xref: /openbmc/linux/drivers/md/bcache/request.c (revision 2f0f2441b4a10948e2ec042b48fef13680387f7c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Main bcache entry point - handle a read or a write request and decide what to
4  * do with it; the make_request functions are called by the block layer.
5  *
6  * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
7  * Copyright 2012 Google, Inc.
8  */
9 
10 #include "bcache.h"
11 #include "btree.h"
12 #include "debug.h"
13 #include "request.h"
14 #include "writeback.h"
15 
16 #include <linux/module.h>
17 #include <linux/hash.h>
18 #include <linux/random.h>
19 #include <linux/backing-dev.h>
20 
21 #include <trace/events/bcache.h>
22 
23 #define CUTOFF_CACHE_ADD	95
24 #define CUTOFF_CACHE_READA	90
25 
26 struct kmem_cache *bch_search_cache;
27 
28 static void bch_data_insert_start(struct closure *cl);
29 
30 static unsigned int cache_mode(struct cached_dev *dc)
31 {
32 	return BDEV_CACHE_MODE(&dc->sb);
33 }
34 
35 static bool verify(struct cached_dev *dc)
36 {
37 	return dc->verify;
38 }
39 
40 static void bio_csum(struct bio *bio, struct bkey *k)
41 {
42 	struct bio_vec bv;
43 	struct bvec_iter iter;
44 	uint64_t csum = 0;
45 
46 	bio_for_each_segment(bv, bio, iter) {
47 		void *d = kmap(bv.bv_page) + bv.bv_offset;
48 
49 		csum = bch_crc64_update(csum, d, bv.bv_len);
50 		kunmap(bv.bv_page);
51 	}
52 
53 	k->ptr[KEY_PTRS(k)] = csum & (~0ULL >> 1);
54 }
55 
56 /* Insert data into cache */
57 
58 static void bch_data_insert_keys(struct closure *cl)
59 {
60 	struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
61 	atomic_t *journal_ref = NULL;
62 	struct bkey *replace_key = op->replace ? &op->replace_key : NULL;
63 	int ret;
64 
65 	/*
66 	 * If we're looping, might already be waiting on
67 	 * another journal write - can't wait on more than one journal write at
68 	 * a time
69 	 *
70 	 * XXX: this looks wrong
71 	 */
72 #if 0
73 	while (atomic_read(&s->cl.remaining) & CLOSURE_WAITING)
74 		closure_sync(&s->cl);
75 #endif
76 
77 	if (!op->replace)
78 		journal_ref = bch_journal(op->c, &op->insert_keys,
79 					  op->flush_journal ? cl : NULL);
80 
81 	ret = bch_btree_insert(op->c, &op->insert_keys,
82 			       journal_ref, replace_key);
83 	if (ret == -ESRCH) {
84 		op->replace_collision = true;
85 	} else if (ret) {
86 		op->status		= BLK_STS_RESOURCE;
87 		op->insert_data_done	= true;
88 	}
89 
90 	if (journal_ref)
91 		atomic_dec_bug(journal_ref);
92 
93 	if (!op->insert_data_done) {
94 		continue_at(cl, bch_data_insert_start, op->wq);
95 		return;
96 	}
97 
98 	bch_keylist_free(&op->insert_keys);
99 	closure_return(cl);
100 }
101 
102 static int bch_keylist_realloc(struct keylist *l, unsigned int u64s,
103 			       struct cache_set *c)
104 {
105 	size_t oldsize = bch_keylist_nkeys(l);
106 	size_t newsize = oldsize + u64s;
107 
108 	/*
109 	 * The journalling code doesn't handle the case where the keys to insert
110 	 * is bigger than an empty write: If we just return -ENOMEM here,
111 	 * bch_data_insert_keys() will insert the keys created so far
112 	 * and finish the rest when the keylist is empty.
113 	 */
114 	if (newsize * sizeof(uint64_t) > block_bytes(c) - sizeof(struct jset))
115 		return -ENOMEM;
116 
117 	return __bch_keylist_realloc(l, u64s);
118 }
119 
120 static void bch_data_invalidate(struct closure *cl)
121 {
122 	struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
123 	struct bio *bio = op->bio;
124 
125 	pr_debug("invalidating %i sectors from %llu",
126 		 bio_sectors(bio), (uint64_t) bio->bi_iter.bi_sector);
127 
128 	while (bio_sectors(bio)) {
129 		unsigned int sectors = min(bio_sectors(bio),
130 				       1U << (KEY_SIZE_BITS - 1));
131 
132 		if (bch_keylist_realloc(&op->insert_keys, 2, op->c))
133 			goto out;
134 
135 		bio->bi_iter.bi_sector	+= sectors;
136 		bio->bi_iter.bi_size	-= sectors << 9;
137 
138 		bch_keylist_add(&op->insert_keys,
139 				&KEY(op->inode,
140 				     bio->bi_iter.bi_sector,
141 				     sectors));
142 	}
143 
144 	op->insert_data_done = true;
145 	/* get in bch_data_insert() */
146 	bio_put(bio);
147 out:
148 	continue_at(cl, bch_data_insert_keys, op->wq);
149 }
150 
151 static void bch_data_insert_error(struct closure *cl)
152 {
153 	struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
154 
155 	/*
156 	 * Our data write just errored, which means we've got a bunch of keys to
157 	 * insert that point to data that wasn't successfully written.
158 	 *
159 	 * We don't have to insert those keys but we still have to invalidate
160 	 * that region of the cache - so, if we just strip off all the pointers
161 	 * from the keys we'll accomplish just that.
162 	 */
163 
164 	struct bkey *src = op->insert_keys.keys, *dst = op->insert_keys.keys;
165 
166 	while (src != op->insert_keys.top) {
167 		struct bkey *n = bkey_next(src);
168 
169 		SET_KEY_PTRS(src, 0);
170 		memmove(dst, src, bkey_bytes(src));
171 
172 		dst = bkey_next(dst);
173 		src = n;
174 	}
175 
176 	op->insert_keys.top = dst;
177 
178 	bch_data_insert_keys(cl);
179 }
180 
181 static void bch_data_insert_endio(struct bio *bio)
182 {
183 	struct closure *cl = bio->bi_private;
184 	struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
185 
186 	if (bio->bi_status) {
187 		/* TODO: We could try to recover from this. */
188 		if (op->writeback)
189 			op->status = bio->bi_status;
190 		else if (!op->replace)
191 			set_closure_fn(cl, bch_data_insert_error, op->wq);
192 		else
193 			set_closure_fn(cl, NULL, NULL);
194 	}
195 
196 	bch_bbio_endio(op->c, bio, bio->bi_status, "writing data to cache");
197 }
198 
199 static void bch_data_insert_start(struct closure *cl)
200 {
201 	struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
202 	struct bio *bio = op->bio, *n;
203 
204 	if (op->bypass)
205 		return bch_data_invalidate(cl);
206 
207 	if (atomic_sub_return(bio_sectors(bio), &op->c->sectors_to_gc) < 0)
208 		wake_up_gc(op->c);
209 
210 	/*
211 	 * Journal writes are marked REQ_PREFLUSH; if the original write was a
212 	 * flush, it'll wait on the journal write.
