1 /* 2 * Main bcache entry point - handle a read or a write request and decide what to 3 * do with it; the make_request functions are called by the block layer. 4 * 5 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com> 6 * Copyright 2012 Google, Inc. 7 */ 8 9 #include "bcache.h" 10 #include "btree.h" 11 #include "debug.h" 12 #include "request.h" 13 #include "writeback.h" 14 15 #include <linux/cgroup.h> 16 #include <linux/module.h> 17 #include <linux/hash.h> 18 #include <linux/random.h> 19 #include "blk-cgroup.h" 20 21 #include <trace/events/bcache.h> 22 23 #define CUTOFF_CACHE_ADD 95 24 #define CUTOFF_CACHE_READA 90 25 26 struct kmem_cache *bch_search_cache; 27 28 static void check_should_skip(struct cached_dev *, struct search *); 29 30 /* Cgroup interface */ 31 32 #ifdef CONFIG_CGROUP_BCACHE 33 static struct bch_cgroup bcache_default_cgroup = { .cache_mode = -1 }; 34 35 static struct bch_cgroup *cgroup_to_bcache(struct cgroup *cgroup) 36 { 37 struct cgroup_subsys_state *css; 38 return cgroup && 39 (css = cgroup_subsys_state(cgroup, bcache_subsys_id)) 40 ? container_of(css, struct bch_cgroup, css) 41 : &bcache_default_cgroup; 42 } 43 44 struct bch_cgroup *bch_bio_to_cgroup(struct bio *bio) 45 { 46 struct cgroup_subsys_state *css = bio->bi_css 47 ? cgroup_subsys_state(bio->bi_css->cgroup, bcache_subsys_id) 48 : task_subsys_state(current, bcache_subsys_id); 49 50 return css 51 ? container_of(css, struct bch_cgroup, css) 52 : &bcache_default_cgroup; 53 } 54 55 static ssize_t cache_mode_read(struct cgroup *cgrp, struct cftype *cft, 56 struct file *file, 57 char __user *buf, size_t nbytes, loff_t *ppos) 58 { 59 char tmp[1024]; 60 int len = bch_snprint_string_list(tmp, PAGE_SIZE, bch_cache_modes, 61 cgroup_to_bcache(cgrp)->cache_mode + 1); 62 63 if (len < 0) 64 return len; 65 66 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len); 67 } 68 69 static int cache_mode_write(struct cgroup *cgrp, struct cftype *cft, 70 const char *buf) 71 { 72 int v = bch_read_string_list(buf, bch_cache_modes); 73 if (v < 0) 74 return v; 75 76 cgroup_to_bcache(cgrp)->cache_mode = v - 1; 77 return 0; 78 } 79 80 static u64 bch_verify_read(struct cgroup *cgrp, struct cftype *cft) 81 { 82 return cgroup_to_bcache(cgrp)->verify; 83 } 84 85 static int bch_verify_write(struct cgroup *cgrp, struct cftype *cft, u64 val) 86 { 87 cgroup_to_bcache(cgrp)->verify = val; 88 return 0; 89 } 90 91 static u64 bch_cache_hits_read(struct cgroup *cgrp, struct cftype *cft) 92 { 93 struct bch_cgroup *bcachecg = cgroup_to_bcache(cgrp); 94 return atomic_read(&bcachecg->stats.cache_hits); 95 } 96 97 static u64 bch_cache_misses_read(struct cgroup *cgrp, struct cftype *cft) 98 { 99 struct bch_cgroup *bcachecg = cgroup_to_bcache(cgrp); 100 return atomic_read(&bcachecg->stats.cache_misses); 101 } 102 103 static u64 bch_cache_bypass_hits_read(struct cgroup *cgrp, 104 struct cftype *cft) 105 { 106 struct bch_cgroup *bcachecg = cgroup_to_bcache(cgrp); 107 return atomic_read(&bcachecg->stats.cache_bypass_hits); 108 } 109 110 static u64 bch_cache_bypass_misses_read(struct cgroup *cgrp, 111 struct cftype *cft) 112 { 113 struct bch_cgroup *bcachecg = cgroup_to_bcache(cgrp); 114 return atomic_read(&bcachecg->stats.cache_bypass_misses); 115 } 116 117 static struct cftype bch_files[] = { 118 { 119 .name = "cache_mode", 120 .read = cache_mode_read, 121 .write_string = cache_mode_write, 122 }, 123 { 124 .name = "verify", 125 .read_u64 = bch_verify_read, 126 .write_u64 = bch_verify_write, 127 }, 128 { 129 .name = "cache_hits", 130 .read_u64 = bch_cache_hits_read, 131 }, 132 { 133 .name = "cache_misses", 134 .read_u64 = bch_cache_misses_read, 135 }, 136 { 137 .name = "cache_bypass_hits", 138 .read_u64 = bch_cache_bypass_hits_read, 139 }, 140 { 141 .name = "cache_bypass_misses", 142 .read_u64 = bch_cache_bypass_misses_read, 143 }, 144 { } /* terminate */ 145 }; 146 147 static void init_bch_cgroup(struct bch_cgroup *cg) 148 { 149 cg->cache_mode = -1; 150 } 151 152 static struct cgroup_subsys_state *bcachecg_create(struct cgroup *cgroup) 153 { 154 struct bch_cgroup *cg; 155 156 cg = kzalloc(sizeof(*cg), GFP_KERNEL); 157 if (!cg) 158 return ERR_PTR(-ENOMEM); 159 init_bch_cgroup(cg); 160 return &cg->css; 161 } 162 163 static void bcachecg_destroy(struct cgroup *cgroup) 164 { 165 struct bch_cgroup *cg = cgroup_to_bcache(cgroup); 166 free_css_id(&bcache_subsys, &cg->css); 167 kfree(cg); 168 } 169 170 struct cgroup_subsys bcache_subsys = { 171 .create = bcachecg_create, 172 .destroy = bcachecg_destroy, 173 .subsys_id = bcache_subsys_id, 174 .name = "bcache", 175 .module = THIS_MODULE, 176 }; 177 EXPORT_SYMBOL_GPL(bcache_subsys); 178 #endif 179 180 static unsigned cache_mode(struct