1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Main bcache entry point - handle a read or a write request and decide what to 4 * do with it; the make_request functions are called by the block layer. 5 * 6 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com> 7 * Copyright 2012 Google, Inc. 8 */ 9 10 #include "bcache.h" 11 #include "btree.h" 12 #include "debug.h" 13 #include "request.h" 14 #include "writeback.h" 15 16 #include <linux/module.h> 17 #include <linux/hash.h> 18 #include <linux/random.h> 19 #include <linux/backing-dev.h> 20 21 #include <trace/events/bcache.h> 22 23 #define CUTOFF_CACHE_ADD 95 24 #define CUTOFF_CACHE_READA 90 25 26 struct kmem_cache *bch_search_cache; 27 28 static void bch_data_insert_start(struct closure *); 29 30 static unsigned cache_mode(struct cached_dev *dc) 31 { 32 return BDEV_CACHE_MODE(&dc->sb); 33 } 34 35 static bool verify(struct cached_dev *dc) 36 { 37 return dc->verify; 38 } 39 40 static void bio_csum(struct bio *bio, struct bkey *k) 41 { 42 struct bio_vec bv; 43 struct bvec_iter iter; 44 uint64_t csum = 0; 45 46 bio_for_each_segment(bv, bio, iter) { 47 void *d = kmap(bv.bv_page) + bv.bv_offset; 48 csum = bch_crc64_update(csum, d, bv.bv_len); 49 kunmap(bv.bv_page); 50 } 51 52 k->ptr[KEY_PTRS(k)] = csum & (~0ULL >> 1); 53 } 54 55 /* Insert data into cache */ 56 57 static void bch_data_insert_keys(struct closure *cl) 58 { 59 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl); 60 atomic_t *journal_ref = NULL; 61 struct bkey *replace_key = op->replace ? &op->replace_key : NULL; 62 int ret; 63 64 /* 65 * If we're looping, might already be waiting on 66 * another journal write - can't wait on more than one journal write at 67 * a time 68 * 69 * XXX: this looks wrong 70 */ 71 #if 0 72 while (atomic_read(&s->cl.remaining) & CLOSURE_WAITING) 73 closure_sync(&s->cl); 74 #endif 75 76 if (!op->replace) 77 journal_ref = bch_journal(op->c, &op->insert_keys, 78 op->flush_journal ? cl : NULL); 79 80 ret = bch_btree_insert(op->c, &op->insert_keys, 81 journal_ref, replace_key); 82 if (ret == -ESRCH) { 83 op->replace_collision = true; 84 } else if (ret) { 85 op->status = BLK_STS_RESOURCE; 86 op->insert_data_done = true; 87 } 88 89 if (journal_ref) 90 atomic_dec_bug(journal_ref); 91 92 if (!op->insert_data_done) { 93 continue_at(cl, bch_data_insert_start, op->wq); 94 return; 95 } 96 97 bch_keylist_free(&op->insert_keys); 98 closure_return(cl); 99 } 100 101 static int bch_keylist_realloc(struct keylist *l, unsigned u64s, 102 struct cache_set *c) 103 { 104 size_t oldsize = bch_keylist_nkeys(l); 105 size_t newsize = oldsize + u64s; 106 107 /* 108 * The journalling code doesn't handle the case where the keys to insert 109 * is bigger than an empty write: If we just return -ENOMEM here, 110 * bio_insert() and bio_invalidate() will insert the keys created so far 111 * and finish the rest when the keylist is empty. 112 */ 113 if (newsize * sizeof(uint64_t) > block_bytes(c) - sizeof(struct jset)) 114 return -ENOMEM; 115 116 return __bch_keylist_realloc(l, u64s); 117 } 118 119 static void bch_data_invalidate(struct closure *cl) 120 { 121 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl); 122 struct bio *bio = op->bio; 123 124 pr_debug("invalidating %i sectors from %llu", 125 bio_sectors(bio), (uint64_t) bio->bi_iter.bi_sector); 126 127 while (bio_sectors(bio)) { 128 unsigned sectors = min(bio_sectors(bio), 129 1U << (KEY_SIZE_BITS - 1)); 130 131 if (bch_keylist_realloc(&op->insert_keys, 2, op->c)) 132 goto out; 133 134 bio->bi_iter.bi_sector += sectors; 135 bio->bi_iter.bi_size -= sectors << 9; 136 137 bch_keylist_add(&op->insert_keys, 138 &KEY(op->inode, bio->bi_iter.bi_sector, sectors)); 139 } 140 141 op->insert_data_done = true; 142 bio_put(bio); 143 out: 144 continue_at(cl, bch_data_insert_keys, op->wq); 145 } 146 147 static void bch_data_insert_error(struct closure *cl) 148 { 149 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl); 150 151 /* 152 * Our data write just errored, which means we've got a bunch of keys to 153 * insert that point to data that wasn't succesfully written. 