xref: /openbmc/linux/drivers/md/bcache/journal.c (revision f8523d0e83613ab8d082cd504dc53a09fbba4889)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * bcache journalling code, for btree insertions
4  *
5  * Copyright 2012 Google, Inc.
6  */
7 
8 #include "bcache.h"
9 #include "btree.h"
10 #include "debug.h"
11 #include "extents.h"
12 
13 #include <trace/events/bcache.h>
14 
15 /*
16  * Journal replay/recovery:
17  *
18  * This code is all driven from run_cache_set(); we first read the journal
19  * entries, do some other stuff, then we mark all the keys in the journal
20  * entries (same as garbage collection would), then we replay them - reinserting
21  * them into the cache in precisely the same order as they appear in the
22  * journal.
23  *
24  * We only journal keys that go in leaf nodes, which simplifies things quite a
25  * bit.
26  */
27 
28 static void journal_read_endio(struct bio *bio)
29 {
30 	struct closure *cl = bio->bi_private;
31 
32 	closure_put(cl);
33 }
34 
35 static int journal_read_bucket(struct cache *ca, struct list_head *list,
36 			       unsigned int bucket_index)
37 {
38 	struct journal_device *ja = &ca->journal;
39 	struct bio *bio = &ja->bio;
40 
41 	struct journal_replay *i;
42 	struct jset *j, *data = ca->set->journal.w[0].data;
43 	struct closure cl;
44 	unsigned int len, left, offset = 0;
45 	int ret = 0;
46 	sector_t bucket = bucket_to_sector(ca->set, ca->sb.d[bucket_index]);
47 
48 	closure_init_stack(&cl);
49 
50 	pr_debug("reading %u\n", bucket_index);
51 
52 	while (offset < ca->sb.bucket_size) {
53 reread:		left = ca->sb.bucket_size - offset;
54 		len = min_t(unsigned int, left, PAGE_SECTORS << JSET_BITS);
55 
56 		bio_reset(bio);
57 		bio->bi_iter.bi_sector	= bucket + offset;
58 		bio_set_dev(bio, ca->bdev);
59 		bio->bi_iter.bi_size	= len << 9;
60 
61 		bio->bi_end_io	= journal_read_endio;
62 		bio->bi_private = &cl;
63 		bio_set_op_attrs(bio, REQ_OP_READ, 0);
64 		bch_bio_map(bio, data);
65 
66 		closure_bio_submit(ca->set, bio, &cl);
67 		closure_sync(&cl);
68 
69 		/* This function could be simpler now since we no longer write
70 		 * journal entries that overlap bucket boundaries; this means
71 		 * the start of a bucket will always have a valid journal entry
72 		 * if it has any journal entries at all.
73 		 */
74 
75 		j = data;
76 		while (len) {
77 			struct list_head *where;
78 			size_t blocks, bytes = set_bytes(j);
79 
80 			if (j->magic != jset_magic(&ca->sb)) {
81 				pr_debug("%u: bad magic\n", bucket_index);
82 				return ret;
83 			}
84 
85 			if (bytes > left << 9 ||
86 			    bytes > PAGE_SIZE << JSET_BITS) {
87 				pr_info("%u: too big, %zu bytes, offset %u\n",
88 					bucket_index, bytes, offset);
89 				return ret;
90 			}
91 
92 			if (bytes > len << 9)
93 				goto reread;
94 
95 			if (j->csum != csum_set(j)) {
96 				pr_info("%u: bad csum, %zu bytes, offset %u\n",
97 					bucket_index, bytes, offset);
98 				return ret;
99 			}
100 
101 			blocks = set_blocks(j, block_bytes(ca->set));
102 
103 			/*
104 			 * Nodes in 'list' are in linear increasing order of
105 			 * i->j.seq, the node on head has the smallest (oldest)
106 			 * journal seq, the node on tail has the biggest
107 			 * (latest) journal seq.
108 			 */
109 
110 			/*
111 			 * Check from the oldest jset for last_seq. If
112 			 * i->j.seq < j->last_seq, it means the oldest jset
113 			 * in list is expired and useless, remove it from
114 			 * this list. Otherwise, j is a condidate jset for
115 			 * further following checks.
116 			 */
117 			while (!list_empty(list)) {
118 				i = list_first_entry(list,
119 					struct journal_replay, list);
120 				if (i->j.seq >= j->last_seq)
121 					break;
122 				list_del(&i->list);
123 				kfree(i);
124 			}
125 
126 			/* iterate list in reverse order (from latest jset) */
127 			list_for_each_entry_reverse(i, list, list) {
128 				if (j->seq == i->j.seq)
129 					goto next_set;
130 
131 				/*
132 				 * if j->seq is less than any i->j.last_seq
133 				 * in list, j is an expired and useless jset.
