xref: /openbmc/linux/drivers/md/bcache/request.c (revision 53a2a90d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Main bcache entry point - handle a read or a write request and decide what to
4  * do with it; the make_request functions are called by the block layer.
5  *
6  * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
7  * Copyright 2012 Google, Inc.
8  */
9 
10 #include "bcache.h"
11 #include "btree.h"
12 #include "debug.h"
13 #include "request.h"
14 #include "writeback.h"
15 
16 #include <linux/module.h>
17 #include <linux/hash.h>
18 #include <linux/random.h>
19 #include <linux/backing-dev.h>
20 
21 #include <trace/events/bcache.h>
22 
23 #define CUTOFF_CACHE_ADD	95
24 #define CUTOFF_CACHE_READA	90
25 
26 struct kmem_cache *bch_search_cache;
27 
28 static void bch_data_insert_start(struct closure *cl);
29 
30 static unsigned int cache_mode(struct cached_dev *dc)
31 {
32 	return BDEV_CACHE_MODE(&dc->sb);
33 }
34 
35 static bool verify(struct cached_dev *dc)
36 {
37 	return dc->verify;
38 }
39 
40 static void bio_csum(struct bio *bio, struct bkey *k)
41 {
42 	struct bio_vec bv;
43 	struct bvec_iter iter;
44 	uint64_t csum = 0;
45 
46 	bio_for_each_segment(bv, bio, iter) {
47 		void *d = bvec_kmap_local(&bv);
48 
49 		csum = crc64_be(csum, d, bv.bv_len);
50 		kunmap_local(d);
51 	}
52 
53 	k->ptr[KEY_PTRS(k)] = csum & (~0ULL >> 1);
54 }
55 
56 /* Insert data into cache */
57 
58 static void bch_data_insert_keys(struct closure *cl)
59 {
60 	struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
61 	atomic_t *journal_ref = NULL;
62 	struct bkey *replace_key = op->replace ? &op->replace_key : NULL;
63 	int ret;
64 
65 	if (!op->replace)
66 		journal_ref = bch_journal(op->c, &op->insert_keys,
67 					  op->flush_journal ? cl : NULL);
68 
69 	ret = bch_btree_insert(op->c, &op->insert_keys,
70 			       journal_ref, replace_key);
71 	if (ret == -ESRCH) {
72 		op->replace_collision = true;
73 	} else if (ret) {
74 		op->status		= BLK_STS_RESOURCE;
75 		op->insert_data_done	= true;
76 	}
77 
78 	if (journal_ref)
79 		atomic_dec_bug(journal_ref);
80 
81 	if (!op->insert_data_done) {
82 		continue_at(cl, bch_data_insert_start, op->wq);
83 		return;
84 	}
85 
86 	bch_keylist_free(&op->insert_keys);
87 	closure_return(cl);
88 }
89 
90 static int bch_keylist_realloc(struct keylist *l, unsigned int u64s,
91 			       struct cache_set *c)
92 {
93 	size_t oldsize = bch_keylist_nkeys(l);
94 	size_t newsize = oldsize + u64s;
95 
96 	/*
97 	 * The journalling code doesn't handle the case where the keys to insert
98 	 * is bigger than an empty write: If we just return -ENOMEM here,
99 	 * bch_data_insert_keys() will insert the keys created so far
100 	 * and finish the rest when the keylist is empty.
101 	 */
102 	if (newsize * sizeof(uint64_t) > block_bytes(c->cache) - sizeof(struct jset))
103 		return -ENOMEM;
104 
105 	return __bch_keylist_realloc(l, u64s);
106 }
107 
108 static void bch_data_invalidate(struct closure *cl)
109 {
110 	struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
111 	struct bio *bio = op->bio;
112 
113 	pr_debug("invalidating %i sectors from %llu\n",
114 		 bio_sectors(bio), (uint64_t) bio->bi_iter.bi_sector);
115 
116 	while (bio_sectors(bio)) {
117 		unsigned int sectors = min(bio_sectors(bio),
118 				       1U << (KEY_SIZE_BITS - 1));
119 
120 		if (bch_keylist_realloc(&op->insert_keys, 2, op->c))
121 			goto out;
122 
123 		bio->bi_iter.bi_sector	+= sectors;
124 		bio->bi_iter.bi_size	-= sectors << 9;
125 
126 		bch_keylist_add(&op->insert_keys,
127 				&KEY(op->inode,
128 				     bio->bi_iter.bi_sector,
129 				     sectors));
130 	}
131 
132 	op->insert_data_done = true;
133 	/* get in bch_data_insert() */
134 	bio_put(bio);
135 out:
136 	continue_at(cl, bch_data_insert_keys, op->wq);
137 }
138 
139 static void bch_data_insert_error(struct closure *cl)
140 {
141 	struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
142 
143 	/*
144 	 * Our data write just errored, which means we've got a bunch of keys to
145 	 * insert that point to data that wasn't successfully written.
146 	 *
147 	 * We don't have to insert those keys but we still have to invalidate
148 	 * that region of the cache - so, if we just strip off all the pointers
149 	 * from the keys we'll accomplish just that.
150 	 */
151 
152 	struct bkey *src = op->insert_keys.keys, *dst = op->insert_keys.keys;
153 
154 	while (src != op->insert_keys.top) {
155 		struct bkey *n = bkey_next(src);
156 
157 		SET_KEY_PTRS(src, 0);
158 		memmove(dst, src, bkey_bytes(src));
159 
160 		dst = bkey_next(dst);
161 		src = n;
162 	}
163 
164 	op->insert_keys.top = dst;
165 
166 	bch_data_insert_keys(cl);
167 }
168 
169 static void bch_data_insert_endio(struct bio *bio)
170 {
171 	struct closure *cl = bio->bi_private;
172 	struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
173 
174 	if (bio->bi_status) {
175 		/* TODO: We could try to recover from this. */
176 		if (op->writeback)
177 			op->status = bio->bi_status;
178 		else if (!op->replace)
179 			set_closure_fn(cl, bch_data_insert_error, op->wq);
180 		else
181 			set_closure_fn(cl, NULL, NULL);
182 	}
183 
184 	bch_bbio_endio(op->c, bio, bio->bi_status, "writing data to cache");
185 }
186 
187 static void bch_data_insert_start(struct closure *cl)
188 {
189 	struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
190 	struct bio *bio = op->bio, *n;
191 
192 	if (op->bypass)
193 		return bch_data_invalidate(cl);
194 
195 	if (atomic_sub_return(bio_sectors(bio), &op->c->sectors_to_gc) < 0)
196 		wake_up_gc(op->c);
197 
198 	/*
199 	 * Journal writes are marked REQ_PREFLUSH; if the original write was a
200 	 * flush, it'll wait on the journal write.
