1 /* 2 * bcache journalling code, for btree insertions 3 * 4 * Copyright 2012 Google, Inc. 5 */ 6 7 #include "bcache.h" 8 #include "btree.h" 9 #include "debug.h" 10 #include "request.h" 11 12 #include <trace/events/bcache.h> 13 14 /* 15 * Journal replay/recovery: 16 * 17 * This code is all driven from run_cache_set(); we first read the journal 18 * entries, do some other stuff, then we mark all the keys in the journal 19 * entries (same as garbage collection would), then we replay them - reinserting 20 * them into the cache in precisely the same order as they appear in the 21 * journal. 22 * 23 * We only journal keys that go in leaf nodes, which simplifies things quite a 24 * bit. 25 */ 26 27 static void journal_read_endio(struct bio *bio, int error) 28 { 29 struct closure *cl = bio->bi_private; 30 closure_put(cl); 31 } 32 33 static int journal_read_bucket(struct cache *ca, struct list_head *list, 34 struct btree_op *op, unsigned bucket_index) 35 { 36 struct journal_device *ja = &ca->journal; 37 struct bio *bio = &ja->bio; 38 39 struct journal_replay *i; 40 struct jset *j, *data = ca->set->journal.w[0].data; 41 unsigned len, left, offset = 0; 42 int ret = 0; 43 sector_t bucket = bucket_to_sector(ca->set, ca->sb.d[bucket_index]); 44 45 pr_debug("reading %llu", (uint64_t) bucket); 46 47 while (offset < ca->sb.bucket_size) { 48 reread: left = ca->sb.bucket_size - offset; 49 len = min_t(unsigned, left, PAGE_SECTORS * 8); 50 51 bio_reset(bio); 52 bio->bi_sector = bucket + offset; 53 bio->bi_bdev = ca->bdev; 54 bio->bi_rw = READ; 55 bio->bi_size = len << 9; 56 57 bio->bi_end_io = journal_read_endio; 58 bio->bi_private = &op->cl; 59 bch_bio_map(bio, data); 60 61 closure_bio_submit(bio, &op->cl, ca); 62 closure_sync(&op->cl); 63 64 /* This function could be simpler now since we no longer write 65 * journal entries that overlap bucket boundaries; this means 66 * the start of a bucket will always have a valid journal entry 67 * if it has any journal entries at all. 68 */ 69 70 j = data; 71 while (len) { 72 struct list_head *where; 73 size_t blocks, bytes = set_bytes(j); 74 75 if (j->magic != jset_magic(ca->set)) 76 return ret; 77 78 if (bytes > left << 9) 79 return ret; 80 81 if (bytes > len << 9) 82 goto reread; 83 84 if (j->csum != csum_set(j)) 85 return ret; 86 87 blocks = set_blocks(j, ca->set); 88 89 while (!list_empty(list)) { 90 i = list_first_entry(list, 91 struct journal_replay, list); 92 if (i->j.seq >= j->last_seq) 93 break; 94 list_del(&i->list); 95 kfree(i); 96 } 97 98 list_for_each_entry_reverse(i, list, list) { 99 if (j->seq == i->j.seq) 100 goto next_set; 101 102 if (j->seq < i->j.last_seq) 103 goto next_set; 104 105 if (j->seq > i->j.seq) { 106 where = &i->list; 107 goto add; 108 } 109 } 110 111 where = list; 112 add: 113 i = kmalloc(offsetof(struct journal_replay, j) + 114 bytes, GFP_KERNEL); 115 if (!i) 116 return -ENOMEM; 117 memcpy(&i->j, j, bytes); 118 list_add(&i->list, where); 119 ret = 1; 120 121 ja->seq[bucket_index] = j->seq; 122 next_set: 123 offset += blocks * ca->sb.block_size; 124 len -= blocks * ca->sb.block_size; 125 j = ((void *) j) + blocks * block_bytes(ca); 126 } 127 } 128 129 return ret; 130 } 131 132 int bch_journal_read(struct cache_set *c, struct list_head *list, 133 struct btree_op *op) 134 { 135 #define read_bucket(b) \ 136 ({ \ 137 int ret = journal_read_bucket(ca, list, op, b); \ 