134 				 */
135 				if (j->seq < i->j.last_seq)
136 					goto next_set;
137 
138 				/*
139 				 * 'where' points to first jset in list which
140 				 * is elder then j.
141 				 */
142 				if (j->seq > i->j.seq) {
143 					where = &i->list;
144 					goto add;
145 				}
146 			}
147 
148 			where = list;
149 add:
150 			i = kmalloc(offsetof(struct journal_replay, j) +
151 				    bytes, GFP_KERNEL);
152 			if (!i)
153 				return -ENOMEM;
154 			memcpy(&i->j, j, bytes);
155 			/* Add to the location after 'where' points to */
156 			list_add(&i->list, where);
157 			ret = 1;
158 
159 			if (j->seq > ja->seq[bucket_index])
160 				ja->seq[bucket_index] = j->seq;
161 next_set:
162 			offset	+= blocks * ca->sb.block_size;
163 			len	-= blocks * ca->sb.block_size;
164 			j = ((void *) j) + blocks * block_bytes(ca);
165 		}
166 	}
167 
168 	return ret;
169 }
170 
171 int bch_journal_read(struct cache_set *c, struct list_head *list)
172 {
173 #define read_bucket(b)							\
174 	({								\
175 		ret = journal_read_bucket(ca, list, b);			\
176 		__set_bit(b, bitmap);					\
177 		if (ret < 0)						\
178 			return ret;					\
179 		ret;							\
180 	})
181 
182 	struct cache *ca;
183 	unsigned int iter;
184 	int ret = 0;
185 
186 	for_each_cache(ca, c, iter) {
187 		struct journal_device *ja = &ca->journal;
188 		DECLARE_BITMAP(bitmap, SB_JOURNAL_BUCKETS);
189 		unsigned int i, l, r, m;
190 		uint64_t seq;
191 
192 		bitmap_zero(bitmap, SB_JOURNAL_BUCKETS);
193 		pr_debug("%u journal buckets\n", ca->sb.njournal_buckets);
194 
195 		/*
196 		 * Read journal buckets ordered by golden ratio hash to quickly
197 		 * find a sequence of buckets with valid journal entries
198 		 */
199 		for (i = 0; i < ca->sb.njournal_buckets; i++) {
200 			/*
201 			 * We must try the index l with ZERO first for
202 			 * correctness due to the scenario that the journal
203 			 * bucket is circular buffer which might have wrapped
204 			 */
205 			l = (i * 2654435769U) % ca->sb.njournal_buckets;
206 
207 			if (test_bit(l, bitmap))
208 				break;
209 
210 			if (read_bucket(l))
211 				goto bsearch;
212 		}
213 
214 		/*
215 		 * If that fails, check all the buckets we haven't checked
216 		 * already
217 		 */
218 		pr_debug("falling back to linear search\n");
219 
220 		for (l = find_first_zero_bit(bitmap, ca->sb.njournal_buckets);
221 		     l < ca->sb.njournal_buckets;
222 		     l = find_next_zero_bit(bitmap, ca->sb.njournal_buckets,
223 					    l + 1))
224 			if (read_bucket(l))
225 				goto bsearch;
226 
227 		/* no journal entries on this device? */
228 		if (l == ca->sb.njournal_buckets)
229 			continue;
230 bsearch:
231 		BUG_ON(list_empty(list));
232 
233 		/* Binary search */
234 		m = l;
235 		r = find_next_bit(bitmap, ca->sb.njournal_buckets, l + 1);
236 		pr_debug("starting binary search, l %u r %u\n", l, r);
237 
238 		while (l + 1 < r) {
239 			seq = list_entry(list->prev, struct journal_replay,
240 					 list)->j.seq;
241 
242 			m = (l + r) >> 1;
243 			read_bucket(m);
244 
245 			if (seq != list_entry(list->prev, struct journal_replay,
246 					      list)->j.seq)
247 				l = m;
248 			else
249 				r = m;
250 		}
251 
252 		/*
253 		 * Read buckets in reverse order until we stop finding more
254 		 * journal entries
255 		 */
256 		pr_debug("finishing up: m %u njournal_buckets %u\n",
257 			 m, ca->sb.njournal_buckets);
258 		l = m;
259 
260 		while (1) {
261 			if (!l--)
