1 /* 2 * Main bcache entry point - handle a read or a write request and decide what to 3 * do with it; the make_request functions are called by the block layer. 4 * 5 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com> 6 * Copyright 2012 Google, Inc. 7 */ 8 9 #include "bcache.h" 10 #include "btree.h" 11 #include "debug.h" 12 #include "request.h" 13 #include "writeback.h" 14 15 #include <linux/module.h> 16 #include <linux/hash.h> 17 #include <linux/random.h> 18 19 #include <trace/events/bcache.h> 20 21 #define CUTOFF_CACHE_ADD 95 22 #define CUTOFF_CACHE_READA 90 23 24 struct kmem_cache *bch_search_cache; 25 26 static void bch_data_insert_start(struct closure *); 27 28 static unsigned cache_mode(struct cached_dev *dc, struct bio *bio) 29 { 30 return BDEV_CACHE_MODE(&dc->sb); 31 } 32 33 static bool verify(struct cached_dev *dc, struct bio *bio) 34 { 35 return dc->verify; 36 } 37 38 static void bio_csum(struct bio *bio, struct bkey *k) 39 { 40 struct bio_vec bv; 41 struct bvec_iter iter; 42 uint64_t csum = 0; 43 44 bio_for_each_segment(bv, bio, iter) { 45 void *d = kmap(bv.bv_page) + bv.bv_offset; 46 csum = bch_crc64_update(csum, d, bv.bv_len); 47 kunmap(bv.bv_page); 48 } 49 50 k->ptr[KEY_PTRS(k)] = csum & (~0ULL >> 1); 51 } 52 53 /* Insert data into cache */ 54 55 static void bch_data_insert_keys(struct closure *cl) 56 { 57 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl); 58 atomic_t *journal_ref = NULL; 59 struct bkey *replace_key = op->replace ? &op->replace_key : NULL; 60 int ret; 61 62 /* 63 * If we're looping, might already be waiting on 64 * another journal write - can't wait on more than one journal write at 65 * a time 66 * 67 * XXX: this looks wrong 68 */ 69 #if 0 70 while (atomic_read(&s->cl.remaining) & CLOSURE_WAITING) 71 closure_sync(&s->cl); 72 #endif 73 74 if (!op->replace) 75 journal_ref = bch_journal(op->c, &op->insert_keys, 76 op->flush_journal ? cl : NULL); 77 78 ret = bch_btree_insert(op->c, &op->insert_keys, 79 journal_ref, replace_key); 80 if (ret == -ESRCH) { 81 op->replace_collision = true; 82 } else if (ret) { 83 op->error = -ENOMEM; 84 op->insert_data_done = true; 85 } 86 87 if (journal_ref) 88 atomic_dec_bug(journal_ref); 89 90 if (!op->insert_data_done) 91 continue_at(cl, bch_data_insert_start, op->wq); 92 93 bch_keylist_free(&op->insert_keys); 94 closure_return(cl); 95 } 96 97 static int bch_keylist_realloc(struct keylist *l, unsigned u64s, 98 struct cache_set *c) 99 { 100 size_t oldsize = bch_keylist_nkeys(l); 101 size_t newsize = oldsize + u64s; 102 103 /* 104 * The journalling code doesn't handle the case where the keys to insert 105 * is bigger than an empty write: If we just return -ENOMEM here, 106 * bio_insert() and bio_invalidate() will insert the keys created so far 107 * and finish the rest when the keylist is empty. 108 */ 109 if (newsize * sizeof(uint64_t) > block_bytes(c) - sizeof(struct jset)) 110 return -ENOMEM; 111 112 return __bch_keylist_realloc(l, u64s); 113 } 114 115 static void bch_data_invalidate(struct closure *cl) 116 { 117 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl); 118 struct bio *bio = op->bio; 119 120 pr_debug("invalidating %i sectors from %llu", 121 bio_sectors(bio), (uint64_t) bio->bi_iter.bi_sector); 122 123 while (bio_sectors(bio)) { 124 unsigned sectors = min(bio_sectors(bio), 125 1U << (KEY_SIZE_BITS - 1)); 126 127 if (bch_keylist_realloc(&op->insert_keys, 2, op->c)) 128 goto out; 129 130 bio->bi_iter.bi_sector += sectors; 131 bio->bi_iter.bi_size -= sectors << 9; 132 133 bch_keylist_add(&op->insert_keys, 134 &KEY(op->inode, bio->bi_iter.bi_sector, sectors)); 135 } 136 137 op->insert_data_done = true; 138 bio_put(bio); 139 out: 140 continue_at(cl, bch_data_insert_keys, op->wq); 141 } 142 143 static void bch_data_insert_error(struct closure *cl) 144 { 145 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl); 146 147 /* 148 * Our data write just errored, which means we've got a bunch of keys to 149 * insert that point to data that wasn't succesfully written. 