213 	 */
214 	bio->bi_opf &= ~(REQ_PREFLUSH|REQ_FUA);
215 
216 	do {
217 		unsigned int i;
218 		struct bkey *k;
219 		struct bio_set *split = &op->c->bio_split;
220 
221 		/* 1 for the device pointer and 1 for the chksum */
222 		if (bch_keylist_realloc(&op->insert_keys,
223 					3 + (op->csum ? 1 : 0),
224 					op->c)) {
225 			continue_at(cl, bch_data_insert_keys, op->wq);
226 			return;
227 		}
228 
229 		k = op->insert_keys.top;
230 		bkey_init(k);
231 		SET_KEY_INODE(k, op->inode);
232 		SET_KEY_OFFSET(k, bio->bi_iter.bi_sector);
233 
234 		if (!bch_alloc_sectors(op->c, k, bio_sectors(bio),
235 				       op->write_point, op->write_prio,
236 				       op->writeback))
237 			goto err;
238 
239 		n = bio_next_split(bio, KEY_SIZE(k), GFP_NOIO, split);
240 
241 		n->bi_end_io	= bch_data_insert_endio;
242 		n->bi_private	= cl;
243 
244 		if (op->writeback) {
245 			SET_KEY_DIRTY(k, true);
246 
247 			for (i = 0; i < KEY_PTRS(k); i++)
248 				SET_GC_MARK(PTR_BUCKET(op->c, k, i),
249 					    GC_MARK_DIRTY);
250 		}
251 
252 		SET_KEY_CSUM(k, op->csum);
253 		if (KEY_CSUM(k))
254 			bio_csum(n, k);
255 
256 		trace_bcache_cache_insert(k);
257 		bch_keylist_push(&op->insert_keys);
258 
259 		bio_set_op_attrs(n, REQ_OP_WRITE, 0);
260 		bch_submit_bbio(n, op->c, k, 0);
261 	} while (n != bio);
262 
263 	op->insert_data_done = true;
264 	continue_at(cl, bch_data_insert_keys, op->wq);
265 	return;
266 err:
267 	/* bch_alloc_sectors() blocks if s->writeback = true */
268 	BUG_ON(op->writeback);
269 
270 	/*
271 	 * But if it's not a writeback write we'd rather just bail out if
272 	 * there aren't any buckets ready to write to - it might take awhile and
273 	 * we might be starving btree writes for gc or something.
274 	 */
275 
276 	if (!op->replace) {
277 		/*
278 		 * Writethrough write: We can't complete the write until we've
279 		 * updated the index. But we don't want to delay the write while
280 		 * we wait for buckets to be freed up, so just invalidate the
281 		 * rest of the write.
282 		 */
283 		op->bypass = true;
284 		return bch_data_invalidate(cl);
285 	} else {
286 		/*
287 		 * From a cache miss, we can just insert the keys for the data
288 		 * we have written or bail out if we didn't do anything.
289 		 */
290 		op->insert_data_done = true;
291 		bio_put(bio);
292 
293 		if (!bch_keylist_empty(&op->insert_keys))
294 			continue_at(cl, bch_data_insert_keys, op->wq);
295 		else
296 			closure_return(cl);
297 	}
298 }
299 
300 /**
301  * bch_data_insert - stick some data in the cache
302  * @cl: closure pointer.
303  *
304  * This is the starting point for any data to end up in a cache device; it could
305  * be from a normal write, or a writeback write, or a write to a flash only
306  * volume - it's also used by the moving garbage collector to compact data in
307  * mostly empty buckets.
308  *
309  * It first writes the data to the cache, creating a list of keys to be inserted
310  * (if the data had to be fragmented there will be multiple keys); after the
311  * data is written it calls bch_journal, and after the keys have been added to
312  * the next journal write they're inserted into the btree.
313  *
314  * It inserts the data in op->bio; bi_sector is used for the key offset,
315  * and op->inode is used for the key inode.
316  *
317  * If op->bypass is true, instead of inserting the data it invalidates the
318  * region of the cache represented by op->bio and op->inode.
319  */
320 void bch_data_insert(struct closure *cl)
321 {
322 	struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
323 
324 	trace_bcache_write(op->c, op->inode, op->bio,
325 			   op->writeback, op->bypass);
326 
327 	bch_keylist_init(&op->insert_keys);
328 	bio_get(op->bio);
329 	bch_data_insert_start(cl);
330 }
331 
332 /*
333  * Congested?  Return 0 (not congested) or the limit (in sectors)
334  * beyond which we should bypass the cache due to congestion.
335  */
336 unsigned int bch_get_congested(const struct cache_set *c)
337 {
338 	int i;
339 
340 	if (!c->congested_read_threshold_us &&
341 	    !c->congested_write_threshold_us)
342 		return 0;
343 
344 	i = (local_clock_us() - c->congested_last_us) / 1024;
345 	if (i < 0)
346 		return 0;
347 
348 	i += atomic_read(&c->congested);
349 	if (i >= 0)
350 		return 0;
351 
352 	i += CONGESTED_MAX;
353 
354 	if (i > 0)
355 		i = fract_exp_two(i, 6);
356 
357 	i -= hweight32(get_random_u32());
358 
359 	return i > 0 ? i : 1;
360 }
361 
362 static void add_sequential(struct task_struct *t)
363 {
364 	ewma_add(t->sequential_io_avg,
365 		 t->sequential_io, 8, 0);
366 
367 	t->sequential_io = 0;
368 }
369 
370 static struct hlist_head *iohash(struct cached_dev *dc, uint64_t k)
371 {
372 	return &dc->io_hash[hash_64(k, RECENT_IO_BITS)];
373 }
374 
375 static bool check_should_bypass(struct cached_dev *dc, struct bio *bio)
376 {
377 	struct cache_set *c = dc->disk.c;
378 	unsigned int mode = cache_mode(dc);
379 	unsigned int sectors, congested;
380 	struct task_struct *task = current;
381 	struct io *i;
382 
383 	if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) ||
384 	    c->gc_stats.in_use > CUTOFF_CACHE_ADD ||
385 	    (bio_op(bio) == REQ_OP_DISCARD))
386 		goto skip;
387 
388 	if (mode == CACHE_MODE_NONE ||
389 	    (mode == CACHE_MODE_WRITEAROUND &&
390 	     op_is_write(bio_op(bio))))
391 		goto skip;
392 
393 	/*
394 	 * Flag for bypass if the IO is for read-ahead or background,
395 	 * unless the read-ahead request is for metadata
396 	 * (eg, for gfs2 or xfs).