154 * 155 * We don't have to insert those keys but we still have to invalidate 156 * that region of the cache - so, if we just strip off all the pointers 157 * from the keys we'll accomplish just that. 158 */ 159 160 struct bkey *src = op->insert_keys.keys, *dst = op->insert_keys.keys; 161 162 while (src != op->insert_keys.top) { 163 struct bkey *n = bkey_next(src); 164 165 SET_KEY_PTRS(src, 0); 166 memmove(dst, src, bkey_bytes(src)); 167 168 dst = bkey_next(dst); 169 src = n; 170 } 171 172 op->insert_keys.top = dst; 173 174 bch_data_insert_keys(cl); 175 } 176 177 static void bch_data_insert_endio(struct bio *bio) 178 { 179 struct closure *cl = bio->bi_private; 180 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl); 181 182 if (bio->bi_status) { 183 /* TODO: We could try to recover from this. */ 184 if (op->writeback) 185 op->status = bio->bi_status; 186 else if (!op->replace) 187 set_closure_fn(cl, bch_data_insert_error, op->wq); 188 else 189 set_closure_fn(cl, NULL, NULL); 190 } 191 192 bch_bbio_endio(op->c, bio, bio->bi_status, "writing data to cache"); 193 } 194 195 static void bch_data_insert_start(struct closure *cl) 196 { 197 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl); 198 struct bio *bio = op->bio, *n; 199 200 if (op->bypass) 201 return bch_data_invalidate(cl); 202 203 if (atomic_sub_return(bio_sectors(bio), &op->c->sectors_to_gc) < 0) 204 wake_up_gc(op->c); 205 206 /* 207 * Journal writes are marked REQ_PREFLUSH; if the original write was a 208 * flush, it'll wait on the journal write. 209 */ 210 bio->bi_opf &= ~(REQ_PREFLUSH|REQ_FUA); 211 212 do { 213 unsigned i; 214 struct bkey *k; 215 struct bio_set *split = op->c->bio_split; 216 217 /* 1 for the device pointer and 1 for the chksum */ 218 if (bch_keylist_realloc(&op->insert_keys, 219 3 + (op->csum ? 1 : 0), 220 op->c)) { 221 continue_at(cl, bch_data_insert_keys, op->wq); 222 return; 223 } 224 225 k = op->insert_keys.top; 226 bkey_init(k); 227 SET_KEY_INODE(k, op->inode); 228 SET_KEY_OFFSET(k, bio->bi_iter.bi_sector); 229 230 if (!bch_alloc_sectors(op->c, k, bio_sectors(bio), 231 op->write_point, op->write_prio, 232 op->writeback)) 233 goto err; 234 235 n = bio_next_split(bio, KEY_SIZE(k), GFP_NOIO, split); 236 237 n->bi_end_io = bch_data_insert_endio; 238 n->bi_private = cl; 239 240 if (op->writeback) { 241 SET_KEY_DIRTY(k, true); 242 243 for (i = 0; i < KEY_PTRS(k); i++) 244 SET_GC_MARK(PTR_BUCKET(op->c, k, i), 245 GC_MARK_DIRTY); 246 } 247 248 SET_KEY_CSUM(k, op->csum); 249 if (KEY_CSUM(k)) 250 bio_csum(n, k); 251 252 trace_bcache_cache_insert(k); 253 bch_keylist_push(&op->insert_keys); 254 255 bio_set_op_attrs(n, REQ_OP_WRITE, 0); 256 bch_submit_bbio(n, op->c, k, 0); 257 } while (n != bio); 258 259 op->insert_data_done = true; 260 continue_at(cl, bch_data_insert_keys, op->wq); 261 return; 262 err: 263 /* bch_alloc_sectors() blocks if s->writeback = true */ 264 BUG_ON(op->writeback); 265 266 /* 267 * But if it's not a writeback write we'd rather just bail out if 268 * there aren't any buckets ready to write to - it might take awhile and 269 * we might be starving btree writes for gc or something. 270 */ 271 272 if (!op->replace) { 273 /* 274 * Writethrough write: We can't complete the write until we've 275 * updated the index. But we don't want to delay the write while 276 * we wait for buckets to be freed up, so just invalidate the 277 * rest of the write. 278 */ 279 op->bypass = true; 280 return bch_data_invalidate(cl); 281 } else { 282 /* 283 * From a cache miss, we can just insert the keys for the data 284 * we have written or bail out if we didn't do anything. 285 */ 286 op->insert_data_done = true; 287 bio_put(bio); 288 289 if (!bch_keylist_empty(&op->insert_keys)) 290 continue_at(cl, bch_data_insert_keys, op->wq); 291 else 292 closure_return(cl); 293 } 294 } 295 296 /** 297 * bch_data_insert - stick some data in the cache 298 * 299 * This is the starting point for any data to end up in a cache device; it could 300 * be from a normal write, or a writeback write, or a write to a flash only 301 * volume - it's also used by the moving garbage collector to compact data in 302 * mostly empty buckets. 