201 	 */
202 	bio->bi_opf &= ~(REQ_PREFLUSH|REQ_FUA);
203 
204 	do {
205 		unsigned int i;
206 		struct bkey *k;
207 		struct bio_set *split = &op->c->bio_split;
208 
209 		/* 1 for the device pointer and 1 for the chksum */
210 		if (bch_keylist_realloc(&op->insert_keys,
211 					3 + (op->csum ? 1 : 0),
212 					op->c)) {
213 			continue_at(cl, bch_data_insert_keys, op->wq);
214 			return;
215 		}
216 
217 		k = op->insert_keys.top;
218 		bkey_init(k);
219 		SET_KEY_INODE(k, op->inode);
220 		SET_KEY_OFFSET(k, bio->bi_iter.bi_sector);
221 
222 		if (!bch_alloc_sectors(op->c, k, bio_sectors(bio),
223 				       op->write_point, op->write_prio,
224 				       op->writeback))
225 			goto err;
226 
227 		n = bio_next_split(bio, KEY_SIZE(k), GFP_NOIO, split);
228 
229 		n->bi_end_io	= bch_data_insert_endio;
230 		n->bi_private	= cl;
231 
232 		if (op->writeback) {
233 			SET_KEY_DIRTY(k, true);
234 
235 			for (i = 0; i < KEY_PTRS(k); i++)
236 				SET_GC_MARK(PTR_BUCKET(op->c, k, i),
237 					    GC_MARK_DIRTY);
238 		}
239 
240 		SET_KEY_CSUM(k, op->csum);
241 		if (KEY_CSUM(k))
242 			bio_csum(n, k);
243 
244 		trace_bcache_cache_insert(k);
245 		bch_keylist_push(&op->insert_keys);
246 
247 		bio_set_op_attrs(n, REQ_OP_WRITE, 0);
248 		bch_submit_bbio(n, op->c, k, 0);
249 	} while (n != bio);
250 
251 	op->insert_data_done = true;
252 	continue_at(cl, bch_data_insert_keys, op->wq);
253 	return;
254 err:
255 	/* bch_alloc_sectors() blocks if s->writeback = true */
256 	BUG_ON(op->writeback);
257 
258 	/*
259 	 * But if it's not a writeback write we'd rather just bail out if
260 	 * there aren't any buckets ready to write to - it might take awhile and
261 	 * we might be starving btree writes for gc or something.
262 	 */
263 
264 	if (!op->replace) {
265 		/*
266 		 * Writethrough write: We can't complete the write until we've
267 		 * updated the index. But we don't want to delay the write while
268 		 * we wait for buckets to be freed up, so just invalidate the
269 		 * rest of the write.
270 		 */
271 		op->bypass = true;
272 		return bch_data_invalidate(cl);
273 	} else {
274 		/*
275 		 * From a cache miss, we can just insert the keys for the data
276 		 * we have written or bail out if we didn't do anything.
277 		 */
278 		op->insert_data_done = true;
279 		bio_put(bio);
280 
281 		if (!bch_keylist_empty(&op->insert_keys))
282 			continue_at(cl, bch_data_insert_keys, op->wq);
283 		else
284 			closure_return(cl);
285 	}
286 }
287 
288 /**
289  * bch_data_insert - stick some data in the cache
290  * @cl: closure pointer.
291  *
292  * This is the starting point for any data to end up in a cache device; it could
293  * be from a normal write, or a writeback write, or a write to a flash only
294  * volume - it's also used by the moving garbage collector to compact data in
295  * mostly empty buckets.
296  *
297  * It first writes the data to the cache, creating a list of keys to be inserted
298  * (if the data had to be fragmented there will be multiple keys); after the
299  * data is written it calls bch_journal, and after the keys have been added to
300  * the next journal write they're inserted into the btree.
301  *
302  * It inserts the data in op->bio; bi_sector is used for the key offset,
303  * and op->inode is used for the key inode.
304  *
305  * If op->bypass is true, instead of inserting the data it invalidates the
306  * region of the cache represented by op->bio and op->inode.
307  */
308 void bch_data_insert(struct closure *cl)
309 {
310 	struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
311 
312 	trace_bcache_write(op->c, op->inode, op->bio,
313 			   op->writeback, op->bypass);
314 
315 	bch_keylist_init(&op->insert_keys);
316 	bio_get(op->bio);
317 	bch_data_insert_start(cl);
318 }
319 
320 /*
321  * Congested?  Return 0 (not congested) or the limit (in sectors)
322  * beyond which we should bypass the cache due to congestion.
323  */
324 unsigned int bch_get_congested(const struct cache_set *c)
325 {
326 	int i;
327 
328 	if (!c->congested_read_threshold_us &&
329 	    !c->congested_write_threshold_us)
330 		return 0;
331 
332 	i = (local_clock_us() - c->congested_last_us) / 1024;
333 	if (i < 0)
334 		return 0;
335 
336 	i += atomic_read(&c->congested);
337 	if (i >= 0)
338 		return 0;
339 
340 	i += CONGESTED_MAX;
341 
342 	if (i > 0)
343 		i = fract_exp_two(i, 6);
344 
345 	i -= hweight32(get_random_u32());
346 
347 	return i > 0 ? i : 1;
348 }
349 
350 static void add_sequential(struct task_struct *t)
351 {
352 	ewma_add(t->sequential_io_avg,
353 		 t->sequential_io, 8, 0);
354 
355 	t->sequential_io = 0;
356 }
357 
358 static struct hlist_head *iohash(struct cached_dev *dc, uint64_t k)
359 {
360 	return &dc->io_hash[hash_64(k, RECENT_IO_BITS)];
361 }
362 
363 static bool check_should_bypass(struct cached_dev *dc, struct bio *bio)
364 {
365 	struct cache_set *c = dc->disk.c;
366 	unsigned int mode = cache_mode(dc);
367 	unsigned int sectors, congested;
368 	struct task_struct *task = current;
369 	struct io *i;
370 
371 	if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) ||
372 	    c->gc_stats.in_use > CUTOFF_CACHE_ADD ||
373 	    (bio_op(bio) == REQ_OP_DISCARD))
374 		goto skip;
375 
376 	if (mode == CACHE_MODE_NONE ||
377 	    (mode == CACHE_MODE_WRITEAROUND &&
378 	     op_is_write(bio_op(bio))))
379 		goto skip;
380 
381 	/*
382 	 * If the bio is for read-ahead or background IO, bypass it or
383 	 * not depends on the following situations,
384 	 * - If the IO is for meta data, always cache it and no bypass
385 	 * - If the IO is not meta data, check dc->cache_reada_policy,
386 	 *      BCH_CACHE_READA_ALL: cache it and not bypass
387 	 *      BCH_CACHE_READA_META_ONLY: not cache it and bypass
388 	 * That is, read-ahead request for metadata always get cached
389 	 * (eg, for gfs2 or xfs).