262 				l = ca->sb.njournal_buckets - 1;
263 
264 			if (l == m)
265 				break;
266 
267 			if (test_bit(l, bitmap))
268 				continue;
269 
270 			if (!read_bucket(l))
271 				break;
272 		}
273 
274 		seq = 0;
275 
276 		for (i = 0; i < ca->sb.njournal_buckets; i++)
277 			if (ja->seq[i] > seq) {
278 				seq = ja->seq[i];
279 				/*
280 				 * When journal_reclaim() goes to allocate for
281 				 * the first time, it'll use the bucket after
282 				 * ja->cur_idx
283 				 */
284 				ja->cur_idx = i;
285 				ja->last_idx = ja->discard_idx = (i + 1) %
286 					ca->sb.njournal_buckets;
287 
288 			}
289 	}
290 
291 	if (!list_empty(list))
292 		c->journal.seq = list_entry(list->prev,
293 					    struct journal_replay,
294 					    list)->j.seq;
295 
296 	return 0;
297 #undef read_bucket
298 }
299 
300 void bch_journal_mark(struct cache_set *c, struct list_head *list)
301 {
302 	atomic_t p = { 0 };
303 	struct bkey *k;
304 	struct journal_replay *i;
305 	struct journal *j = &c->journal;
306 	uint64_t last = j->seq;
307 
308 	/*
309 	 * journal.pin should never fill up - we never write a journal
310 	 * entry when it would fill up. But if for some reason it does, we
311 	 * iterate over the list in reverse order so that we can just skip that
312 	 * refcount instead of bugging.
313 	 */
314 
315 	list_for_each_entry_reverse(i, list, list) {
316 		BUG_ON(last < i->j.seq);
317 		i->pin = NULL;
318 
319 		while (last-- != i->j.seq)
320 			if (fifo_free(&j->pin) > 1) {
321 				fifo_push_front(&j->pin, p);
322 				atomic_set(&fifo_front(&j->pin), 0);
323 			}
324 
325 		if (fifo_free(&j->pin) > 1) {
326 			fifo_push_front(&j->pin, p);
327 			i->pin = &fifo_front(&j->pin);
328 			atomic_set(i->pin, 1);
329 		}
330 
331 		for (k = i->j.start;
332 		     k < bset_bkey_last(&i->j);
333 		     k = bkey_next(k))
334 			if (!__bch_extent_invalid(c, k)) {
335 				unsigned int j;
336 
337 				for (j = 0; j < KEY_PTRS(k); j++)
338 					if (ptr_available(c, k, j))
339 						atomic_inc(&PTR_BUCKET(c, k, j)->pin);
340 
341 				bch_initial_mark_key(c, 0, k);
342 			}
343 	}
344 }
345 
346 static bool is_discard_enabled(struct cache_set *s)
347 {
348 	struct cache *ca;
349 	unsigned int i;
350 
351 	for_each_cache(ca, s, i)
352 		if (ca->discard)
353 			return true;
354 
355 	return false;
356 }
357 
358 int bch_journal_replay(struct cache_set *s, struct list_head *list)
359 {
360 	int ret = 0, keys = 0, entries = 0;
361 	struct bkey *k;
362 	struct journal_replay *i =
363 		list_entry(list->prev, struct journal_replay, list);
364 
365 	uint64_t start = i->j.last_seq, end = i->j.seq, n = start;
366 	struct keylist keylist;
367 
368 	list_for_each_entry(i, list, list) {
369 		BUG_ON(i->pin && atomic_read(i->pin) != 1);
370 
371 		if (n != i->j.seq) {
372 			if (n == start && is_discard_enabled(s))
373 				pr_info("journal entries %llu-%llu may be discarded! (replaying %llu-%llu)\n",
374 					n, i->j.seq - 1, start, end);
375 			else {
376 				pr_err("journal entries %llu-%llu missing! (replaying %llu-%llu)\n",
377 					n, i->j.seq - 1, start, end);
378 				ret = -EIO;
379 				goto err;
380 			}
381 		}
382 
383 		for (k = i->j.start;
384 		     k < bset_bkey_last(&i->j);
385 		     k = bkey_next(k)) {
386 			trace_bcache_journal_replay_key(k);
387 
388 			bch_keylist_init_single(&keylist, k);
389 
390 			ret = bch_btree_insert(s, &keylist, i->pin, NULL);
391 			if (ret)
392 				goto err;
393 