303 * 304 * It first writes the data to the cache, creating a list of keys to be inserted 305 * (if the data had to be fragmented there will be multiple keys); after the 306 * data is written it calls bch_journal, and after the keys have been added to 307 * the next journal write they're inserted into the btree. 308 * 309 * It inserts the data in s->cache_bio; bi_sector is used for the key offset, 310 * and op->inode is used for the key inode. 311 * 312 * If s->bypass is true, instead of inserting the data it invalidates the 313 * region of the cache represented by s->cache_bio and op->inode. 314 */ 315 void bch_data_insert(struct closure *cl) 316 { 317 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl); 318 319 trace_bcache_write(op->c, op->inode, op->bio, 320 op->writeback, op->bypass); 321 322 bch_keylist_init(&op->insert_keys); 323 bio_get(op->bio); 324 bch_data_insert_start(cl); 325 } 326 327 /* Congested? */ 328 329 unsigned bch_get_congested(struct cache_set *c) 330 { 331 int i; 332 long rand; 333 334 if (!c->congested_read_threshold_us && 335 !c->congested_write_threshold_us) 336 return 0; 337 338 i = (local_clock_us() - c->congested_last_us) / 1024; 339 if (i < 0) 340 return 0; 341 342 i += atomic_read(&c->congested); 343 if (i >= 0) 344 return 0; 345 346 i += CONGESTED_MAX; 347 348 if (i > 0) 349 i = fract_exp_two(i, 6); 350 351 rand = get_random_int(); 352 i -= bitmap_weight(&rand, BITS_PER_LONG); 353 354 return i > 0 ? i : 1; 355 } 356 357 static void add_sequential(struct task_struct *t) 358 { 359 ewma_add(t->sequential_io_avg, 360 t->sequential_io, 8, 0); 361 362 t->sequential_io = 0; 363 } 364 365 static struct hlist_head *iohash(struct cached_dev *dc, uint64_t k) 366 { 367 return &dc->io_hash[hash_64(k, RECENT_IO_BITS)]; 368 } 369 370 static bool check_should_bypass(struct cached_dev *dc, struct bio *bio) 371 { 372 struct cache_set *c = dc->disk.c; 373 unsigned mode = cache_mode(dc); 374 unsigned sectors, congested = bch_get_congested(c); 375 struct task_struct *task = current; 376 struct io *i; 377 378 if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) || 379 c->gc_stats.in_use > CUTOFF_CACHE_ADD || 380 (bio_op(bio) == REQ_OP_DISCARD)) 381 goto skip; 382 383 if (mode == CACHE_MODE_NONE || 384 (mode == CACHE_MODE_WRITEAROUND && 385 op_is_write(bio_op(bio)))) 386 goto skip; 387 388 /* 389 * Flag for bypass if the IO is for read-ahead or background, 390 * unless the read-ahead request is for metadata (eg, for gfs2). 391 */ 392 if (bio->bi_opf & (REQ_RAHEAD|REQ_BACKGROUND) && 393 !(bio->bi_opf & REQ_META)) 394 goto skip; 395 396 if (bio->bi_iter.bi_sector & (c->sb.block_size - 1) || 397 bio_sectors(bio) & (c->sb.block_size - 1)) { 398 pr_debug("skipping unaligned io"); 399 goto skip; 400 } 401 402 if (bypass_torture_test(dc)) { 403 if ((get_random_int() & 3) == 3) 404 goto skip; 405 else 406 goto rescale; 407 } 408 409 if (!congested && !dc->sequential_cutoff) 410 goto rescale; 411 412 spin_lock(&dc->io_lock); 413 414 hlist_for_each_entry(i, iohash(dc, bio->bi_iter.bi_sector), hash) 415 if (i->last == bio->bi_iter.bi_sector && 416 time_before(jiffies, i->jiffies)) 417 goto found; 418 419 i = list_first_entry(&dc->io_lru, struct io, lru); 420 421 add_sequential(task); 422 i->sequential = 0; 423 found: 424 if (i->sequential + bio->bi_iter.bi_size > i->sequential) 425 i->sequential += bio->bi_iter.bi_size; 426 427 i->last = bio_end_sector(bio); 428 i->jiffies = jiffies + msecs_to_jiffies(5000); 429 task->sequential_io = i->sequential; 430 431 hlist_del(&i->hash); 432 hlist_add_head(&i->hash, iohash(dc, i->last)); 433 list_move_tail(&i->lru, &dc->io_lru); 434 435 spin_unlock(&dc->io_lock); 436 437 sectors = max(task->sequential_io, 438 task->sequential_io_avg) >> 9; 439 440 if (dc->sequential_cutoff && 441 sectors >= dc->sequential_cutoff >> 9) { 442 