cached_dev *dc, struct bio *bio) 181 { 182 #ifdef CONFIG_CGROUP_BCACHE 183 int r = bch_bio_to_cgroup(bio)->cache_mode; 184 if (r >= 0) 185 return r; 186 #endif 187 return BDEV_CACHE_MODE(&dc->sb); 188 } 189 190 static bool verify(struct cached_dev *dc, struct bio *bio) 191 { 192 #ifdef CONFIG_CGROUP_BCACHE 193 if (bch_bio_to_cgroup(bio)->verify) 194 return true; 195 #endif 196 return dc->verify; 197 } 198 199 static void bio_csum(struct bio *bio, struct bkey *k) 200 { 201 struct bio_vec *bv; 202 uint64_t csum = 0; 203 int i; 204 205 bio_for_each_segment(bv, bio, i) { 206 void *d = kmap(bv->bv_page) + bv->bv_offset; 207 csum = bch_crc64_update(csum, d, bv->bv_len); 208 kunmap(bv->bv_page); 209 } 210 211 k->ptr[KEY_PTRS(k)] = csum & (~0ULL >> 1); 212 } 213 214 /* Insert data into cache */ 215 216 static void bio_invalidate(struct closure *cl) 217 { 218 struct btree_op *op = container_of(cl, struct btree_op, cl); 219 struct bio *bio = op->cache_bio; 220 221 pr_debug("invalidating %i sectors from %llu", 222 bio_sectors(bio), (uint64_t) bio->bi_sector); 223 224 while (bio_sectors(bio)) { 225 unsigned len = min(bio_sectors(bio), 1U << 14); 226 227 if (bch_keylist_realloc(&op->keys, 0, op->c)) 228 goto out; 229 230 bio->bi_sector += len; 231 bio->bi_size -= len << 9; 232 233 bch_keylist_add(&op->keys, 234 &KEY(op->inode, bio->bi_sector, len)); 235 } 236 237 op->insert_data_done = true; 238 bio_put(bio); 239 out: 240 continue_at(cl, bch_journal, bcache_wq); 241 } 242 243 struct open_bucket { 244 struct list_head list; 245 struct task_struct *last; 246 unsigned sectors_free; 247 BKEY_PADDED(key); 248 }; 249 250 void bch_open_buckets_free(struct cache_set *c) 251 { 252 struct open_bucket *b; 253 254 while (!list_empty(&c->data_buckets)) { 255 b = list_first_entry(&c->data_buckets, 256 struct open_bucket, list); 257 list_del(&b->list); 258 kfree(b); 259 } 260 } 261 262 int bch_open_buckets_alloc(struct cache_set *c) 263 { 264 int i; 265 266 spin_lock_init(&c->data_bucket_lock); 267 268 for (i = 0; i < 6; i++) { 269 struct open_bucket *b = kzalloc(sizeof(*b), GFP_KERNEL); 270 if (!b) 271 return -ENOMEM; 272 273 list_add(&b->list, &c->data_buckets); 274 } 275 276 return 0; 277 } 278 279 /* 280 * We keep multiple buckets open for writes, and try to segregate different 281 * write streams for better cache utilization: first we look for a bucket where 282 * the last write to it was sequential with the current write, and failing that 283 * we look for a bucket that was last used by the same task. 284 * 285 * The ideas is if you've got multiple tasks pulling data into the cache at the 286 * same time, you'll get better cache utilization if you try to segregate their 287 * data and preserve locality. 288 * 289 * For example, say you've starting Firefox at the same time you're copying a 290 * bunch of files. Firefox will likely end up being fairly hot and stay in the 291 * cache awhile, but the data you copied might not be; if you wrote all that 292 * data to the same buckets it'd get invalidated at the same time. 293 * 294 * Both of those tasks will be doing fairly random IO so we can't rely on 295 * detecting sequential IO to segregate their data, but going off of the task 296 * should be a sane heuristic. 297 */ 298 static struct open_bucket *pick_data_bucket(struct cache_set *c, 299 const struct bkey *search, 300 struct task_struct *task, 301 struct bkey *alloc) 302 { 303 struct open_bucket *ret, *ret_task = NULL; 304 305 list_for_each_entry_reverse(ret, &c->data_buckets, list) 306 if (!bkey_cmp(&ret->key, search)) 307 goto found; 308 else if (ret->last == task) 309 ret_task = ret; 310 311 ret = ret_task ?: list_first_entry(&c->data_buckets, 312 struct open_bucket, list); 313 found: 314 if (!ret->sectors_free && KEY_PTRS(alloc)) { 315 ret->sectors_free = c->sb.bucket_size; 316 bkey_copy(&ret->key, alloc); 317 bkey_init(alloc); 318 } 319 320 if (!ret->sectors_free) 321 ret = NULL; 322 323 return ret; 324 } 325 326 /* 327 * Allocates some space in the cache to write to, and k to point to the newly 328 * allocated space, and updates KEY_SIZE(k) and KEY_OFFSET(k) (to point to the 329 * end of the newly allocated space). 330 * 331 * May allocate fewer sectors than @sectors, KEY_SIZE(k) indicates how many 332 * sectors were actually allocated. 333 * 334 * If s->writeback is true, will not fail. 335 */ 336 static bool bch_alloc_sectors(struct bkey *k, unsigned sectors, 337 struct search *s) 338 { 339 struct cache_set *c = s->op.c; 340 struct open_bucket *b; 341 BKEY_PADDED(key) alloc; 342 struct closure cl, *w = NULL; 343 unsigned i; 344 345 if (s->writeback) { 346 closure_init_stack(&cl); 347 w = &cl; 348 } 349 350 /* 351 * We might have to allocate a new bucket, which we can't do with a 352 * spinlock held. So if we have to allocate, we drop the lock, allocate 353 * and then retry. KEY_PTRS() indicates whether alloc points to 354 * allocated bucket(s). 