397 	 */
398 	if (bio->bi_opf & (REQ_RAHEAD|REQ_BACKGROUND) &&
399 	    !(bio->bi_opf & (REQ_META|REQ_PRIO)))
400 		goto skip;
401 
402 	if (bio->bi_iter.bi_sector & (c->sb.block_size - 1) ||
403 	    bio_sectors(bio) & (c->sb.block_size - 1)) {
404 		pr_debug("skipping unaligned io");
405 		goto skip;
406 	}
407 
408 	if (bypass_torture_test(dc)) {
409 		if ((get_random_int() & 3) == 3)
410 			goto skip;
411 		else
412 			goto rescale;
413 	}
414 
415 	congested = bch_get_congested(c);
416 	if (!congested && !dc->sequential_cutoff)
417 		goto rescale;
418 
419 	spin_lock(&dc->io_lock);
420 
421 	hlist_for_each_entry(i, iohash(dc, bio->bi_iter.bi_sector), hash)
422 		if (i->last == bio->bi_iter.bi_sector &&
423 		    time_before(jiffies, i->jiffies))
424 			goto found;
425 
426 	i = list_first_entry(&dc->io_lru, struct io, lru);
427 
428 	add_sequential(task);
429 	i->sequential = 0;
430 found:
431 	if (i->sequential + bio->bi_iter.bi_size > i->sequential)
432 		i->sequential	+= bio->bi_iter.bi_size;
433 
434 	i->last			 = bio_end_sector(bio);
435 	i->jiffies		 = jiffies + msecs_to_jiffies(5000);
436 	task->sequential_io	 = i->sequential;
437 
438 	hlist_del(&i->hash);
439 	hlist_add_head(&i->hash, iohash(dc, i->last));
440 	list_move_tail(&i->lru, &dc->io_lru);
441 
442 	spin_unlock(&dc->io_lock);
443 
444 	sectors = max(task->sequential_io,
445 		      task->sequential_io_avg) >> 9;
446 
447 	if (dc->sequential_cutoff &&
448 	    sectors >= dc->sequential_cutoff >> 9) {
449 		trace_bcache_bypass_sequential(bio);
450 		goto skip;
451 	}
452 
453 	if (congested && sectors >= congested) {
454 		trace_bcache_bypass_congested(bio);
455 		goto skip;
456 	}
457 
458 rescale:
459 	bch_rescale_priorities(c, bio_sectors(bio));
460 	return false;
461 skip:
462 	bch_mark_sectors_bypassed(c, dc, bio_sectors(bio));
463 	return true;
464 }
465 
466 /* Cache lookup */
467 
468 struct search {
469 	/* Stack frame for bio_complete */
470 	struct closure		cl;
471 
472 	struct bbio		bio;
473 	struct bio		*orig_bio;
474 	struct bio		*cache_miss;
475 	struct bcache_device	*d;
476 
477 	unsigned int		insert_bio_sectors;
478 	unsigned int		recoverable:1;
479 	unsigned int		write:1;
480 	unsigned int		read_dirty_data:1;
481 	unsigned int		cache_missed:1;
482 
483 	unsigned long		start_time;
484 
485 	struct btree_op		op;
486 	struct data_insert_op	iop;
487 };
488 
489 static void bch_cache_read_endio(struct bio *bio)
490 {
491 	struct bbio *b = container_of(bio, struct bbio, bio);
492 	struct closure *cl = bio->bi_private;
493 	struct search *s = container_of(cl, struct search, cl);
494 
495 	/*
496 	 * If the bucket was reused while our bio was in flight, we might have
497 	 * read the wrong data. Set s->error but not error so it doesn't get
498 	 * counted against the cache device, but we'll still reread the data
499 	 * from the backing device.
500 	 */
501 
502 	if (bio->bi_status)
503 		s->iop.status = bio->bi_status;
504 	else if (!KEY_DIRTY(&b->key) &&
505 		 ptr_stale(s->iop.c, &b->key, 0)) {
506 		atomic_long_inc(&s->iop.c->cache_read_races);
507 		s->iop.status = BLK_STS_IOERR;
508 	}
509 
510 	bch_bbio_endio(s->iop.c, bio, bio->bi_status, "reading from cache");
511 }
512 
513 /*
514  * Read from a single key, handling the initial cache miss if the key starts in
515  * the middle of the bio
516  */
517 static int cache_lookup_fn(struct btree_op *op, struct btree *b, struct bkey *k)
518 {
519 	struct search *s = container_of(op, struct search, op);
520 	struct bio *n, *bio = &s->bio.bio;
521 	struct bkey *bio_key;
522 	unsigned int ptr;
523 
524 	if (bkey_cmp(k, &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0)) <= 0)
525 		return MAP_CONTINUE;
526 
527 	if (KEY_INODE(k) != s->iop.inode ||
528 	    KEY_START(k) > bio->bi_iter.bi_sector) {
529 		unsigned int bio_sectors = bio_sectors(bio);
530 		unsigned int sectors = KEY_INODE(k) == s->iop.inode
531 			? min_t(uint64_t, INT_MAX,
532 				KEY_START(k) - bio->bi_iter.bi_sector)
533 			: INT_MAX;
534 		int ret = s->d->cache_miss(b, s, bio, sectors);
535 
536 		if (ret != MAP_CONTINUE)
537 			return ret;
538 
539 		/* if this was a complete miss we shouldn't get here */
540 		BUG_ON(bio_sectors <= sectors);
541 	}
542 
543 	if (!KEY_SIZE(k))
544 		return MAP_CONTINUE;
545 
546 	/* XXX: figure out best pointer - for multiple cache devices */
547 	ptr = 0;
548 
549 	PTR_BUCKET(b->c, k, ptr)->prio = INITIAL_PRIO;
550 
551 	if (KEY_DIRTY(k))
552 		s->read_dirty_data = true;
553 
554 	n = bio_next_split(bio, min_t(uint64_t, INT_MAX,
555 				      KEY_OFFSET(k) - bio->bi_iter.bi_sector),
556 			   GFP_NOIO, &s->d->bio_split);
557 
558 	bio_key = &container_of(n, struct bbio, bio)->key;
559 	bch_bkey_copy_single_ptr(bio_key, k, ptr);
560 
561 	bch_cut_front(&KEY(s->iop.inode, n->bi_iter.bi_sector, 0), bio_key);
562 	bch_cut_back(&KEY(s->iop.inode, bio_end_sector(n), 0), bio_key);
563 
564 	n->bi_end_io	= bch_cache_read_endio;
565 	n->bi_private	= &s->cl;
566 
567 	/*
568 	 * The bucket we're reading from might be reused while our bio
569 	 * is in flight, and we could then end up reading the wrong
570 	 * data.