138 __set_bit(b, bitmap); \ 139 if (ret < 0) \ 140 return ret; \ 141 ret; \ 142 }) 143 144 struct cache *ca; 145 unsigned iter; 146 147 for_each_cache(ca, c, iter) { 148 struct journal_device *ja = &ca->journal; 149 unsigned long bitmap[SB_JOURNAL_BUCKETS / BITS_PER_LONG]; 150 unsigned i, l, r, m; 151 uint64_t seq; 152 153 bitmap_zero(bitmap, SB_JOURNAL_BUCKETS); 154 pr_debug("%u journal buckets", ca->sb.njournal_buckets); 155 156 /* 157 * Read journal buckets ordered by golden ratio hash to quickly 158 * find a sequence of buckets with valid journal entries 159 */ 160 for (i = 0; i < ca->sb.njournal_buckets; i++) { 161 l = (i * 2654435769U) % ca->sb.njournal_buckets; 162 163 if (test_bit(l, bitmap)) 164 break; 165 166 if (read_bucket(l)) 167 goto bsearch; 168 } 169 170 /* 171 * If that fails, check all the buckets we haven't checked 172 * already 173 */ 174 pr_debug("falling back to linear search"); 175 176 for (l = find_first_zero_bit(bitmap, ca->sb.njournal_buckets); 177 l < ca->sb.njournal_buckets; 178 l = find_next_zero_bit(bitmap, ca->sb.njournal_buckets, l + 1)) 179 if (read_bucket(l)) 180 goto bsearch; 181 182 if (list_empty(list)) 183 continue; 184 bsearch: 185 /* Binary search */ 186 m = r = find_next_bit(bitmap, ca->sb.njournal_buckets, l + 1); 187 pr_debug("starting binary search, l %u r %u", l, r); 188 189 while (l + 1 < r) { 190 seq = list_entry(list->prev, struct journal_replay, 191 list)->j.seq; 192 193 m = (l + r) >> 1; 194 read_bucket(m); 195 196 if (seq != list_entry(list->prev, struct journal_replay, 197 list)->j.seq) 198 l = m; 199 else 200 r = m; 201 } 202 203 /* 204 * Read buckets in reverse order until we stop finding more 205 * journal entries 206 */ 207 pr_debug("finishing up: m %u njournal_buckets %u", 208 m, ca->sb.njournal_buckets); 209 l = m; 210 211 while (1) { 212 if (!l--) 213 l = ca->sb.njournal_buckets - 1; 214 215 if (l == m) 216 break; 217 218 if (test_bit(l, bitmap)) 219 continue; 220 221 if (!read_bucket(l)) 222 break; 223 } 224 225 seq = 0; 226 227 for (i = 0; i < ca->sb.njournal_buckets; i++) 228 if (ja->seq[i] > seq) { 229 seq = ja->seq[i]; 230 ja->cur_idx = ja->discard_idx = 231 ja->last_idx = i; 232 233 } 234 } 235 236 if (!list_empty(list)) 237 c->journal.seq = list_entry(list->prev, 238 struct journal_replay, 239 list)->j.seq; 240 241 return 0; 242 #undef read_bucket 243 } 244 245 void bch_journal_mark(struct cache_set *c, struct list_head *list) 246 { 247 atomic_t p = { 0 }; 248 struct bkey *k; 249 struct journal_replay *i; 250 struct journal *j = &c->journal; 251 uint64_t last = j->seq; 252 253 /* 254 * journal.pin should never fill up - we never write a journal 255 * entry when it would fill up. But if for some reason it does, we 256 * iterate over the list in reverse order so that we can just skip that 257 * refcount instead of bugging. 258 */ 259 260 list_for_each_entry_reverse(i, list, list) { 261 BUG_ON(last < i->j.seq); 262 i->pin = NULL; 263 264 while (last-- != i->j.seq) 265 if (fifo_free(&j->pin) > 1) { 266 fifo_push_front(&j->pin, p); 267 atomic_set(&fifo_front(&j->pin), 0); 268 } 269 270 if (fifo_free(&j->pin) > 1) { 271 fifo_push_front(&j->pin, p); 272 i->pin = &fifo_front(&j->pin); 273 atomic_set(i->pin, 1); 274 } 275 276 for (k = i->j.start; 277 k < end(&i->j); 278 k = bkey_next(k)) { 279 unsigned j; 280 281 for (j = 0; j < KEY_PTRS(k); j++) { 282 struct bucket *g = PTR_BUCKET(c, k, j); 283 atomic_inc(&g->pin); 284 285 if (g->prio == BTREE_PRIO && 286 !ptr_stale(c, k, j)) 287 g->prio = INITIAL_PRIO; 288 } 289 290 __bch_btree_mark_key(c, 0, k); 291 } 292 } 293 } 294 295 int bch_journal_replay(struct cache_set *s, struct list_head *list, 296 struct btree_op *op) 297 { 298 int ret = 0, keys = 0, entries = 0; 299 struct bkey *k; 300 struct journal_replay *i = 301 list_entry(list->prev, struct journal_replay, list); 302 303 uint64_t start = i->j.last_seq, end = i->j.seq, n = start; 304 305 list_for_each_entry(i, list, list) { 306 BUG_ON(i->pin && atomic_read(i->pin) != 1); 307 308 if (n != i->j.seq) 309 pr_err( 310 "journal entries %llu-%llu missing! (replaying %llu-%llu)\n", 311 n, i->j.seq - 1, start, end); 312 313 for (k = i->j.start; 314 k < end(&i->j); 315 k = bkey_next(k)) { 316 trace_bcache_journal_replay_key(k); 317 318 bkey_copy(op->keys.top, k); 319 bch_keylist_push(&op->keys); 320 321 op->journal = i->pin; 322 atomic_inc(op->journal); 323 324 ret = bch_btree_insert(op, s); 325 if (ret) 326 goto err; 327 328 BUG_ON(!bch_keylist_empty(&op->keys)); 329 keys++; 330 331 cond_resched(); 332 } 333 334 if (i->pin) 335 atomic_dec(i->pin); 336 n = i->j.seq + 1; 337 entries++; 338 } 339 340 pr_info("journal replay done, %i keys in %i entries, seq %llu", 341 keys, entries, end); 342 343 while (!list_empty(list)) { 344 i = list_first_entry(list, struct journal_replay, list); 345 list_del(&i->list); 346 kfree(i); 347 } 348 err: 349 closure_sync(&op->cl); 350 return ret; 351 } 352 353 /* Journalling */ 354 355 static void btree_flush_write(struct cache_set *c) 356 { 357 /* 358 * Try to find the btree node with that references the oldest journal 359 * entry, best is our current candidate and is locked if non NULL: 360 */ 361 struct btree *b, *best = NULL; 362 unsigned iter; 363 364 for_each_cached_btree(b, c, iter) { 365 if (!down_write_trylock(&b->lock)) 366 continue; 367 368 if (!btree_node_dirty(b) || 369 !btree_current_write(b)->journal) { 370 rw_unlock(true, b); 371 continue; 372 } 373 374 if (!best) 375 best = b; 376 else if (journal_pin_cmp(c, 377 btree_current_write(best), 378 btree_current_write(b))) { 379 rw_unlock(true, best); 380 best = b; 381 } else 382 rw_unlock(true, b); 383 } 384 385 if (best) 386 goto out; 387 388 /* We can't find the best btree node, just pick the first */ 389 list_for_each_entry(b, &c->btree_cache, list) 390 if (!b->level && btree_node_dirty(b)) { 391 best = b; 392 rw_lock(true, best, best->level); 393 goto found; 394 } 395 396 out: 397 if (!best) 398 return; 399 found: 400 if (btree_node_dirty(best)) 401 bch_btree_node_write(best, NULL); 402 rw_unlock(true, best); 403 } 404 405 #define last_seq(j) ((j)->seq - fifo_used(&(j)->pin) + 1) 406 407 static void journal_discard_endio(struct bio *bio, int error) 408 { 409 struct journal_device *ja = 410 container_of(bio, struct journal_device, discard_bio); 411 struct cache *ca = container_of(ja, struct cache, journal); 412 413 atomic_set(&ja->discard_in_flight, DISCARD_DONE); 414 415 closure_wake_up(&ca->set->journal.wait); 416 closure_put(&ca->set->cl); 417 } 418 419 static void journal_discard_work(struct work_struct *work) 420 { 421 struct journal_device *ja = 422 container_of(work, struct journal_device, discard_work); 423 424 