xref: /openbmc/linux/drivers/md/bcache/request.c (revision 81de3bf3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Main bcache entry point - handle a read or a write request and decide what to
4  * do with it; the make_request functions are called by the block layer.
5  *
6  * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
7  * Copyright 2012 Google, Inc.
8  */
9 
10 #include "bcache.h"
11 #include "btree.h"
12 #include "debug.h"
13 #include "request.h"
14 #include "writeback.h"
15 
16 #include <linux/module.h>
17 #include <linux/hash.h>
18 #include <linux/random.h>
19 #include <linux/backing-dev.h>
20 
21 #include <trace/events/bcache.h>
22 
23 #define CUTOFF_CACHE_ADD	95
24 #define CUTOFF_CACHE_READA	90
25 
26 struct kmem_cache *bch_search_cache;
27 
28 static void bch_data_insert_start(struct closure *cl);
29 
30 static unsigned int cache_mode(struct cached_dev *dc)
31 {
32 	return BDEV_CACHE_MODE(&dc->sb);
33 }
34 
35 static bool verify(struct cached_dev *dc)
36 {
37 	return dc->verify;
38 }
39 
40 static void bio_csum(struct bio *bio, struct bkey *k)
41 {
42 	struct bio_vec bv;
43 	struct bvec_iter iter;
44 	uint64_t csum = 0;
45 
46 	bio_for_each_segment(bv, bio, iter) {
47 		void *d = kmap(bv.bv_page) + bv.bv_offset;
48 
49 		csum = bch_crc64_update(csum, d, bv.bv_len);
50 		kunmap(bv.bv_page);
51 	}
52 
53 	k->ptr[KEY_PTRS(k)] = csum & (~0ULL >> 1);
54 }
55 
56 /* Insert data into cache */
57 
58 static void bch_data_insert_keys(struct closure *cl)
59 {
60 	struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
61 	atomic_t *journal_ref = NULL;
62 	struct bkey *replace_key = op->replace ? &op->replace_key : NULL;
63 	int ret;
64 
65 	if (!op->replace)
66 		journal_ref = bch_journal(op->c, &op->insert_keys,
67 					  op->flush_journal ? cl : NULL);
68 
69 	ret = bch_btree_insert(op->c, &op->insert_keys,
70 			       journal_ref, replace_key);
71 	if (ret == -ESRCH) {
72 		op->replace_collision = true;
73 	} else if (ret) {
74 		op->status		= BLK_STS_RESOURCE;
75 		op->insert_data_done	= true;
76 	}
77 
78 	if (journal_ref)
79 		atomic_dec_bug(journal_ref);
80 
81 	if (!op->insert_data_done) {
82 		continue_at(cl, bch_data_insert_start, op->wq);
83 		return;
84 	}
85 
86 	bch_keylist_free(&op->insert_keys);
87 	closure_return(cl);
88 }
89 
90 static int bch_keylist_realloc(struct keylist *l, unsigned int u64s,
91 			       struct cache_set *c)
92 {
93 	size_t oldsize = bch_keylist_nkeys(l);
94 	size_t newsize = oldsize + u64s;
95 
96 	/*
97 	 * The journalling code doesn't handle the case where the keys to insert
98 	 * is bigger than an empty write: If we just return -ENOMEM here,
99 	 * bch_data_insert_keys() will insert the keys created so far
100 	 * and finish the rest when the keylist is empty.
101 	 */
102 	if (newsize * sizeof(uint64_t) > block_bytes(c) - sizeof(struct jset))
103 		return -ENOMEM;
104 
105 	return __bch_keylist_realloc(l, u64s);
106 }
107 
108 static void bch_data_invalidate(struct closure *cl)
109 {
110 	struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
111 	struct bio *bio = op->bio;
112 
113 	pr_debug("invalidating %i sectors from %llu",
114 		 bio_sectors(bio), (uint64_t) bio->bi_iter.bi_sector);
115 
116 	while (bio_sectors(bio)) {
117 		unsigned int sectors = min(bio_sectors(bio),
118 				       1U << (KEY_SIZE_BITS - 1));
119 
120 		if (bch_keylist_realloc(&op->insert_keys, 2, op->c))
121 			goto out;
122 
123 		bio->bi_iter.bi_sector	+= sectors;
124 		bio->bi_iter.bi_size	-= sectors << 9;
125 
126 		bch_keylist_add(&op->insert_keys,
127 				&KEY(op->inode,
128 				     bio->bi_iter.bi_sector,
129 				     sectors));
130 	}
131 
132 	op->insert_data_done = true;
133 	/* get in bch_data_insert() */
134 	bio_put(bio);
135 out:
136 	continue_at(cl, bch_data_insert_keys, op->wq);
137 }
138 
139 static void bch_data_insert_error(struct closure *cl)
140 {
141 	struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
142 
143 	/*
144 	 * Our data write just errored, which means we've got a bunch of keys to
145 	 * insert that point to data that wasn't successfully written.
146 	 *
147 	 * We don't have to insert those keys but we still have to invalidate
148 	 * that region of the cache - so, if we just strip off all the pointers
149 	 * from the keys we'll accomplish just that.
150 	 */
151 
152 	struct bkey *src = op->insert_keys.keys, *dst = op->insert_keys.keys;
153 
154 	while (src != op->insert_keys.top) {
155 		struct bkey *n = bkey_next(src);
156 
157 		SET_KEY_PTRS(src, 0);
158 		memmove(dst, src, bkey_bytes(src));
159 
160 		dst = bkey_next(dst);
161 		src = n;
162 	}
163 
164 	op->insert_keys.top = dst;
165 
166 	bch_data_insert_keys(cl);
167 }
168 
169 static void bch_data_insert_endio(struct bio *bio)
170 {
171 	struct closure *cl = bio->bi_private;
172 	struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
173 
174 	if (bio->bi_status) {
175 		/* TODO: We could try to recover from this. */
176 		if (op->writeback)
177 			op->status = bio->bi_status;
178 		else if (!op->replace)
179 			set_closure_fn(cl, bch_data_insert_error, op->wq);
180 		else
181 			set_closure_fn(cl, NULL, NULL);
182 	}
183 
184 	bch_bbio_endio(op->c, bio, bio->bi_status, "writing data to cache");
185 }
186 
187 static void bch_data_insert_start(struct closure *cl)
188 {
189 	struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
190 	struct bio *bio = op->bio, *n;
191 
192 	if (op->bypass)
193 		return bch_data_invalidate(cl);
194 
195 	if (atomic_sub_return(bio_sectors(bio), &op->c->sectors_to_gc) < 0)
196 		wake_up_gc(op->c);
197 
198 	/*
199 	 * Journal writes are marked REQ_PREFLUSH; if the original write was a
200 	 * flush, it'll wait on the journal write.
