1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * bcache journalling code, for btree insertions 4 * 5 * Copyright 2012 Google, Inc. 6 */ 7 8 #include "bcache.h" 9 #include "btree.h" 10 #include "debug.h" 11 #include "extents.h" 12 13 #include <trace/events/bcache.h> 14 15 /* 16 * Journal replay/recovery: 17 * 18 * This code is all driven from run_cache_set(); we first read the journal 19 * entries, do some other stuff, then we mark all the keys in the journal 20 * entries (same as garbage collection would), then we replay them - reinserting 21 * them into the cache in precisely the same order as they appear in the 22 * journal. 23 * 24 * We only journal keys that go in leaf nodes, which simplifies things quite a 25 * bit. 26 */ 27 28 static void journal_read_endio(struct bio *bio) 29 { 30 struct closure *cl = bio->bi_private; 31 32 closure_put(cl); 33 } 34 35 static int journal_read_bucket(struct cache *ca, struct list_head *list, 36 unsigned int bucket_index) 37 { 38 struct journal_device *ja = &ca->journal; 39 struct bio *bio = &ja->bio; 40 41 struct journal_replay *i; 42 struct jset *j, *data = ca->set->journal.w[0].data; 43 struct closure cl; 44 unsigned int len, left, offset = 0; 45 int ret = 0; 46 sector_t bucket = bucket_to_sector(ca->set, ca->sb.d[bucket_index]); 47 48 closure_init_stack(&cl); 49 50 pr_debug("reading %u", bucket_index); 51 52 while (offset < ca->sb.bucket_size) { 53 reread: left = ca->sb.bucket_size - offset; 54 len = min_t(unsigned int, left, PAGE_SECTORS << JSET_BITS); 55 56 bio_reset(bio); 57 bio->bi_iter.bi_sector = bucket + offset; 58 bio_set_dev(bio, ca->bdev); 59 bio->bi_iter.bi_size = len << 9; 60 61 bio->bi_end_io = journal_read_endio; 62 bio->bi_private = &cl; 63 bio_set_op_attrs(bio, REQ_OP_READ, 0); 64 bch_bio_map(bio, data); 65 66 closure_bio_submit(ca->set, bio, &cl); 67 closure_sync(&cl); 68 69 /* This function could be simpler now since we no longer write 70 * journal entries that overlap bucket boundaries; this means 71 * the start of a bucket will always have a valid journal entry 72 * if it has any journal entries at all. 73 */ 74 75 j = data; 76 while (len) { 77 struct list_head *where; 78 size_t blocks, bytes = set_bytes(j); 79 80 if (j->magic != jset_magic(&ca->sb)) { 81 pr_debug("%u: bad magic", bucket_index); 82 return ret; 83 } 84 85 if (bytes > left << 9 || 86 bytes > PAGE_SIZE << JSET_BITS) { 87 pr_info("%u: too big, %zu bytes, offset %u", 88 bucket_index, bytes, offset); 89 return ret; 90 } 91 92 if (bytes > len << 9) 93 goto reread; 94 95 if (j->csum != csum_set(j)) { 96 pr_info("%u: bad csum, %zu bytes, offset %u", 97 bucket_index, bytes, offset); 98 return ret; 99 } 100 101 blocks = set_blocks(j, block_bytes(ca->set)); 102 103 /* 104 * Nodes in 'list' are in linear increasing order of 105 * i->j.seq, the node on head has the smallest (oldest) 106 * journal seq, the node on tail has the biggest 107 * (latest) journal seq. 108 */ 109 110 /* 111 * Check from the oldest jset for last_seq. If 112 * i->j.seq < j->last_seq, it means the oldest jset 113 * in list is expired and useless, remove it from 114 * this list. Otherwise, j is a condidate jset for 115 * further following checks. 116 */ 117 while (!list_empty(list)) { 118 i = list_first_entry(list, 119 struct journal_replay, list); 120 if (i->j.seq >= j->last_seq) 121 break; 122 list_del(&i->list); 123 kfree(i); 124 } 125 126 /* iterate list in reverse order (from latest jset) */ 127 list_for_each_entry_reverse(i, list, list) { 128 if (j->seq == i->j.seq) 129 goto next_set; 130 131 /* 132 * if j->seq is less than any i->j.last_seq 133 * in list, j is an expired and useless jset. 134 */ 135 if (j->seq < i->j.last_seq) 136 goto next_set; 137 138 /* 139 * 'where' points to first jset in list which 140 * is