571 	 *
572 	 * We guard against this by checking (in cache_read_endio()) if
573 	 * the pointer is stale again; if so, we treat it as an error
574 	 * and reread from the backing device (but we don't pass that
575 	 * error up anywhere).
576 	 */
577 
578 	__bch_submit_bbio(n, b->c);
579 	return n == bio ? MAP_DONE : MAP_CONTINUE;
580 }
581 
582 static void cache_lookup(struct closure *cl)
583 {
584 	struct search *s = container_of(cl, struct search, iop.cl);
585 	struct bio *bio = &s->bio.bio;
586 	struct cached_dev *dc;
587 	int ret;
588 
589 	bch_btree_op_init(&s->op, -1);
590 
591 	ret = bch_btree_map_keys(&s->op, s->iop.c,
592 				 &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0),
593 				 cache_lookup_fn, MAP_END_KEY);
594 	if (ret == -EAGAIN) {
595 		continue_at(cl, cache_lookup, bcache_wq);
596 		return;
597 	}
598 
599 	/*
600 	 * We might meet err when searching the btree, If that happens, we will
601 	 * get negative ret, in this scenario we should not recover data from
602 	 * backing device (when cache device is dirty) because we don't know
603 	 * whether bkeys the read request covered are all clean.
604 	 *
605 	 * And after that happened, s->iop.status is still its initial value
606 	 * before we submit s->bio.bio
607 	 */
608 	if (ret < 0) {
609 		BUG_ON(ret == -EINTR);
610 		if (s->d && s->d->c &&
611 				!UUID_FLASH_ONLY(&s->d->c->uuids[s->d->id])) {
612 			dc = container_of(s->d, struct cached_dev, disk);
613 			if (dc && atomic_read(&dc->has_dirty))
614 				s->recoverable = false;
615 		}
616 		if (!s->iop.status)
617 			s->iop.status = BLK_STS_IOERR;
618 	}
619 
620 	closure_return(cl);
621 }
622 
623 /* Common code for the make_request functions */
624 
625 static void request_endio(struct bio *bio)
626 {
627 	struct closure *cl = bio->bi_private;
628 
629 	if (bio->bi_status) {
630 		struct search *s = container_of(cl, struct search, cl);
631 
632 		s->iop.status = bio->bi_status;
633 		/* Only cache read errors are recoverable */
634 		s->recoverable = false;
635 	}
636 
637 	bio_put(bio);
638 	closure_put(cl);
639 }
640 
641 static void backing_request_endio(struct bio *bio)
642 {
643 	struct closure *cl = bio->bi_private;
644 
645 	if (bio->bi_status) {
646 		struct search *s = container_of(cl, struct search, cl);
647 		struct cached_dev *dc = container_of(s->d,
648 						     struct cached_dev, disk);
649 		/*
650 		 * If a bio has REQ_PREFLUSH for writeback mode, it is
651 		 * speically assembled in cached_dev_write() for a non-zero
652 		 * write request which has REQ_PREFLUSH. we don't set
653 		 * s->iop.status by this failure, the status will be decided
654 		 * by result of bch_data_insert() operation.
655 		 */
656 		if (unlikely(s->iop.writeback &&
657 			     bio->bi_opf & REQ_PREFLUSH)) {
658 			pr_err("Can't flush %s: returned bi_status %i",
659 				dc->backing_dev_name, bio->bi_status);
660 		} else {
661 			/* set to orig_bio->bi_status in bio_complete() */
662 			s->iop.status = bio->bi_status;
663 		}
664 		s->recoverable = false;
665 		/* should count I/O error for backing device here */
666 		bch_count_backing_io_errors(dc, bio);
667 	}
668 
669 	bio_put(bio);
670 	closure_put(cl);
671 }
672 
673 static void bio_complete(struct search *s)
674 {
675 	if (s->orig_bio) {
676 		generic_end_io_acct(s->d->disk->queue, bio_op(s->orig_bio),
677 				    &s->d->disk->part0, s->start_time);
678 
679 		trace_bcache_request_end(s->d, s->orig_bio);
680 		s->orig_bio->bi_status = s->iop.status;
681 		bio_endio(s->orig_bio);
682 		s->orig_bio = NULL;
683 	}
684 }
685 
686 static void do_bio_hook(struct search *s,
687 			struct bio *orig_bio,
688 			bio_end_io_t *end_io_fn)
689 {
690 	struct bio *bio = &s->bio.bio;
691 
692 	bio_init(bio, NULL, 0);
693 	__bio_clone_fast(bio, orig_bio);
694 	/*
695 	 * bi_end_io can be set separately somewhere else, e.g. the
696 	 * variants in,
697 	 * - cache_bio->bi_end_io from cached_dev_cache_miss()
698 	 * - n->bi_end_io from cache_lookup_fn()
699 	 */
700 	bio->bi_end_io		= end_io_fn;
701 	bio->bi_private		= &s->cl;
702 
703 	bio_cnt_set(bio, 3);
704 }
705 
706 static void search_free(struct closure *cl)
707 {
708 	struct search *s = container_of(cl, struct search, cl);
709 
710 	atomic_dec(&s->iop.c->search_inflight);
711 
712 	if (s->iop.bio)
713 		bio_put(s->iop.bio);
714 
715 	bio_complete(s);
716 	closure_debug_destroy(cl);
717 	mempool_free(s, &s->iop.c->search);
718 }
719 
720 static inline struct search *search_alloc(struct bio *bio,
721 					  struct bcache_device *d)
722 {
723 	struct search *s;
724 
725 	s = mempool_alloc(&d->c->search, GFP_NOIO);
726 
727 	closure_init(&s->cl, NULL);