355 */ 356 357 bkey_init(&alloc.key); 358 spin_lock(&c->data_bucket_lock); 359 360 while (!(b = pick_data_bucket(c, k, s->task, &alloc.key))) { 361 unsigned watermark = s->op.write_prio 362 ? WATERMARK_MOVINGGC 363 : WATERMARK_NONE; 364 365 spin_unlock(&c->data_bucket_lock); 366 367 if (bch_bucket_alloc_set(c, watermark, &alloc.key, 1, w)) 368 return false; 369 370 spin_lock(&c->data_bucket_lock); 371 } 372 373 /* 374 * If we had to allocate, we might race and not need to allocate the 375 * second time we call find_data_bucket(). If we allocated a bucket but 376 * didn't use it, drop the refcount bch_bucket_alloc_set() took: 377 */ 378 if (KEY_PTRS(&alloc.key)) 379 __bkey_put(c, &alloc.key); 380 381 for (i = 0; i < KEY_PTRS(&b->key); i++) 382 EBUG_ON(ptr_stale(c, &b->key, i)); 383 384 /* Set up the pointer to the space we're allocating: */ 385 386 for (i = 0; i < KEY_PTRS(&b->key); i++) 387 k->ptr[i] = b->key.ptr[i]; 388 389 sectors = min(sectors, b->sectors_free); 390 391 SET_KEY_OFFSET(k, KEY_OFFSET(k) + sectors); 392 SET_KEY_SIZE(k, sectors); 393 SET_KEY_PTRS(k, KEY_PTRS(&b->key)); 394 395 /* 396 * Move b to the end of the lru, and keep track of what this bucket was 397 * last used for: 398 */ 399 list_move_tail(&b->list, &c->data_buckets); 400 bkey_copy_key(&b->key, k); 401 b->last = s->task; 402 403 b->sectors_free -= sectors; 404 405 for (i = 0; i < KEY_PTRS(&b->key); i++) { 406 SET_PTR_OFFSET(&b->key, i, PTR_OFFSET(&b->key, i) + sectors); 407 408 atomic_long_add(sectors, 409 &PTR_CACHE(c, &b->key, i)->sectors_written); 410 } 411 412 if (b->sectors_free < c->sb.block_size) 413 b->sectors_free = 0; 414 415 /* 416 * k takes refcounts on the buckets it points to until it's inserted 417 * into the btree, but if we're done with this bucket we just transfer 418 * get_data_bucket()'s refcount. 419 */ 420 if (b->sectors_free) 421 for (i = 0; i < KEY_PTRS(&b->key); i++) 422 atomic_inc(&PTR_BUCKET(c, &b->key, i)->pin); 423 424 spin_unlock(&c->data_bucket_lock); 425 return true; 426 } 427 428 static void bch_insert_data_error(struct closure *cl) 429 { 430 struct btree_op *op = container_of(cl, struct btree_op, cl); 431 432 /* 433 * Our data write just errored, which means we've got a bunch of keys to 434 * insert that point to data that wasn't succesfully written. 435 * 436 * We don't have to insert those keys but we still have to invalidate 437 * that region of the cache - so, if we just strip off all the pointers 438 * from the keys we'll accomplish just that. 439 */ 440 441 struct bkey *src = op->keys.bottom, *dst = op->keys.bottom; 442 443 while (src != op->keys.top) { 444 struct bkey *n = bkey_next(src); 445 446 SET_KEY_PTRS(src, 0); 447 bkey_copy(dst, src); 448 449 dst = bkey_next(dst); 450 src = n; 451 } 452 453 op->keys.top = dst; 454 455 bch_journal(cl); 456 } 457 458 static void bch_insert_data_endio(struct bio *bio, int error) 459 { 460 struct closure *cl = bio->bi_private; 461 struct btree_op *op = container_of(cl, struct btree_op, cl); 462 struct search *s = container_of(op, struct search, op); 463 464 if (error) { 465 /* TODO: We could try to recover from this. */ 466 if (s->writeback) 467 s->error = error; 468 else if (s->write) 469 set_closure_fn(cl, bch_insert_data_error, bcache_wq); 470 else 471 set_closure_fn(cl, NULL, NULL); 472 } 473 474 bch_bbio_endio(op->c, bio, error, "writing data to cache"); 475 } 476 477 static void bch_insert_data_loop(struct closure *cl) 478 { 479 struct btree_op *op = container_of(cl, struct btree_op, cl); 480 struct search *s = container_of(op, struct search, op); 481 struct bio *bio = op->cache_bio, *n; 482 483 if (op->skip) 484 return bio_invalidate(cl); 485 486 if (atomic_sub_return(bio_sectors(bio), &op->c->sectors_to_gc) < 0) { 487 set_gc_sectors(op->c); 488 bch_queue_gc(op->c); 489 } 490 491 /* 492 * Journal writes are marked REQ_FLUSH; if the original write was a 493 * flush, it'll wait on the journal write. 494 */ 495 bio->bi_rw &= ~(REQ_FLUSH|REQ_FUA); 496 497 do { 498 unsigned i; 499 struct bkey *k; 500 struct bio_set *split = s->d 501 ? s->d->bio_split : op->c->bio_split; 502 503 /* 1 for the device pointer and 1 for the chksum */ 504 if (bch_keylist_realloc(&op->keys, 505 1 + (op->csum ? 