submit_bio(0, &ja->discard_bio); 425 } 426 427 static void do_journal_discard(struct cache *ca) 428 { 429 struct journal_device *ja = &ca->journal; 430 struct bio *bio = &ja->discard_bio; 431 432 if (!ca->discard) { 433 ja->discard_idx = ja->last_idx; 434 return; 435 } 436 437 switch (atomic_read(&ja->discard_in_flight)) { 438 case DISCARD_IN_FLIGHT: 439 return; 440 441 case DISCARD_DONE: 442 ja->discard_idx = (ja->discard_idx + 1) % 443 ca->sb.njournal_buckets; 444 445 atomic_set(&ja->discard_in_flight, DISCARD_READY); 446 /* fallthrough */ 447 448 case DISCARD_READY: 449 if (ja->discard_idx == ja->last_idx) 450 return; 451 452 atomic_set(&ja->discard_in_flight, DISCARD_IN_FLIGHT); 453 454 bio_init(bio); 455 bio->bi_sector = bucket_to_sector(ca->set, 456 ca->sb.d[ja->discard_idx]); 457 bio->bi_bdev = ca->bdev; 458 bio->bi_rw = REQ_WRITE|REQ_DISCARD; 459 bio->bi_max_vecs = 1; 460 bio->bi_io_vec = bio->bi_inline_vecs; 461 bio->bi_size = bucket_bytes(ca); 462 bio->bi_end_io = journal_discard_endio; 463 464 closure_get(&ca->set->cl); 465 INIT_WORK(&ja->discard_work, journal_discard_work); 466 schedule_work(&ja->discard_work); 467 } 468 } 469 470 static void journal_reclaim(struct cache_set *c) 471 { 472 struct bkey *k = &c->journal.key; 473 struct cache *ca; 474 uint64_t last_seq; 475 unsigned iter, n = 0; 476 atomic_t p; 477 478 while (!atomic_read(&fifo_front(&c->journal.pin))) 479 fifo_pop(&c->journal.pin, p); 480 481 last_seq = last_seq(&c->journal); 482 483 /* Update last_idx */ 484 485 for_each_cache(ca, c, iter) { 486 struct journal_device *ja = &ca->journal; 487 488 while (ja->last_idx != ja->cur_idx && 489 ja->seq[ja->last_idx] < last_seq) 490 ja->last_idx = (ja->last_idx + 1) % 491 ca->sb.njournal_buckets; 492 } 493 494 for_each_cache(ca, c, iter) 495 do_journal_discard(ca); 496 497 if (c->journal.blocks_free) 498 return; 499 500 /* 501 * Allocate: 502 * XXX: Sort by free journal space 503 */ 504 505 for_each_cache(ca, c, iter) { 506 struct journal_device *ja = &ca->journal; 507 unsigned next = (ja->cur_idx + 1) % ca->sb.njournal_buckets; 508 509 /* No space available on this device */ 510 if (next == ja->discard_idx) 511 continue; 512 513 ja->cur_idx = next; 514 k->ptr[n++] = PTR(0, 515 bucket_to_sector(c, ca->sb.d[ja->cur_idx]), 516 ca->sb.nr_this_dev); 517 } 518 519 bkey_init(k); 520 SET_KEY_PTRS(k, n); 521 522 if (n) 523 c->journal.blocks_free = c->sb.bucket_size >> c->block_bits; 524 525 if (!journal_full(&c->journal)) 526 __closure_wake_up(&c->journal.wait); 527 } 528 529 void bch_journal_next(struct journal *j) 530 { 531 atomic_t p = { 1 }; 532 533 j->cur = (j->cur == j->w) 534 ? &j->w[1] 535 : &j->w[0]; 536 537 /* 538 * The fifo_push() needs to happen at the same time as j->seq is 539 * incremented for last_seq() to be calculated correctly 540 */ 541 BUG_ON(!fifo_push(&j->pin, p)); 542 atomic_set(&fifo_back(&j->pin), 1); 543 544 j->cur->data->seq = ++j->seq; 545 j->cur->need_write = false; 546 j->cur->data->keys = 0; 547 548 if (fifo_full(&j->pin)) 549 pr_debug("journal_pin full (%zu)", fifo_used(&j->pin)); 550 } 551 552 static void journal_write_endio(struct bio *bio, int error) 553 { 554 struct journal_write *w = bio->bi_private; 555 556 cache_set_err_on(error, w->c, "journal io error"); 557 closure_put(&w->c->journal.io.cl); 558 } 559 560 static void journal_write(struct closure *); 561 562 static