elder then j. 141 */ 142 if (j->seq > i->j.seq) { 143 where = &i->list; 144 goto add; 145 } 146 } 147 148 where = list; 149 add: 150 i = kmalloc(offsetof(struct journal_replay, j) + 151 bytes, GFP_KERNEL); 152 if (!i) 153 return -ENOMEM; 154 memcpy(&i->j, j, bytes); 155 /* Add to the location after 'where' points to */ 156 list_add(&i->list, where); 157 ret = 1; 158 159 if (j->seq > ja->seq[bucket_index]) 160 ja->seq[bucket_index] = j->seq; 161 next_set: 162 offset += blocks * ca->sb.block_size; 163 len -= blocks * ca->sb.block_size; 164 j = ((void *) j) + blocks * block_bytes(ca); 165 } 166 } 167 168 return ret; 169 } 170 171 int bch_journal_read(struct cache_set *c, struct list_head *list) 172 { 173 #define read_bucket(b) \ 174 ({ \ 175 ret = journal_read_bucket(ca, list, b); \ 176 __set_bit(b, bitmap); \ 177 if (ret < 0) \ 178 return ret; \ 179 ret; \ 180 }) 181 182 struct cache *ca; 183 unsigned int iter; 184 int ret = 0; 185 186 for_each_cache(ca, c, iter) { 187 struct journal_device *ja = &ca->journal; 188 DECLARE_BITMAP(bitmap, SB_JOURNAL_BUCKETS); 189 unsigned int i, l, r, m; 190 uint64_t seq; 191 192 bitmap_zero(bitmap, SB_JOURNAL_BUCKETS); 193 pr_debug("%u journal buckets", ca->sb.njournal_buckets); 194 195 /* 196 * Read journal buckets ordered by golden ratio hash to quickly 197 * find a sequence of buckets with valid journal entries 198 */ 199 for (i = 0; i < ca->sb.njournal_buckets; i++) { 200 /* 201 * We must try the index l with ZERO first for 202 * correctness due to the scenario that the journal 203 * bucket is circular buffer which might have wrapped 204 */ 205 l = (i * 2654435769U) % ca->sb.njournal_buckets; 206 207 if (test_bit(l, bitmap)) 208 break; 209 210 if (read_bucket(l)) 211 goto bsearch; 212 } 213 214 /* 215 * If that fails, check all the buckets we haven't checked 216 * already 217 */ 218 pr_debug("falling back to linear search"); 219 220 for (l = find_first_zero_bit(bitmap, ca->sb.njournal_buckets); 221 l < ca->sb.njournal_buckets; 222 l = find_next_zero_bit(bitmap, ca->sb.njournal_buckets, 223 l + 1)) 224 if (read_bucket(l)) 225 goto bsearch; 226 227 /* no journal entries on this device? */ 228 if (l == ca->sb.njournal_buckets) 229 continue; 230 bsearch: 231 BUG_ON(list_empty(list)); 232 233 /* Binary search */ 234 m = l; 235 r = find_next_bit(bitmap, ca->sb.njournal_buckets, l + 1); 236 pr_debug("starting binary search, l %u r %u", l, r); 237 238 while (l + 1 < r) { 239 seq = list_entry(list->prev, struct journal_replay, 240 list)->j.seq; 241 242 m = (l + r) >> 1; 243 read_bucket(m); 244 245 if (seq != list_entry(list->prev, struct journal_replay, 246 list)->j.seq) 247 l = m; 248 else 249 r = m; 250 } 251 252 /* 253 * Read buckets in reverse order until we stop finding more 254 * journal entries 255 */ 256 pr_debug("finishing up: m %u njournal_buckets %u", 257 m, ca->sb.njournal_buckets); 258 l = m; 259 260 while (1) { 261 if (!l--) 262 l = ca->sb.njournal_buckets - 1; 263 264 if (l == m) 265 break; 266 267 if (test_bit(l, bitmap)) 268 continue; 269 270 if (!read_bucket(l)) 271 break; 272 } 273 274 seq = 0; 275 276 for (i = 0; i < ca->sb.njournal_buckets; i++) 277 if (ja->seq[i] > seq) { 278 seq = ja->seq[i]; 279 /* 280 * When journal_reclaim() goes to allocate for 281 * the first time, it'll use the bucket after 282 * ja->cur_idx 283 */ 284 ja->cur_idx = i; 285 ja->last_idx = ja->discard_idx = (i + 1) % 286 ca->sb.njournal_buckets; 287 288 } 289 } 290 291 if (!list_empty(list)) 292 c->journal.seq = list_entry(list->prev, 293 struct journal_replay, 294 list)->j.seq; 295 296 return 0; 297 #undef read_bucket 298 } 299 300 void bch_journal_mark(struct cache_set *c, struct list_head *list) 301 { 302 atomic_t p = { 0 }; 303 struct bkey *k; 304 struct journal_replay *i; 305 struct journal *j = &c->journal; 306 uint64_t last = j->seq; 307 308 /* 309 * journal.pin should never fill up - we never write a journal 310 * entry when it would fill up. But if for some reason it does, we 311 * iterate over the list in reverse order so that we can just skip that 312 * refcount instead of bugging. 