1 : 0), 506 op->c)) 507 continue_at(cl, bch_journal, bcache_wq); 508 509 k = op->keys.top; 510 bkey_init(k); 511 SET_KEY_INODE(k, op->inode); 512 SET_KEY_OFFSET(k, bio->bi_sector); 513 514 if (!bch_alloc_sectors(k, bio_sectors(bio), s)) 515 goto err; 516 517 n = bch_bio_split(bio, KEY_SIZE(k), GFP_NOIO, split); 518 519 n->bi_end_io = bch_insert_data_endio; 520 n->bi_private = cl; 521 522 if (s->writeback) { 523 SET_KEY_DIRTY(k, true); 524 525 for (i = 0; i < KEY_PTRS(k); i++) 526 SET_GC_MARK(PTR_BUCKET(op->c, k, i), 527 GC_MARK_DIRTY); 528 } 529 530 SET_KEY_CSUM(k, op->csum); 531 if (KEY_CSUM(k)) 532 bio_csum(n, k); 533 534 trace_bcache_cache_insert(k); 535 bch_keylist_push(&op->keys); 536 537 n->bi_rw |= REQ_WRITE; 538 bch_submit_bbio(n, op->c, k, 0); 539 } while (n != bio); 540 541 op->insert_data_done = true; 542 continue_at(cl, bch_journal, bcache_wq); 543 err: 544 /* bch_alloc_sectors() blocks if s->writeback = true */ 545 BUG_ON(s->writeback); 546 547 /* 548 * But if it's not a writeback write we'd rather just bail out if 549 * there aren't any buckets ready to write to - it might take awhile and 550 * we might be starving btree writes for gc or something. 551 */ 552 553 if (s->write) { 554 /* 555 * Writethrough write: We can't complete the write until we've 556 * updated the index. But we don't want to delay the write while 557 * we wait for buckets to be freed up, so just invalidate the 558 * rest of the write. 559 */ 560 op->skip = true; 561 return bio_invalidate(cl); 562 } else { 563 /* 564 * From a cache miss, we can just insert the keys for the data 565 * we have written or bail out if we didn't do anything. 566 */ 567 op->insert_data_done = true; 568 bio_put(bio); 569 570 if (!bch_keylist_empty(&op->keys)) 571 continue_at(cl, bch_journal, bcache_wq); 572 else 573 closure_return(cl); 574 } 575 } 576 577 /** 578 * bch_insert_data - stick some data in the cache 579 * 580 * This is the starting point for any data to end up in a cache device; it could 581 * be from a normal write, or a writeback write, or a write to a flash only 582 * volume - it's also used by the moving garbage collector to compact data in 583 * mostly empty buckets. 584 * 585 * It first writes the data to the cache, creating a list of keys to be inserted 586 * (if the data had to be fragmented there will be multiple keys); after the 587 * data is written it calls bch_journal, and after the keys have been added to 588 * the next journal write they're inserted into the btree. 589 * 590 * It inserts the data in op->cache_bio; bi_sector is used for the key offset, 591 * and op->inode is used for the key inode. 592 * 593 * If op->skip is true, instead of inserting the data it invalidates the region 594 * of the cache represented by op->cache_bio and op->inode. 595 */ 596 void bch_insert_data(struct closure *cl) 597 { 598 struct btree_op *op = container_of(cl, struct btree_op, cl); 599 600 bch_keylist_init(&op->keys); 601 bio_get(op->cache_bio); 602 bch_insert_data_loop(cl); 603 } 604 605 void bch_btree_insert_async(struct closure *cl) 606 { 607 struct btree_op *op = container_of(cl, struct btree_op, cl); 608 struct search *s = container_of(op, struct search, op); 609 610 if (bch_btree_insert(op, op->c)) { 611 s->error = -ENOMEM; 612 op->insert_data_done = true; 613 } 614 615 if (op->insert_data_done) { 616 bch_keylist_free(&op->keys); 617 closure_return(cl); 618 } else 619 continue_at(cl, bch_insert_data_loop, bcache_wq); 620 } 621 622 /* Common code for the make_request functions */ 623 624 static void request_endio(struct bio *bio, int error) 625 { 626 struct closure *cl = bio->bi_private; 627 628 if (error) { 629 struct search *s = container_of(cl, struct search, cl); 630 s->error = error; 631 /* Only cache read errors are recoverable */ 632 s->recoverable = false; 633 } 634 635 bio_put(bio); 636 closure_put(cl); 637 } 638 639 void bch_cache_read_endio(struct bio *bio, int error) 640 { 641 struct bbio *b = container_of(bio, struct bbio, bio); 642 struct closure *cl = bio->bi_private; 643 struct search *s = container_of(cl, struct search, cl); 644 645 /* 646 * If the bucket was reused while our bio was in flight, we might have 647 * read the wrong data. Set s->error but not error so it doesn't get 648 * counted against the cache device, but we'll still reread the data 649 * from the backing device. 