394 			BUG_ON(!bch_keylist_empty(&keylist));
395 			keys++;
396 
397 			cond_resched();
398 		}
399 
400 		if (i->pin)
401 			atomic_dec(i->pin);
402 		n = i->j.seq + 1;
403 		entries++;
404 	}
405 
406 	pr_info("journal replay done, %i keys in %i entries, seq %llu\n",
407 		keys, entries, end);
408 err:
409 	while (!list_empty(list)) {
410 		i = list_first_entry(list, struct journal_replay, list);
411 		list_del(&i->list);
412 		kfree(i);
413 	}
414 
415 	return ret;
416 }
417 
418 /* Journalling */
419 
420 static void btree_flush_write(struct cache_set *c)
421 {
422 	struct btree *b, *t, *btree_nodes[BTREE_FLUSH_NR];
423 	unsigned int i, nr;
424 	int ref_nr;
425 	atomic_t *fifo_front_p, *now_fifo_front_p;
426 	size_t mask;
427 
428 	if (c->journal.btree_flushing)
429 		return;
430 
431 	spin_lock(&c->journal.flush_write_lock);
432 	if (c->journal.btree_flushing) {
433 		spin_unlock(&c->journal.flush_write_lock);
434 		return;
435 	}
436 	c->journal.btree_flushing = true;
437 	spin_unlock(&c->journal.flush_write_lock);
438 
439 	/* get the oldest journal entry and check its refcount */
440 	spin_lock(&c->journal.lock);
441 	fifo_front_p = &fifo_front(&c->journal.pin);
442 	ref_nr = atomic_read(fifo_front_p);
443 	if (ref_nr <= 0) {
444 		/*
445 		 * do nothing if no btree node references
446 		 * the oldest journal entry
447 		 */
448 		spin_unlock(&c->journal.lock);
449 		goto out;
450 	}
451 	spin_unlock(&c->journal.lock);
452 
453 	mask = c->journal.pin.mask;
454 	nr = 0;
455 	atomic_long_inc(&c->flush_write);
456 	memset(btree_nodes, 0, sizeof(btree_nodes));
457 
458 	mutex_lock(&c->bucket_lock);
459 	list_for_each_entry_safe_reverse(b, t, &c->btree_cache, list) {
460 		/*
461 		 * It is safe to get now_fifo_front_p without holding
462 		 * c->journal.lock here, because we don't need to know
463 		 * the exactly accurate value, just check whether the
464 		 * front pointer of c->journal.pin is changed.
465 		 */
466 		now_fifo_front_p = &fifo_front(&c->journal.pin);
467 		/*
468 		 * If the oldest journal entry is reclaimed and front
469 		 * pointer of c->journal.pin changes, it is unnecessary
470 		 * to scan c->btree_cache anymore, just quit the loop and
471 		 * flush out what we have already.
472 		 */
473 		if (now_fifo_front_p != fifo_front_p)
474 			break;
475 		/*
476 		 * quit this loop if all matching btree nodes are
477 		 * scanned and record in btree_nodes[] already.
478 		 */
479 		ref_nr = atomic_read(fifo_front_p);
480 		if (nr >= ref_nr)
481 			break;
482 
483 		if (btree_node_journal_flush(b))
484 			pr_err("BUG: flush_write bit should not be set here!\n");
485 
486 		mutex_lock(&b->write_lock);
487 
488 		if (!btree_node_dirty(b)) {
489 			mutex_unlock(&b->write_lock);
490 			continue;
491 		}
492 
493 		if (!btree_current_write(b)->journal) {
494 			mutex_unlock(&b->write_lock);
495 			continue;
496 		}
497 
498 		/*
499 		 * Only select the btree node which exactly references
500 		 * the oldest journal entry.
501 		 *
502 		 * If the journal entry pointed by fifo_front_p is
503 		 * reclaimed in parallel, don't worry:
504 		 * - the list_for_each_xxx loop will quit when checking
505 		 *   next now_fifo_front_p.
506 		 * - If there are matched nodes recorded in btree_nodes[],
507 		 *   they are clean now (this is why and how the oldest
508 		 *   journal entry can be reclaimed). These selected nodes
509 		 *   will be ignored and skipped in the folowing for-loop.