150 * 151 * We don't have to insert those keys but we still have to invalidate 152 * that region of the cache - so, if we just strip off all the pointers 153 * from the keys we'll accomplish just that. 154 */ 155 156 struct bkey *src = op->insert_keys.keys, *dst = op->insert_keys.keys; 157 158 while (src != op->insert_keys.top) { 159 struct bkey *n = bkey_next(src); 160 161 SET_KEY_PTRS(src, 0); 162 memmove(dst, src, bkey_bytes(src)); 163 164 dst = bkey_next(dst); 165 src = n; 166 } 167 168 op->insert_keys.top = dst; 169 170 bch_data_insert_keys(cl); 171 } 172 173 static void bch_data_insert_endio(struct bio *bio, int error) 174 { 175 struct closure *cl = bio->bi_private; 176 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl); 177 178 if (error) { 179 /* TODO: We could try to recover from this. */ 180 if (op->writeback) 181 op->error = error; 182 else if (!op->replace) 183 set_closure_fn(cl, bch_data_insert_error, op->wq); 184 else 185 set_closure_fn(cl, NULL, NULL); 186 } 187 188 bch_bbio_endio(op->c, bio, error, "writing data to cache"); 189 } 190 191 static void bch_data_insert_start(struct closure *cl) 192 { 193 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl); 194 struct bio *bio = op->bio, *n; 195 196 if (atomic_sub_return(bio_sectors(bio), &op->c->sectors_to_gc) < 0) { 197 set_gc_sectors(op->c); 198 wake_up_gc(op->c); 199 } 200 201 if (op->bypass) 202 return bch_data_invalidate(cl); 203 204 /* 205 * Journal writes are marked REQ_FLUSH; if the original write was a 206 * flush, it'll wait on the journal write. 207 */ 208 bio->bi_rw &= ~(REQ_FLUSH|REQ_FUA); 209 210 do { 211 unsigned i; 212 struct bkey *k; 213 struct bio_set *split = op->c->bio_split; 214 215 /* 1 for the device pointer and 1 for the chksum */ 216 if (bch_keylist_realloc(&op->insert_keys, 217 3 + (op->csum ? 1 : 0), 218 op->c)) 219 continue_at(cl, bch_data_insert_keys, op->wq); 220 221 k = op->insert_keys.top; 222 bkey_init(k); 223 SET_KEY_INODE(k, op->inode); 224 SET_KEY_OFFSET(k, bio->bi_iter.bi_sector); 225 226 if (!bch_alloc_sectors(op->c, k, bio_sectors(bio), 227 op->write_point, op->write_prio, 228 op->writeback)) 229 goto err; 230 231 n = bio_next_split(bio, KEY_SIZE(k), GFP_NOIO, split); 232 233 n->bi_end_io = bch_data_insert_endio; 234 n->bi_private = cl; 235 236 if (op->writeback) { 237 SET_KEY_DIRTY(k, true); 238 239 for (i = 0; i < KEY_PTRS(k); i++) 240 SET_GC_MARK(PTR_BUCKET(op->c, k, i), 241 GC_MARK_DIRTY); 242 } 243 244 SET_KEY_CSUM(k, op->csum); 245 if (KEY_CSUM(k)) 246 bio_csum(n, k); 247 248 trace_bcache_cache_insert(k); 249 bch_keylist_push(&op->insert_keys); 250 251 n->bi_rw |= REQ_WRITE; 252 bch_submit_bbio(n, op->c, k, 0); 253 } while (n != bio); 254 255 op->insert_data_done = true; 256 continue_at(cl, bch_data_insert_keys, op->wq); 257 err: 258 /* bch_alloc_sectors() blocks if s->writeback = true */ 259 BUG_ON(op->writeback); 260 261 /* 262 * But if it's not a writeback write we'd rather just bail out if 263 * there aren't any buckets ready to write to - it might take awhile and 264 * we might be starving btree writes for gc or something. 265 */ 266 267 if (!op->replace) { 268 /* 269 * Writethrough write: We can't complete the write until we've 270 * updated the index. But we don't want to delay the write while 271 * we wait for buckets to be freed up, so just invalidate the 272 * rest of the write. 273 */ 274 op->bypass = true; 275 return bch_data_invalidate(cl); 276 } else { 277 /* 278 * From a cache miss, we can just insert the keys for the data 279 * we have written or bail out if we didn't do anything. 280 */ 281 op->insert_data_done = true; 282 bio_put(bio); 283 284 if (!bch_keylist_empty(&op->insert_keys)) 285 continue_at(cl, bch_data_insert_keys, op->wq); 286 else 287 closure_return(cl); 288 } 289 } 290 291 /** 292 * bch_data_insert - stick some data in the cache 293 * 294 * This is the starting point for any data to end up in a cache device; it could 295 * be from a normal write, or a writeback write, or a write to a flash only 296 * volume - it's also used by the moving garbage collector to compact data in 297 * mostly empty buckets. 