void journal_write_done(struct closure *cl) 563 { 564 struct journal *j = container_of(cl, struct journal, io.cl); 565 struct cache_set *c = container_of(j, struct cache_set, journal); 566 567 struct journal_write *w = (j->cur == j->w) 568 ? &j->w[1] 569 : &j->w[0]; 570 571 __closure_wake_up(&w->wait); 572 573 if (c->journal_delay_ms) 574 closure_delay(&j->io, msecs_to_jiffies(c->journal_delay_ms)); 575 576 continue_at(cl, journal_write, system_wq); 577 } 578 579 static void journal_write_unlocked(struct closure *cl) 580 __releases(c->journal.lock) 581 { 582 struct cache_set *c = container_of(cl, struct cache_set, journal.io.cl); 583 struct cache *ca; 584 struct journal_write *w = c->journal.cur; 585 struct bkey *k = &c->journal.key; 586 unsigned i, sectors = set_blocks(w->data, c) * c->sb.block_size; 587 588 struct bio *bio; 589 struct bio_list list; 590 bio_list_init(&list); 591 592 if (!w->need_write) { 593 /* 594 * XXX: have to unlock closure before we unlock journal lock, 595 * else we race with bch_journal(). But this way we race 596 * against cache set unregister. Doh. 597 */ 598 set_closure_fn(cl, NULL, NULL); 599 closure_sub(cl, CLOSURE_RUNNING + 1); 600 spin_unlock(&c->journal.lock); 601 return; 602 } else if (journal_full(&c->journal)) { 603 journal_reclaim(c); 604 spin_unlock(&c->journal.lock); 605 606 btree_flush_write(c); 607 continue_at(cl, journal_write, system_wq); 608 } 609 610 c->journal.blocks_free -= set_blocks(w->data, c); 611 612 w->data->btree_level = c->root->level; 613 614 bkey_copy(&w->data->btree_root, &c->root->key); 615 bkey_copy(&w->data->uuid_bucket, &c->uuid_bucket); 616 617 for_each_cache(ca, c, i) 618 w->data->prio_bucket[ca->sb.nr_this_dev] = ca->prio_buckets[0]; 619 620 w->data->magic = jset_magic(c); 621 w->data->version = BCACHE_JSET_VERSION; 622 w->data->last_seq = last_seq(&c->journal); 623 w->data->csum = csum_set(w->data); 624 625 for (i = 0; i < KEY_PTRS(k); i++) { 626 ca = PTR_CACHE(c, k, i); 627 bio = &ca->journal.bio; 628 629 atomic_long_add(sectors, &ca->meta_sectors_written); 630 631 bio_reset(bio); 632 bio->bi_sector = PTR_OFFSET(k, i); 633 bio->bi_bdev = ca->bdev; 634 bio->bi_rw = REQ_WRITE|REQ_SYNC|REQ_META|REQ_FLUSH|REQ_FUA; 635 bio->bi_size = sectors << 9; 636 637 bio->bi_end_io = journal_write_endio; 638 bio->bi_private = w; 639 bch_bio_map(bio, w->data); 640 641 trace_bcache_journal_write(bio); 642 bio_list_add(&list, bio); 643 644 SET_PTR_OFFSET(k, i, PTR_OFFSET(k, i) + sectors); 645 646 ca->journal.seq[ca->journal.cur_idx] = w->data->seq; 647 } 648 649 atomic_dec_bug(&fifo_back(&c->journal.pin)); 650 bch_journal_next(&c->journal); 651 journal_reclaim(c); 652 653 spin_unlock(&c->journal.lock); 654 655 while ((bio = bio_list_pop(&list))) 656 closure_bio_submit(bio, cl, c->cache[0]); 657 658 continue_at(cl, journal_write_done, NULL); 659 } 660 661 static void journal_write(struct closure *cl) 662 { 663 struct cache_set *c = container_of(cl, struct cache_set, journal.io.cl); 664 665 spin_lock(&c->journal.lock); 666 journal_write_unlocked(cl); 667 } 668 669 static void __journal_try_write(struct cache_set *c, bool noflush) 670 __releases(c->journal.lock) 671 { 672 struct closure *cl = &c->journal.io.cl; 673 674 if (!closure_trylock(cl, &c->cl)) 675 spin_unlock(&c->journal.lock); 676 else if (noflush && journal_full(&c->journal)) { 677 