313 */ 314 315 list_for_each_entry_reverse(i, list, list) { 316 BUG_ON(last < i->j.seq); 317 i->pin = NULL; 318 319 while (last-- != i->j.seq) 320 if (fifo_free(&j->pin) > 1) { 321 fifo_push_front(&j->pin, p); 322 atomic_set(&fifo_front(&j->pin), 0); 323 } 324 325 if (fifo_free(&j->pin) > 1) { 326 fifo_push_front(&j->pin, p); 327 i->pin = &fifo_front(&j->pin); 328 atomic_set(i->pin, 1); 329 } 330 331 for (k = i->j.start; 332 k < bset_bkey_last(&i->j); 333 k = bkey_next(k)) 334 if (!__bch_extent_invalid(c, k)) { 335 unsigned int j; 336 337 for (j = 0; j < KEY_PTRS(k); j++) 338 if (ptr_available(c, k, j)) 339 atomic_inc(&PTR_BUCKET(c, k, j)->pin); 340 341 bch_initial_mark_key(c, 0, k); 342 } 343 } 344 } 345 346 static bool is_discard_enabled(struct cache_set *s) 347 { 348 struct cache *ca; 349 unsigned int i; 350 351 for_each_cache(ca, s, i) 352 if (ca->discard) 353 return true; 354 355 return false; 356 } 357 358 int bch_journal_replay(struct cache_set *s, struct list_head *list) 359 { 360 int ret = 0, keys = 0, entries = 0; 361 struct bkey *k; 362 struct journal_replay *i = 363 list_entry(list->prev, struct journal_replay, list); 364 365 uint64_t start = i->j.last_seq, end = i->j.seq, n = start; 366 struct keylist keylist; 367 368 list_for_each_entry(i, list, list) { 369 BUG_ON(i->pin && atomic_read(i->pin) != 1); 370 371 if (n != i->j.seq) { 372 if (n == start && is_discard_enabled(s)) 373 pr_info("bcache: journal entries %llu-%llu may be discarded! (replaying %llu-%llu)", 374 n, i->j.seq - 1, start, end); 375 else { 376 pr_err("bcache: journal entries %llu-%llu missing! (replaying %llu-%llu)", 377 n, i->j.seq - 1, start, end); 378 ret = -EIO; 379 goto err; 380 } 381 } 382 383 for (k = i->j.start; 384 k < bset_bkey_last(&i->j); 385 k = bkey_next(k)) { 386 trace_bcache_journal_replay_key(k); 387 388 bch_keylist_init_single(&keylist, k); 389 390 ret = bch_btree_insert(s, &keylist, i->pin, NULL); 391 if (ret) 392 goto err; 393 394 BUG_ON(!bch_keylist_empty(&keylist)); 395 keys++; 396 397 cond_resched(); 398 } 399 400 if (i->pin) 401 atomic_dec(i->pin); 402 n = i->j.seq + 1; 403 entries++; 404 } 405 406 pr_info("journal replay done, %i keys in %i entries, seq %llu", 407 keys, entries, end); 408 err: 409 while (!list_empty(list)) { 410 i = list_first_entry(list, struct journal_replay, list); 411 list_del(&i->list); 412 kfree(i); 413 } 414 415 return ret; 416 } 417 418 /* Journalling */ 419 420 #define nr_to_fifo_front(p, front_p, mask) (((p) - (front_p)) & (mask)) 421 422 static void btree_flush_write(struct cache_set *c) 423 { 424 struct btree *b, *t, *btree_nodes[BTREE_FLUSH_NR]; 425 unsigned int i, nr; 426 int ref_nr; 427 atomic_t *fifo_front_p, *now_fifo_front_p; 428 size_t mask; 429 430 if (c->journal.btree_flushing) 431 return; 432 433 spin_lock(&c->journal.flush_write_lock); 434 if (c->journal.btree_flushing) { 435 spin_unlock(&c->journal.flush_write_lock); 436 return; 437 } 438 c->journal.btree_flushing = true; 439 spin_unlock(&c->journal.flush_write_lock); 440 441 /* get the oldest journal entry and check its refcount */ 442 spin_lock(&c->journal.lock); 443 fifo_front_p = &fifo_front(&c->journal.pin); 444 ref_nr = atomic_read(fifo_front_p); 445 if (ref_nr <= 0) { 446 /* 447 * do nothing if no btree node references 448 * the oldest journal entry 449 */ 450 spin_unlock(&c->journal.lock); 451 goto out; 452 } 453 spin_unlock(&c->journal.lock); 454 455 mask = c->journal.pin.mask; 456 nr = 0; 457 atomic_long_inc(&c->flush_write); 458 memset(btree_nodes, 0, sizeof(btree_nodes)); 459 460 mutex_lock(&c->bucket_lock); 461 list_for_each_entry_safe_reverse(b, t, &c->btree_cache, list) { 462 /* 463 * It is safe to get now_fifo_front_p without holding 464 * c->journal.lock here, because we don't need to know 465 * the exactly accurate value, just check whether the 466 * front pointer of c->journal.pin is changed. 