trace_bcache_bypass_sequential(bio); 443 goto skip; 444 } 445 446 if (congested && sectors >= congested) { 447 trace_bcache_bypass_congested(bio); 448 goto skip; 449 } 450 451 rescale: 452 bch_rescale_priorities(c, bio_sectors(bio)); 453 return false; 454 skip: 455 bch_mark_sectors_bypassed(c, dc, bio_sectors(bio)); 456 return true; 457 } 458 459 /* Cache lookup */ 460 461 struct search { 462 /* Stack frame for bio_complete */ 463 struct closure cl; 464 465 struct bbio bio; 466 struct bio *orig_bio; 467 struct bio *cache_miss; 468 struct bcache_device *d; 469 470 unsigned insert_bio_sectors; 471 unsigned recoverable:1; 472 unsigned write:1; 473 unsigned read_dirty_data:1; 474 unsigned cache_missed:1; 475 476 unsigned long start_time; 477 478 struct btree_op op; 479 struct data_insert_op iop; 480 }; 481 482 static void bch_cache_read_endio(struct bio *bio) 483 { 484 struct bbio *b = container_of(bio, struct bbio, bio); 485 struct closure *cl = bio->bi_private; 486 struct search *s = container_of(cl, struct search, cl); 487 488 /* 489 * If the bucket was reused while our bio was in flight, we might have 490 * read the wrong data. Set s->error but not error so it doesn't get 491 * counted against the cache device, but we'll still reread the data 492 * from the backing device. 493 */ 494 495 if (bio->bi_status) 496 s->iop.status = bio->bi_status; 497 else if (!KEY_DIRTY(&b->key) && 498 ptr_stale(s->iop.c, &b->key, 0)) { 499 atomic_long_inc(&s->iop.c->cache_read_races); 500 s->iop.status = BLK_STS_IOERR; 501 } 502 503 bch_bbio_endio(s->iop.c, bio, bio->bi_status, "reading from cache"); 504 } 505 506 /* 507 * Read from a single key, handling the initial cache miss if the key starts in 508 * the middle of the bio 509 */ 510 static int cache_lookup_fn(struct btree_op *op, struct btree *b, struct bkey *k) 511 { 512 struct search *s = container_of(op, struct search, op); 513 struct bio *n, *bio = &s->bio.bio; 514 struct bkey *bio_key; 515 unsigned ptr; 516 517 if (bkey_cmp(k, &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0)) <= 0) 518 return MAP_CONTINUE; 519 520 if (KEY_INODE(k) != s->iop.inode || 521 KEY_START(k) > bio->bi_iter.bi_sector) { 522 unsigned bio_sectors = bio_sectors(bio); 523 unsigned sectors = KEY_INODE(k) == s->iop.inode 524 ? min_t(uint64_t, INT_MAX, 525 KEY_START(k) - bio->bi_iter.bi_sector) 526 : INT_MAX; 527 528 int ret = s->d->cache_miss(b, s, bio, sectors); 529 if (ret != MAP_CONTINUE) 530 return ret; 531 532 /* if this was a complete miss we shouldn't get here */ 533 BUG_ON(bio_sectors <= sectors); 534 } 535 536 if (!KEY_SIZE(k)) 537 return MAP_CONTINUE; 538 539 /* XXX: figure out best pointer - for multiple cache devices */ 540 ptr = 0; 541 542 PTR_BUCKET(b->c, k, ptr)->prio = INITIAL_PRIO; 543 544 if (KEY_DIRTY(k)) 545 s->read_dirty_data = true; 546 547 n = bio_next_split(bio, min_t(uint64_t, INT_MAX, 548 KEY_OFFSET(k) - bio->bi_iter.bi_sector), 549 GFP_NOIO, s->d->bio_split); 550 551 bio_key = &container_of(n, struct bbio, bio)->key; 552 bch_bkey_copy_single_ptr(bio_key, k, ptr); 553 554 bch_cut_front(&KEY(s->iop.inode, n->bi_iter.bi_sector, 0), bio_key); 555 bch_cut_back(&KEY(s->iop.inode, bio_end_sector(n), 0), bio_key); 556 557 n->bi_end_io = bch_cache_read_endio; 558 n->bi_private = &s->cl; 559 560 /* 561 * The bucket we're reading from might be reused while our bio 562 * is in flight, and we could then end up reading the wrong 563 * data. 564 * 565 * We guard against this by checking (in cache_read_endio()) if 566 * the pointer is stale again; if so, we treat it as an error 567 * and reread from the backing device (but we don't pass that 568 * error up anywhere). 