390 	 */
391 	if ((bio->bi_opf & (REQ_RAHEAD|REQ_BACKGROUND))) {
392 		if (!(bio->bi_opf & (REQ_META|REQ_PRIO)) &&
393 		    (dc->cache_readahead_policy != BCH_CACHE_READA_ALL))
394 			goto skip;
395 	}
396 
397 	if (bio->bi_iter.bi_sector & (c->cache->sb.block_size - 1) ||
398 	    bio_sectors(bio) & (c->cache->sb.block_size - 1)) {
399 		pr_debug("skipping unaligned io\n");
400 		goto skip;
401 	}
402 
403 	if (bypass_torture_test(dc)) {
404 		if ((get_random_int() & 3) == 3)
405 			goto skip;
406 		else
407 			goto rescale;
408 	}
409 
410 	congested = bch_get_congested(c);
411 	if (!congested && !dc->sequential_cutoff)
412 		goto rescale;
413 
414 	spin_lock(&dc->io_lock);
415 
416 	hlist_for_each_entry(i, iohash(dc, bio->bi_iter.bi_sector), hash)
417 		if (i->last == bio->bi_iter.bi_sector &&
418 		    time_before(jiffies, i->jiffies))
419 			goto found;
420 
421 	i = list_first_entry(&dc->io_lru, struct io, lru);
422 
423 	add_sequential(task);
424 	i->sequential = 0;
425 found:
426 	if (i->sequential + bio->bi_iter.bi_size > i->sequential)
427 		i->sequential	+= bio->bi_iter.bi_size;
428 
429 	i->last			 = bio_end_sector(bio);
430 	i->jiffies		 = jiffies + msecs_to_jiffies(5000);
431 	task->sequential_io	 = i->sequential;
432 
433 	hlist_del(&i->hash);
434 	hlist_add_head(&i->hash, iohash(dc, i->last));
435 	list_move_tail(&i->lru, &dc->io_lru);
436 
437 	spin_unlock(&dc->io_lock);
438 
439 	sectors = max(task->sequential_io,
440 		      task->sequential_io_avg) >> 9;
441 
442 	if (dc->sequential_cutoff &&
443 	    sectors >= dc->sequential_cutoff >> 9) {
444 		trace_bcache_bypass_sequential(bio);
445 		goto skip;
446 	}
447 
448 	if (congested && sectors >= congested) {
449 		trace_bcache_bypass_congested(bio);
450 		goto skip;
451 	}
452 
453 rescale:
454 	bch_rescale_priorities(c, bio_sectors(bio));
455 	return false;
456 skip:
457 	bch_mark_sectors_bypassed(c, dc, bio_sectors(bio));
458 	return true;
459 }
460 
461 /* Cache lookup */
462 
463 struct search {
464 	/* Stack frame for bio_complete */
465 	struct closure		cl;
466 
467 	struct bbio		bio;
468 	struct bio		*orig_bio;
469 	struct bio		*cache_miss;
470 	struct bcache_device	*d;
471 
472 	unsigned int		insert_bio_sectors;
473 	unsigned int		recoverable:1;
474 	unsigned int		write:1;
475 	unsigned int		read_dirty_data:1;
476 	unsigned int		cache_missed:1;
477 
478 	struct block_device	*orig_bdev;
479 	unsigned long		start_time;
480 
481 	struct btree_op		op;
482 	struct data_insert_op	iop;
483 };
484 
485 static void bch_cache_read_endio(struct bio *bio)
486 {
487 	struct bbio *b = container_of(bio, struct bbio, bio);
488 	struct closure *cl = bio->bi_private;
489 	struct search *s = container_of(cl, struct search, cl);
490 
491 	/*
492 	 * If the bucket was reused while our bio was in flight, we might have
493 	 * read the wrong data. Set s->error but not error so it doesn't get
494 	 * counted against the cache device, but we'll still reread the data
495 	 * from the backing device.