201 	 */
202 	bio->bi_opf &= ~(REQ_PREFLUSH|REQ_FUA);
203 
204 	do {
205 		unsigned int i;
206 		struct bkey *k;
207 		struct bio_set *split = &op->c->bio_split;
208 
209 		/* 1 for the device pointer and 1 for the chksum */
210 		if (bch_keylist_realloc(&op->insert_keys,
211 					3 + (op->csum ? 1 : 0),
212 					op->c)) {
213 			continue_at(cl, bch_data_insert_keys, op->wq);
214 			return;
215 		}
216 
217 		k = op->insert_keys.top;
218 		bkey_init(k);
219 		SET_KEY_INODE(k, op->inode);
220 		SET_KEY_OFFSET(k, bio->bi_iter.bi_sector);
221 
222 		if (!bch_alloc_sectors(op->c, k, bio_sectors(bio),
223 				       op->write_point, op->write_prio,
224 				       op->writeback))
225 			goto err;
226 
227 		n = bio_next_split(bio, KEY_SIZE(k), GFP_NOIO, split);
228 
229 		n->bi_end_io	= bch_data_insert_endio;
230 		n->bi_private	= cl;
231 
232 		if (op->writeback) {
233 			SET_KEY_DIRTY(k, true);
234 
235 			for (i = 0; i < KEY_PTRS(k); i++)
236 				SET_GC_MARK(PTR_BUCKET(op->c, k, i),
237 					    GC_MARK_DIRTY);
238 		}
239 
240 		SET_KEY_CSUM(k, op->csum);
241 		if (KEY_CSUM(k))
242 			bio_csum(n, k);
243 
244 		trace_bcache_cache_insert(k);
245 		bch_keylist_push(&op->insert_keys);
246 
247 		bio_set_op_attrs(n, REQ_OP_WRITE, 0);
248 		bch_submit_bbio(n, op->c, k, 0);
249 	} while (n != bio);
250 
251 	op->insert_data_done = true;
252 	continue_at(cl, bch_data_insert_keys, op->wq);
253 	return;
254 err:
255 	/* bch_alloc_sectors() blocks if s->writeback = true */
256 	BUG_ON(op->writeback);
257 
258 	/*
259 	 * But if it's not a writeback write we'd rather just bail out if
260 	 * there aren't any buckets ready to write to - it might take awhile and
261 	 * we might be starving btree writes for gc or something.
262 	 */
263 
264 	if (!op->replace) {
265 		/*
266 		 * Writethrough write: We can't complete the write until we've
267 		 * updated the index. But we don't want to delay the write while
268 		 * we wait for buckets to be freed up, so just invalidate the
269 		 * rest of the write.
270 		 */
271 		op->bypass = true;
272 		return bch_data_invalidate(cl);
273 	} else {
274 		/*
275 		 * From a cache miss, we can just insert the keys for the data
276 		 * we have written or bail out if we didn't do anything.
277 		 */
278 		op->insert_data_done = true;
279 		bio_put(bio);
280 
281 		if (!bch_keylist_empty(&op->insert_keys))
282 			continue_at(cl, bch_data_insert_keys, op->wq);
283 		else
284 			closure_return(cl);
285 	}
286 }
287 
288 /**
289  * bch_data_insert - stick some data in the cache
290  * @cl: closure pointer.
291  *
292  * This is the starting point for any data to end up in a cache device; it could
293  * be from a normal write, or a writeback write, or a write to a flash only
294  * volume - it's also used by the moving garbage collector to compact data in
295  * mostly empty buckets.
296  *
297  * It first writes the data to the cache, creating a list of keys to be inserted
298  * (if the data had to be fragmented there will be multiple keys); after the
299  * data is written it calls bch_journal, and after the keys have been added to
300  * the next journal write they're inserted into the btree.
301  *
302  * It inserts the data in op->bio; bi_sector is used for the key offset,
303  * and op->inode is used for the key inode.
304  *
305  * If op->bypass is true, instead of inserting the data it invalidates the
306  * region of the cache represented by op->bio and op->inode.
307  */
308 void bch_data_insert(struct closure *cl)
309 {
310 	struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
311 
312 	trace_bcache_write(op->c, op->inode, op->bio,
313 			   op->writeback, op->bypass);
314 
315 	bch_keylist_init(&op->insert_keys);
316 	bio_get(op->bio);
317 	bch_data_insert_start(cl);
318 }
319 
320 /*
321  * Congested?  Return 0 (not congested) or the limit (in sectors)
322  * beyond which we should bypass the cache due to congestion.
323  */
324 unsigned int bch_get_congested(const struct cache_set *c)
325 {
326 	int i;
327 
328 	if (!c->congested_read_threshold_us &&
329 	    !c->congested_write_threshold_us)
330 		return 0;
331 
332 	i = (local_clock_us() - c->congested_last_us) / 1024;
333 	if (i < 0)
334 		return 0;
335 
336 	i += atomic_read(&c->congested);
337 	if (i >= 0)
338 		return 0;
339 
340 	i += CONGESTED_MAX;
341 
342 	if (i > 0)
343 		i = fract_exp_two(i, 6);
344 
345 	i -= hweight32(get_random_u32());
346 
347 	return i > 0 ? i : 1;
348 }
349 
350 static void add_sequential(struct task_struct *t)
351 {
352 	ewma_add(t->sequential_io_avg,
353 		 t->sequential_io, 8, 0);
354 
355 	t->sequential_io = 0;
356 }
357 
358 static struct hlist_head *iohash(struct cached_dev *dc, uint64_t k)
359 {
360 	return &dc->io_hash[hash_64(k, RECENT_IO_BITS)];
361 }
362 
363 static bool check_should_bypass(struct cached_dev *dc, struct bio *bio)
364 {
365 	struct cache_set *c = dc->disk.c;
366 	unsigned int mode = cache_mode(dc);
367 	unsigned int sectors, congested;
368 	struct task_struct *task = current;
369 	struct io *i;
370 
371 	if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) ||
372 	    c->gc_stats.in_use > CUTOFF_CACHE_ADD ||
373 	    (bio_op(bio) == REQ_OP_DISCARD))
374 		goto skip;
375 
376 	if (mode == CACHE_MODE_NONE ||
377 	    (mode == CACHE_MODE_WRITEAROUND &&
378 	     op_is_write(bio_op(bio))))
379 		goto skip;
380 
381 	/*
382 	 * Flag for bypass if the IO is for read-ahead or background,
383 	 * unless the read-ahead request is for metadata
384 	 * (eg, for gfs2 or xfs).