728 	do_bio_hook(s, bio, request_endio);
729 	atomic_inc(&d->c->search_inflight);
730 
731 	s->orig_bio		= bio;
732 	s->cache_miss		= NULL;
733 	s->cache_missed		= 0;
734 	s->d			= d;
735 	s->recoverable		= 1;
736 	s->write		= op_is_write(bio_op(bio));
737 	s->read_dirty_data	= 0;
738 	s->start_time		= jiffies;
739 
740 	s->iop.c		= d->c;
741 	s->iop.bio		= NULL;
742 	s->iop.inode		= d->id;
743 	s->iop.write_point	= hash_long((unsigned long) current, 16);
744 	s->iop.write_prio	= 0;
745 	s->iop.status		= 0;
746 	s->iop.flags		= 0;
747 	s->iop.flush_journal	= op_is_flush(bio->bi_opf);
748 	s->iop.wq		= bcache_wq;
749 
750 	return s;
751 }
752 
753 /* Cached devices */
754 
755 static void cached_dev_bio_complete(struct closure *cl)
756 {
757 	struct search *s = container_of(cl, struct search, cl);
758 	struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
759 
760 	cached_dev_put(dc);
761 	search_free(cl);
762 }
763 
764 /* Process reads */
765 
766 static void cached_dev_read_error_done(struct closure *cl)
767 {
768 	struct search *s = container_of(cl, struct search, cl);
769 
770 	if (s->iop.replace_collision)
771 		bch_mark_cache_miss_collision(s->iop.c, s->d);
772 
773 	if (s->iop.bio)
774 		bio_free_pages(s->iop.bio);
775 
776 	cached_dev_bio_complete(cl);
777 }
778 
779 static void cached_dev_read_error(struct closure *cl)
780 {
781 	struct search *s = container_of(cl, struct search, cl);
782 	struct bio *bio = &s->bio.bio;
783 
784 	/*
785 	 * If read request hit dirty data (s->read_dirty_data is true),
786 	 * then recovery a failed read request from cached device may
787 	 * get a stale data back. So read failure recovery is only
788 	 * permitted when read request hit clean data in cache device,
789 	 * or when cache read race happened.
790 	 */
791 	if (s->recoverable && !s->read_dirty_data) {
792 		/* Retry from the backing device: */
793 		trace_bcache_read_retry(s->orig_bio);
794 
795 		s->iop.status = 0;
796 		do_bio_hook(s, s->orig_bio, backing_request_endio);
797 
798 		/* XXX: invalidate cache */
799 
800 		/* I/O request sent to backing device */
801 		closure_bio_submit(s->iop.c, bio, cl);
802 	}
803 
804 	continue_at(cl, cached_dev_read_error_done, NULL);
805 }
806 
807 static void cached_dev_cache_miss_done(struct closure *cl)
808 {
809 	struct search *s = container_of(cl, struct search, cl);
810 	struct bcache_device *d = s->d;
811 
812 	if (s->iop.replace_collision)
813 		bch_mark_cache_miss_collision(s->iop.c, s->d);
814 
815 	if (s->iop.bio)
816 		bio_free_pages(s->iop.bio);
817 
818 	cached_dev_bio_complete(cl);
819 	closure_put(&d->cl);
820 }
821 
822 static void cached_dev_read_done(struct closure *cl)
823 {
824 	struct search *s = container_of(cl, struct search, cl);
825 	struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
826 
827 	/*
828 	 * We had a cache miss; cache_bio now contains data ready to be inserted
829 	 * into the cache.
830 	 *
831 	 * First, we copy the data we just read from cache_bio's bounce buffers
832 	 * to the buffers the original bio pointed to:
833 	 */
834 
835 	if (s->iop.bio) {
836 		bio_reset(s->iop.bio);
837 		s->iop.bio->bi_iter.bi_sector =
838 			s->cache_miss->bi_iter.bi_sector;
839 		bio_copy_dev(s->iop.bio, s->cache_miss);
840 		s->iop.bio->bi_iter.bi_size = s->insert_bio_sectors << 9;
841 		bch_bio_map(s->iop.bio, NULL);
842 
843 		bio_copy_data(s->cache_miss, s->iop.bio);
844 
845 		bio_put(s->cache_miss);
846 		s->cache_miss = NULL;
847 	}
848 
849 	if (verify(dc) && s->recoverable && !s->read_dirty_data)
850 		bch_data_verify(dc, s->orig_bio);
851 
852 	closure_get(&dc->disk.cl);
853 	bio_complete(s);
854 
855 	if (s->iop.bio &&
856 	    !test_bit(CACHE_SET_STOPPING, &s->iop.c->flags)) {
857 		BUG_ON(!s->iop.replace);
858 		closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
859 	}
860 
861 	continue_at(cl, cached_dev_cache_miss_done, NULL);
862 }
863 
864 static void cached_dev_read_done_bh(struct closure *cl)
865 {
866 	struct search *s = container_of(cl, struct search, cl);
867 	struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
868 
869 	bch_mark_cache_accounting(s->iop.c, s->d,
870 				  !s->cache_missed, s->iop.bypass);
871 	trace_bcache_read(s->orig_bio, !s->cache_missed, s->iop.bypass);
872 
873 	if (s->iop.status)
874 		continue_at_nobarrier(cl, cached_dev_read_error, bcache_wq);
875 	else if (s->iop.bio || verify(dc))
876 		continue_at_nobarrier(cl, cached_dev_read_done, bcache_wq);
877 	else
878 		continue_at_nobarrier(cl, cached_dev_bio_complete, NULL);
879 }
880 
881 static int cached_dev_cache_miss(struct btree *b, struct search *s,
882 				 struct bio *bio, unsigned int sectors)