298 * 299 * It first writes the data to the cache, creating a list of keys to be inserted 300 * (if the data had to be fragmented there will be multiple keys); after the 301 * data is written it calls bch_journal, and after the keys have been added to 302 * the next journal write they're inserted into the btree. 303 * 304 * It inserts the data in s->cache_bio; bi_sector is used for the key offset, 305 * and op->inode is used for the key inode. 306 * 307 * If s->bypass is true, instead of inserting the data it invalidates the 308 * region of the cache represented by s->cache_bio and op->inode. 309 */ 310 void bch_data_insert(struct closure *cl) 311 { 312 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl); 313 314 trace_bcache_write(op->c, op->inode, op->bio, 315 op->writeback, op->bypass); 316 317 bch_keylist_init(&op->insert_keys); 318 bio_get(op->bio); 319 bch_data_insert_start(cl); 320 } 321 322 /* Congested? */ 323 324 unsigned bch_get_congested(struct cache_set *c) 325 { 326 int i; 327 long rand; 328 329 if (!c->congested_read_threshold_us && 330 !c->congested_write_threshold_us) 331 return 0; 332 333 i = (local_clock_us() - c->congested_last_us) / 1024; 334 if (i < 0) 335 return 0; 336 337 i += atomic_read(&c->congested); 338 if (i >= 0) 339 return 0; 340 341 i += CONGESTED_MAX; 342 343 if (i > 0) 344 i = fract_exp_two(i, 6); 345 346 rand = get_random_int(); 347 i -= bitmap_weight(&rand, BITS_PER_LONG); 348 349 return i > 0 ? i : 1; 350 } 351 352 static void add_sequential(struct task_struct *t) 353 { 354 ewma_add(t->sequential_io_avg, 355 t->sequential_io, 8, 0); 356 357 t->sequential_io = 0; 358 } 359 360 static struct hlist_head *iohash(struct cached_dev *dc, uint64_t k) 361 { 362 return &dc->io_hash[hash_64(k, RECENT_IO_BITS)]; 363 } 364 365 static bool check_should_bypass(struct cached_dev *dc, struct bio *bio) 366 { 367 struct cache_set *c = dc->disk.c; 368 unsigned mode = cache_mode(dc, bio); 369 unsigned sectors, congested = bch_get_congested(c); 370 struct task_struct *task = current; 371 struct io *i; 372 373 if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) || 374 c->gc_stats.in_use > CUTOFF_CACHE_ADD || 375 (bio->bi_rw & REQ_DISCARD)) 376 goto skip; 377 378 if (mode == CACHE_MODE_NONE || 379 (mode == CACHE_MODE_WRITEAROUND && 380 (bio->bi_rw & REQ_WRITE))) 381 goto skip; 382 383 if (bio->bi_iter.bi_sector & (c->sb.block_size - 1) || 384 bio_sectors(bio) & (c->sb.block_size - 1)) { 385 pr_debug("skipping unaligned io"); 386 goto skip; 387 } 388 389 if (bypass_torture_test(dc)) { 390 if ((get_random_int() & 3) == 3) 391 goto skip; 392 else 393 goto rescale; 394 } 395 396 if (!congested && !dc->sequential_cutoff) 397 goto rescale; 398 399 if (!congested && 400 mode == CACHE_MODE_WRITEBACK && 401 (bio->bi_rw & REQ_WRITE) && 402 (bio->bi_rw & REQ_SYNC)) 403 goto rescale; 404 405 spin_lock(&dc->io_lock); 406 407 hlist_for_each_entry(i, iohash(dc, bio->bi_iter.bi_sector), hash) 408 if (i->last == bio->bi_iter.bi_sector && 409 time_before(jiffies, i->jiffies)) 410 goto found; 411 412 i = list_first_entry(&dc->io_lru, struct io, lru); 413 414 add_sequential(task); 415 i->sequential = 0; 416 found: 417 if (i->sequential + bio->bi_iter.bi_size > i->sequential) 418 i->sequential += bio->bi_iter.bi_size; 419 420 i->last = bio_end_sector(bio); 421 i->jiffies = jiffies + msecs_to_jiffies(5000); 422 task->sequential_io = i->sequential; 423 424 hlist_del(&i->hash); 425 hlist_add_head(&i->hash, iohash(dc, i->last)); 426 list_move_tail(&i->lru, &dc->io_lru); 427 428 spin_unlock(&dc->io_lock); 429 430 sectors = max(task->sequential_io, 431 task->sequential_io_avg) >> 9; 432 433 if (dc->sequential_cutoff && 434 sectors >= dc->sequential_cutoff >> 9) { 435 trace_bcache_bypass_sequential(bio); 436 goto skip; 437 } 438 439 if (congested && sectors >= congested) { 440 trace_bcache_bypass_congested(bio); 441 goto skip; 442 } 443 444 rescale: 445 bch_rescale_priorities(c, bio_sectors(bio)); 446 return false; 447 skip: 448 bch_mark_sectors_bypassed(c, dc, bio_sectors(bio)); 449 return true; 450 } 451 452 /* Cache lookup */ 453 454 struct search { 455 /* Stack frame for bio_complete */ 456 struct closure cl; 457 458 struct bbio bio; 459 struct bio *orig_bio; 460 struct bio *cache_miss; 461 struct bcache_device *d; 462 463 unsigned insert_bio_sectors; 464 unsigned recoverable:1; 465 unsigned write:1; 466 unsigned read_dirty_data:1; 467 468 unsigned long start_time; 469 470 struct btree_op op; 471 struct data_insert_op iop; 472 }; 473 474 static void bch_cache_read_endio(struct bio *bio, int error) 475 { 476 struct bbio *b = container_of(bio, struct bbio, bio); 477 struct closure *cl = bio->bi_private; 478 struct search *s = container_of(cl, struct search, cl); 479 480 /* 481 * If the bucket was reused while our bio was in flight, we might have 482 * read the wrong data. Set s->error but not error so it doesn't get 483 * counted against the cache device, but we'll still reread the data 484 * from the backing device. 485 */ 486 487 if (error) 488 s->iop.error = error; 489 else if (!KEY_DIRTY(&b->key) && 490 ptr_stale(s->iop.c, &b->key, 0)) { 491 atomic_long_inc(&s->iop.c->cache_read_races); 492 s->iop.error = -EINTR; 493 } 494 495 bch_bbio_endio(s->iop.c, bio, error, "reading from cache"); 496 } 497 498 /* 499 * Read from a single key, handling the initial cache miss if the key starts in 500 * the middle of the bio 501 */ 502 static int cache_lookup_fn(struct btree_op *op, struct btree *b, struct bkey *k) 503 { 504 struct search *s = container_of(op, struct search, op); 505 struct bio *n, *bio = &s->bio.bio; 506 struct bkey *bio_key; 507 unsigned ptr; 508 509 if (bkey_cmp(k, &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0)) <= 0) 510 return MAP_CONTINUE; 511 512 if (KEY_INODE(k) != s->iop.inode || 513 KEY_START(k) > bio->bi_iter.bi_sector) { 514 unsigned bio_sectors = bio_sectors(bio); 515 unsigned sectors = KEY_INODE(k) == s->iop.inode 516 ? min_t(uint64_t, INT_MAX, 517 KEY_START(k) - bio->bi_iter.bi_sector) 518 : INT_MAX; 519 520 int ret = s->d->cache_miss(b, s, bio, sectors); 521 if (ret != MAP_CONTINUE) 522 return ret; 523 524 /* if this was a complete miss we shouldn't get here */ 525 BUG_ON(bio_sectors <= sectors); 526 } 527 528 if (!KEY_SIZE(k)) 529 return MAP_CONTINUE; 530 531 /* XXX: figure out best pointer - for multiple cache devices */ 532 ptr = 0; 533 534 PTR_BUCKET(b->c, k, ptr)->prio = INITIAL_PRIO; 535 536 if (KEY_DIRTY(k)) 537 s->read_dirty_data = true; 538 539 n = bio_next_split(bio, min_t(uint64_t, INT_MAX, 540 KEY_OFFSET(k) - bio->bi_iter.bi_sector), 541 GFP_NOIO, s->d->bio_split); 542 543 bio_key = &container_of(n, struct bbio, bio)->key; 544 bch_bkey_copy_single_ptr(bio_key, k, ptr); 545 546 bch_cut_front(&KEY(s->iop.inode, n->bi_iter.bi_sector, 0), bio_key); 547 bch_cut_back(&KEY(s->iop.inode, bio_end_sector(n), 0), bio_key); 548 549 n->bi_end_io = bch_cache_read_endio; 550 n->bi_private = &s->cl; 551 552 /* 553 * The bucket we're reading from might be reused while our bio 554 * is in flight, and we could then end up reading the wrong 555 * data. 556 * 557 * We guard against this by checking (in cache_read_endio()) if 558 * the pointer is stale again; if so, we treat it as an error 559 * and reread from the backing device (but we don't pass that 560 * error up anywhere). 