385 	 */
386 	if (bio->bi_opf & (REQ_RAHEAD|REQ_BACKGROUND) &&
387 	    !(bio->bi_opf & (REQ_META|REQ_PRIO)))
388 		goto skip;
389 
390 	if (bio->bi_iter.bi_sector & (c->sb.block_size - 1) ||
391 	    bio_sectors(bio) & (c->sb.block_size - 1)) {
392 		pr_debug("skipping unaligned io");
393 		goto skip;
394 	}
395 
396 	if (bypass_torture_test(dc)) {
397 		if ((get_random_int() & 3) == 3)
398 			goto skip;
399 		else
400 			goto rescale;
401 	}
402 
403 	congested = bch_get_congested(c);
404 	if (!congested && !dc->sequential_cutoff)
405 		goto rescale;
406 
407 	spin_lock(&dc->io_lock);
408 
409 	hlist_for_each_entry(i, iohash(dc, bio->bi_iter.bi_sector), hash)
410 		if (i->last == bio->bi_iter.bi_sector &&
411 		    time_before(jiffies, i->jiffies))
412 			goto found;
413 
414 	i = list_first_entry(&dc->io_lru, struct io, lru);
415 
416 	add_sequential(task);
417 	i->sequential = 0;
418 found:
419 	if (i->sequential + bio->bi_iter.bi_size > i->sequential)
420 		i->sequential	+= bio->bi_iter.bi_size;
421 
422 	i->last			 = bio_end_sector(bio);
423 	i->jiffies		 = jiffies + msecs_to_jiffies(5000);
424 	task->sequential_io	 = i->sequential;
425 
426 	hlist_del(&i->hash);
427 	hlist_add_head(&i->hash, iohash(dc, i->last));
428 	list_move_tail(&i->lru, &dc->io_lru);
429 
430 	spin_unlock(&dc->io_lock);
431 
432 	sectors = max(task->sequential_io,
433 		      task->sequential_io_avg) >> 9;
434 
435 	if (dc->sequential_cutoff &&
436 	    sectors >= dc->sequential_cutoff >> 9) {
437 		trace_bcache_bypass_sequential(bio);
438 		goto skip;
439 	}
440 
441 	if (congested && sectors >= congested) {
442 		trace_bcache_bypass_congested(bio);
443 		goto skip;
444 	}
445 
446 rescale:
447 	bch_rescale_priorities(c, bio_sectors(bio));
448 	return false;
449 skip:
450 	bch_mark_sectors_bypassed(c, dc, bio_sectors(bio));
451 	return true;
452 }
453 
454 /* Cache lookup */
455 
456 struct search {
457 	/* Stack frame for bio_complete */
458 	struct closure		cl;
459 
460 	struct bbio		bio;
461 	struct bio		*orig_bio;
462 	struct bio		*cache_miss;
463 	struct bcache_device	*d;
464 
465 	unsigned int		insert_bio_sectors;
466 	unsigned int		recoverable:1;
467 	unsigned int		write:1;
468 	unsigned int		read_dirty_data:1;
469 	unsigned int		cache_missed:1;
470 
471 	unsigned long		start_time;
472 
473 	struct btree_op		op;
474 	struct data_insert_op	iop;
475 };
476 
477 static void bch_cache_read_endio(struct bio *bio)
478 {
479 	struct bbio *b = container_of(bio, struct bbio, bio);
480 	struct closure *cl = bio->bi_private;
481 	struct search *s = container_of(cl, struct search, cl);
482 
483 	/*
484 	 * If the bucket was reused while our bio was in flight, we might have
485 	 * read the wrong data. Set s->error but not error so it doesn't get
486 	 * counted against the cache device, but we'll still reread the data
487 	 * from the backing device.
488 	 */
489 
490 	if (bio->bi_status)
491 		s->iop.status = bio->bi_status;
492 	else if (!KEY_DIRTY(&b->key) &&
493 		 ptr_stale(s->iop.c, &b->key, 0)) {
494 		atomic_long_inc(&s->iop.c->cache_read_races);
495 		s->iop.status = BLK_STS_IOERR;
496 	}
497 
498 	bch_bbio_endio(s->iop.c, bio, bio->bi_status, "reading from cache");
499 }
500 
501 /*
502  * Read from a single key, handling the initial cache miss if the key starts in
503  * the middle of the bio
504  */
505 static int cache_lookup_fn(struct btree_op *op, struct btree *b, struct bkey *k)
506 {
507 	struct search *s = container_of(op, struct search, op);
508 	struct bio *n, *bio = &s->bio.bio;
509 	struct bkey *bio_key;
510 	unsigned int ptr;
511 
512 	if (bkey_cmp(k, &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0)) <= 0)
513 		return MAP_CONTINUE;
514 
515 	if (KEY_INODE(k) != s->iop.inode ||
516 	    KEY_START(k) > bio->bi_iter.bi_sector) {
517 		unsigned int bio_sectors = bio_sectors(bio);
518 		unsigned int sectors = KEY_INODE(k) == s->iop.inode
519 			? min_t(uint64_t, INT_MAX,
520 				KEY_START(k) - bio->bi_iter.bi_sector)
521 			: INT_MAX;
522 		int ret = s->d->cache_miss(b, s, bio, sectors);
523 
524 		if (ret != MAP_CONTINUE)
525 			return ret;
526 
527 		/* if this was a complete miss we shouldn't get here */
528 		BUG_ON(bio_sectors <= sectors);
529 	}
530 
531 	if (!KEY_SIZE(k))
532 		return MAP_CONTINUE;
533 
534 	/* XXX: figure out best pointer - for multiple cache devices */
535 	ptr = 0;
536 
537 	PTR_BUCKET(b->c, k, ptr)->prio = INITIAL_PRIO;
538 
539 	if (KEY_DIRTY(k))
540 		s->read_dirty_data = true;
541 
542 	n = bio_next_split(bio, min_t(uint64_t, INT_MAX,
543 				      KEY_OFFSET(k) - bio->bi_iter.bi_sector),
544 			   GFP_NOIO, &s->d->bio_split);
545 
546 	bio_key = &container_of(n, struct bbio, bio)->key;
547 	bch_bkey_copy_single_ptr(bio_key, k, ptr);
548 
549 	bch_cut_front(&KEY(s->iop.inode, n->bi_iter.bi_sector, 0), bio_key);
550 	bch_cut_back(&KEY(s->iop.inode, bio_end_sector(n), 0), bio_key);
551 
552 	n->bi_end_io	= bch_cache_read_endio;
553 	n->bi_private	= &s->cl;
554 
555 	/*
556 	 * The bucket we're reading from might be reused while our bio
557 	 * is in flight, and we could then end up reading the wrong
558 	 * data.