496 	 */
497 
498 	if (bio->bi_status)
499 		s->iop.status = bio->bi_status;
500 	else if (!KEY_DIRTY(&b->key) &&
501 		 ptr_stale(s->iop.c, &b->key, 0)) {
502 		atomic_long_inc(&s->iop.c->cache_read_races);
503 		s->iop.status = BLK_STS_IOERR;
504 	}
505 
506 	bch_bbio_endio(s->iop.c, bio, bio->bi_status, "reading from cache");
507 }
508 
509 /*
510  * Read from a single key, handling the initial cache miss if the key starts in
511  * the middle of the bio
512  */
513 static int cache_lookup_fn(struct btree_op *op, struct btree *b, struct bkey *k)
514 {
515 	struct search *s = container_of(op, struct search, op);
516 	struct bio *n, *bio = &s->bio.bio;
517 	struct bkey *bio_key;
518 	unsigned int ptr;
519 
520 	if (bkey_cmp(k, &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0)) <= 0)
521 		return MAP_CONTINUE;
522 
523 	if (KEY_INODE(k) != s->iop.inode ||
524 	    KEY_START(k) > bio->bi_iter.bi_sector) {
525 		unsigned int bio_sectors = bio_sectors(bio);
526 		unsigned int sectors = KEY_INODE(k) == s->iop.inode
527 			? min_t(uint64_t, INT_MAX,
528 				KEY_START(k) - bio->bi_iter.bi_sector)
529 			: INT_MAX;
530 		int ret = s->d->cache_miss(b, s, bio, sectors);
531 
532 		if (ret != MAP_CONTINUE)
533 			return ret;
534 
535 		/* if this was a complete miss we shouldn't get here */
536 		BUG_ON(bio_sectors <= sectors);
537 	}
538 
539 	if (!KEY_SIZE(k))
540 		return MAP_CONTINUE;
541 
542 	/* XXX: figure out best pointer - for multiple cache devices */
543 	ptr = 0;
544 
545 	PTR_BUCKET(b->c, k, ptr)->prio = INITIAL_PRIO;
546 
547 	if (KEY_DIRTY(k))
548 		s->read_dirty_data = true;
549 
550 	n = bio_next_split(bio, min_t(uint64_t, INT_MAX,
551 				      KEY_OFFSET(k) - bio->bi_iter.bi_sector),
552 			   GFP_NOIO, &s->d->bio_split);
553 
554 	bio_key = &container_of(n, struct bbio, bio)->key;
555 	bch_bkey_copy_single_ptr(bio_key, k, ptr);
556 
557 	bch_cut_front(&KEY(s->iop.inode, n->bi_iter.bi_sector, 0), bio_key);
558 	bch_cut_back(&KEY(s->iop.inode, bio_end_sector(n), 0), bio_key);
559 
560 	n->bi_end_io	= bch_cache_read_endio;
561 	n->bi_private	= &s->cl;
562 
563 	/*
564 	 * The bucket we're reading from might be reused while our bio
565 	 * is in flight, and we could then end up reading the wrong
566 	 * data.
567 	 *
568 	 * We guard against this by checking (in cache_read_endio()) if
569 	 * the pointer is stale again; if so, we treat it as an error
570 	 * and reread from the backing device (but we don't pass that
571 	 * error up anywhere).
572 	 */
573 
574 	__bch_submit_bbio(n, b->c);
575 	return n == bio ? MAP_DONE : MAP_CONTINUE;
576 }
577 
578 static void cache_lookup(struct closure *cl)
579 {
580 	struct search *s = container_of(cl, struct search, iop.cl);
581 	struct bio *bio = &s->bio.bio;
582 	struct cached_dev *dc;
583 	int ret;
584 
585 	bch_btree_op_init(&s->op, -1);
586 
587 	ret = bch_btree_map_keys(&s->op, s->iop.c,
588 				 &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0),
589 				 cache_lookup_fn, MAP_END_KEY);
590 	if (ret == -EAGAIN) {
591 		continue_at(cl, cache_lookup, bcache_wq);
592 		return;
593 	}
594 
595 	/*
596 	 * We might meet err when searching the btree, If that happens, we will
597 	 * get negative ret, in this scenario we should not recover data from
598 	 * backing device (when cache device is dirty) because we don't know
599 	 * whether bkeys the read request covered are all clean.
600 	 *
601 	 * And after that happened, s->iop.status is still its initial value
602 	 * before we submit s->bio.bio
603 	 */
604 	if (ret < 0) {
605 		BUG_ON(ret == -EINTR);
606 		if (s->d && s->d->c &&
607 				!UUID_FLASH_ONLY(&s->d->c->uuids[s->d->id])) {
608 			dc = container_of(s->d, struct cached_dev, disk);
609 			if (dc && atomic_read(&dc->has_dirty))
610 				s->recoverable = false;
611 		}
612 		if (!s->iop.status)
613 			s->iop.status = BLK_STS_IOERR;
614 	}
615 
616 	closure_return(cl);
617 }
618 
619 /* Common code for the make_request functions */
620 
621 static void request_endio(struct bio *bio)
622 {
623 	struct closure *cl = bio->bi_private;
624 
625 	if (bio->bi_status) {
626 		struct search *s = container_of(cl, struct search, cl);
627 
628 		s->iop.status = bio->bi_status;
629 		/* Only cache read errors are recoverable */
630 		s->recoverable = false;
631 	}
632 
633 	bio_put(bio);
634 	closure_put(cl);
635 }
636 
637 static void backing_request_endio(struct bio *bio)
638 {
639 	struct closure *cl = bio->bi_private;
640 
641 	if (bio->bi_status) {
642 		struct search *s = container_of(cl, struct search, cl);
643 		struct cached_dev *dc = container_of(s->d,
644 						     struct cached_dev, disk);
645 		/*
646 		 * If a bio has REQ_PREFLUSH for writeback mode, it is
647 		 * speically assembled in cached_dev_write() for a non-zero
648 		 * write request which has REQ_PREFLUSH. we don't set
649 		 * s->iop.status by this failure, the status will be decided
650 		 * by result of bch_data_insert() operation.