561 */ 562 563 __bch_submit_bbio(n, b->c); 564 return n == bio ? MAP_DONE : MAP_CONTINUE; 565 } 566 567 static void cache_lookup(struct closure *cl) 568 { 569 struct search *s = container_of(cl, struct search, iop.cl); 570 struct bio *bio = &s->bio.bio; 571 int ret; 572 573 bch_btree_op_init(&s->op, -1); 574 575 ret = bch_btree_map_keys(&s->op, s->iop.c, 576 &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0), 577 cache_lookup_fn, MAP_END_KEY); 578 if (ret == -EAGAIN) 579 continue_at(cl, cache_lookup, bcache_wq); 580 581 closure_return(cl); 582 } 583 584 /* Common code for the make_request functions */ 585 586 static void request_endio(struct bio *bio, int error) 587 { 588 struct closure *cl = bio->bi_private; 589 590 if (error) { 591 struct search *s = container_of(cl, struct search, cl); 592 s->iop.error = error; 593 /* Only cache read errors are recoverable */ 594 s->recoverable = false; 595 } 596 597 bio_put(bio); 598 closure_put(cl); 599 } 600 601 static void bio_complete(struct search *s) 602 { 603 if (s->orig_bio) { 604 generic_end_io_acct(bio_data_dir(s->orig_bio), 605 &s->d->disk->part0, s->start_time); 606 607 trace_bcache_request_end(s->d, s->orig_bio); 608 bio_endio(s->orig_bio, s->iop.error); 609 s->orig_bio = NULL; 610 } 611 } 612 613 static void do_bio_hook(struct search *s, struct bio *orig_bio) 614 { 615 struct bio *bio = &s->bio.bio; 616 617 bio_init(bio); 618 __bio_clone_fast(bio, orig_bio); 619 bio->bi_end_io = request_endio; 620 bio->bi_private = &s->cl; 621 622 atomic_set(&bio->bi_cnt, 3); 623 } 624 625 static void search_free(struct closure *cl) 626 { 627 struct search *s = container_of(cl, struct search, cl); 628 bio_complete(s); 629 630 if (s->iop.bio) 631 bio_put(s->iop.bio); 632 633 closure_debug_destroy(cl); 634 mempool_free(s, s->d->c->search); 635 } 636 637 static inline struct search *search_alloc(struct bio *bio, 638 struct bcache_device *d) 639 { 640 struct search *s; 641 642 s = mempool_alloc(d->c->search, GFP_NOIO); 643 644 closure_init(&s->cl, NULL); 645 do_bio_hook(s, bio); 646 647 s->orig_bio = bio; 648 s->cache_miss = NULL; 649 s->d = d; 650 s->recoverable = 1; 651 s->write = (bio->bi_rw & REQ_WRITE) != 0; 652 s->read_dirty_data = 0; 653 s->start_time = jiffies; 654 655 s->iop.c = d->c; 656 s->iop.bio = NULL; 657 s->iop.inode = d->id; 658 s->iop.write_point = hash_long((unsigned long) current, 16); 659 s->iop.write_prio = 0; 660 s->iop.error = 0; 661 s->iop.flags = 0; 662 s->iop.flush_journal = (bio->bi_rw & (REQ_FLUSH|REQ_FUA)) != 0; 663 s->iop.wq = bcache_wq; 664 665 return s; 666 } 667 668 /* Cached devices */ 669 670 static void cached_dev_bio_complete(struct closure *cl) 671 { 672 struct search *s = container_of(cl, struct search, cl); 673 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk); 674 675 search_free(cl); 676 cached_dev_put(dc); 677 } 678 679 /* Process reads */ 680 681 static void cached_dev_cache_miss_done(struct closure *cl) 682 { 683 struct search *s = container_of(cl, struct search, cl); 684 685 if (s->iop.replace_collision) 686 bch_mark_cache_miss_collision(s->iop.c, s->d); 687 688 if (s->iop.bio) { 689 int i; 690 struct bio_vec *bv; 691 692 bio_for_each_segment_all(bv, s->iop.bio, i) 693 __free_page(bv->bv_page); 694 } 695 696 cached_dev_bio_complete(cl); 697 } 698 699 static void cached_dev_read_error(struct closure *cl) 700 { 701 struct search *s = container_of(cl, struct search, cl); 702 struct bio *bio = &s->bio.bio; 703 704 if (s->recoverable) { 705 /* Retry from the backing device: */ 706 trace_bcache_read_retry(s->orig_bio); 707 708 s->iop.error = 0; 709 do_bio_hook(s, s->orig_bio); 710 711 /* XXX: invalidate cache */ 712 713 closure_bio_submit(bio, cl, s->d); 714 } 715 716 continue_at(cl, cached_dev_cache_miss_done, NULL); 717 } 718 719 static void cached_dev_read_done(struct closure *cl) 720 { 721 struct search *s = container_of(cl, struct search, cl); 722 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk); 723 724 /* 725 * We had a cache miss; cache_bio now contains data ready to be inserted 726 * into the cache. 