559 	 *
560 	 * We guard against this by checking (in cache_read_endio()) if
561 	 * the pointer is stale again; if so, we treat it as an error
562 	 * and reread from the backing device (but we don't pass that
563 	 * error up anywhere).
564 	 */
565 
566 	__bch_submit_bbio(n, b->c);
567 	return n == bio ? MAP_DONE : MAP_CONTINUE;
568 }
569 
570 static void cache_lookup(struct closure *cl)
571 {
572 	struct search *s = container_of(cl, struct search, iop.cl);
573 	struct bio *bio = &s->bio.bio;
574 	struct cached_dev *dc;
575 	int ret;
576 
577 	bch_btree_op_init(&s->op, -1);
578 
579 	ret = bch_btree_map_keys(&s->op, s->iop.c,
580 				 &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0),
581 				 cache_lookup_fn, MAP_END_KEY);
582 	if (ret == -EAGAIN) {
583 		continue_at(cl, cache_lookup, bcache_wq);
584 		return;
585 	}
586 
587 	/*
588 	 * We might meet err when searching the btree, If that happens, we will
589 	 * get negative ret, in this scenario we should not recover data from
590 	 * backing device (when cache device is dirty) because we don't know
591 	 * whether bkeys the read request covered are all clean.
592 	 *
593 	 * And after that happened, s->iop.status is still its initial value
594 	 * before we submit s->bio.bio
595 	 */
596 	if (ret < 0) {
597 		BUG_ON(ret == -EINTR);
598 		if (s->d && s->d->c &&
599 				!UUID_FLASH_ONLY(&s->d->c->uuids[s->d->id])) {
600 			dc = container_of(s->d, struct cached_dev, disk);
601 			if (dc && atomic_read(&dc->has_dirty))
602 				s->recoverable = false;
603 		}
604 		if (!s->iop.status)
605 			s->iop.status = BLK_STS_IOERR;
606 	}
607 
608 	closure_return(cl);
609 }
610 
611 /* Common code for the make_request functions */
612 
613 static void request_endio(struct bio *bio)
614 {
615 	struct closure *cl = bio->bi_private;
616 
617 	if (bio->bi_status) {
618 		struct search *s = container_of(cl, struct search, cl);
619 
620 		s->iop.status = bio->bi_status;
621 		/* Only cache read errors are recoverable */
622 		s->recoverable = false;
623 	}
624 
625 	bio_put(bio);
626 	closure_put(cl);
627 }
628 
629 static void backing_request_endio(struct bio *bio)
630 {
631 	struct closure *cl = bio->bi_private;
632 
633 	if (bio->bi_status) {
634 		struct search *s = container_of(cl, struct search, cl);
635 		struct cached_dev *dc = container_of(s->d,
636 						     struct cached_dev, disk);
637 		/*
638 		 * If a bio has REQ_PREFLUSH for writeback mode, it is
639 		 * speically assembled in cached_dev_write() for a non-zero
640 		 * write request which has REQ_PREFLUSH. we don't set
641 		 * s->iop.status by this failure, the status will be decided
642 		 * by result of bch_data_insert() operation.
643 		 */
644 		if (unlikely(s->iop.writeback &&
645 			     bio->bi_opf & REQ_PREFLUSH)) {
646 			pr_err("Can't flush %s: returned bi_status %i",
647 				dc->backing_dev_name, bio->bi_status);
648 		} else {
649 			/* set to orig_bio->bi_status in bio_complete() */
650 			s->iop.status = bio->bi_status;
651 		}
652 		s->recoverable = false;
653 		/* should count I/O error for backing device here */
654 		bch_count_backing_io_errors(dc, bio);
655 	}
656 
657 	bio_put(bio);
658 	closure_put(cl);
659 }
660 
661 static void bio_complete(struct search *s)
662 {
663 	if (s->orig_bio) {
664 		generic_end_io_acct(s->d->disk->queue, bio_op(s->orig_bio),
665 				    &s->d->disk->part0, s->start_time);
666 
667 		trace_bcache_request_end(s->d, s->orig_bio);
668 		s->orig_bio->bi_status = s->iop.status;
669 		bio_endio(s->orig_bio);
670 		s->orig_bio = NULL;
671 	}
672 }
673 
674 static void do_bio_hook(struct search *s,
675 			struct bio *orig_bio,
676 			bio_end_io_t *end_io_fn)
677 {
678 	struct bio *bio = &s->bio.bio;
679 
680 	bio_init(bio, NULL, 0);
681 	__bio_clone_fast(bio, orig_bio);
682 	/*
683 	 * bi_end_io can be set separately somewhere else, e.g. the
684 	 * variants in,
685 	 * - cache_bio->bi_end_io from cached_dev_cache_miss()
686 	 * - n->bi_end_io from cache_lookup_fn()
687 	 */
688 	bio->bi_end_io		= end_io_fn;
689 	bio->bi_private		= &s->cl;
690 
691 	bio_cnt_set(bio, 3);
692 }
693 
694 static void search_free(struct closure *cl)
695 {
696 	struct search *s = container_of(cl, struct search, cl);
697 
698 	atomic_dec(&s->iop.c->search_inflight);
699 
700 	if (s->iop.bio)
701 		bio_put(s->iop.bio);
702 
703 	bio_complete(s);
704 	closure_debug_destroy(cl);
705 	mempool_free(s, &s->iop.c->search);
706 }
707 
708 static inline struct search *search_alloc(struct bio *bio,
709 					  struct bcache_device *d)
710 {
711 	struct search *s;
712 
713 	s = mempool_alloc(&d->c->search, GFP_NOIO);
714 
715 	closure_init(&s->cl, NULL);