650 */ 651 652 if (error) 653 s->error = error; 654 else if (ptr_stale(s->op.c, &b->key, 0)) { 655 atomic_long_inc(&s->op.c->cache_read_races); 656 s->error = -EINTR; 657 } 658 659 bch_bbio_endio(s->op.c, bio, error, "reading from cache"); 660 } 661 662 static void bio_complete(struct search *s) 663 { 664 if (s->orig_bio) { 665 int cpu, rw = bio_data_dir(s->orig_bio); 666 unsigned long duration = jiffies - s->start_time; 667 668 cpu = part_stat_lock(); 669 part_round_stats(cpu, &s->d->disk->part0); 670 part_stat_add(cpu, &s->d->disk->part0, ticks[rw], duration); 671 part_stat_unlock(); 672 673 trace_bcache_request_end(s, s->orig_bio); 674 bio_endio(s->orig_bio, s->error); 675 s->orig_bio = NULL; 676 } 677 } 678 679 static void do_bio_hook(struct search *s) 680 { 681 struct bio *bio = &s->bio.bio; 682 memcpy(bio, s->orig_bio, sizeof(struct bio)); 683 684 bio->bi_end_io = request_endio; 685 bio->bi_private = &s->cl; 686 atomic_set(&bio->bi_cnt, 3); 687 } 688 689 static void search_free(struct closure *cl) 690 { 691 struct search *s = container_of(cl, struct search, cl); 692 bio_complete(s); 693 694 if (s->op.cache_bio) 695 bio_put(s->op.cache_bio); 696 697 if (s->unaligned_bvec) 698 mempool_free(s->bio.bio.bi_io_vec, s->d->unaligned_bvec); 699 700 closure_debug_destroy(cl); 701 mempool_free(s, s->d->c->search); 702 } 703 704 static struct search *search_alloc(struct bio *bio, struct bcache_device *d) 705 { 706 struct bio_vec *bv; 707 struct search *s = mempool_alloc(d->c->search, GFP_NOIO); 708 memset(s, 0, offsetof(struct search, op.keys)); 709 710 __closure_init(&s->cl, NULL); 711 712 s->op.inode = d->id; 713 s->op.c = d->c; 714 s->d = d; 715 s->op.lock = -1; 716 s->task = current; 717 s->orig_bio = bio; 718 s->write = (bio->bi_rw & REQ_WRITE) != 0; 719 s->op.flush_journal = (bio->bi_rw & (REQ_FLUSH|REQ_FUA)) != 0; 720 s->op.skip = (bio->bi_rw & REQ_DISCARD) != 0; 721 s->recoverable = 1; 722 s->start_time = jiffies; 723 do_bio_hook(s); 724 725 if (bio->bi_size != bio_segments(bio) * PAGE_SIZE) { 726 bv = mempool_alloc(d->unaligned_bvec, GFP_NOIO); 727 memcpy(bv, bio_iovec(bio), 728 sizeof(struct bio_vec) * bio_segments(bio)); 729 730 s->bio.bio.bi_io_vec = bv; 731 s->unaligned_bvec = 1; 732 } 733 734 return s; 735 } 736 737 static void btree_read_async(struct closure *cl) 738 { 739 struct btree_op *op = container_of(cl, struct btree_op, cl); 740 741 int ret = btree_root(search_recurse, op->c, op); 742 743 if (ret == -EAGAIN) 744 continue_at(cl, btree_read_async, bcache_wq); 745 746 closure_return(cl); 747 } 748 749 /* Cached devices */ 750 751 static void cached_dev_bio_complete(struct closure *cl) 752 { 753 struct search *s = container_of(cl, struct search, cl); 754 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk); 755 756 search_free(cl); 757 cached_dev_put(dc); 758 } 759 760 /* Process reads */ 761 762 static void cached_dev_read_complete(struct closure *cl) 763 { 764 struct search *s = container_of(cl, struct search, cl); 765 766 if (s->op.insert_collision) 767 bch_mark_cache_miss_collision(s); 768 769 if (s->op.cache_bio) { 770 int i; 771 struct bio_vec *bv; 772 773 __bio_for_each_segment(bv, s->op.cache_bio, i, 0) 774 __free_page(bv->bv_page); 775 } 776 777 cached_dev_bio_complete(cl); 778 } 779 780 static void request_read_error(struct closure *cl) 781 { 782 struct search *s = container_of(cl, struct search, cl); 783 struct bio_vec *bv; 784 int i; 785 786 if (s->recoverable) { 787 /* Retry from the backing device: */ 788 trace_bcache_read_retry(s->orig_bio); 789 790 s->error = 0; 791 bv = s->bio.bio.bi_io_vec; 792 do_bio_hook(s); 793 s->bio.bio.bi_io_vec = bv; 794 795 if (!s->unaligned_bvec) 796 bio_for_each_segment(bv, s->orig_bio, i) 797 bv->bv_offset = 0, bv->bv_len = PAGE_SIZE; 798 else 799 memcpy(s->bio.bio.bi_io_vec, 800 bio_iovec(s->orig_bio), 801 sizeof(struct bio_vec) * 802 bio_segments(s->orig_bio)); 803 804 /* XXX: invalidate cache */ 805 806 closure_bio_submit(&s->bio.bio, &s->cl, s->d); 807 } 808 809 continue_at(cl, cached_dev_read_complete, NULL); 810 } 811 812 static void request_read_done(struct closure *cl) 813 { 814 struct search *s = container_of(cl, struct search, cl); 815 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk); 816 817 /* 818 * s->cache_bio != NULL implies that we had a cache miss; cache_bio now 819 * contains data ready to be inserted into the cache. 820 * 821 * First, we copy the data we just read from cache_bio's bounce buffers 822 * to the buffers the original bio pointed to: 823 */ 824 825 if (s->op.cache_bio) { 826 bio_reset(s->op.cache_bio); 827 s->op.cache_bio->bi_sector = s->cache_miss->bi_sector; 828 s->op.cache_bio->bi_bdev = s->cache_miss->bi_bdev; 829 s->op.cache_bio->bi_size = s->cache_bio_sectors << 9; 830 bch_bio_map(s->op.cache_bio, NULL); 831 832 bio_copy_data(s->cache_miss, s->op.cache_bio); 833 834 bio_put(s->cache_miss); 835 s->cache_miss = NULL; 836 } 837 838 if (verify(dc, &s->bio.bio) && s->recoverable) 839 bch_data_verify(s); 840 841 bio_complete(s); 842 843 if (s->op.cache_bio && 844 !test_bit(CACHE_SET_STOPPING, &s->op.c->flags)) { 845 s->op.type = BTREE_REPLACE; 846 closure_call(&s->op.cl, bch_insert_data, NULL, cl); 847 } 848 849 continue_at(cl, cached_dev_read_complete, NULL); 850 } 851 852 static void request_read_done_bh(struct