727 * 728 * First, we copy the data we just read from cache_bio's bounce buffers 729 * to the buffers the original bio pointed to: 730 */ 731 732 if (s->iop.bio) { 733 bio_reset(s->iop.bio); 734 s->iop.bio->bi_iter.bi_sector = s->cache_miss->bi_iter.bi_sector; 735 s->iop.bio->bi_bdev = s->cache_miss->bi_bdev; 736 s->iop.bio->bi_iter.bi_size = s->insert_bio_sectors << 9; 737 bch_bio_map(s->iop.bio, NULL); 738 739 bio_copy_data(s->cache_miss, s->iop.bio); 740 741 bio_put(s->cache_miss); 742 s->cache_miss = NULL; 743 } 744 745 if (verify(dc, &s->bio.bio) && s->recoverable && !s->read_dirty_data) 746 bch_data_verify(dc, s->orig_bio); 747 748 bio_complete(s); 749 750 if (s->iop.bio && 751 !test_bit(CACHE_SET_STOPPING, &s->iop.c->flags)) { 752 BUG_ON(!s->iop.replace); 753 closure_call(&s->iop.cl, bch_data_insert, NULL, cl); 754 } 755 756 continue_at(cl, cached_dev_cache_miss_done, NULL); 757 } 758 759 static void cached_dev_read_done_bh(struct closure *cl) 760 { 761 struct search *s = container_of(cl, struct search, cl); 762 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk); 763 764 bch_mark_cache_accounting(s->iop.c, s->d, 765 !s->cache_miss, s->iop.bypass); 766 trace_bcache_read(s->orig_bio, !s->cache_miss, s->iop.bypass); 767 768 if (s->iop.error) 769 continue_at_nobarrier(cl, cached_dev_read_error, bcache_wq); 770 else if (s->iop.bio || verify(dc, &s->bio.bio)) 771 continue_at_nobarrier(cl, cached_dev_read_done, bcache_wq); 772 else 773 continue_at_nobarrier(cl, cached_dev_bio_complete, NULL); 774 } 775 776 static int cached_dev_cache_miss(struct btree *b, struct search *s, 777 struct bio *bio, unsigned sectors) 778 { 779 int ret = MAP_CONTINUE; 780 unsigned reada = 0; 781 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk); 782 struct bio *miss, *cache_bio; 783 784 if (s->cache_miss || s->iop.bypass) { 785 miss = bio_next_split(bio, sectors, GFP_NOIO, s->d->bio_split); 786 ret = miss == bio ? MAP_DONE : MAP_CONTINUE; 787 goto out_submit; 788 } 789 790 if (!(bio->bi_rw & REQ_RAHEAD) && 791 !(bio->bi_rw & REQ_META) && 792 s->iop.c->gc_stats.in_use < CUTOFF_CACHE_READA) 793 reada = min_t(sector_t, dc->readahead >> 9, 794 bdev_sectors(bio->bi_bdev) - bio_end_sector(bio)); 795 796 s->insert_bio_sectors = min(sectors, bio_sectors(bio) + reada); 797 798 s->iop.replace_key = KEY(s->iop.inode, 799 bio->bi_iter.bi_sector + s->insert_bio_sectors, 800 s->insert_bio_sectors); 801 802 ret = bch_btree_insert_check_key(b, &s->op, &s->iop.replace_key); 803 if (ret) 804 return ret; 805 806 s->iop.replace = true; 807 808 miss = bio_next_split(bio, sectors, GFP_NOIO, s->d->bio_split); 809 810 /* btree_search_recurse()'s btree iterator is no good anymore */ 811 ret = miss == bio ? MAP_DONE : -EINTR; 812 813 cache_bio = bio_alloc_bioset(GFP_NOWAIT, 814 DIV_ROUND_UP(s->insert_bio_sectors, PAGE_SECTORS), 815 dc->disk.bio_split); 816 if (!cache_bio) 817 goto out_submit; 818 819 cache_bio->bi_iter.bi_sector = miss->bi_iter.bi_sector; 820 cache_bio->bi_bdev = miss->bi_bdev; 821 cache_bio->bi_iter.bi_size = s->insert_bio_sectors << 9; 822 823 cache_bio->bi_end_io = request_endio; 824 cache_bio->bi_private = &s->cl; 825 826 bch_bio_map(cache_bio, NULL); 827 if (bio_alloc_pages(cache_bio, __GFP_NOWARN|GFP_NOIO)) 828 goto out_put; 829 830 if (reada) 831 bch_mark_cache_readahead(s->iop.c, s->d); 832 833 s->cache_miss = miss; 834 s->iop.bio = cache_bio; 835 bio_get(cache_bio); 836 closure_bio_submit(cache_bio, &s->cl, s->d); 837 838 return ret; 839 out_put: 840 bio_put(cache_bio); 841 out_submit: 842 miss->bi_end_io = request_endio; 843 miss->bi_private = &s->cl; 844 closure_bio_submit(miss, &s->cl, s->d); 845 return ret; 846 } 847 848 static void cached_dev_read(struct cached_dev *dc, struct search *s) 849 { 850 struct closure *cl = &s->cl; 851 852 closure_call(&s->iop.cl, cache_lookup, NULL, cl); 853 continue_at(cl, cached_dev_read_done_bh, NULL); 854 } 855 856 /* Process writes */ 857 858 static void cached_dev_write_complete(struct closure *cl) 859 { 860 struct search *s = container_of(cl, struct search, cl); 861 