510 		 */
511 		if (((btree_current_write(b)->journal - fifo_front_p) &
512 		     mask) != 0) {
513 			mutex_unlock(&b->write_lock);
514 			continue;
515 		}
516 
517 		set_btree_node_journal_flush(b);
518 
519 		mutex_unlock(&b->write_lock);
520 
521 		btree_nodes[nr++] = b;
522 		/*
523 		 * To avoid holding c->bucket_lock too long time,
524 		 * only scan for BTREE_FLUSH_NR matched btree nodes
525 		 * at most. If there are more btree nodes reference
526 		 * the oldest journal entry, try to flush them next
527 		 * time when btree_flush_write() is called.
528 		 */
529 		if (nr == BTREE_FLUSH_NR)
530 			break;
531 	}
532 	mutex_unlock(&c->bucket_lock);
533 
534 	for (i = 0; i < nr; i++) {
535 		b = btree_nodes[i];
536 		if (!b) {
537 			pr_err("BUG: btree_nodes[%d] is NULL\n", i);
538 			continue;
539 		}
540 
541 		/* safe to check without holding b->write_lock */
542 		if (!btree_node_journal_flush(b)) {
543 			pr_err("BUG: bnode %p: journal_flush bit cleaned\n", b);
544 			continue;
545 		}
546 
547 		mutex_lock(&b->write_lock);
548 		if (!btree_current_write(b)->journal) {
549 			clear_bit(BTREE_NODE_journal_flush, &b->flags);
550 			mutex_unlock(&b->write_lock);
551 			pr_debug("bnode %p: written by others\n", b);
552 			continue;
553 		}
554 
555 		if (!btree_node_dirty(b)) {
556 			clear_bit(BTREE_NODE_journal_flush, &b->flags);
557 			mutex_unlock(&b->write_lock);
558 			pr_debug("bnode %p: dirty bit cleaned by others\n", b);
559 			continue;
560 		}
561 
562 		__bch_btree_node_write(b, NULL);
563 		clear_bit(BTREE_NODE_journal_flush, &b->flags);
564 		mutex_unlock(&b->write_lock);
565 	}
566 
567 out:
568 	spin_lock(&c->journal.flush_write_lock);
569 	c->journal.btree_flushing = false;
570 	spin_unlock(&c->journal.flush_write_lock);
571 }
572 
573 #define last_seq(j)	((j)->seq - fifo_used(&(j)->pin) + 1)
574 
575 static void journal_discard_endio(struct bio *bio)
576 {
577 	struct journal_device *ja =
578 		container_of(bio, struct journal_device, discard_bio);
579 	struct cache *ca = container_of(ja, struct cache, journal);
580 
581 	atomic_set(&ja->discard_in_flight, DISCARD_DONE);
582 
583 	closure_wake_up(&ca->set->journal.wait);
584 	closure_put(&ca->set->cl);
585 }
586 
587 static void journal_discard_work(struct work_struct *work)
588 {
589 	struct journal_device *ja =
590 		container_of(work, struct journal_device, discard_work);
591 
592 	submit_bio(&ja->discard_bio);
593 }
594 
595 static void do_journal_discard(struct cache *ca)
596 {
597 	struct journal_device *ja = &ca->journal;
598 	struct bio *bio = &ja->discard_bio;
599 
600 	if (!ca->discard) {
601 		ja->discard_idx = ja->last_idx;
602 		return;
603 	}
604 
605 	switch (atomic_read(&ja->discard_in_flight)) {
606 	case DISCARD_IN_FLIGHT:
607 		return;
608 
609 	case DISCARD_DONE:
610 		ja->discard_idx = (ja->discard_idx + 1) %
611 			ca->sb.njournal_buckets;
612 
613 		atomic_set(&ja->discard_in_flight, DISCARD_READY);
614 		/* fallthrough */
615 
616 	case DISCARD_READY:
617 		if (ja->discard_idx == ja->last_idx)
618 			return;
619 
620 		atomic_set(&ja->discard_in_flight, DISCARD_IN_FLIGHT);
621 
622 		bio_init(bio, bio->bi_inline_vecs, 1);
623 		bio_set_op_attrs(bio, REQ_OP_DISCARD, 0);
624 		bio->bi_iter.bi_sector	= bucket_to_sector(ca->set,
625 						ca->sb.d[ja->discard_idx]);
626 		bio_set_dev(bio, ca->bdev);
627 		bio->bi_iter.bi_size	= bucket_bytes(ca);
628 		bio->bi_end_io		= journal_discard_endio;
629 
630 		closure_get(&ca->set->cl);
631 		INIT_WORK(&ja->discard_work, journal_discard_work);
632 		queue_work(bch_journal_wq, &ja->discard_work);
633 	}