closure *cl) 853 { 854 struct search *s = container_of(cl, struct search, cl); 855 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk); 856 857 bch_mark_cache_accounting(s, !s->cache_miss, s->op.skip); 858 trace_bcache_read(s->orig_bio, !s->cache_miss, s->op.skip); 859 860 if (s->error) 861 continue_at_nobarrier(cl, request_read_error, bcache_wq); 862 else if (s->op.cache_bio || verify(dc, &s->bio.bio)) 863 continue_at_nobarrier(cl, request_read_done, bcache_wq); 864 else 865 continue_at_nobarrier(cl, cached_dev_read_complete, NULL); 866 } 867 868 static int cached_dev_cache_miss(struct btree *b, struct search *s, 869 struct bio *bio, unsigned sectors) 870 { 871 int ret = 0; 872 unsigned reada; 873 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk); 874 struct bio *miss; 875 876 miss = bch_bio_split(bio, sectors, GFP_NOIO, s->d->bio_split); 877 if (miss == bio) 878 s->op.lookup_done = true; 879 880 miss->bi_end_io = request_endio; 881 miss->bi_private = &s->cl; 882 883 if (s->cache_miss || s->op.skip) 884 goto out_submit; 885 886 if (miss != bio || 887 (bio->bi_rw & REQ_RAHEAD) || 888 (bio->bi_rw & REQ_META) || 889 s->op.c->gc_stats.in_use >= CUTOFF_CACHE_READA) 890 reada = 0; 891 else { 892 reada = min(dc->readahead >> 9, 893 sectors - bio_sectors(miss)); 894 895 if (bio_end_sector(miss) + reada > bdev_sectors(miss->bi_bdev)) 896 reada = bdev_sectors(miss->bi_bdev) - 897 bio_end_sector(miss); 898 } 899 900 s->cache_bio_sectors = bio_sectors(miss) + reada; 901 s->op.cache_bio = bio_alloc_bioset(GFP_NOWAIT, 902 DIV_ROUND_UP(s->cache_bio_sectors, PAGE_SECTORS), 903 dc->disk.bio_split); 904 905 if (!s->op.cache_bio) 906 goto out_submit; 907 908 s->op.cache_bio->bi_sector = miss->bi_sector; 909 s->op.cache_bio->bi_bdev = miss->bi_bdev; 910 s->op.cache_bio->bi_size = s->cache_bio_sectors << 9; 911 912 s->op.cache_bio->bi_end_io = request_endio; 913 s->op.cache_bio->bi_private = &s->cl; 914 915 /* btree_search_recurse()'s btree iterator is no good anymore */ 916 ret = -EINTR; 917 if (!bch_btree_insert_check_key(b, &s->op, s->op.cache_bio)) 918 goto out_put; 919 920 bch_bio_map(s->op.cache_bio, NULL); 921 if (bio_alloc_pages(s->op.cache_bio, __GFP_NOWARN|GFP_NOIO)) 922 goto out_put; 923 924 s->cache_miss = miss; 925 bio_get(s->op.cache_bio); 926 927 closure_bio_submit(s->op.cache_bio, &s->cl, s->d); 928 929 return ret; 930 out_put: 931 bio_put(s->op.cache_bio); 932 s->op.cache_bio = NULL; 933 out_submit: 934 closure_bio_submit(miss, &s->cl, s->d); 935 return ret; 936 } 937 938 static void request_read(struct cached_dev *dc, struct search *s) 939 { 940 struct closure *cl = &s->cl; 941 942 check_should_skip(dc, s); 943 closure_call(&s->op.cl, btree_read_async, NULL, cl); 944 945 continue_at(cl, request_read_done_bh, NULL); 946 } 947 948 /* Process writes */ 949 950 static void cached_dev_write_complete(struct closure *cl) 951 { 952 struct search *s = container_of(cl, struct search, cl); 953 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk); 954 955 up_read_non_owner(&dc->writeback_lock); 956 cached_dev_bio_complete(cl); 957 } 958 959 static void request_write(struct cached_dev *dc, struct search *s) 960 { 961 struct closure *cl = &s->cl; 962 struct bio *bio = &s->bio.bio; 963 struct bkey start, end; 964 start = KEY(dc->disk.id, bio->bi_sector, 0); 965 end = KEY(dc->disk.id, bio_end_sector(bio), 0); 966 967 bch_keybuf_check_overlapping(&s->op.c->moving_gc_keys, &start, &end); 968 969 check_should_skip(dc, s); 970 down_read_non_owner(&dc->writeback_lock); 971 972 if (bch_keybuf_check_overlapping(&dc->writeback_keys, &start, &end)) { 973 s->op.skip = false; 974 s->writeback = true; 975 } 976 977 if (bio->bi_rw & REQ_DISCARD) 978 goto skip; 979 980 if (should_writeback(dc, s->orig_bio, 981 cache_mode(dc, bio), 982 s->op.skip)) { 983 s->op.skip = false; 984 s->writeback = true; 985 } 986 987 if (s->op.skip) 988 goto skip; 989 990 trace_bcache_write(s->orig_bio, s->writeback, s->op.skip); 991 992 if (!s->writeback) { 993 s->op.cache_bio = bio_clone_bioset(bio, GFP_NOIO, 994 dc->disk.bio_split); 995 996 closure_bio_submit(bio, cl, s->d); 997 } else { 998 bch_writeback_add(dc); 999 1000 if (bio->bi_rw & REQ_FLUSH) { 1001 /* Also need to send a flush to the backing device */ 1002 struct bio *flush = bio_alloc_bioset(0, GFP_NOIO, 1003 dc->disk.bio_split); 1004 1005 flush->bi_rw = WRITE_FLUSH; 1006 flush->bi_bdev = bio->bi_bdev; 1007 flush->bi_end_io = request_endio; 1008 flush->bi_private = cl; 1009 1010 closure_bio_submit(flush, cl, s->d); 1011 } else { 1012 s->op.cache_bio = bio; 1013 } 1014 } 1015 out: 1016 closure_call(&s->op.cl, bch_insert_data, NULL, cl); 1017 continue_at(cl, cached_dev_write_complete, NULL); 