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk); 862 863 up_read_non_owner(&dc->writeback_lock); 864 cached_dev_bio_complete(cl); 865 } 866 867 static void cached_dev_write(struct cached_dev *dc, struct search *s) 868 { 869 struct closure *cl = &s->cl; 870 struct bio *bio = &s->bio.bio; 871 struct bkey start = KEY(dc->disk.id, bio->bi_iter.bi_sector, 0); 872 struct bkey end = KEY(dc->disk.id, bio_end_sector(bio), 0); 873 874 bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys, &start, &end); 875 876 down_read_non_owner(&dc->writeback_lock); 877 if (bch_keybuf_check_overlapping(&dc->writeback_keys, &start, &end)) { 878 /* 879 * We overlap with some dirty data undergoing background 880 * writeback, force this write to writeback 881 */ 882 s->iop.bypass = false; 883 s->iop.writeback = true; 884 } 885 886 /* 887 * Discards aren't _required_ to do anything, so skipping if 888 * check_overlapping returned true is ok 889 * 890 * But check_overlapping drops dirty keys for which io hasn't started, 891 * so we still want to call it. 892 */ 893 if (bio->bi_rw & REQ_DISCARD) 894 s->iop.bypass = true; 895 896 if (should_writeback(dc, s->orig_bio, 897 cache_mode(dc, bio), 898 s->iop.bypass)) { 899 s->iop.bypass = false; 900 s->iop.writeback = true; 901 } 902 903 if (s->iop.bypass) { 904 s->iop.bio = s->orig_bio; 905 bio_get(s->iop.bio); 906 907 if (!(bio->bi_rw & REQ_DISCARD) || 908 blk_queue_discard(bdev_get_queue(dc->bdev))) 909 closure_bio_submit(bio, cl, s->d); 910 } else if (s->iop.writeback) { 911 bch_writeback_add(dc); 912 s->iop.bio = bio; 913 914 if (bio->bi_rw & REQ_FLUSH) { 915 /* Also need to send a flush to the backing device */ 916 struct bio *flush = bio_alloc_bioset(GFP_NOIO, 0, 917 dc->disk.bio_split); 918 919 flush->bi_rw = WRITE_FLUSH; 920 flush->bi_bdev = bio->bi_bdev; 921 flush->bi_end_io = request_endio; 922 flush->bi_private = cl; 923 924 closure_bio_submit(flush, cl, s->d); 925 } 926 } else { 927 s->iop.bio = bio_clone_fast(bio, GFP_NOIO, dc->disk.bio_split); 928 929 closure_bio_submit(bio, cl, s->d); 930 } 931 932 closure_call(&s->iop.cl, bch_data_insert, NULL, cl); 933 continue_at(cl, cached_dev_write_complete, NULL); 934 } 935 936 static void cached_dev_nodata(struct closure *cl) 937 { 938 struct search *s = container_of(cl, struct search, cl); 939 struct bio *bio = &s->bio.bio; 940 941 if (s->iop.flush_journal) 942 bch_journal_meta(s->iop.c, cl); 943 944 /* If it's a flush, we send the flush to the backing device too */ 945 closure_bio_submit(bio, cl, s->d); 946 947 continue_at(cl, cached_dev_bio_complete, NULL); 948 } 949 950 /* Cached devices - read & write stuff */ 951 952 static void cached_dev_make_request(struct request_queue *q, struct bio *bio) 953 { 954 struct search *s; 955 struct bcache_device *d = bio->bi_bdev->bd_disk->private_data; 956 struct cached_dev *dc = container_of(d, struct cached_dev, disk); 957 int rw = bio_data_dir(bio); 958 959 generic_start_io_acct(rw, bio_sectors(bio), &d->disk->part0); 960 961 bio->bi_bdev = dc->bdev; 962 bio->bi_iter.bi_sector += dc->sb.data_offset; 963 964 if (cached_dev_get(dc)) { 965 s = search_alloc(bio, d); 966 trace_bcache_request_start(s->d, bio); 967 968 if (!bio->bi_iter.bi_size) { 969 /* 970 * can't call bch_journal_meta from under 971 * generic_make_request 972 */ 973 continue_at_nobarrier(&s->cl, 974 cached_dev_nodata, 975 bcache_wq); 976 } else { 977 s->iop.bypass = check_should_bypass(dc, bio); 978 979 if (rw) 980 cached_dev_write(dc, s); 981 else 982 cached_dev_read(dc, s); 983 } 984 } else { 985 if ((bio->bi_rw & REQ_DISCARD) && 986 !blk_queue_discard(bdev_get_queue(dc->bdev))) 987 bio_endio(bio, 0); 988 else 989 bch_generic_make_request(bio, &d->bio_split_hook); 990 } 991 } 992 993 static int cached_dev_ioctl(struct bcache_device *d, fmode_t mode, 994 unsigned int cmd, unsigned long arg) 995 { 996 struct cached_dev *dc = container_of(d, struct cached_dev, disk); 997 return __blkdev_driver_ioctl(dc->bdev, mode, cmd, arg); 