569 */ 570 571 __bch_submit_bbio(n, b->c); 572 return n == bio ? MAP_DONE : MAP_CONTINUE; 573 } 574 575 static void cache_lookup(struct closure *cl) 576 { 577 struct search *s = container_of(cl, struct search, iop.cl); 578 struct bio *bio = &s->bio.bio; 579 int ret; 580 581 bch_btree_op_init(&s->op, -1); 582 583 ret = bch_btree_map_keys(&s->op, s->iop.c, 584 &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0), 585 cache_lookup_fn, MAP_END_KEY); 586 if (ret == -EAGAIN) { 587 continue_at(cl, cache_lookup, bcache_wq); 588 return; 589 } 590 591 closure_return(cl); 592 } 593 594 /* Common code for the make_request functions */ 595 596 static void request_endio(struct bio *bio) 597 { 598 struct closure *cl = bio->bi_private; 599 600 if (bio->bi_status) { 601 struct search *s = container_of(cl, struct search, cl); 602 s->iop.status = bio->bi_status; 603 /* Only cache read errors are recoverable */ 604 s->recoverable = false; 605 } 606 607 bio_put(bio); 608 closure_put(cl); 609 } 610 611 static void bio_complete(struct search *s) 612 { 613 if (s->orig_bio) { 614 struct request_queue *q = s->orig_bio->bi_disk->queue; 615 generic_end_io_acct(q, bio_data_dir(s->orig_bio), 616 &s->d->disk->part0, s->start_time); 617 618 trace_bcache_request_end(s->d, s->orig_bio); 619 s->orig_bio->bi_status = s->iop.status; 620 bio_endio(s->orig_bio); 621 s->orig_bio = NULL; 622 } 623 } 624 625 static void do_bio_hook(struct search *s, struct bio *orig_bio) 626 { 627 struct bio *bio = &s->bio.bio; 628 629 bio_init(bio, NULL, 0); 630 __bio_clone_fast(bio, orig_bio); 631 bio->bi_end_io = request_endio; 632 bio->bi_private = &s->cl; 633 634 bio_cnt_set(bio, 3); 635 } 636 637 static void search_free(struct closure *cl) 638 { 639 struct search *s = container_of(cl, struct search, cl); 640 bio_complete(s); 641 642 if (s->iop.bio) 643 bio_put(s->iop.bio); 644 645 closure_debug_destroy(cl); 646 mempool_free(s, s->d->c->search); 647 } 648 649 static inline struct search *search_alloc(struct bio *bio, 650 struct bcache_device *d) 651 { 652 struct search *s; 653 654 s = mempool_alloc(d->c->search, GFP_NOIO); 655 656 closure_init(&s->cl, NULL); 657 do_bio_hook(s, bio); 658 659 s->orig_bio = bio; 660 s->cache_miss = NULL; 661 s->cache_missed = 0; 662 s->d = d; 663 s->recoverable = 1; 664 s->write = op_is_write(bio_op(bio)); 665 s->read_dirty_data = 0; 666 s->start_time = jiffies; 667 668 s->iop.c = d->c; 669 s->iop.bio = NULL; 670 s->iop.inode = d->id; 671 s->iop.write_point = hash_long((unsigned long) current, 16); 672 s->iop.write_prio = 0; 673 s->iop.status = 0; 674 s->iop.flags = 0; 675 s->iop.flush_journal = op_is_flush(bio->bi_opf); 676 s->iop.wq = bcache_wq; 677 678 return s; 679 } 680 681 /* Cached devices */ 682 683 static void cached_dev_bio_complete(struct closure *cl) 684 { 685 struct search *s = container_of(cl, struct search, cl); 686 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk); 687 688 search_free(cl); 689 cached_dev_put(dc); 690 } 691 692 /* Process reads */ 693 694 static void cached_dev_cache_miss_done(struct closure *cl) 695 { 696 struct search *s = container_of(cl, struct search, cl); 697 698 if (s->iop.replace_collision) 699 bch_mark_cache_miss_collision(s->iop.c, s->d); 700 701 if (s->iop.bio) 702 bio_free_pages(s->iop.bio); 703 704 cached_dev_bio_complete(cl); 705 } 706 707 static void cached_dev_read_error(struct closure *cl) 708 { 709 struct search *s = container_of(cl, struct search, cl); 710 struct bio *bio = &s->bio.bio; 711 712 /* 713 * If read request hit dirty data (s->read_dirty_data is true), 714 * then recovery a failed read request from cached device may 715 * get a stale data back. So read failure recovery is only 716 * permitted when read request hit clean data in cache device, 717 * or when cache read race happened. 718 */ 719 if (s->recoverable && !s->read_dirty_data) { 720 /* Retry from the backing device: */ 721 trace_bcache_read_retry(s->orig_bio); 722 723 s->iop.status = 0; 724 do_bio_hook(s, s->orig_bio); 725 726 /* XXX: invalidate cache */ 727 728 closure_bio_submit(bio, cl); 729 } 730 731 continue_at(cl, cached_dev_cache_miss_done, NULL); 732 } 733 734 static void cached_dev_read_done(struct closure *cl) 735 { 736 struct search *s = container_of(cl, struct search, cl); 737 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk); 738 739 /* 740 * We had a cache miss; cache_bio now contains data ready to be inserted 741 * into the cache. 