716 	do_bio_hook(s, bio, request_endio);
717 	atomic_inc(&d->c->search_inflight);
718 
719 	s->orig_bio		= bio;
720 	s->cache_miss		= NULL;
721 	s->cache_missed		= 0;
722 	s->d			= d;
723 	s->recoverable		= 1;
724 	s->write		= op_is_write(bio_op(bio));
725 	s->read_dirty_data	= 0;
726 	s->start_time		= jiffies;
727 
728 	s->iop.c		= d->c;
729 	s->iop.bio		= NULL;
730 	s->iop.inode		= d->id;
731 	s->iop.write_point	= hash_long((unsigned long) current, 16);
732 	s->iop.write_prio	= 0;
733 	s->iop.status		= 0;
734 	s->iop.flags		= 0;
735 	s->iop.flush_journal	= op_is_flush(bio->bi_opf);
736 	s->iop.wq		= bcache_wq;
737 
738 	return s;
739 }
740 
741 /* Cached devices */
742 
743 static void cached_dev_bio_complete(struct closure *cl)
744 {
745 	struct search *s = container_of(cl, struct search, cl);
746 	struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
747 
748 	cached_dev_put(dc);
749 	search_free(cl);
750 }
751 
752 /* Process reads */
753 
754 static void cached_dev_read_error_done(struct closure *cl)
755 {
756 	struct search *s = container_of(cl, struct search, cl);
757 
758 	if (s->iop.replace_collision)
759 		bch_mark_cache_miss_collision(s->iop.c, s->d);
760 
761 	if (s->iop.bio)
762 		bio_free_pages(s->iop.bio);
763 
764 	cached_dev_bio_complete(cl);
765 }
766 
767 static void cached_dev_read_error(struct closure *cl)
768 {
769 	struct search *s = container_of(cl, struct search, cl);
770 	struct bio *bio = &s->bio.bio;
771 
772 	/*
773 	 * If read request hit dirty data (s->read_dirty_data is true),
774 	 * then recovery a failed read request from cached device may
775 	 * get a stale data back. So read failure recovery is only
776 	 * permitted when read request hit clean data in cache device,
777 	 * or when cache read race happened.
778 	 */
779 	if (s->recoverable && !s->read_dirty_data) {
780 		/* Retry from the backing device: */
781 		trace_bcache_read_retry(s->orig_bio);
782 
783 		s->iop.status = 0;
784 		do_bio_hook(s, s->orig_bio, backing_request_endio);
785 
786 		/* XXX: invalidate cache */
787 
788 		/* I/O request sent to backing device */
789 		closure_bio_submit(s->iop.c, bio, cl);
790 	}
791 
792 	continue_at(cl, cached_dev_read_error_done, NULL);
793 }
794 
795 static void cached_dev_cache_miss_done(struct closure *cl)
796 {
797 	struct search *s = container_of(cl, struct search, cl);
798 	struct bcache_device *d = s->d;
799 
800 	if (s->iop.replace_collision)
801 		bch_mark_cache_miss_collision(s->iop.c, s->d);
802 
803 	if (s->iop.bio)
804 		bio_free_pages(s->iop.bio);
805 
806 	cached_dev_bio_complete(cl);
807 	closure_put(&d->cl);
808 }
809 
810 static void cached_dev_read_done(struct closure *cl)
811 {
812 	struct search *s = container_of(cl, struct search, cl);
813 	struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
814 
815 	/*
816 	 * We had a cache miss; cache_bio now contains data ready to be inserted
817 	 * into the cache.
818 	 *
819 	 * First, we copy the data we just read from cache_bio's bounce buffers
820 	 * to the buffers the original bio pointed to:
821 	 */
822 
823 	if (s->iop.bio) {
824 		bio_reset(s->iop.bio);
825 		s->iop.bio->bi_iter.bi_sector =
826 			s->cache_miss->bi_iter.bi_sector;
827 		bio_copy_dev(s->iop.bio, s->cache_miss);
828 		s->iop.bio->bi_iter.bi_size = s->insert_bio_sectors << 9;
829 		bch_bio_map(s->iop.bio, NULL);
830 
831 		bio_copy_data(s->cache_miss, s->iop.bio);
832 
833 		bio_put(s->cache_miss);
834 		s->cache_miss = NULL;
835 	}
836 
837 	if (verify(dc) && s->recoverable && !s->read_dirty_data)
838 		bch_data_verify(dc, s->orig_bio);
839 
840 	closure_get(&dc->disk.cl);
841 	bio_complete(s);
842 
843 	if (s->iop.bio &&
844 	    !test_bit(CACHE_SET_STOPPING, &s->iop.c->flags)) {
845 		BUG_ON(!s->iop.replace);
846 		closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
847 	}
848 
849 	continue_at(cl, cached_dev_cache_miss_done, NULL);
850 }
851 
852 static void cached_dev_read_done_bh(struct closure *cl)
853 {
854 	struct search *s = container_of(cl, struct search, cl);
855 	struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
856 
857 	bch_mark_cache_accounting(s->iop.c, s->d,
858 				  !s->cache_missed, s->iop.bypass);
859 	trace_bcache_read(s->orig_bio, !s->cache_missed, s->iop.bypass);
860 
861 	if (s->iop.status)
862 		continue_at_nobarrier(cl, cached_dev_read_error, bcache_wq);
863 	else if (s->iop.bio || verify(dc))
864 		continue_at_nobarrier(cl, cached_dev_read_done, bcache_wq);
865 	else
866 		continue_at_nobarrier(cl, cached_dev_bio_complete, NULL);
867 }
868 
869 static int cached_dev_cache_miss(struct btree *b, struct search *s,
870 				 struct bio *bio, unsigned int sectors)