1018 skip: 1019 s->op.skip = true; 1020 s->op.cache_bio = s->orig_bio; 1021 bio_get(s->op.cache_bio); 1022 1023 if ((bio->bi_rw & REQ_DISCARD) && 1024 !blk_queue_discard(bdev_get_queue(dc->bdev))) 1025 goto out; 1026 1027 closure_bio_submit(bio, cl, s->d); 1028 goto out; 1029 } 1030 1031 static void request_nodata(struct cached_dev *dc, struct search *s) 1032 { 1033 struct closure *cl = &s->cl; 1034 struct bio *bio = &s->bio.bio; 1035 1036 if (bio->bi_rw & REQ_DISCARD) { 1037 request_write(dc, s); 1038 return; 1039 } 1040 1041 if (s->op.flush_journal) 1042 bch_journal_meta(s->op.c, cl); 1043 1044 closure_bio_submit(bio, cl, s->d); 1045 1046 continue_at(cl, cached_dev_bio_complete, NULL); 1047 } 1048 1049 /* Cached devices - read & write stuff */ 1050 1051 unsigned bch_get_congested(struct cache_set *c) 1052 { 1053 int i; 1054 long rand; 1055 1056 if (!c->congested_read_threshold_us && 1057 !c->congested_write_threshold_us) 1058 return 0; 1059 1060 i = (local_clock_us() - c->congested_last_us) / 1024; 1061 if (i < 0) 1062 return 0; 1063 1064 i += atomic_read(&c->congested); 1065 if (i >= 0) 1066 return 0; 1067 1068 i += CONGESTED_MAX; 1069 1070 if (i > 0) 1071 i = fract_exp_two(i, 6); 1072 1073 rand = get_random_int(); 1074 i -= bitmap_weight(&rand, BITS_PER_LONG); 1075 1076 return i > 0 ? i : 1; 1077 } 1078 1079 static void add_sequential(struct task_struct *t) 1080 { 1081 ewma_add(t->sequential_io_avg, 1082 t->sequential_io, 8, 0); 1083 1084 t->sequential_io = 0; 1085 } 1086 1087 static struct hlist_head *iohash(struct cached_dev *dc, uint64_t k) 1088 { 1089 return &dc->io_hash[hash_64(k, RECENT_IO_BITS)]; 1090 } 1091 1092 static void check_should_skip(struct cached_dev *dc, struct search *s) 1093 { 1094 struct cache_set *c = s->op.c; 1095 struct bio *bio = &s->bio.bio; 1096 unsigned mode = cache_mode(dc, bio); 1097 unsigned sectors, congested = bch_get_congested(c); 1098 1099 if (atomic_read(&dc->disk.detaching) || 1100 c->gc_stats.in_use > CUTOFF_CACHE_ADD || 1101 (bio->bi_rw & REQ_DISCARD)) 1102 goto skip; 1103 1104 if (mode == CACHE_MODE_NONE || 1105 (mode == CACHE_MODE_WRITEAROUND && 1106 (bio->bi_rw & REQ_WRITE))) 1107 goto skip; 1108 1109 if (bio->bi_sector & (c->sb.block_size - 1) || 1110 bio_sectors(bio) & (c->sb.block_size - 1)) { 1111 pr_debug("skipping unaligned io"); 1112 goto skip; 1113 } 1114 1115 if (!congested && !dc->sequential_cutoff) 1116 goto rescale; 1117 1118 if (!congested && 1119 mode == CACHE_MODE_WRITEBACK && 1120 (bio->bi_rw & REQ_WRITE) && 1121 (bio->bi_rw & REQ_SYNC)) 1122 goto rescale; 1123 1124 if (dc->sequential_merge) { 1125 struct io *i; 1126 1127 spin_lock(&dc->io_lock); 1128 1129 hlist_for_each_entry(i, iohash(dc, bio->bi_sector), hash) 1130 if (i->last == bio->bi_sector && 1131 time_before(jiffies, i->jiffies)) 1132 goto found; 1133 1134 i = list_first_entry(&dc->io_lru, struct io, lru); 1135 1136 add_sequential(s->task); 1137 i->sequential = 0; 1138 found: 1139 if (i->sequential + bio->bi_size > i->sequential) 1140 i->sequential += bio->bi_size; 1141 1142 i->last = bio_end_sector(bio); 1143 i->jiffies = jiffies + msecs_to_jiffies(5000); 1144 s->task->sequential_io = i->sequential; 1145 1146 hlist_del(&i->hash); 1147 hlist_add_head(&i->hash, iohash(dc, i->last)); 1148 list_move_tail(&i->lru, &dc->io_lru); 1149 1150 spin_unlock(&dc->io_lock); 1151 } else { 1152 s->task->sequential_io = bio->bi_size; 1153 1154 add_sequential(s->task); 1155 } 1156 1157 sectors = max(s->task->sequential_io, 1158 s->task->sequential_io_avg) >> 9; 1159 1160 if (dc->sequential_cutoff && 1161 sectors >= dc->sequential_cutoff >> 9) { 1162 trace_bcache_bypass_sequential(s->orig_bio); 1163 goto skip; 1164 } 1165 1166 if (congested && sectors >= congested) { 1167 trace_bcache_bypass_congested(s->orig_bio); 1168 goto skip; 1169 } 1170 1171 rescale: 1172 bch_rescale_priorities(c, bio_sectors(bio)); 1173 return; 1174 skip: 1175 bch_mark_sectors_bypassed(s, bio_sectors(bio)); 1176 s->op.skip = true; 1177 } 1178 1179 static void cached_dev_make_request(struct request_queue *q, struct bio *bio) 1180 { 1181 struct search *s; 1182 struct bcache_device *d = bio->bi_bdev->bd_disk->private_data; 1183 struct cached_dev *dc = container_of(d, struct cached_dev, disk); 1184 int cpu, rw = bio_data_dir(bio); 1185 1186 cpu = part_stat_lock(); 1187 part_stat_inc(cpu, &d->disk->part0, ios[rw]); 1188 part_stat_add(cpu, &d->disk->part0, sectors[rw], bio_sectors(bio)); 1189 part_stat_unlock(); 1190 1191 bio->bi_bdev = dc->bdev; 1192 bio->bi_sector += dc->sb.data_offset; 1193 1194 if (cached_dev_get(dc)) { 1195 s = search_alloc(bio, d); 1196 trace_bcache_request_start(s, bio); 1197 1198 if (!bio_has_data(bio)) 