742 * 743 * First, we copy the data we just read from cache_bio's bounce buffers 744 * to the buffers the original bio pointed to: 745 */ 746 747 if (s->iop.bio) { 748 bio_reset(s->iop.bio); 749 s->iop.bio->bi_iter.bi_sector = s->cache_miss->bi_iter.bi_sector; 750 bio_copy_dev(s->iop.bio, s->cache_miss); 751 s->iop.bio->bi_iter.bi_size = s->insert_bio_sectors << 9; 752 bch_bio_map(s->iop.bio, NULL); 753 754 bio_copy_data(s->cache_miss, s->iop.bio); 755 756 bio_put(s->cache_miss); 757 s->cache_miss = NULL; 758 } 759 760 if (verify(dc) && s->recoverable && !s->read_dirty_data) 761 bch_data_verify(dc, s->orig_bio); 762 763 bio_complete(s); 764 765 if (s->iop.bio && 766 !test_bit(CACHE_SET_STOPPING, &s->iop.c->flags)) { 767 BUG_ON(!s->iop.replace); 768 closure_call(&s->iop.cl, bch_data_insert, NULL, cl); 769 } 770 771 continue_at(cl, cached_dev_cache_miss_done, NULL); 772 } 773 774 static void cached_dev_read_done_bh(struct closure *cl) 775 { 776 struct search *s = container_of(cl, struct search, cl); 777 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk); 778 779 bch_mark_cache_accounting(s->iop.c, s->d, 780 !s->cache_missed, s->iop.bypass); 781 trace_bcache_read(s->orig_bio, !s->cache_miss, s->iop.bypass); 782 783 if (s->iop.status) 784 continue_at_nobarrier(cl, cached_dev_read_error, bcache_wq); 785 else if (s->iop.bio || verify(dc)) 786 continue_at_nobarrier(cl, cached_dev_read_done, bcache_wq); 787 else 788 continue_at_nobarrier(cl, cached_dev_bio_complete, NULL); 789 } 790 791 static int cached_dev_cache_miss(struct btree *b, struct search *s, 792 struct bio *bio, unsigned sectors) 793 { 794 int ret = MAP_CONTINUE; 795 unsigned reada = 0; 796 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk); 797 struct bio *miss, *cache_bio; 798 799 s->cache_missed = 1; 800 801 if (s->cache_miss || s->iop.bypass) { 802 miss = bio_next_split(bio, sectors, GFP_NOIO, s->d->bio_split); 803 ret = miss == bio ? MAP_DONE : MAP_CONTINUE; 804 goto out_submit; 805 } 806 807 if (!(bio->bi_opf & REQ_RAHEAD) && 808 !(bio->bi_opf & REQ_META) && 809 s->iop.c->gc_stats.in_use < CUTOFF_CACHE_READA) 810 reada = min_t(sector_t, dc->readahead >> 9, 811 get_capacity(bio->bi_disk) - bio_end_sector(bio)); 812 813 s->insert_bio_sectors = min(sectors, bio_sectors(bio) + reada); 814 815 s->iop.replace_key = KEY(s->iop.inode, 816 bio->bi_iter.bi_sector + s->insert_bio_sectors, 817 s->insert_bio_sectors); 818 819 ret = bch_btree_insert_check_key(b, &s->op, &s->iop.replace_key); 820 if (ret) 821 return ret; 822 823 s->iop.replace = true; 824 825 miss = bio_next_split(bio, sectors, GFP_NOIO, s->d->bio_split); 826 827 /* btree_search_recurse()'s btree iterator is no good anymore */ 828 ret = miss == bio ? MAP_DONE : -EINTR; 829 830 cache_bio = bio_alloc_bioset(GFP_NOWAIT, 831 DIV_ROUND_UP(s->insert_bio_sectors, PAGE_SECTORS), 832 dc->disk.bio_split); 833 if (!cache_bio) 834 goto out_submit; 835 836 cache_bio->bi_iter.bi_sector = miss->bi_iter.bi_sector; 837 bio_copy_dev(cache_bio, miss); 838 cache_bio->bi_iter.bi_size = s->insert_bio_sectors << 9; 839 840 cache_bio->bi_end_io = request_endio; 841 cache_bio->bi_private = &s->cl; 842 843 bch_bio_map(cache_bio, NULL); 844 if (bio_alloc_pages(cache_bio, __GFP_NOWARN|GFP_NOIO)) 845 goto out_put; 846 847 if (reada) 848 bch_mark_cache_readahead(s->iop.c, s->d); 849 850 s->cache_miss = miss; 851 s->iop.bio = cache_bio; 852 bio_get(cache_bio); 853 closure_bio_submit(cache_bio, &s->cl); 854 855 return ret; 856 out_put: 857 bio_put(cache_bio); 858 out_submit: 859 miss->bi_end_io = request_endio; 860 miss->bi_private = &s->cl; 861 closure_bio_submit(miss, &s->cl); 862 return ret; 863 } 864 865 static void cached_dev_read(struct cached_dev *dc, struct search *s) 866 { 867 struct closure *cl = &s->cl; 868 869 closure_call(&s->iop.cl, cache_lookup, NULL, cl); 870 continue_at(cl, cached_dev_read_done_bh, NULL); 871 } 872 873 /* Process writes */ 874 875 static void cached_dev_write_complete(struct closure *cl) 876 { 877 struct