651 		 */
652 		if (unlikely(s->iop.writeback &&
653 			     bio->bi_opf & REQ_PREFLUSH)) {
654 			pr_err("Can't flush %pg: returned bi_status %i\n",
655 				dc->bdev, bio->bi_status);
656 		} else {
657 			/* set to orig_bio->bi_status in bio_complete() */
658 			s->iop.status = bio->bi_status;
659 		}
660 		s->recoverable = false;
661 		/* should count I/O error for backing device here */
662 		bch_count_backing_io_errors(dc, bio);
663 	}
664 
665 	bio_put(bio);
666 	closure_put(cl);
667 }
668 
669 static void bio_complete(struct search *s)
670 {
671 	if (s->orig_bio) {
672 		/* Count on bcache device */
673 		bio_end_io_acct_remapped(s->orig_bio, s->start_time,
674 					 s->orig_bdev);
675 		trace_bcache_request_end(s->d, s->orig_bio);
676 		s->orig_bio->bi_status = s->iop.status;
677 		bio_endio(s->orig_bio);
678 		s->orig_bio = NULL;
679 	}
680 }
681 
682 static void do_bio_hook(struct search *s,
683 			struct bio *orig_bio,
684 			bio_end_io_t *end_io_fn)
685 {
686 	struct bio *bio = &s->bio.bio;
687 
688 	bio_init_clone(orig_bio->bi_bdev, bio, orig_bio, GFP_NOIO);
689 	/*
690 	 * bi_end_io can be set separately somewhere else, e.g. the
691 	 * variants in,
692 	 * - cache_bio->bi_end_io from cached_dev_cache_miss()
693 	 * - n->bi_end_io from cache_lookup_fn()
694 	 */
695 	bio->bi_end_io		= end_io_fn;
696 	bio->bi_private		= &s->cl;
697 
698 	bio_cnt_set(bio, 3);
699 }
700 
701 static void search_free(struct closure *cl)
702 {
703 	struct search *s = container_of(cl, struct search, cl);
704 
705 	atomic_dec(&s->iop.c->search_inflight);
706 
707 	if (s->iop.bio)
708 		bio_put(s->iop.bio);
709 
710 	bio_complete(s);
711 	closure_debug_destroy(cl);
712 	mempool_free(s, &s->iop.c->search);
713 }
714 
715 static inline struct search *search_alloc(struct bio *bio,
716 		struct bcache_device *d, struct block_device *orig_bdev,
717 		unsigned long start_time)
718 {
719 	struct search *s;
720 
721 	s = mempool_alloc(&d->c->search, GFP_NOIO);
722 
723 	closure_init(&s->cl, NULL);
724 	do_bio_hook(s, bio, request_endio);
725 	atomic_inc(&d->c->search_inflight);
726 
727 	s->orig_bio		= bio;
728 	s->cache_miss		= NULL;
729 	s->cache_missed		= 0;
730 	s->d			= d;
731 	s->recoverable		= 1;
732 	s->write		= op_is_write(bio_op(bio));
733 	s->read_dirty_data	= 0;
734 	/* Count on the bcache device */
735 	s->orig_bdev		= orig_bdev;
736 	s->start_time		= start_time;
737 	s->iop.c		= d->c;
738 	s->iop.bio		= NULL;
739 	s->iop.inode		= d->id;
740 	s->iop.write_point	= hash_long((unsigned long) current, 16);
741 	s->iop.write_prio	= 0;
742 	s->iop.status		= 0;
743 	s->iop.flags		= 0;
744 	s->iop.flush_journal	= op_is_flush(bio->bi_opf);
745 	s->iop.wq		= bcache_wq;
746 
747 	return s;
748 }
749 
750 /* Cached devices */
751 
752 static void cached_dev_bio_complete(struct closure *cl)
753 {
754 	struct search *s = container_of(cl, struct search, cl);
755 	struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
756 
757 	cached_dev_put(dc);
758 	search_free(cl);
759 }
760 
761 /* Process reads */
762 
763 static void cached_dev_read_error_done(struct closure *cl)
764 {
765 	struct search *s = container_of(cl, struct search, cl);
766 
767 	if (s->iop.replace_collision)
768 		bch_mark_cache_miss_collision(s->iop.c, s->d);
769 
770 	if (s->iop.bio)
771 		bio_free_pages(s->iop.bio);
772 
773 	cached_dev_bio_complete(cl);
774 }
775 
776 static void cached_dev_read_error(struct closure *cl)
777 {
778 	struct search *s = container_of(cl, struct search, cl);
779 	struct bio *bio = &s->bio.bio;
780 
781 	/*
782 	 * If read request hit dirty data (s->read_dirty_data is true),
783 	 * then recovery a failed read request from cached device may
784 	 * get a stale data back. So read failure recovery is only
785 	 * permitted when read request hit clean data in cache device,
786 	 * or when cache read race happened.
787 	 */
788 	if (s->recoverable && !s->read_dirty_data) {
789 		/* Retry from the backing device: */
790 		trace_bcache_read_retry(s->orig_bio);
791 
792 		s->iop.status = 0;
793 		do_bio_hook(s, s->orig_bio, backing_request_endio);
794 
795 		/* XXX: invalidate cache */
796 
797 		/* I/O request sent to backing device */
798 		closure_bio_submit(s->iop.c, bio, cl);
799 	}
800 
801 	continue_at(cl, cached_dev_read_error_done, NULL);
802 }
803 
804 static void cached_dev_cache_miss_done(struct closure *cl)
805 {
806 	struct search *s = container_of(cl, struct search, cl);
807 	struct bcache_device *d = s->d;
808 
809 	if (s->iop.replace_collision)
810 		bch_mark_cache_miss_collision(s->iop.c, s->d);
811 
812 	if (s->iop.bio)
813 		bio_free_pages(s->iop.bio);
814 
815 	cached_dev_bio_complete(cl);
816 	closure_put(&d->cl);
817 }
818 
819 static void cached_dev_read_done(struct closure *cl)
820 {
821 	struct search *s = container_of(cl, struct search, cl);
822 	struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
823 
824 	/*
825 	 * We had a cache miss; cache_bio now contains data ready to be inserted
826 	 * into the cache.