634 }
635 
636 static void journal_reclaim(struct cache_set *c)
637 {
638 	struct bkey *k = &c->journal.key;
639 	struct cache *ca;
640 	uint64_t last_seq;
641 	unsigned int iter, n = 0;
642 	atomic_t p __maybe_unused;
643 
644 	atomic_long_inc(&c->reclaim);
645 
646 	while (!atomic_read(&fifo_front(&c->journal.pin)))
647 		fifo_pop(&c->journal.pin, p);
648 
649 	last_seq = last_seq(&c->journal);
650 
651 	/* Update last_idx */
652 
653 	for_each_cache(ca, c, iter) {
654 		struct journal_device *ja = &ca->journal;
655 
656 		while (ja->last_idx != ja->cur_idx &&
657 		       ja->seq[ja->last_idx] < last_seq)
658 			ja->last_idx = (ja->last_idx + 1) %
659 				ca->sb.njournal_buckets;
660 	}
661 
662 	for_each_cache(ca, c, iter)
663 		do_journal_discard(ca);
664 
665 	if (c->journal.blocks_free)
666 		goto out;
667 
668 	/*
669 	 * Allocate:
670 	 * XXX: Sort by free journal space
671 	 */
672 
673 	for_each_cache(ca, c, iter) {
674 		struct journal_device *ja = &ca->journal;
675 		unsigned int next = (ja->cur_idx + 1) % ca->sb.njournal_buckets;
676 
677 		/* No space available on this device */
678 		if (next == ja->discard_idx)
679 			continue;
680 
681 		ja->cur_idx = next;
682 		k->ptr[n++] = MAKE_PTR(0,
683 				  bucket_to_sector(c, ca->sb.d[ja->cur_idx]),
684 				  ca->sb.nr_this_dev);
685 		atomic_long_inc(&c->reclaimed_journal_buckets);
686 	}
687 
688 	if (n) {
689 		bkey_init(k);
690 		SET_KEY_PTRS(k, n);
691 		c->journal.blocks_free = c->sb.bucket_size >> c->block_bits;
692 	}
693 out:
694 	if (!journal_full(&c->journal))
695 		__closure_wake_up(&c->journal.wait);
696 }
697 
698 void bch_journal_next(struct journal *j)
699 {
700 	atomic_t p = { 1 };
701 
702 	j->cur = (j->cur == j->w)
703 		? &j->w[1]
704 		: &j->w[0];
705 
706 	/*
707 	 * The fifo_push() needs to happen at the same time as j->seq is
708 	 * incremented for last_seq() to be calculated correctly
709 	 */
710 	BUG_ON(!fifo_push(&j->pin, p));
711 	atomic_set(&fifo_back(&j->pin), 1);
712 
713 	j->cur->data->seq	= ++j->seq;
714 	j->cur->dirty		= false;
715 	j->cur->need_write	= false;
716 	j->cur->data->keys	= 0;
717 
718 	if (fifo_full(&j->pin))
719 		pr_debug("journal_pin full (%zu)\n", fifo_used(&j->pin));
720 }
721 
722 static void journal_write_endio(struct bio *bio)
723 {
724 	struct journal_write *w = bio->bi_private;
725 
726 	cache_set_err_on(bio->bi_status, w->c, "journal io error");
727 	closure_put(&w->c->journal.io);
728 }
729 
730 static void journal_write(struct closure *cl);
731 
732 static void journal_write_done(struct closure *cl)
733 {
734 	struct journal *j = container_of(cl, struct journal, io);
735 	struct journal_write *w = (j->cur == j->w)
736 		? &j->w[1]
737 		: &j->w[0];
738 
739 	__closure_wake_up(&w->wait);
740 	continue_at_nobarrier(cl, journal_write, bch_journal_wq);
741 }
742 
743 static void journal_write_unlock(struct closure *cl)
744 	__releases(&c->journal.lock)
745 {
746 	struct cache_set *c = container_of(cl, struct cache_set, journal.io);
747 
748 	c->journal.io_in_flight = 0;
749 	spin_unlock(&c->journal.lock);
750 }
751 
752 static void journal_write_unlocked(struct closure *cl)
753 	__releases(c->journal.lock)
754 {
755 	struct cache_set *c = container_of(cl, struct cache_set, journal.io);
756 	struct cache *ca;
757 	struct journal_write *w = c->journal.cur;
758 	struct bkey *k = &c->journal.key;
759 	unsigned int i, sectors = set_blocks(w->data, block_bytes(c)) *
760 		c->sb.block_size;
761 
762 	struct bio *bio;
763 	struct bio_list list;
764 
765 	bio_list_init(&list);
766 
767 	if (!w->need_write) {