871 {
872 	int ret = MAP_CONTINUE;
873 	unsigned int reada = 0;
874 	struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
875 	struct bio *miss, *cache_bio;
876 
877 	s->cache_missed = 1;
878 
879 	if (s->cache_miss || s->iop.bypass) {
880 		miss = bio_next_split(bio, sectors, GFP_NOIO, &s->d->bio_split);
881 		ret = miss == bio ? MAP_DONE : MAP_CONTINUE;
882 		goto out_submit;
883 	}
884 
885 	if (!(bio->bi_opf & REQ_RAHEAD) &&
886 	    !(bio->bi_opf & (REQ_META|REQ_PRIO)) &&
887 	    s->iop.c->gc_stats.in_use < CUTOFF_CACHE_READA)
888 		reada = min_t(sector_t, dc->readahead >> 9,
889 			      get_capacity(bio->bi_disk) - bio_end_sector(bio));
890 
891 	s->insert_bio_sectors = min(sectors, bio_sectors(bio) + reada);
892 
893 	s->iop.replace_key = KEY(s->iop.inode,
894 				 bio->bi_iter.bi_sector + s->insert_bio_sectors,
895 				 s->insert_bio_sectors);
896 
897 	ret = bch_btree_insert_check_key(b, &s->op, &s->iop.replace_key);
898 	if (ret)
899 		return ret;
900 
901 	s->iop.replace = true;
902 
903 	miss = bio_next_split(bio, sectors, GFP_NOIO, &s->d->bio_split);
904 
905 	/* btree_search_recurse()'s btree iterator is no good anymore */
906 	ret = miss == bio ? MAP_DONE : -EINTR;
907 
908 	cache_bio = bio_alloc_bioset(GFP_NOWAIT,
909 			DIV_ROUND_UP(s->insert_bio_sectors, PAGE_SECTORS),
910 			&dc->disk.bio_split);
911 	if (!cache_bio)
912 		goto out_submit;
913 
914 	cache_bio->bi_iter.bi_sector	= miss->bi_iter.bi_sector;
915 	bio_copy_dev(cache_bio, miss);
916 	cache_bio->bi_iter.bi_size	= s->insert_bio_sectors << 9;
917 
918 	cache_bio->bi_end_io	= backing_request_endio;
919 	cache_bio->bi_private	= &s->cl;
920 
921 	bch_bio_map(cache_bio, NULL);
922 	if (bch_bio_alloc_pages(cache_bio, __GFP_NOWARN|GFP_NOIO))
923 		goto out_put;
924 
925 	if (reada)
926 		bch_mark_cache_readahead(s->iop.c, s->d);
927 
928 	s->cache_miss	= miss;
929 	s->iop.bio	= cache_bio;
930 	bio_get(cache_bio);
931 	/* I/O request sent to backing device */
932 	closure_bio_submit(s->iop.c, cache_bio, &s->cl);
933 
934 	return ret;
935 out_put:
936 	bio_put(cache_bio);
937 out_submit:
938 	miss->bi_end_io		= backing_request_endio;
939 	miss->bi_private	= &s->cl;
940 	/* I/O request sent to backing device */
941 	closure_bio_submit(s->iop.c, miss, &s->cl);
942 	return ret;
943 }
944 
945 static void cached_dev_read(struct cached_dev *dc, struct search *s)
946 {
947 	struct closure *cl = &s->cl;
948 
949 	closure_call(&s->iop.cl, cache_lookup, NULL, cl);
950 	continue_at(cl, cached_dev_read_done_bh, NULL);
951 }
952 
953 /* Process writes */
954 
955 static void cached_dev_write_complete(struct closure *cl)
956 {
957 	struct search *s = container_of(cl, struct search, cl);
958 	struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
959 
960 	up_read_non_owner(&dc->writeback_lock);
961 	cached_dev_bio_complete(cl);
962 }
963 
964 static void cached_dev_write(struct cached_dev *dc, struct search *s)
965 {
966 	struct closure *cl = &s->cl;
967 	struct bio *bio = &s->bio.bio;
968 	struct bkey start = KEY(dc->disk.id, bio->bi_iter.bi_sector, 0);
969 	struct bkey end = KEY(dc->disk.id, bio_end_sector(bio), 0);
970 
971 	bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys, &start, &end);
972 
973 	down_read_non_owner(&dc->writeback_lock);
974 	if (bch_keybuf_check_overlapping(&dc->writeback_keys, &start, &end)) {
975 		/*
976 		 * We overlap with some dirty data undergoing background
977 		 * writeback, force this write to writeback
978 		 */
979 		s->iop.bypass = false;
980 		s->iop.writeback = true;
981 	}
982 
983 	/*
984 	 * Discards aren't _required_ to do anything, so skipping if
985 	 * check_overlapping returned true is ok
986 	 *
987 	 * But check_overlapping drops dirty keys for which io hasn't started,
988 	 * so we still want to call it.
989 	 */
990 	if (bio_op(bio) == REQ_OP_DISCARD)
991 		s->iop.bypass = true;
992 
993 	if (should_writeback(dc, s->orig_bio,
994 			     cache_mode(dc),
995 			     s->iop.bypass)) {
996 		s->iop.bypass = false;
997 		s->iop.writeback = true;
998 	}
999 
1000 	if (s->iop.bypass) {
1001 		s->iop.bio = s->orig_bio;
1002 		bio_get(s->iop.bio);
1003 
1004 		if (bio_op(bio) == REQ_OP_DISCARD &&
1005 		    !blk_queue_discard(bdev_get_queue(dc->bdev)))
1006 			goto insert_data;
1007 
1008 		/* I/O request sent to backing device */
1009 		bio->bi_end_io = backing_request_endio;
1010 		closure_bio_submit(s->iop.c, bio, cl);
1011 
1012 	} else if (s->iop.writeback) {
1013 		bch_writeback_add(dc);
1014 		s->iop.bio = bio;
1015 
1016 		if (bio->bi_opf & REQ_PREFLUSH) {
1017 			/*
1018 			 * Also need to send a flush to the backing
1019 			 * device.