827 	 *
828 	 * First, we copy the data we just read from cache_bio's bounce buffers
829 	 * to the buffers the original bio pointed to:
830 	 */
831 
832 	if (s->iop.bio) {
833 		bio_reset(s->iop.bio, s->cache_miss->bi_bdev, REQ_OP_READ);
834 		s->iop.bio->bi_iter.bi_sector =
835 			s->cache_miss->bi_iter.bi_sector;
836 		s->iop.bio->bi_iter.bi_size = s->insert_bio_sectors << 9;
837 		bio_clone_blkg_association(s->iop.bio, s->cache_miss);
838 		bch_bio_map(s->iop.bio, NULL);
839 
840 		bio_copy_data(s->cache_miss, s->iop.bio);
841 
842 		bio_put(s->cache_miss);
843 		s->cache_miss = NULL;
844 	}
845 
846 	if (verify(dc) && s->recoverable && !s->read_dirty_data)
847 		bch_data_verify(dc, s->orig_bio);
848 
849 	closure_get(&dc->disk.cl);
850 	bio_complete(s);
851 
852 	if (s->iop.bio &&
853 	    !test_bit(CACHE_SET_STOPPING, &s->iop.c->flags)) {
854 		BUG_ON(!s->iop.replace);
855 		closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
856 	}
857 
858 	continue_at(cl, cached_dev_cache_miss_done, NULL);
859 }
860 
861 static void cached_dev_read_done_bh(struct closure *cl)
862 {
863 	struct search *s = container_of(cl, struct search, cl);
864 	struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
865 
866 	bch_mark_cache_accounting(s->iop.c, s->d,
867 				  !s->cache_missed, s->iop.bypass);
868 	trace_bcache_read(s->orig_bio, !s->cache_missed, s->iop.bypass);
869 
870 	if (s->iop.status)
871 		continue_at_nobarrier(cl, cached_dev_read_error, bcache_wq);
872 	else if (s->iop.bio || verify(dc))
873 		continue_at_nobarrier(cl, cached_dev_read_done, bcache_wq);
874 	else
875 		continue_at_nobarrier(cl, cached_dev_bio_complete, NULL);
876 }
877 
878 static int cached_dev_cache_miss(struct btree *b, struct search *s,
879 				 struct bio *bio, unsigned int sectors)
880 {
881 	int ret = MAP_CONTINUE;
882 	struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
883 	struct bio *miss, *cache_bio;
884 	unsigned int size_limit;
885 
886 	s->cache_missed = 1;
887 
888 	if (s->cache_miss || s->iop.bypass) {
889 		miss = bio_next_split(bio, sectors, GFP_NOIO, &s->d->bio_split);
890 		ret = miss == bio ? MAP_DONE : MAP_CONTINUE;
891 		goto out_submit;
892 	}
893 
894 	/* Limitation for valid replace key size and cache_bio bvecs number */
895 	size_limit = min_t(unsigned int, BIO_MAX_VECS * PAGE_SECTORS,
896 			   (1 << KEY_SIZE_BITS) - 1);
897 	s->insert_bio_sectors = min3(size_limit, sectors, bio_sectors(bio));
898 
899 	s->iop.replace_key = KEY(s->iop.inode,
900 				 bio->bi_iter.bi_sector + s->insert_bio_sectors,
901 				 s->insert_bio_sectors);
902 
903 	ret = bch_btree_insert_check_key(b, &s->op, &s->iop.replace_key);
904 	if (ret)
905 		return ret;
906 
907 	s->iop.replace = true;
908 
909 	miss = bio_next_split(bio, s->insert_bio_sectors, GFP_NOIO,
910 			      &s->d->bio_split);
911 
912 	/* btree_search_recurse()'s btree iterator is no good anymore */
913 	ret = miss == bio ? MAP_DONE : -EINTR;
914 
915 	cache_bio = bio_alloc_bioset(miss->bi_bdev,
916 			DIV_ROUND_UP(s->insert_bio_sectors, PAGE_SECTORS),
917 			0, GFP_NOWAIT, &dc->disk.bio_split);
918 	if (!cache_bio)
919 		goto out_submit;
920 
921 	cache_bio->bi_iter.bi_sector	= miss->bi_iter.bi_sector;
922 	cache_bio->bi_iter.bi_size	= s->insert_bio_sectors << 9;
923 
924 	cache_bio->bi_end_io	= backing_request_endio;
925 	cache_bio->bi_private	= &s->cl;
926 
927 	bch_bio_map(cache_bio, NULL);
928 	if (bch_bio_alloc_pages(cache_bio, __GFP_NOWARN|GFP_NOIO))
929 		goto out_put;
930 
931 	s->cache_miss	= miss;
932 	s->iop.bio	= cache_bio;
933 	bio_get(cache_bio);
934 	/* I/O request sent to backing device */
935 	closure_bio_submit(s->iop.c, cache_bio, &s->cl);
936 
937 	return ret;
938 out_put:
939 	bio_put(cache_bio);
940 out_submit:
941 	miss->bi_end_io		= backing_request_endio;
942 	miss->bi_private	= &s->cl;
943 	/* I/O request sent to backing device */
944 	closure_bio_submit(s->iop.c, miss, &s->cl);
945 	return ret;
946 }
947 
948 static void cached_dev_read(struct cached_dev *dc, struct search *s)
949 {
950 	struct closure *cl = &s->cl;
951 
952 	closure_call(&s->iop.cl, cache_lookup, NULL, cl);
953 	continue_at(cl, cached_dev_read_done_bh, NULL);
954 }
955 
956 /* Process writes */
957 
958 static void cached_dev_write_complete(struct closure *cl)
959 {
960 	struct search *s = container_of(cl, struct search, cl);
961 	struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
962 
963 	up_read_non_owner(&dc->writeback_lock);
964 	cached_dev_bio_complete(cl);
965 }
966 
967 static void cached_dev_write(struct cached_dev *dc, struct search *s)
968 {
969 	struct closure *cl = &s->cl;
970 	struct bio *bio = &s->bio.bio;
971 	struct bkey start = KEY(dc->disk.id, bio->bi_iter.bi_sector, 0);
972 	struct bkey end = KEY(dc->disk.id, bio_end_sector(bio), 0);
973 
974 	bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys, &start, &end);
975 
976 	down_read_non_owner(&dc->writeback_lock);
977 	if (bch_keybuf_check_overlapping(&dc->writeback_keys, &start, &end)) {
978 		/*
979 		 * We overlap with some dirty data undergoing background
980 		 * writeback, force this write to writeback
981 		 */
982 		s->iop.bypass = false;
983 		s->iop.writeback = true;
984 	}
985 
986 	/*
987 	 * Discards aren't _required_ to do anything, so skipping if
988 	 * check_overlapping returned true is ok
989 	 *
990 	 * But check_overlapping drops dirty keys for which io hasn't started,
991 	 * so we still want to call it.
992 	 */
993 	if (bio_op(bio) == REQ_OP_DISCARD)
994 		s->iop.bypass = true;
995 
996 	if (should_writeback(dc, s->orig_bio,
997 			     cache_mode(dc),
998 			     s->iop.bypass)) {
999 		s->iop.bypass = false;
1000 		s->iop.writeback = true;
1001 	}
1002 
1003 	if (s->iop.bypass) {
1004 		s->iop.bio = s->orig_bio;
1005 		bio_get(s->iop.bio);
1006 
1007 		if (bio_op(bio) == REQ_OP_DISCARD &&
1008 		    !bdev_max_discard_sectors(dc->bdev))
1009 			goto insert_data;
1010 
1011 		/* I/O request sent to backing device */
1012 		bio->bi_end_io = backing_request_endio;
1013 		closure_bio_submit(s->iop.c, bio, cl);
1014 
1015 	} else if (s->iop.writeback) {
1016 		bch_writeback_add(dc);
1017 		s->iop.bio = bio;
1018 
1019 		if (bio->bi_opf & REQ_PREFLUSH) {
1020 			/*
1021 			 * Also need to send a flush to the backing
1022 			 * device.