768 		closure_return_with_destructor(cl, journal_write_unlock);
769 		return;
770 	} else if (journal_full(&c->journal)) {
771 		journal_reclaim(c);
772 		spin_unlock(&c->journal.lock);
773 
774 		btree_flush_write(c);
775 		continue_at(cl, journal_write, bch_journal_wq);
776 		return;
777 	}
778 
779 	c->journal.blocks_free -= set_blocks(w->data, block_bytes(c));
780 
781 	w->data->btree_level = c->root->level;
782 
783 	bkey_copy(&w->data->btree_root, &c->root->key);
784 	bkey_copy(&w->data->uuid_bucket, &c->uuid_bucket);
785 
786 	for_each_cache(ca, c, i)
787 		w->data->prio_bucket[ca->sb.nr_this_dev] = ca->prio_buckets[0];
788 
789 	w->data->magic		= jset_magic(&c->sb);
790 	w->data->version	= BCACHE_JSET_VERSION;
791 	w->data->last_seq	= last_seq(&c->journal);
792 	w->data->csum		= csum_set(w->data);
793 
794 	for (i = 0; i < KEY_PTRS(k); i++) {
795 		ca = PTR_CACHE(c, k, i);
796 		bio = &ca->journal.bio;
797 
798 		atomic_long_add(sectors, &ca->meta_sectors_written);
799 
800 		bio_reset(bio);
801 		bio->bi_iter.bi_sector	= PTR_OFFSET(k, i);
802 		bio_set_dev(bio, ca->bdev);
803 		bio->bi_iter.bi_size = sectors << 9;
804 
805 		bio->bi_end_io	= journal_write_endio;
806 		bio->bi_private = w;
807 		bio_set_op_attrs(bio, REQ_OP_WRITE,
808 				 REQ_SYNC|REQ_META|REQ_PREFLUSH|REQ_FUA);
809 		bch_bio_map(bio, w->data);
810 
811 		trace_bcache_journal_write(bio, w->data->keys);
812 		bio_list_add(&list, bio);
813 
814 		SET_PTR_OFFSET(k, i, PTR_OFFSET(k, i) + sectors);
815 
816 		ca->journal.seq[ca->journal.cur_idx] = w->data->seq;
817 	}
818 
819 	/* If KEY_PTRS(k) == 0, this jset gets lost in air */
820 	BUG_ON(i == 0);
821 
822 	atomic_dec_bug(&fifo_back(&c->journal.pin));
823 	bch_journal_next(&c->journal);
824 	journal_reclaim(c);
825 
826 	spin_unlock(&c->journal.lock);
827 
828 	while ((bio = bio_list_pop(&list)))
829 		closure_bio_submit(c, bio, cl);
830 
831 	continue_at(cl, journal_write_done, NULL);
832 }
833 
834 static void journal_write(struct closure *cl)
835 {
836 	struct cache_set *c = container_of(cl, struct cache_set, journal.io);
837 
838 	spin_lock(&c->journal.lock);
839 	journal_write_unlocked(cl);
840 }
841 
842 static void journal_try_write(struct cache_set *c)
843 	__releases(c->journal.lock)
844 {
845 	struct closure *cl = &c->journal.io;
846 	struct journal_write *w = c->journal.cur;
847 
848 	w->need_write = true;
849 
850 	if (!c->journal.io_in_flight) {
851 		c->journal.io_in_flight = 1;
852 		closure_call(cl, journal_write_unlocked, NULL, &c->cl);
853 	} else {
854 		spin_unlock(&c->journal.lock);
855 	}
856 }
857 
858 static struct journal_write *journal_wait_for_write(struct cache_set *c,
859 						    unsigned int nkeys)
860 	__acquires(&c->journal.lock)
861 {
862 	size_t sectors;
863 	struct closure cl;
864 	bool wait = false;
865 
866 	closure_init_stack(&cl);
867 
868 	spin_lock(&c->journal.lock);
869 
870 	while (1) {
871 		struct journal_write *w = c->journal.cur;
872 
873 		sectors = __set_blocks(w->data, w->data->keys + nkeys,
874 				       block_bytes(c)) * c->sb.block_size;
875 
876 		if (sectors <= min_t(size_t,
877 				     c->journal.blocks_free * c->sb.block_size,
878 				     PAGE_SECTORS << JSET_BITS))
879 			return w;
880 
881 		if (wait)
882 			closure_wait(&c->journal.wait, &cl);
883 
884 		if (!journal_full(&c->journal)) {
885 			if (wait)
886 				trace_bcache_journal_entry_full(c);
887 
888 			/*
889 			 * XXX: If we were inserting so many keys that they
890 			 * won't fit in an _empty_ journal write, we'll
891 			 * deadlock. For now, handle this in
892 			 * bch_keylist_realloc() - but something to think about.