883 {
884 	int ret = MAP_CONTINUE;
885 	unsigned int reada = 0;
886 	struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
887 	struct bio *miss, *cache_bio;
888 
889 	s->cache_missed = 1;
890 
891 	if (s->cache_miss || s->iop.bypass) {
892 		miss = bio_next_split(bio, sectors, GFP_NOIO, &s->d->bio_split);
893 		ret = miss == bio ? MAP_DONE : MAP_CONTINUE;
894 		goto out_submit;
895 	}
896 
897 	if (!(bio->bi_opf & REQ_RAHEAD) &&
898 	    !(bio->bi_opf & (REQ_META|REQ_PRIO)) &&
899 	    s->iop.c->gc_stats.in_use < CUTOFF_CACHE_READA)
900 		reada = min_t(sector_t, dc->readahead >> 9,
901 			      get_capacity(bio->bi_disk) - bio_end_sector(bio));
902 
903 	s->insert_bio_sectors = min(sectors, bio_sectors(bio) + reada);
904 
905 	s->iop.replace_key = KEY(s->iop.inode,
906 				 bio->bi_iter.bi_sector + s->insert_bio_sectors,
907 				 s->insert_bio_sectors);
908 
909 	ret = bch_btree_insert_check_key(b, &s->op, &s->iop.replace_key);
910 	if (ret)
911 		return ret;
912 
913 	s->iop.replace = true;
914 
915 	miss = bio_next_split(bio, sectors, GFP_NOIO, &s->d->bio_split);
916 
917 	/* btree_search_recurse()'s btree iterator is no good anymore */
918 	ret = miss == bio ? MAP_DONE : -EINTR;
919 
920 	cache_bio = bio_alloc_bioset(GFP_NOWAIT,
921 			DIV_ROUND_UP(s->insert_bio_sectors, PAGE_SECTORS),
922 			&dc->disk.bio_split);
923 	if (!cache_bio)
924 		goto out_submit;
925 
926 	cache_bio->bi_iter.bi_sector	= miss->bi_iter.bi_sector;
927 	bio_copy_dev(cache_bio, miss);
928 	cache_bio->bi_iter.bi_size	= s->insert_bio_sectors << 9;
929 
930 	cache_bio->bi_end_io	= backing_request_endio;
931 	cache_bio->bi_private	= &s->cl;
932 
933 	bch_bio_map(cache_bio, NULL);
934 	if (bch_bio_alloc_pages(cache_bio, __GFP_NOWARN|GFP_NOIO))
935 		goto out_put;
936 
937 	if (reada)
938 		bch_mark_cache_readahead(s->iop.c, s->d);
939 
940 	s->cache_miss	= miss;
941 	s->iop.bio	= cache_bio;
942 	bio_get(cache_bio);
943 	/* I/O request sent to backing device */
944 	closure_bio_submit(s->iop.c, cache_bio, &s->cl);
945 
946 	return ret;
947 out_put:
948 	bio_put(cache_bio);
949 out_submit:
950 	miss->bi_end_io		= backing_request_endio;
951 	miss->bi_private	= &s->cl;
952 	/* I/O request sent to backing device */
953 	closure_bio_submit(s->iop.c, miss, &s->cl);
954 	return ret;
955 }
956 
957 static void cached_dev_read(struct cached_dev *dc, struct search *s)
958 {
959 	struct closure *cl = &s->cl;
960 
961 	closure_call(&s->iop.cl, cache_lookup, NULL, cl);
962 	continue_at(cl, cached_dev_read_done_bh, NULL);
963 }
964 
965 /* Process writes */
966 
967 static void cached_dev_write_complete(struct closure *cl)
968 {
969 	struct search *s = container_of(cl, struct search, cl);
970 	struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
971 
972 	up_read_non_owner(&dc->writeback_lock);
973 	cached_dev_bio_complete(cl);
974 }
975 
976 static void cached_dev_write(struct cached_dev *dc, struct search *s)
977 {
978 	struct closure *cl = &s->cl;
979 	struct bio *bio = &s->bio.bio;
980 	struct bkey start = KEY(dc->disk.id, bio->bi_iter.bi_sector, 0);
981 	struct bkey end = KEY(dc->disk.id, bio_end_sector(bio), 0);
982 
983 	bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys, &start, &end);
984 
985 	down_read_non_owner(&dc->writeback_lock);
986 	if (bch_keybuf_check_overlapping(&dc->writeback_keys, &start, &end)) {
987 		/*
988 		 * We overlap with some dirty data undergoing background
989 		 * writeback, force this write to writeback
990 		 */
991 		s->iop.bypass = false;
992 		s->iop.writeback = true;
993 	}
994 
995 	/*
996 	 * Discards aren't _required_ to do anything, so skipping if
997 	 * check_overlapping returned true is ok
998 	 *
999 	 * But check_overlapping drops dirty keys for which io hasn't started,
1000 	 * so we still want to call it.
1001 	 */
1002 	if (bio_op(bio) == REQ_OP_DISCARD)
1003 		s->iop.bypass = true;
1004 
1005 	if (should_writeback(dc, s->orig_bio,
1006 			     cache_mode(dc),
1007 			     s->iop.bypass)) {
1008 		s->iop.bypass = false;
1009 		s->iop.writeback = true;
1010 	}
1011 
1012 	if (s->iop.bypass) {
1013 		s->iop.bio = s->orig_bio;
1014 		bio_get(s->iop.bio);
1015 
1016 		if (bio_op(bio) == REQ_OP_DISCARD &&
1017 		    !blk_queue_discard(bdev_get_queue(dc->bdev)))
1018 			goto insert_data;
1019 
1020 		/* I/O request sent to backing device */
1021 		bio->bi_end_io = backing_request_endio;
1022 		closure_bio_submit(s->iop.c, bio, cl);
1023 
1024 	} else if (s->iop.writeback) {
1025 		bch_writeback_add(dc);
1026 		s->iop.bio = bio;
1027 
1028 		if (bio->bi_opf & REQ_PREFLUSH) {
1029 			/*
1030 			 * Also need to send a flush to the backing
1031 			 * device.