998 } 999 1000 static int cached_dev_congested(void *data, int bits) 1001 { 1002 struct bcache_device *d = data; 1003 struct cached_dev *dc = container_of(d, struct cached_dev, disk); 1004 struct request_queue *q = bdev_get_queue(dc->bdev); 1005 int ret = 0; 1006 1007 if (bdi_congested(&q->backing_dev_info, bits)) 1008 return 1; 1009 1010 if (cached_dev_get(dc)) { 1011 unsigned i; 1012 struct cache *ca; 1013 1014 for_each_cache(ca, d->c, i) { 1015 q = bdev_get_queue(ca->bdev); 1016 ret |= bdi_congested(&q->backing_dev_info, bits); 1017 } 1018 1019 cached_dev_put(dc); 1020 } 1021 1022 return ret; 1023 } 1024 1025 void bch_cached_dev_request_init(struct cached_dev *dc) 1026 { 1027 struct gendisk *g = dc->disk.disk; 1028 1029 g->queue->make_request_fn = cached_dev_make_request; 1030 g->queue->backing_dev_info.congested_fn = cached_dev_congested; 1031 dc->disk.cache_miss = cached_dev_cache_miss; 1032 dc->disk.ioctl = cached_dev_ioctl; 1033 } 1034 1035 /* Flash backed devices */ 1036 1037 static int flash_dev_cache_miss(struct btree *b, struct search *s, 1038 struct bio *bio, unsigned sectors) 1039 { 1040 unsigned bytes = min(sectors, bio_sectors(bio)) << 9; 1041 1042 swap(bio->bi_iter.bi_size, bytes); 1043 zero_fill_bio(bio); 1044 swap(bio->bi_iter.bi_size, bytes); 1045 1046 bio_advance(bio, bytes); 1047 1048 if (!bio->bi_iter.bi_size) 1049 return MAP_DONE; 1050 1051 return MAP_CONTINUE; 1052 } 1053 1054 static void flash_dev_nodata(struct closure *cl) 1055 { 1056 struct search *s = container_of(cl, struct search, cl); 1057 1058 if (s->iop.flush_journal) 1059 bch_journal_meta(s->iop.c, cl); 1060 1061 continue_at(cl, search_free, NULL); 1062 } 1063 1064 static void flash_dev_make_request(struct request_queue *q, struct bio *bio) 1065 { 1066 struct search *s; 1067 struct closure *cl; 1068 struct bcache_device *d = bio->bi_bdev->bd_disk->private_data; 1069 int rw = bio_data_dir(bio); 1070 1071 generic_start_io_acct(rw, bio_sectors(bio), &d->disk->part0); 1072 1073 s = search_alloc(bio, d); 1074 cl = &s->cl; 1075 bio = &s->bio.bio; 1076 1077 trace_bcache_request_start(s->d, bio); 1078 1079 if (!bio->bi_iter.bi_size) { 1080 /* 1081 * can't call bch_journal_meta from under 1082 * generic_make_request 1083 */ 1084 continue_at_nobarrier(&s->cl, 1085 flash_dev_nodata, 1086 bcache_wq); 1087 } else if (rw) { 1088 bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys, 1089 &KEY(d->id, bio->bi_iter.bi_sector, 0), 1090 &KEY(d->id, bio_end_sector(bio), 0)); 1091 1092 s->iop.bypass = (bio->bi_rw & REQ_DISCARD) != 0; 1093 s->iop.writeback = true; 1094 s->iop.bio = bio; 1095 1096 closure_call(&s->iop.cl, bch_data_insert, NULL, cl); 1097 } else { 1098 closure_call(&s->iop.cl, cache_lookup, NULL, cl); 1099 } 1100 1101 continue_at(cl, search_free, NULL); 1102 } 1103 1104 static int flash_dev_ioctl(struct bcache_device *d, fmode_t mode, 1105 unsigned int cmd, unsigned long arg) 1106 { 1107 return -ENOTTY; 1108 } 1109 1110 static int flash_dev_congested(void *data, int bits) 1111 { 1112 struct bcache_device *d = data; 1113 struct request_queue *q; 1114 struct cache *ca; 1115 unsigned i; 1116 int ret = 0; 1117 1118 for_each_cache(ca, d->c, i) { 1119 q = bdev_get_queue(ca->bdev); 1120 ret |= bdi_congested(&q->backing_dev_info, bits); 1121 } 1122 1123 return ret; 1124 } 1125 1126 void bch_flash_dev_request_init(struct bcache_device *d) 1127 { 1128 struct gendisk *g = d->disk; 1129 1130 g->queue->make_request_fn = flash_dev_make_request; 1131 g->queue->backing_dev_info.congested_fn = flash_dev_congested; 1132 d->cache_miss = flash_dev_cache_miss; 1133 d->ioctl = flash_dev_ioctl; 1134 } 1135 1136 void bch_request_exit(void) 1137 { 1138 if (bch_search_cache) 1139 kmem_cache_destroy(bch_search_cache); 1140 } 1141 1142 int __init bch_request_init(void) 1143 { 1144 bch_search_cache = KMEM_CACHE(search, 0); 1145 if (!bch_search_cache) 1146 return -ENOMEM; 1147 1148 return 0; 1149 } 1150