1023 			 */
1024 			struct bio *flush;
1025 
1026 			flush = bio_alloc_bioset(bio->bi_bdev, 0,
1027 						 REQ_OP_WRITE | REQ_PREFLUSH,
1028 						 GFP_NOIO, &dc->disk.bio_split);
1029 			if (!flush) {
1030 				s->iop.status = BLK_STS_RESOURCE;
1031 				goto insert_data;
1032 			}
1033 			flush->bi_end_io = backing_request_endio;
1034 			flush->bi_private = cl;
1035 			/* I/O request sent to backing device */
1036 			closure_bio_submit(s->iop.c, flush, cl);
1037 		}
1038 	} else {
1039 		s->iop.bio = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO,
1040 					     &dc->disk.bio_split);
1041 		/* I/O request sent to backing device */
1042 		bio->bi_end_io = backing_request_endio;
1043 		closure_bio_submit(s->iop.c, bio, cl);
1044 	}
1045 
1046 insert_data:
1047 	closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
1048 	continue_at(cl, cached_dev_write_complete, NULL);
1049 }
1050 
1051 static void cached_dev_nodata(struct closure *cl)
1052 {
1053 	struct search *s = container_of(cl, struct search, cl);
1054 	struct bio *bio = &s->bio.bio;
1055 
1056 	if (s->iop.flush_journal)
1057 		bch_journal_meta(s->iop.c, cl);
1058 
1059 	/* If it's a flush, we send the flush to the backing device too */
1060 	bio->bi_end_io = backing_request_endio;
1061 	closure_bio_submit(s->iop.c, bio, cl);
1062 
1063 	continue_at(cl, cached_dev_bio_complete, NULL);
1064 }
1065 
1066 struct detached_dev_io_private {
1067 	struct bcache_device	*d;
1068 	unsigned long		start_time;
1069 	bio_end_io_t		*bi_end_io;
1070 	void			*bi_private;
1071 	struct block_device	*orig_bdev;
1072 };
1073 
1074 static void detached_dev_end_io(struct bio *bio)
1075 {
1076 	struct detached_dev_io_private *ddip;
1077 
1078 	ddip = bio->bi_private;
1079 	bio->bi_end_io = ddip->bi_end_io;
1080 	bio->bi_private = ddip->bi_private;
1081 
1082 	/* Count on the bcache device */
1083 	bio_end_io_acct_remapped(bio, ddip->start_time, ddip->orig_bdev);
1084 
1085 	if (bio->bi_status) {
1086 		struct cached_dev *dc = container_of(ddip->d,
1087 						     struct cached_dev, disk);
1088 		/* should count I/O error for backing device here */
1089 		bch_count_backing_io_errors(dc, bio);
1090 	}
1091 
1092 	kfree(ddip);
1093 	bio->bi_end_io(bio);
1094 }
1095 
1096 static void detached_dev_do_request(struct bcache_device *d, struct bio *bio,
1097 		struct block_device *orig_bdev, unsigned long start_time)
1098 {
1099 	struct detached_dev_io_private *ddip;
1100 	struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1101 
1102 	/*
1103 	 * no need to call closure_get(&dc->disk.cl),
1104 	 * because upper layer had already opened bcache device,
1105 	 * which would call closure_get(&dc->disk.cl)
1106 	 */
1107 	ddip = kzalloc(sizeof(struct detached_dev_io_private), GFP_NOIO);
1108 	if (!ddip) {
1109 		bio->bi_status = BLK_STS_RESOURCE;
1110 		bio->bi_end_io(bio);
1111 		return;
1112 	}
1113 
1114 	ddip->d = d;
1115 	/* Count on the bcache device */
1116 	ddip->orig_bdev = orig_bdev;
1117 	ddip->start_time = start_time;
1118 	ddip->bi_end_io = bio->bi_end_io;
1119 	ddip->bi_private = bio->bi_private;
1120 	bio->bi_end_io = detached_dev_end_io;
1121 	bio->bi_private = ddip;
1122 
1123 	if ((bio_op(bio) == REQ_OP_DISCARD) &&
1124 	    !bdev_max_discard_sectors(dc->bdev))
1125 		bio->bi_end_io(bio);
1126 	else
1127 		submit_bio_noacct(bio);
1128 }
1129 
1130 static void quit_max_writeback_rate(struct cache_set *c,
1131 				    struct cached_dev *this_dc)
1132 {
1133 	int i;
1134 	struct bcache_device *d;
1135 	struct cached_dev *dc;
1136 
1137 	/*
1138 	 * mutex bch_register_lock may compete with other parallel requesters,
1139 	 * or attach/detach operations on other backing device. Waiting to
1140 	 * the mutex lock may increase I/O request latency for seconds or more.
1141 	 * To avoid such situation, if mutext_trylock() failed, only writeback
1142 	 * rate of current cached device is set to 1, and __update_write_back()
1143 	 * will decide writeback rate of other cached devices (remember now
1144 	 * c->idle_counter is 0 already).
1145 	 */
1146 	if (mutex_trylock(&bch_register_lock)) {
1147 		for (i = 0; i < c->devices_max_used; i++) {
1148 			if (!c->devices[i])
1149 				continue;
1150 
1151 			if (UUID_FLASH_ONLY(&c->uuids[i]))
1152 				continue;
1153 
1154 			d = c->devices[i];
1155 			dc = container_of(d, struct cached_dev, disk);
1156 			/*
1157 			 * set writeback rate to default minimum value,
1158 			 * then let update_writeback_rate() to decide the
1159 			 * upcoming rate.
1160 			 */
1161 			atomic_long_set(&dc->writeback_rate.rate, 1);
1162 		}
1163 		mutex_unlock(&bch_register_lock);
1164 	} else
1165 		atomic_long_set(&this_dc->writeback_rate.rate, 1);
1166 }
1167 
1168 /* Cached devices - read & write stuff */
1169 
1170 void cached_dev_submit_bio(struct bio *bio)
1171 {
1172 	struct search *s;
1173 	struct block_device *orig_bdev = bio->bi_bdev;
1174 	struct bcache_device *d = orig_bdev->bd_disk->private_data;
1175 	struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1176 	unsigned long start_time;
1177 	int rw = bio_data_dir(bio);
1178 
1179 	if (unlikely((d->c && test_bit(CACHE_SET_IO_DISABLE, &d->c->flags)) ||
1180 		     dc->io_disable)) {
1181 		bio->bi_status = BLK_STS_IOERR;
1182 		bio_endio(bio);
1183 		return;
1184 	}
1185 
1186 	if (likely(d->c)) {
1187 		if (atomic_read(&d->c->idle_counter))
1188 			atomic_set(&d->c->idle_counter, 0);
1189 		/*
1190 		 * If at_max_writeback_rate of cache set is true and new I/O
1191 		 * comes, quit max writeback rate of all cached devices
1192 		 * attached to this cache set, and set at_max_writeback_rate
1193 		 * to false.