1199 request_nodata(dc, s); 1200 else if (rw) 1201 request_write(dc, s); 1202 else 1203 request_read(dc, s); 1204 } else { 1205 if ((bio->bi_rw & REQ_DISCARD) && 1206 !blk_queue_discard(bdev_get_queue(dc->bdev))) 1207 bio_endio(bio, 0); 1208 else 1209 bch_generic_make_request(bio, &d->bio_split_hook); 1210 } 1211 } 1212 1213 static int cached_dev_ioctl(struct bcache_device *d, fmode_t mode, 1214 unsigned int cmd, unsigned long arg) 1215 { 1216 struct cached_dev *dc = container_of(d, struct cached_dev, disk); 1217 return __blkdev_driver_ioctl(dc->bdev, mode, cmd, arg); 1218 } 1219 1220 static int cached_dev_congested(void *data, int bits) 1221 { 1222 struct bcache_device *d = data; 1223 struct cached_dev *dc = container_of(d, struct cached_dev, disk); 1224 struct request_queue *q = bdev_get_queue(dc->bdev); 1225 int ret = 0; 1226 1227 if (bdi_congested(&q->backing_dev_info, bits)) 1228 return 1; 1229 1230 if (cached_dev_get(dc)) { 1231 unsigned i; 1232 struct cache *ca; 1233 1234 for_each_cache(ca, d->c, i) { 1235 q = bdev_get_queue(ca->bdev); 1236 ret |= bdi_congested(&q->backing_dev_info, bits); 1237 } 1238 1239 cached_dev_put(dc); 1240 } 1241 1242 return ret; 1243 } 1244 1245 void bch_cached_dev_request_init(struct cached_dev *dc) 1246 { 1247 struct gendisk *g = dc->disk.disk; 1248 1249 g->queue->make_request_fn = cached_dev_make_request; 1250 g->queue->backing_dev_info.congested_fn = cached_dev_congested; 1251 dc->disk.cache_miss = cached_dev_cache_miss; 1252 dc->disk.ioctl = cached_dev_ioctl; 1253 } 1254 1255 /* Flash backed devices */ 1256 1257 static int flash_dev_cache_miss(struct btree *b, struct search *s, 1258 struct bio *bio, unsigned sectors) 1259 { 1260 struct bio_vec *bv; 1261 int i; 1262 1263 /* Zero fill bio */ 1264 1265 bio_for_each_segment(bv, bio, i) { 1266 unsigned j = min(bv->bv_len >> 9, sectors); 1267 1268 void *p = kmap(bv->bv_page); 1269 memset(p + bv->bv_offset, 0, j << 9); 1270 kunmap(bv->bv_page); 1271 1272 sectors -= j; 1273 } 1274 1275 bio_advance(bio, min(sectors << 9, bio->bi_size)); 1276 1277 if (!bio->bi_size) 1278 s->op.lookup_done = true; 1279 1280 return 0; 1281 } 1282 1283 static void flash_dev_make_request(struct request_queue *q, struct bio *bio) 1284 { 1285 struct search *s; 1286 struct closure *cl; 1287 struct bcache_device *d = bio->bi_bdev->bd_disk->private_data; 1288 int cpu, rw = bio_data_dir(bio); 1289 1290 cpu = part_stat_lock(); 1291 part_stat_inc(cpu, &d->disk->part0, ios[rw]); 1292 part_stat_add(cpu, &d->disk->part0, sectors[rw], bio_sectors(bio)); 1293 part_stat_unlock(); 1294 1295 s = search_alloc(bio, d); 1296 cl = &s->cl; 1297 bio = &s->bio.bio; 1298 1299 trace_bcache_request_start(s, bio); 1300 1301 if (bio_has_data(bio) && !rw) { 1302 closure_call(&s->op.cl, btree_read_async, NULL, cl); 1303 } else if (bio_has_data(bio) || s->op.skip) { 1304 bch_keybuf_check_overlapping(&s->op.c->moving_gc_keys, 1305 &KEY(d->id, bio->bi_sector, 0), 1306 &KEY(d->id, bio_end_sector(bio), 0)); 1307 1308 s->writeback = true; 1309 s->op.cache_bio = bio; 1310 1311 closure_call(&s->op.cl, bch_insert_data, NULL, cl); 1312 } else { 1313 /* No data - probably a cache flush */ 1314 if (s->op.flush_journal) 1315 bch_journal_meta(s->op.c, cl); 1316 } 1317 1318 continue_at(cl, search_free, NULL); 1319 } 1320 1321 static int flash_dev_ioctl(struct bcache_device *d, fmode_t mode, 1322 unsigned int cmd, unsigned long arg) 1323 { 1324 return -ENOTTY; 1325 } 1326 1327 static int flash_dev_congested(void *data, int bits) 1328 { 1329 struct bcache_device *d = data; 1330 struct request_queue *q; 1331 struct cache *ca; 1332 unsigned i; 1333 int ret = 0; 1334 1335 for_each_cache(ca, d->c, i) { 1336 q = bdev_get_queue(ca->bdev); 1337 ret |= bdi_congested(&q->backing_dev_info, bits); 1338 } 1339 1340 return ret; 1341 } 1342 1343 void bch_flash_dev_request_init(struct bcache_device *d) 1344 { 1345 struct gendisk *g = d->disk; 1346 1347 g->queue->make_request_fn = flash_dev_make_request; 1348 g->queue->backing_dev_info.congested_fn = flash_dev_congested; 1349 d->cache_miss = flash_dev_cache_miss; 1350 d->ioctl = flash_dev_ioctl; 1351 } 1352 1353 void bch_request_exit(void) 1354 { 1355 #ifdef CONFIG_CGROUP_BCACHE 1356 cgroup_unload_subsys(&bcache_subsys); 1357 #endif 1358 if (bch_search_cache) 1359 kmem_cache_destroy(bch_search_cache); 1360 } 1361 1362 int __init bch_request_init(void) 1363 { 1364 bch_search_cache = KMEM_CACHE(search, 0); 1365 if (!bch_search_cache) 1366 return -ENOMEM; 1367 1368 #ifdef CONFIG_CGROUP_BCACHE 1369 cgroup_load_subsys(&bcache_subsys); 1370 init_bch_cgroup(&bcache_default_cgroup); 1371 1372 cgroup_add_cftypes(&bcache_subsys, bch_files); 1373 #endif 1374 return 0; 1375 } 1376