spin_unlock(&c->journal.lock); 678 continue_at(cl, journal_write, system_wq); 679 } else 680 journal_write_unlocked(cl); 681 } 682 683 #define journal_try_write(c) __journal_try_write(c, false) 684 685 void bch_journal_meta(struct cache_set *c, struct closure *cl) 686 { 687 struct journal_write *w; 688 689 if (CACHE_SYNC(&c->sb)) { 690 spin_lock(&c->journal.lock); 691 692 w = c->journal.cur; 693 w->need_write = true; 694 695 if (cl) 696 BUG_ON(!closure_wait(&w->wait, cl)); 697 698 closure_flush(&c->journal.io); 699 __journal_try_write(c, true); 700 } 701 } 702 703 /* 704 * Entry point to the journalling code - bio_insert() and btree_invalidate() 705 * pass bch_journal() a list of keys to be journalled, and then 706 * bch_journal() hands those same keys off to btree_insert_async() 707 */ 708 709 void bch_journal(struct closure *cl) 710 { 711 struct btree_op *op = container_of(cl, struct btree_op, cl); 712 struct cache_set *c = op->c; 713 struct journal_write *w; 714 size_t b, n = ((uint64_t *) op->keys.top) - op->keys.list; 715 716 if (op->type != BTREE_INSERT || 717 !CACHE_SYNC(&c->sb)) 718 goto out; 719 720 /* 721 * If we're looping because we errored, might already be waiting on 722 * another journal write: 723 */ 724 while (atomic_read(&cl->parent->remaining) & CLOSURE_WAITING) 725 closure_sync(cl->parent); 726 727 spin_lock(&c->journal.lock); 728 729 if (journal_full(&c->journal)) { 730 trace_bcache_journal_full(c); 731 732 closure_wait(&c->journal.wait, cl); 733 734 journal_reclaim(c); 735 spin_unlock(&c->journal.lock); 736 737 btree_flush_write(c); 738 continue_at(cl, bch_journal, bcache_wq); 739 } 740 741 w = c->journal.cur; 742 w->need_write = true; 743 b = __set_blocks(w->data, w->data->keys + n, c); 744 745 if (b * c->sb.block_size > PAGE_SECTORS << JSET_BITS || 746 b > c->journal.blocks_free) { 747 trace_bcache_journal_entry_full(c); 748 749 /* 750 * XXX: If we were inserting so many keys that they won't fit in 751 * an _empty_ journal write, we'll deadlock. For now, handle 752 * this in bch_keylist_realloc() - but something to think about. 753 */ 754 BUG_ON(!w->data->keys); 755 756 BUG_ON(!closure_wait(&w->wait, cl)); 757 758 closure_flush(&c->journal.io); 759 760 journal_try_write(c); 761 continue_at(cl, bch_journal, bcache_wq); 762 } 763 764 memcpy(end(w->data), op->keys.list, n * sizeof(uint64_t)); 765 w->data->keys += n; 766 767 op->journal = &fifo_back(&c->journal.pin); 768 atomic_inc(op->journal); 769 770 if (op->flush_journal) { 771 closure_flush(&c->journal.io); 772 closure_wait(&w->wait, cl->parent); 773 } 774 775 journal_try_write(c); 776 out: 777 bch_btree_insert_async(cl); 778 } 779 780 void bch_journal_free(struct cache_set *c) 781 { 782 free_pages((unsigned long) c->journal.w[1].data, JSET_BITS); 783 free_pages((unsigned long) c->journal.w[0].data, JSET_BITS); 784 free_fifo(&c->journal.pin); 785 } 786 787 int bch_journal_alloc(struct cache_set *c) 788 { 789 struct journal *j = &c->journal; 790 791 closure_init_unlocked(&j->io); 792 spin_lock_init(&j->lock); 793 794 c->journal_delay_ms = 100; 795 796 j->w[0].c = c; 797 j->w[1].c = c; 798 799 if (!(init_fifo(&j->pin, JOURNAL_PIN, GFP_KERNEL)) || 800 !(j->w[0].data = (void *) __get_free_pages(GFP_KERNEL, JSET_BITS)) || 801 !(j->w[1].data = (void *) __get_free_pages(GFP_KERNEL, JSET_BITS))) 802 return -ENOMEM; 803 804 return 0; 805 } 806