search *s = container_of(cl, struct search, cl); 878 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk); 879 880 up_read_non_owner(&dc->writeback_lock); 881 cached_dev_bio_complete(cl); 882 } 883 884 static void cached_dev_write(struct cached_dev *dc, struct search *s) 885 { 886 struct closure *cl = &s->cl; 887 struct bio *bio = &s->bio.bio; 888 struct bkey start = KEY(dc->disk.id, bio->bi_iter.bi_sector, 0); 889 struct bkey end = KEY(dc->disk.id, bio_end_sector(bio), 0); 890 891 bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys, &start, &end); 892 893 down_read_non_owner(&dc->writeback_lock); 894 if (bch_keybuf_check_overlapping(&dc->writeback_keys, &start, &end)) { 895 /* 896 * We overlap with some dirty data undergoing background 897 * writeback, force this write to writeback 898 */ 899 s->iop.bypass = false; 900 s->iop.writeback = true; 901 } 902 903 /* 904 * Discards aren't _required_ to do anything, so skipping if 905 * check_overlapping returned true is ok 906 * 907 * But check_overlapping drops dirty keys for which io hasn't started, 908 * so we still want to call it. 909 */ 910 if (bio_op(bio) == REQ_OP_DISCARD) 911 s->iop.bypass = true; 912 913 if (should_writeback(dc, s->orig_bio, 914 cache_mode(dc), 915 s->iop.bypass)) { 916 s->iop.bypass = false; 917 s->iop.writeback = true; 918 } 919 920 if (s->iop.bypass) { 921 s->iop.bio = s->orig_bio; 922 bio_get(s->iop.bio); 923 924 if ((bio_op(bio) != REQ_OP_DISCARD) || 925 blk_queue_discard(bdev_get_queue(dc->bdev))) 926 closure_bio_submit(bio, cl); 927 } else if (s->iop.writeback) { 928 bch_writeback_add(dc); 929 s->iop.bio = bio; 930 931 if (bio->bi_opf & REQ_PREFLUSH) { 932 /* Also need to send a flush to the backing device */ 933 struct bio *flush = bio_alloc_bioset(GFP_NOIO, 0, 934 dc->disk.bio_split); 935 936 bio_copy_dev(flush, bio); 937 flush->bi_end_io = request_endio; 938 flush->bi_private = cl; 939 flush->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH; 940 941 closure_bio_submit(flush, cl); 942 } 943 } else { 944 s->iop.bio = bio_clone_fast(bio, GFP_NOIO, dc->disk.bio_split); 945 946 closure_bio_submit(bio, cl); 947 } 948 949 closure_call(&s->iop.cl, bch_data_insert, NULL, cl); 950 continue_at(cl, cached_dev_write_complete, NULL); 951 } 952 953 static void cached_dev_nodata(struct closure *cl) 954 { 955 struct search *s = container_of(cl, struct search, cl); 956 struct bio *bio = &s->bio.bio; 957 958 if (s->iop.flush_journal) 959 bch_journal_meta(s->iop.c, cl); 960 961 /* If it's a flush, we send the flush to the backing device too */ 962 closure_bio_submit(bio, cl); 963 964 continue_at(cl, cached_dev_bio_complete, NULL); 965 } 966 967 /* Cached devices - read & write stuff */ 968 969 static blk_qc_t cached_dev_make_request(struct request_queue *q, 970 struct bio *bio) 971 { 972 struct search *s; 973 struct bcache_device *d = bio->bi_disk->private_data; 974 struct cached_dev *dc = container_of(d, struct cached_dev, disk); 975 int rw = bio_data_dir(bio); 976 977 generic_start_io_acct(q, rw, bio_sectors(bio), &d->disk->part0); 978 979 bio_set_dev(bio, dc->bdev); 980 bio->bi_iter.bi_sector += dc->sb.data_offset; 981 982 if (cached_dev_get(dc)) { 983 s = search_alloc(bio, d); 984 trace_bcache_request_start(s->d, bio); 985 986 if (!bio->bi_iter.bi_size) { 987 /* 988 * can't call bch_journal_meta from under 989 * generic_make_request 990 */ 991 continue_at_nobarrier(&s->cl, 992 cached_dev_nodata, 993 bcache_wq); 994 } else { 995 s->iop.bypass = check_should_bypass(dc, bio); 996 997 if (rw) 998 cached_dev_write(dc, s); 999 else 1000 cached_dev_read(dc, s); 1001 } 1002 } else { 1003 if ((bio_op(bio) == REQ_OP_DISCARD) && 1004 !blk_queue_discard(bdev_get_queue(dc->bdev))) 1005 bio_endio(bio); 1006 else 1007 generic_make_request(bio); 1008 } 1009 1010 return BLK_QC_T_NONE; 1011 } 1012 1013 static int cached_dev_ioctl(struct bcache_device *d, fmode_t mode, 1014 unsigned int cmd, unsigned long arg) 1015 { 1016 struct cached_dev *dc = container_of(d, struct cached_dev, disk); 1017 return __blkdev_driver_ioctl(dc->bdev, mode, cmd, arg); 1018 } 1019 1020 static int cached_dev_congested(void *data, int bits) 1021 { 1022 struct bcache_device *d = data; 1023 struct cached_dev *dc = container_of(d, struct cached_dev, disk); 1024 struct request_queue *q = bdev_get_queue(dc->bdev); 1025 int ret = 0; 1026 1027 if (bdi_congested(q->backing_dev_info, bits)) 1028 return 1; 1029 1030 if (cached_dev_get(dc)) { 1031 unsigned i; 1032 struct cache *ca; 1033 1034 for_each_cache(ca, d->c, i) { 1035 q = bdev_get_queue(ca->bdev); 1036 ret |= bdi_congested(q->backing_dev_info, bits); 1037 } 1038 1039 cached_dev_put(dc); 1040 } 1041 1042 return ret; 1043 } 1044 1045 void bch_cached_dev_request_init(struct cached_dev *dc) 1046 { 1047 struct gendisk *g = dc->disk.disk; 1048 1049 g->queue->make_request_fn = cached_dev_make_request; 1050 g->queue->backing_dev_info->congested_fn = cached_dev_congested; 1051 dc->disk.cache_miss = cached_dev_cache_miss; 1052 dc->disk.ioctl = cached_dev_ioctl; 1053 } 1054 1055 /* Flash backed devices */ 1056 1057 static int flash_dev_cache_miss(struct btree *b, struct search *s, 1058 struct bio *bio, unsigned sectors) 1059 { 1060 unsigned bytes = min(sectors, bio_sectors(bio)) << 9; 1061 1062 swap(bio->bi_iter.bi_size, bytes); 1063 zero_fill_bio(bio); 1064 swap(bio->bi_iter.bi_size, bytes); 1065 1066 bio_advance(bio, bytes); 1067 1068 if (!bio->bi_iter.bi_size) 1069 return MAP_DONE; 1070 1071 return MAP_CONTINUE; 1072 } 1073 1074 static void flash_dev_nodata(struct closure *cl) 1075 { 1076 struct search *s = container_of(cl, struct search, cl); 1077 1078 if (s->iop.flush_journal) 1079 bch_journal_meta(s->iop.c, cl); 1080 1081 continue_at(cl, search_free, NULL); 1082 } 1083 1084 static blk_qc_t flash_dev_make_request(struct request_queue *q, 1085 struct bio *bio) 1086 { 1087 struct search *s; 1088 struct closure *cl; 1089 struct bcache_device *d = bio->bi_disk->private_data; 1090 int rw = bio_data_dir(bio); 1091 1092 generic_start_io_acct(q, rw, bio_sectors(bio), &d->disk->part0); 1093 1094 s = search_alloc(bio, d); 1095 cl = &s->cl; 1096 bio = &s->bio.bio; 1097 1098 trace_bcache_request_start(s->d, bio); 1099 1100 if (!bio->bi_iter.bi_size) { 1101 /* 1102 * can't call bch_journal_meta from under 1103 * generic_make_request 1104 */ 1105 continue_at_nobarrier(&s->cl, 1106 flash_dev_nodata, 1107 bcache_wq); 1108 return BLK_QC_T_NONE; 1109 } else if (rw) { 1110 bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys, 1111 &KEY(d->id, bio->bi_iter.bi_sector, 0), 1112 &KEY(d->id, bio_end_sector(bio), 0)); 1113 1114 s->iop.bypass = (bio_op(bio) == REQ_OP_DISCARD) != 0; 1115 s->iop.writeback = true; 1116 s->iop.bio = bio; 1117 1118 closure_call(&s->iop.cl, bch_data_insert, NULL, cl); 1119 } else { 1120 closure_call(&s->iop.cl, cache_lookup, NULL, cl); 1121 } 1122 1123 continue_at(cl, search_free, NULL); 1124 return BLK_QC_T_NONE; 1125 } 1126 1127 static int flash_dev_ioctl(struct bcache_device *d, fmode_t mode, 1128 unsigned int cmd, unsigned long arg) 1129 { 1130 return -ENOTTY; 1131 } 1132 1133 static int flash_dev_congested(void *data, int bits) 1134 { 1135 struct bcache_device *d = data; 1136 struct request_queue *q; 1137 struct cache *ca; 1138 unsigned i; 1139 int ret = 0; 1140 1141 for_each_cache(ca, d->c, i) { 1142 q = bdev_get_queue(ca->bdev); 1143 ret |= bdi_congested(q->backing_dev_info, bits); 1144 } 1145 1146 return ret; 1147 } 1148 1149 void bch_flash_dev_request_init(struct bcache_device *d) 1150 { 1151 struct gendisk *g = d->disk; 1152 1153 g->queue->make_request_fn = flash_dev_make_request; 1154 g->queue->backing_dev_info->congested_fn = flash_dev_congested; 1155 d->cache_miss = flash_dev_cache_miss; 1156 d->ioctl = flash_dev_ioctl; 1157 } 1158 1159 void bch_request_exit(void) 1160 { 1161 if (bch_search_cache) 1162 kmem_cache_destroy(bch_search_cache); 1163 } 1164 1165 int __init bch_request_init(void) 1166 { 1167 bch_search_cache = KMEM_CACHE(search, 0); 1168 if (!bch_search_cache) 1169 return -ENOMEM; 1170 1171 return 0; 1172 } 1173