1020 			 */
1021 			struct bio *flush;
1022 
1023 			flush = bio_alloc_bioset(GFP_NOIO, 0,
1024 						 &dc->disk.bio_split);
1025 			if (!flush) {
1026 				s->iop.status = BLK_STS_RESOURCE;
1027 				goto insert_data;
1028 			}
1029 			bio_copy_dev(flush, bio);
1030 			flush->bi_end_io = backing_request_endio;
1031 			flush->bi_private = cl;
1032 			flush->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
1033 			/* I/O request sent to backing device */
1034 			closure_bio_submit(s->iop.c, flush, cl);
1035 		}
1036 	} else {
1037 		s->iop.bio = bio_clone_fast(bio, GFP_NOIO, &dc->disk.bio_split);
1038 		/* I/O request sent to backing device */
1039 		bio->bi_end_io = backing_request_endio;
1040 		closure_bio_submit(s->iop.c, bio, cl);
1041 	}
1042 
1043 insert_data:
1044 	closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
1045 	continue_at(cl, cached_dev_write_complete, NULL);
1046 }
1047 
1048 static void cached_dev_nodata(struct closure *cl)
1049 {
1050 	struct search *s = container_of(cl, struct search, cl);
1051 	struct bio *bio = &s->bio.bio;
1052 
1053 	if (s->iop.flush_journal)
1054 		bch_journal_meta(s->iop.c, cl);
1055 
1056 	/* If it's a flush, we send the flush to the backing device too */
1057 	bio->bi_end_io = backing_request_endio;
1058 	closure_bio_submit(s->iop.c, bio, cl);
1059 
1060 	continue_at(cl, cached_dev_bio_complete, NULL);
1061 }
1062 
1063 struct detached_dev_io_private {
1064 	struct bcache_device	*d;
1065 	unsigned long		start_time;
1066 	bio_end_io_t		*bi_end_io;
1067 	void			*bi_private;
1068 };
1069 
1070 static void detached_dev_end_io(struct bio *bio)
1071 {
1072 	struct detached_dev_io_private *ddip;
1073 
1074 	ddip = bio->bi_private;
1075 	bio->bi_end_io = ddip->bi_end_io;
1076 	bio->bi_private = ddip->bi_private;
1077 
1078 	generic_end_io_acct(ddip->d->disk->queue, bio_op(bio),
1079 			    &ddip->d->disk->part0, ddip->start_time);
1080 
1081 	if (bio->bi_status) {
1082 		struct cached_dev *dc = container_of(ddip->d,
1083 						     struct cached_dev, disk);
1084 		/* should count I/O error for backing device here */
1085 		bch_count_backing_io_errors(dc, bio);
1086 	}
1087 
1088 	kfree(ddip);
1089 	bio->bi_end_io(bio);
1090 }
1091 
1092 static void detached_dev_do_request(struct bcache_device *d, struct bio *bio)
1093 {
1094 	struct detached_dev_io_private *ddip;
1095 	struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1096 
1097 	/*
1098 	 * no need to call closure_get(&dc->disk.cl),
1099 	 * because upper layer had already opened bcache device,
1100 	 * which would call closure_get(&dc->disk.cl)
1101 	 */
1102 	ddip = kzalloc(sizeof(struct detached_dev_io_private), GFP_NOIO);
1103 	ddip->d = d;
1104 	ddip->start_time = jiffies;
1105 	ddip->bi_end_io = bio->bi_end_io;
1106 	ddip->bi_private = bio->bi_private;
1107 	bio->bi_end_io = detached_dev_end_io;
1108 	bio->bi_private = ddip;
1109 
1110 	if ((bio_op(bio) == REQ_OP_DISCARD) &&
1111 	    !blk_queue_discard(bdev_get_queue(dc->bdev)))
1112 		bio->bi_end_io(bio);
1113 	else
1114 		generic_make_request(bio);
1115 }
1116 
1117 static void quit_max_writeback_rate(struct cache_set *c,
1118 				    struct cached_dev *this_dc)
1119 {
1120 	int i;
1121 	struct bcache_device *d;
1122 	struct cached_dev *dc;
1123 
1124 	/*
1125 	 * mutex bch_register_lock may compete with other parallel requesters,
1126 	 * or attach/detach operations on other backing device. Waiting to
1127 	 * the mutex lock may increase I/O request latency for seconds or more.
1128 	 * To avoid such situation, if mutext_trylock() failed, only writeback
1129 	 * rate of current cached device is set to 1, and __update_write_back()
1130 	 * will decide writeback rate of other cached devices (remember now
1131 	 * c->idle_counter is 0 already).
1132 	 */
1133 	if (mutex_trylock(&bch_register_lock)) {
1134 		for (i = 0; i < c->devices_max_used; i++) {
1135 			if (!c->devices[i])
1136 				continue;
1137 
1138 			if (UUID_FLASH_ONLY(&c->uuids[i]))
1139 				continue;
1140 
1141 			d = c->devices[i];
1142 			dc = container_of(d, struct cached_dev, disk);
1143 			/*
1144 			 * set writeback rate to default minimum value,
1145 			 * then let update_writeback_rate() to decide the
1146 			 * upcoming rate.
1147 			 */
1148 			atomic_long_set(&dc->writeback_rate.rate, 1);
1149 		}
1150 		mutex_unlock(&bch_register_lock);
1151 	} else
1152 		atomic_long_set(&this_dc->writeback_rate.rate, 1);
1153 }
1154 
1155 /* Cached devices - read & write stuff */
1156 
1157 static blk_qc_t cached_dev_make_request(struct request_queue *q,
1158 					struct bio *bio)
1159 {
1160 	struct search *s;
1161 	struct bcache_device *d = bio->bi_disk->private_data;
1162 	struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1163 	int rw = bio_data_dir(bio);
1164 
1165 	if (unlikely((d->c && test_bit(CACHE_SET_IO_DISABLE, &d->c->flags)) ||
1166 		     dc->io_disable)) {
1167 		bio->bi_status = BLK_STS_IOERR;
1168 		bio_endio(bio);
1169 		return BLK_QC_T_NONE;
1170 	}
1171 
1172 	if (likely(d->c)) {
1173 		if (atomic_read(&d->c->idle_counter))
1174 			atomic_set(&d->c->idle_counter, 0);
1175 		/*
1176 		 * If at_max_writeback_rate of cache set is true and new I/O
1177 		 * comes, quit max writeback rate of all cached devices
1178 		 * attached to this cache set, and set at_max_writeback_rate
1179 		 * to false.
