cached_dev_make_request(struct request_queue *q, struct bio *bio) 961 { 962 struct search *s; 963 struct bcache_device *d = bio->bi_bdev->bd_disk->private_data; 964 struct cached_dev *dc = container_of(d, struct cached_dev, disk); 965 int rw = bio_data_dir(bio); 966 967 generic_start_io_acct(rw, bio_sectors(bio), &d->disk->part0); 968 969 bio->bi_bdev = dc->bdev; 970 bio->bi_iter.bi_sector += dc->sb.data_offset; 971 972 if (cached_dev_get(dc)) { 973 s = search_alloc(bio, d); 974 trace_bcache_request_start(s->d, bio); 975 976 if (!bio->bi_iter.bi_size) { 977 /* 978 * can't call bch_journal_meta from under 979 * generic_make_request 980 */ 981 continue_at_nobarrier(&s->cl, 982 cached_dev_nodata, 983 bcache_wq); 984 } else { 985 s->iop.bypass = check_should_bypass(dc, bio); 986 987 if (rw) 988 cached_dev_write(dc, s); 989 else 990 cached_dev_read(dc, s); 991 } 992 } else { 993 if ((bio->bi_rw & REQ_DISCARD) && 994 !blk_queue_discard(bdev_get_queue(dc->bdev))) 995 bio_endio(bio, 0); 996 else 997 bch_generic_make_request(bio, &d->bio_split_hook); 998 } 999 } 1000 1001 static int cached_dev_ioctl(struct bcache_device *d, fmode_t mode, 1002 unsigned int cmd, unsigned long arg) 1003 { 1004 struct cached_dev *dc = container_of(d, struct cached_dev, disk); 1005 return __blkdev_driver_ioctl(dc->bdev, mode, cmd, arg); 1006 } 1007 1008 static int cached_dev_congested(void *data, int bits) 1009 { 1010 struct bcache_device *d = data; 1011 struct cached_dev *dc = container_of(d, struct cached_dev, disk); 1012 struct request_queue *q = bdev_get_queue(dc->bdev); 1013 int ret = 0; 1014 1015 if (bdi_congested(&q->backing_dev_info, bits)) 1016 return 1; 1017 1018 if (cached_dev_get(dc)) { 1019 unsigned i; 1020 struct cache *ca; 1021 1022 for_each_cache(ca, d->c, i) { 1023 q = bdev_get_queue(ca->bdev); 1024 ret |= bdi_congested(&q->backing_dev_info, bits); 1025 } 1026 1027 cached_dev_put(dc); 1028 } 1029 1030 return ret; 1031 } 1032 1033 void bch_cached_dev_request_init(struct cached_dev *dc) 1034 { 1035 struct gendisk *g = dc->disk.disk; 1036 1037 g->queue->make_request_fn = cached_dev_make_request; 1038 g->queue->backing_dev_info.congested_fn = cached_dev_congested; 1039 dc->disk.cache_miss = cached_dev_cache_miss; 1040 dc->disk.ioctl = cached_dev_ioctl; 1041 } 1042 1043 /* Flash backed devices */ 1044 1045 static int flash_dev_cache_miss(struct btree *b, struct search *s, 1046 struct bio *bio, unsigned sectors) 1047 { 1048 unsigned bytes = min(sectors, bio_sectors(bio)) << 9; 1049 1050 swap(bio->bi_iter.bi_size, bytes); 1051 zero_fill_bio(bio); 1052 swap(bio->bi_iter.bi_size, bytes); 1053 1054 bio_advance(bio, bytes); 1055 1056 if (!bio->bi_iter.bi_size) 1057 return MAP_DONE; 1058 1059 return MAP_CONTINUE; 1060 } 1061 1062 static void flash_dev_nodata(struct closure *cl) 1063 { 1064 struct search *s = container_of(cl, struct search, cl); 1065 1066 if (s->iop.flush_journal) 1067 bch_journal_meta(s->iop.c, cl); 1068 1069 continue_at(cl, search_free, NULL); 1070 } 1071 1072 static void flash_dev_make_request(struct request_queue *q, struct bio *bio) 1073 { 1074 struct search *s; 1075 struct closure *cl; 1076 struct bcache_device *d = bio->bi_bdev->bd_disk->private_data; 1077 int rw = bio_data_dir(bio); 1078 1079 generic_start_io_acct(rw, bio_sectors(bio), &d->disk->part0); 1080 1081 s = search_alloc(bio, d); 1082 cl = &s->cl; 1083 bio = &s->bio.bio; 1084 1085 trace_bcache_request_start(s->d, bio); 1086 1087 if (!bio->bi_iter.bi_size) { 1088 /* 1089 * can't call bch_journal_meta from under 1090 * generic_make_request 1091 */ 1092 continue_at_nobarrier(&s->cl, 1093 flash_dev_nodata, 1094 bcache_wq); 1095 return; 1096 } else if (rw) { 1097 bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys, 1098 &KEY(d->id, bio->bi_iter.bi_sector, 0), 1099 &KEY(d->id, bio_end_sector(bio), 0)); 1100 1101 s->iop.bypass = (bio->bi_rw & REQ_DISCARD) != 0; 1102 s->iop.writeback = true; 1103 s->iop.bio = bio; 1104 1105 closure_call(&s->iop.cl, bch_data_insert, NULL, cl); 1106 } else { 1107 closure_call(&s->iop.cl, cache_lookup, NULL, cl); 1108 } 1109 1110 continue_at(cl, search_free, NULL); 1111 } 1112 1113 static int flash_dev_ioctl(struct bcache_device *d, fmode_t mode, 1114 unsigned int cmd, unsigned long arg) 1115 { 1116 return -ENOTTY; 1117 } 1118 1119 static int flash_dev_congested(void *data, int bits) 1120 { 1121 struct bcache_device *d = data; 1122 struct request_queue *q; 1123 struct cache *ca; 1124 unsigned i; 1125 int ret = 0; 1126 1127 for_each_cache(ca, d->c, i) { 1128 q = bdev_get_queue(ca->bdev); 1129 ret |= bdi_congested(&q->backing_dev_info, bits); 1130 } 1131 1132 return ret; 1133 } 1134 1135 void bch_flash_dev_request_init(struct bcache_device *d) 1136 { 1137 struct gendisk *g = d->disk; 1138 1139 g->queue->make_request_fn = flash_dev_make_request; 1140 g->queue->backing_dev_info.congested_fn = flash_dev_congested; 1141 d->cache_miss = flash_dev_cache_miss; 1142 d->ioctl = flash_dev_ioctl; 1143 } 1144 1145 void bch_request_exit(void) 1146 { 1147 if (bch_search_cache) 1148 kmem_cache_destroy(bch_search_cache); 1149 } 1150 1151 int __init bch_request_init(void) 1152 { 1153 bch_search_cache = KMEM_CACHE(search, 0); 1154 if (!bch_search_cache) 1155 return -ENOMEM; 1156 1157 return 0; 1158 } 1159