893 			 */
894 			BUG_ON(!w->data->keys);
895 
896 			journal_try_write(c); /* unlocks */
897 		} else {
898 			if (wait)
899 				trace_bcache_journal_full(c);
900 
901 			journal_reclaim(c);
902 			spin_unlock(&c->journal.lock);
903 
904 			btree_flush_write(c);
905 		}
906 
907 		closure_sync(&cl);
908 		spin_lock(&c->journal.lock);
909 		wait = true;
910 	}
911 }
912 
913 static void journal_write_work(struct work_struct *work)
914 {
915 	struct cache_set *c = container_of(to_delayed_work(work),
916 					   struct cache_set,
917 					   journal.work);
918 	spin_lock(&c->journal.lock);
919 	if (c->journal.cur->dirty)
920 		journal_try_write(c);
921 	else
922 		spin_unlock(&c->journal.lock);
923 }
924 
925 /*
926  * Entry point to the journalling code - bio_insert() and btree_invalidate()
927  * pass bch_journal() a list of keys to be journalled, and then
928  * bch_journal() hands those same keys off to btree_insert_async()
929  */
930 
931 atomic_t *bch_journal(struct cache_set *c,
932 		      struct keylist *keys,
933 		      struct closure *parent)
934 {
935 	struct journal_write *w;
936 	atomic_t *ret;
937 
938 	/* No journaling if CACHE_SET_IO_DISABLE set already */
939 	if (unlikely(test_bit(CACHE_SET_IO_DISABLE, &c->flags)))
940 		return NULL;
941 
942 	if (!CACHE_SYNC(&c->sb))
943 		return NULL;
944 
945 	w = journal_wait_for_write(c, bch_keylist_nkeys(keys));
946 
947 	memcpy(bset_bkey_last(w->data), keys->keys, bch_keylist_bytes(keys));
948 	w->data->keys += bch_keylist_nkeys(keys);
949 
950 	ret = &fifo_back(&c->journal.pin);
951 	atomic_inc(ret);
952 
953 	if (parent) {
954 		closure_wait(&w->wait, parent);
955 		journal_try_write(c);
956 	} else if (!w->dirty) {
957 		w->dirty = true;
958 		schedule_delayed_work(&c->journal.work,
959 				      msecs_to_jiffies(c->journal_delay_ms));
960 		spin_unlock(&c->journal.lock);
961 	} else {
962 		spin_unlock(&c->journal.lock);
963 	}
964 
965 
966 	return ret;
967 }
968 
969 void bch_journal_meta(struct cache_set *c, struct closure *cl)
970 {
971 	struct keylist keys;
972 	atomic_t *ref;
973 
974 	bch_keylist_init(&keys);
975 
976 	ref = bch_journal(c, &keys, cl);
977 	if (ref)
978 		atomic_dec_bug(ref);
979 }
980 
981 void bch_journal_free(struct cache_set *c)
982 {
983 	free_pages((unsigned long) c->journal.w[1].data, JSET_BITS);
984 	free_pages((unsigned long) c->journal.w[0].data, JSET_BITS);
985 	free_fifo(&c->journal.pin);
986 }
987 
988 int bch_journal_alloc(struct cache_set *c)
989 {
990 	struct journal *j = &c->journal;
991 
992 	spin_lock_init(&j->lock);
993 	spin_lock_init(&j->flush_write_lock);
994 	INIT_DELAYED_WORK(&j->work, journal_write_work);
995 
996 	c->journal_delay_ms = 100;
997 
998 	j->w[0].c = c;
999 	j->w[1].c = c;
1000 
1001 	if (!(init_fifo(&j->pin, JOURNAL_PIN, GFP_KERNEL)) ||
1002 	    !(j->w[0].data = (void *) __get_free_pages(GFP_KERNEL, JSET_BITS)) ||
1003 	    !(j->w[1].data = (void *) __get_free_pages(GFP_KERNEL, JSET_BITS)))
1004 		return -ENOMEM;
1005 
1006 	return 0;
1007 }
1008