1032 			 */
1033 			struct bio *flush;
1034 
1035 			flush = bio_alloc_bioset(GFP_NOIO, 0,
1036 						 &dc->disk.bio_split);
1037 			if (!flush) {
1038 				s->iop.status = BLK_STS_RESOURCE;
1039 				goto insert_data;
1040 			}
1041 			bio_copy_dev(flush, bio);
1042 			flush->bi_end_io = backing_request_endio;
1043 			flush->bi_private = cl;
1044 			flush->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
1045 			/* I/O request sent to backing device */
1046 			closure_bio_submit(s->iop.c, flush, cl);
1047 		}
1048 	} else {
1049 		s->iop.bio = bio_clone_fast(bio, GFP_NOIO, &dc->disk.bio_split);
1050 		/* I/O request sent to backing device */
1051 		bio->bi_end_io = backing_request_endio;
1052 		closure_bio_submit(s->iop.c, bio, cl);
1053 	}
1054 
1055 insert_data:
1056 	closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
1057 	continue_at(cl, cached_dev_write_complete, NULL);
1058 }
1059 
1060 static void cached_dev_nodata(struct closure *cl)
1061 {
1062 	struct search *s = container_of(cl, struct search, cl);
1063 	struct bio *bio = &s->bio.bio;
1064 
1065 	if (s->iop.flush_journal)
1066 		bch_journal_meta(s->iop.c, cl);
1067 
1068 	/* If it's a flush, we send the flush to the backing device too */
1069 	bio->bi_end_io = backing_request_endio;
1070 	closure_bio_submit(s->iop.c, bio, cl);
1071 
1072 	continue_at(cl, cached_dev_bio_complete, NULL);
1073 }
1074 
1075 struct detached_dev_io_private {
1076 	struct bcache_device	*d;
1077 	unsigned long		start_time;
1078 	bio_end_io_t		*bi_end_io;
1079 	void			*bi_private;
1080 };
1081 
1082 static void detached_dev_end_io(struct bio *bio)
1083 {
1084 	struct detached_dev_io_private *ddip;
1085 
1086 	ddip = bio->bi_private;
1087 	bio->bi_end_io = ddip->bi_end_io;
1088 	bio->bi_private = ddip->bi_private;
1089 
1090 	generic_end_io_acct(ddip->d->disk->queue, bio_op(bio),
1091 			    &ddip->d->disk->part0, ddip->start_time);
1092 
1093 	if (bio->bi_status) {
1094 		struct cached_dev *dc = container_of(ddip->d,
1095 						     struct cached_dev, disk);
1096 		/* should count I/O error for backing device here */
1097 		bch_count_backing_io_errors(dc, bio);
1098 	}
1099 
1100 	kfree(ddip);
1101 	bio->bi_end_io(bio);
1102 }
1103 
1104 static void detached_dev_do_request(struct bcache_device *d, struct bio *bio)
1105 {
1106 	struct detached_dev_io_private *ddip;
1107 	struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1108 
1109 	/*
1110 	 * no need to call closure_get(&dc->disk.cl),
1111 	 * because upper layer had already opened bcache device,
1112 	 * which would call closure_get(&dc->disk.cl)
1113 	 */
1114 	ddip = kzalloc(sizeof(struct detached_dev_io_private), GFP_NOIO);
1115 	ddip->d = d;
1116 	ddip->start_time = jiffies;
1117 	ddip->bi_end_io = bio->bi_end_io;
1118 	ddip->bi_private = bio->bi_private;
1119 	bio->bi_end_io = detached_dev_end_io;
1120 	bio->bi_private = ddip;
1121 
1122 	if ((bio_op(bio) == REQ_OP_DISCARD) &&
1123 	    !blk_queue_discard(bdev_get_queue(dc->bdev)))
1124 		bio->bi_end_io(bio);
1125 	else
1126 		generic_make_request(bio);
1127 }
1128 
1129 static void quit_max_writeback_rate(struct cache_set *c,
1130 				    struct cached_dev *this_dc)
1131 {
1132 	int i;
1133 	struct bcache_device *d;
1134 	struct cached_dev *dc;
1135 
1136 	/*
1137 	 * mutex bch_register_lock may compete with other parallel requesters,
1138 	 * or attach/detach operations on other backing device. Waiting to
1139 	 * the mutex lock may increase I/O request latency for seconds or more.
1140 	 * To avoid such situation, if mutext_trylock() failed, only writeback
1141 	 * rate of current cached device is set to 1, and __update_write_back()
1142 	 * will decide writeback rate of other cached devices (remember now
1143 	 * c->idle_counter is 0 already).
1144 	 */
1145 	if (mutex_trylock(&bch_register_lock)) {
1146 		for (i = 0; i < c->devices_max_used; i++) {
1147 			if (!c->devices[i])
1148 				continue;
1149 
1150 			if (UUID_FLASH_ONLY(&c->uuids[i]))
1151 				continue;
1152 
1153 			d = c->devices[i];
1154 			dc = container_of(d, struct cached_dev, disk);
1155 			/*
1156 			 * set writeback rate to default minimum value,
1157 			 * then let update_writeback_rate() to decide the
1158 			 * upcoming rate.
1159 			 */
1160 			atomic_long_set(&dc->writeback_rate.rate, 1);
1161 		}
1162 		mutex_unlock(&bch_register_lock);
1163 	} else
1164 		atomic_long_set(&this_dc->writeback_rate.rate, 1);
1165 }
1166 
1167 /* Cached devices - read & write stuff */
1168 
1169 static blk_qc_t cached_dev_make_request(struct request_queue *q,
1170 					struct bio *bio)
1171 {
1172 	struct search *s;
1173 	struct bcache_device *d = bio->bi_disk->private_data;
1174 	struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1175 	int rw = bio_data_dir(bio);
1176 
1177 	if (unlikely((d->c && test_bit(CACHE_SET_IO_DISABLE, &d->c->flags)) ||
1178 		     dc->io_disable)) {
1179 		bio->bi_status = BLK_STS_IOERR;
1180 		bio_endio(bio);
1181 		return BLK_QC_T_NONE;
1182 	}
1183 
1184 	if (likely(d->c)) {
1185 		if (atomic_read(&d->c->idle_counter))
1186 			atomic_set(&d->c->idle_counter, 0);
1187 		/*
1188 		 * If at_max_writeback_rate of cache set is true and new I/O
1189 		 * comes, quit max writeback rate of all cached devices
1190 		 * attached to this cache set, and set at_max_writeback_rate
1191 		 * to false.