1194 		 */
1195 		if (unlikely(atomic_read(&d->c->at_max_writeback_rate) == 1)) {
1196 			atomic_set(&d->c->at_max_writeback_rate, 0);
1197 			quit_max_writeback_rate(d->c, dc);
1198 		}
1199 	}
1200 
1201 	start_time = bio_start_io_acct(bio);
1202 
1203 	bio_set_dev(bio, dc->bdev);
1204 	bio->bi_iter.bi_sector += dc->sb.data_offset;
1205 
1206 	if (cached_dev_get(dc)) {
1207 		s = search_alloc(bio, d, orig_bdev, start_time);
1208 		trace_bcache_request_start(s->d, bio);
1209 
1210 		if (!bio->bi_iter.bi_size) {
1211 			/*
1212 			 * can't call bch_journal_meta from under
1213 			 * submit_bio_noacct
1214 			 */
1215 			continue_at_nobarrier(&s->cl,
1216 					      cached_dev_nodata,
1217 					      bcache_wq);
1218 		} else {
1219 			s->iop.bypass = check_should_bypass(dc, bio);
1220 
1221 			if (rw)
1222 				cached_dev_write(dc, s);
1223 			else
1224 				cached_dev_read(dc, s);
1225 		}
1226 	} else
1227 		/* I/O request sent to backing device */
1228 		detached_dev_do_request(d, bio, orig_bdev, start_time);
1229 }
1230 
1231 static int cached_dev_ioctl(struct bcache_device *d, fmode_t mode,
1232 			    unsigned int cmd, unsigned long arg)
1233 {
1234 	struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1235 
1236 	if (dc->io_disable)
1237 		return -EIO;
1238 	if (!dc->bdev->bd_disk->fops->ioctl)
1239 		return -ENOTTY;
1240 	return dc->bdev->bd_disk->fops->ioctl(dc->bdev, mode, cmd, arg);
1241 }
1242 
1243 void bch_cached_dev_request_init(struct cached_dev *dc)
1244 {
1245 	dc->disk.cache_miss			= cached_dev_cache_miss;
1246 	dc->disk.ioctl				= cached_dev_ioctl;
1247 }
1248 
1249 /* Flash backed devices */
1250 
1251 static int flash_dev_cache_miss(struct btree *b, struct search *s,
1252 				struct bio *bio, unsigned int sectors)
1253 {
1254 	unsigned int bytes = min(sectors, bio_sectors(bio)) << 9;
1255 
1256 	swap(bio->bi_iter.bi_size, bytes);
1257 	zero_fill_bio(bio);
1258 	swap(bio->bi_iter.bi_size, bytes);
1259 
1260 	bio_advance(bio, bytes);
1261 
1262 	if (!bio->bi_iter.bi_size)
1263 		return MAP_DONE;
1264 
1265 	return MAP_CONTINUE;
1266 }
1267 
1268 static void flash_dev_nodata(struct closure *cl)
1269 {
1270 	struct search *s = container_of(cl, struct search, cl);
1271 
1272 	if (s->iop.flush_journal)
1273 		bch_journal_meta(s->iop.c, cl);
1274 
1275 	continue_at(cl, search_free, NULL);
1276 }
1277 
1278 void flash_dev_submit_bio(struct bio *bio)
1279 {
1280 	struct search *s;
1281 	struct closure *cl;
1282 	struct bcache_device *d = bio->bi_bdev->bd_disk->private_data;
1283 
1284 	if (unlikely(d->c && test_bit(CACHE_SET_IO_DISABLE, &d->c->flags))) {
1285 		bio->bi_status = BLK_STS_IOERR;
1286 		bio_endio(bio);
1287 		return;
1288 	}
1289 
1290 	s = search_alloc(bio, d, bio->bi_bdev, bio_start_io_acct(bio));
1291 	cl = &s->cl;
1292 	bio = &s->bio.bio;
1293 
1294 	trace_bcache_request_start(s->d, bio);
1295 
1296 	if (!bio->bi_iter.bi_size) {
1297 		/*
1298 		 * can't call bch_journal_meta from under submit_bio_noacct
1299 		 */
1300 		continue_at_nobarrier(&s->cl,
1301 				      flash_dev_nodata,
1302 				      bcache_wq);
1303 		return;
1304 	} else if (bio_data_dir(bio)) {
1305 		bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys,
1306 					&KEY(d->id, bio->bi_iter.bi_sector, 0),
1307 					&KEY(d->id, bio_end_sector(bio), 0));
1308 
1309 		s->iop.bypass		= (bio_op(bio) == REQ_OP_DISCARD) != 0;
1310 		s->iop.writeback	= true;
1311 		s->iop.bio		= bio;
1312 
1313 		closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
1314 	} else {
1315 		closure_call(&s->iop.cl, cache_lookup, NULL, cl);
1316 	}
1317 
1318 	continue_at(cl, search_free, NULL);
1319 }
1320 
1321 static int flash_dev_ioctl(struct bcache_device *d, fmode_t mode,
1322 			   unsigned int cmd, unsigned long arg)
1323 {
1324 	return -ENOTTY;
1325 }
1326 
1327 void bch_flash_dev_request_init(struct bcache_device *d)
1328 {
1329 	d->cache_miss				= flash_dev_cache_miss;
1330 	d->ioctl				= flash_dev_ioctl;
1331 }
1332 
1333 void bch_request_exit(void)
1334 {
1335 	kmem_cache_destroy(bch_search_cache);
1336 }
1337 
1338 int __init bch_request_init(void)
1339 {
1340 	bch_search_cache = KMEM_CACHE(search, 0);
1341 	if (!bch_search_cache)
1342 		return -ENOMEM;
1343 
1344 	return 0;
1345 }
1346