1180 		 */
1181 		if (unlikely(atomic_read(&d->c->at_max_writeback_rate) == 1)) {
1182 			atomic_set(&d->c->at_max_writeback_rate, 0);
1183 			quit_max_writeback_rate(d->c, dc);
1184 		}
1185 	}
1186 
1187 	generic_start_io_acct(q,
1188 			      bio_op(bio),
1189 			      bio_sectors(bio),
1190 			      &d->disk->part0);
1191 
1192 	bio_set_dev(bio, dc->bdev);
1193 	bio->bi_iter.bi_sector += dc->sb.data_offset;
1194 
1195 	if (cached_dev_get(dc)) {
1196 		s = search_alloc(bio, d);
1197 		trace_bcache_request_start(s->d, bio);
1198 
1199 		if (!bio->bi_iter.bi_size) {
1200 			/*
1201 			 * can't call bch_journal_meta from under
1202 			 * generic_make_request
1203 			 */
1204 			continue_at_nobarrier(&s->cl,
1205 					      cached_dev_nodata,
1206 					      bcache_wq);
1207 		} else {
1208 			s->iop.bypass = check_should_bypass(dc, bio);
1209 
1210 			if (rw)
1211 				cached_dev_write(dc, s);
1212 			else
1213 				cached_dev_read(dc, s);
1214 		}
1215 	} else
1216 		/* I/O request sent to backing device */
1217 		detached_dev_do_request(d, bio);
1218 
1219 	return BLK_QC_T_NONE;
1220 }
1221 
1222 static int cached_dev_ioctl(struct bcache_device *d, fmode_t mode,
1223 			    unsigned int cmd, unsigned long arg)
1224 {
1225 	struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1226 
1227 	if (dc->io_disable)
1228 		return -EIO;
1229 
1230 	return __blkdev_driver_ioctl(dc->bdev, mode, cmd, arg);
1231 }
1232 
1233 static int cached_dev_congested(void *data, int bits)
1234 {
1235 	struct bcache_device *d = data;
1236 	struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1237 	struct request_queue *q = bdev_get_queue(dc->bdev);
1238 	int ret = 0;
1239 
1240 	if (bdi_congested(q->backing_dev_info, bits))
1241 		return 1;
1242 
1243 	if (cached_dev_get(dc)) {
1244 		unsigned int i;
1245 		struct cache *ca;
1246 
1247 		for_each_cache(ca, d->c, i) {
1248 			q = bdev_get_queue(ca->bdev);
1249 			ret |= bdi_congested(q->backing_dev_info, bits);
1250 		}
1251 
1252 		cached_dev_put(dc);
1253 	}
1254 
1255 	return ret;
1256 }
1257 
1258 void bch_cached_dev_request_init(struct cached_dev *dc)
1259 {
1260 	struct gendisk *g = dc->disk.disk;
1261 
1262 	g->queue->make_request_fn		= cached_dev_make_request;
1263 	g->queue->backing_dev_info->congested_fn = cached_dev_congested;
1264 	dc->disk.cache_miss			= cached_dev_cache_miss;
1265 	dc->disk.ioctl				= cached_dev_ioctl;
1266 }
1267 
1268 /* Flash backed devices */
1269 
1270 static int flash_dev_cache_miss(struct btree *b, struct search *s,
1271 				struct bio *bio, unsigned int sectors)
1272 {
1273 	unsigned int bytes = min(sectors, bio_sectors(bio)) << 9;
1274 
1275 	swap(bio->bi_iter.bi_size, bytes);
1276 	zero_fill_bio(bio);
1277 	swap(bio->bi_iter.bi_size, bytes);
1278 
1279 	bio_advance(bio, bytes);
1280 
1281 	if (!bio->bi_iter.bi_size)
1282 		return MAP_DONE;
1283 
1284 	return MAP_CONTINUE;
1285 }
1286 
1287 static void flash_dev_nodata(struct closure *cl)
1288 {
1289 	struct search *s = container_of(cl, struct search, cl);
1290 
1291 	if (s->iop.flush_journal)
1292 		bch_journal_meta(s->iop.c, cl);
1293 
1294 	continue_at(cl, search_free, NULL);
1295 }
1296 
1297 static blk_qc_t flash_dev_make_request(struct request_queue *q,
1298 					     struct bio *bio)
1299 {
1300 	struct search *s;
1301 	struct closure *cl;
1302 	struct bcache_device *d = bio->bi_disk->private_data;
1303 
1304 	if (unlikely(d->c && test_bit(CACHE_SET_IO_DISABLE, &d->c->flags))) {
1305 		bio->bi_status = BLK_STS_IOERR;
1306 		bio_endio(bio);
1307 		return BLK_QC_T_NONE;
1308 	}
1309 
1310 	generic_start_io_acct(q, bio_op(bio), bio_sectors(bio), &d->disk->part0);
1311 
1312 	s = search_alloc(bio, d);
1313 	cl = &s->cl;
1314 	bio = &s->bio.bio;
1315 
1316 	trace_bcache_request_start(s->d, bio);
1317 
1318 	if (!bio->bi_iter.bi_size) {
1319 		/*
1320 		 * can't call bch_journal_meta from under
1321 		 * generic_make_request
1322 		 */
1323 		continue_at_nobarrier(&s->cl,
1324 				      flash_dev_nodata,
1325 				      bcache_wq);
1326 		return BLK_QC_T_NONE;
1327 	} else if (bio_data_dir(bio)) {
1328 		bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys,
1329 					&KEY(d->id, bio->bi_iter.bi_sector, 0),
1330 					&KEY(d->id, bio_end_sector(bio), 0));
1331 
1332 		s->iop.bypass		= (bio_op(bio) == REQ_OP_DISCARD) != 0;
1333 		s->iop.writeback	= true;
1334 		s->iop.bio		= bio;
1335 
1336 		closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
1337 	} else {
1338 		closure_call(&s->iop.cl, cache_lookup, NULL, cl);
1339 	}
1340 
1341 	continue_at(cl, search_free, NULL);
1342 	return BLK_QC_T_NONE;
1343 }
1344 
1345 static int flash_dev_ioctl(struct bcache_device *d, fmode_t mode,
1346 			   unsigned int cmd, unsigned long arg)
1347 {
1348 	return -ENOTTY;
1349 }
1350 
1351 static int flash_dev_congested(void *data, int bits)
1352 {
1353 	struct bcache_device *d = data;
1354 	struct request_queue *q;
1355 	struct cache *ca;
1356 	unsigned int i;
1357 	int ret = 0;
1358 
1359 	for_each_cache(ca, d->c, i) {
1360 		q = bdev_get_queue(ca->bdev);
1361 		ret |= bdi_congested(q->backing_dev_info, bits);
1362 	}
1363 
1364 	return ret;
1365 }
1366 
1367 void bch_flash_dev_request_init(struct bcache_device *d)
1368 {
1369 	struct gendisk *g = d->disk;
1370 
1371 	g->queue->make_request_fn		= flash_dev_make_request;
1372 	g->queue->backing_dev_info->congested_fn = flash_dev_congested;
1373 	d->cache_miss				= flash_dev_cache_miss;
1374 	d->ioctl				= flash_dev_ioctl;
1375 }
1376 
1377 void bch_request_exit(void)
1378 {
1379 	kmem_cache_destroy(bch_search_cache);
1380 }
1381 
1382 int __init bch_request_init(void)
1383 {
1384 	bch_search_cache = KMEM_CACHE(search, 0);
1385 	if (!bch_search_cache)
1386 		return -ENOMEM;
1387 
1388 	return 0;
1389 }
1390