1192 		 */
1193 		if (unlikely(atomic_read(&d->c->at_max_writeback_rate) == 1)) {
1194 			atomic_set(&d->c->at_max_writeback_rate, 0);
1195 			quit_max_writeback_rate(d->c, dc);
1196 		}
1197 	}
1198 
1199 	generic_start_io_acct(q,
1200 			      bio_op(bio),
1201 			      bio_sectors(bio),
1202 			      &d->disk->part0);
1203 
1204 	bio_set_dev(bio, dc->bdev);
1205 	bio->bi_iter.bi_sector += dc->sb.data_offset;
1206 
1207 	if (cached_dev_get(dc)) {
1208 		s = search_alloc(bio, d);
1209 		trace_bcache_request_start(s->d, bio);
1210 
1211 		if (!bio->bi_iter.bi_size) {
1212 			/*
1213 			 * can't call bch_journal_meta from under
1214 			 * generic_make_request
1215 			 */
1216 			continue_at_nobarrier(&s->cl,
1217 					      cached_dev_nodata,
1218 					      bcache_wq);
1219 		} else {
1220 			s->iop.bypass = check_should_bypass(dc, bio);
1221 
1222 			if (rw)
1223 				cached_dev_write(dc, s);
1224 			else
1225 				cached_dev_read(dc, s);
1226 		}
1227 	} else
1228 		/* I/O request sent to backing device */
1229 		detached_dev_do_request(d, bio);
1230 
1231 	return BLK_QC_T_NONE;
1232 }
1233 
1234 static int cached_dev_ioctl(struct bcache_device *d, fmode_t mode,
1235 			    unsigned int cmd, unsigned long arg)
1236 {
1237 	struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1238 
1239 	if (dc->io_disable)
1240 		return -EIO;
1241 
1242 	return __blkdev_driver_ioctl(dc->bdev, mode, cmd, arg);
1243 }
1244 
1245 static int cached_dev_congested(void *data, int bits)
1246 {
1247 	struct bcache_device *d = data;
1248 	struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1249 	struct request_queue *q = bdev_get_queue(dc->bdev);
1250 	int ret = 0;
1251 
1252 	if (bdi_congested(q->backing_dev_info, bits))
1253 		return 1;
1254 
1255 	if (cached_dev_get(dc)) {
1256 		unsigned int i;
1257 		struct cache *ca;
1258 
1259 		for_each_cache(ca, d->c, i) {
1260 			q = bdev_get_queue(ca->bdev);
1261 			ret |= bdi_congested(q->backing_dev_info, bits);
1262 		}
1263 
1264 		cached_dev_put(dc);
1265 	}
1266 
1267 	return ret;
1268 }
1269 
1270 void bch_cached_dev_request_init(struct cached_dev *dc)
1271 {
1272 	struct gendisk *g = dc->disk.disk;
1273 
1274 	g->queue->make_request_fn		= cached_dev_make_request;
1275 	g->queue->backing_dev_info->congested_fn = cached_dev_congested;
1276 	dc->disk.cache_miss			= cached_dev_cache_miss;
1277 	dc->disk.ioctl				= cached_dev_ioctl;
1278 }
1279 
1280 /* Flash backed devices */
1281 
1282 static int flash_dev_cache_miss(struct btree *b, struct search *s,
1283 				struct bio *bio, unsigned int sectors)
1284 {
1285 	unsigned int bytes = min(sectors, bio_sectors(bio)) << 9;
1286 
1287 	swap(bio->bi_iter.bi_size, bytes);
1288 	zero_fill_bio(bio);
1289 	swap(bio->bi_iter.bi_size, bytes);
1290 
1291 	bio_advance(bio, bytes);
1292 
1293 	if (!bio->bi_iter.bi_size)
1294 		return MAP_DONE;
1295 
1296 	return MAP_CONTINUE;
1297 }
1298 
1299 static void flash_dev_nodata(struct closure *cl)
1300 {
1301 	struct search *s = container_of(cl, struct search, cl);
1302 
1303 	if (s->iop.flush_journal)
1304 		bch_journal_meta(s->iop.c, cl);
1305 
1306 	continue_at(cl, search_free, NULL);
1307 }
1308 
1309 static blk_qc_t flash_dev_make_request(struct request_queue *q,
1310 					     struct bio *bio)
1311 {
1312 	struct search *s;
1313 	struct closure *cl;
1314 	struct bcache_device *d = bio->bi_disk->private_data;
1315 
1316 	if (unlikely(d->c && test_bit(CACHE_SET_IO_DISABLE, &d->c->flags))) {
1317 		bio->bi_status = BLK_STS_IOERR;
1318 		bio_endio(bio);
1319 		return BLK_QC_T_NONE;
1320 	}
1321 
1322 	generic_start_io_acct(q, bio_op(bio), bio_sectors(bio), &d->disk->part0);
1323 
1324 	s = search_alloc(bio, d);
1325 	cl = &s->cl;
1326 	bio = &s->bio.bio;
1327 
1328 	trace_bcache_request_start(s->d, bio);
1329 
1330 	if (!bio->bi_iter.bi_size) {
1331 		/*
1332 		 * can't call bch_journal_meta from under
1333 		 * generic_make_request
1334 		 */
1335 		continue_at_nobarrier(&s->cl,
1336 				      flash_dev_nodata,
1337 				      bcache_wq);
1338 		return BLK_QC_T_NONE;
1339 	} else if (bio_data_dir(bio)) {
1340 		bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys,
1341 					&KEY(d->id, bio->bi_iter.bi_sector, 0),
1342 					&KEY(d->id, bio_end_sector(bio), 0));
1343 
1344 		s->iop.bypass		= (bio_op(bio) == REQ_OP_DISCARD) != 0;
1345 		s->iop.writeback	= true;
1346 		s->iop.bio		= bio;
1347 
1348 		closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
1349 	} else {
1350 		closure_call(&s->iop.cl, cache_lookup, NULL, cl);
1351 	}
1352 
1353 	continue_at(cl, search_free, NULL);
1354 	return BLK_QC_T_NONE;
1355 }
1356 
1357 static int flash_dev_ioctl(struct bcache_device *d, fmode_t mode,
1358 			   unsigned int cmd, unsigned long arg)
1359 {
1360 	return -ENOTTY;
1361 }
1362 
1363 static int flash_dev_congested(void *data, int bits)
1364 {
1365 	struct bcache_device *d = data;
1366 	struct request_queue *q;
1367 	struct cache *ca;
1368 	unsigned int i;
1369 	int ret = 0;
1370 
1371 	for_each_cache(ca, d->c, i) {
1372 		q = bdev_get_queue(ca->bdev);
1373 		ret |= bdi_congested(q->backing_dev_info, bits);
1374 	}
1375 
1376 	return ret;
1377 }
1378 
1379 void bch_flash_dev_request_init(struct bcache_device *d)
1380 {
1381 	struct gendisk *g = d->disk;
1382 
1383 	g->queue->make_request_fn		= flash_dev_make_request;
1384 	g->queue->backing_dev_info->congested_fn = flash_dev_congested;
1385 	d->cache_miss				= flash_dev_cache_miss;
1386 	d->ioctl				= flash_dev_ioctl;
1387 }
1388 
1389 void bch_request_exit(void)
1390 {
1391 	kmem_cache_destroy(bch_search_cache);
1392 }
1393 
1394 int __init bch_request_init(void)
1395 {
1396 	bch_search_cache = KMEM_CACHE(search, 0);
1397 	if (!bch_search_cache)
1398 		return -ENOMEM;
1399 
1400 	return 0;
1401 }
1402