467 */ 468 now_fifo_front_p = &fifo_front(&c->journal.pin); 469 /* 470 * If the oldest journal entry is reclaimed and front 471 * pointer of c->journal.pin changes, it is unnecessary 472 * to scan c->btree_cache anymore, just quit the loop and 473 * flush out what we have already. 474 */ 475 if (now_fifo_front_p != fifo_front_p) 476 break; 477 /* 478 * quit this loop if all matching btree nodes are 479 * scanned and record in btree_nodes[] already. 480 */ 481 ref_nr = atomic_read(fifo_front_p); 482 if (nr >= ref_nr) 483 break; 484 485 if (btree_node_journal_flush(b)) 486 pr_err("BUG: flush_write bit should not be set here!"); 487 488 mutex_lock(&b->write_lock); 489 490 if (!btree_node_dirty(b)) { 491 mutex_unlock(&b->write_lock); 492 continue; 493 } 494 495 if (!btree_current_write(b)->journal) { 496 mutex_unlock(&b->write_lock); 497 continue; 498 } 499 500 /* 501 * Only select the btree node which exactly references 502 * the oldest journal entry. 503 * 504 * If the journal entry pointed by fifo_front_p is 505 * reclaimed in parallel, don't worry: 506 * - the list_for_each_xxx loop will quit when checking 507 * next now_fifo_front_p. 508 * - If there are matched nodes recorded in btree_nodes[], 509 * they are clean now (this is why and how the oldest 510 * journal entry can be reclaimed). These selected nodes 511 * will be ignored and skipped in the folowing for-loop. 512 */ 513 if (nr_to_fifo_front(btree_current_write(b)->journal, 514 fifo_front_p, 515 mask) != 0) { 516 mutex_unlock(&b->write_lock); 517 continue; 518 } 519 520 set_btree_node_journal_flush(b); 521 522 mutex_unlock(&b->write_lock); 523 524 btree_nodes[nr++] = b; 525 /* 526 * To avoid holding c->bucket_lock too long time, 527 * only scan for BTREE_FLUSH_NR matched btree nodes 528 * at most. If there are more btree nodes reference 529 * the oldest journal entry, try to flush them next 530 * time when btree_flush_write() is called. 531 */ 532 if (nr == BTREE_FLUSH_NR) 533 break; 534 } 535 mutex_unlock(&c->bucket_lock); 536 537 for (i = 0; i < nr; i++) { 538 b = btree_nodes[i]; 539 if (!b) { 540 pr_err("BUG: btree_nodes[%d] is NULL", i); 541 continue; 542 } 543 544 /* safe to check without holding b->write_lock */ 545 if (!btree_node_journal_flush(b)) { 546 pr_err("BUG: bnode %p: journal_flush bit cleaned", b); 547 continue; 548 } 549 550 mutex_lock(&b->write_lock); 551 if (!btree_current_write(b)->journal) { 552 clear_bit(BTREE_NODE_journal_flush, &b->flags); 553 mutex_unlock(&b->write_lock); 554 pr_debug("bnode %p: written by others", b); 555 continue; 556 } 557 558 if (!btree_node_dirty(b)) { 559 clear_bit(BTREE_NODE_journal_flush, &b->flags); 560 mutex_unlock(&b->write_lock); 561 pr_debug("bnode %p: dirty bit cleaned by others", b); 562 continue; 563 } 564 565 __bch_btree_node_write(b, NULL); 566 clear_bit(BTREE_NODE_journal_flush, &b->flags); 567 mutex_unlock(&b->write_lock); 568 } 569 570 out: 571 spin_lock(&c->journal.flush_write_lock); 572 c->journal.btree_flushing = false; 573 spin_unlock(&c->journal.flush_write_lock); 574 } 575 576 #define last_seq(j) ((j)->seq - fifo_used(&(j)->pin) + 1) 577 578 static void journal_discard_endio(struct bio *bio) 579 { 580 struct journal_device *ja = 581 container_of(bio, struct journal_device, discard_bio); 582 struct cache *ca = container_of(ja, struct cache, journal); 583 584 atomic_set(&ja->discard_in_flight, DISCARD_DONE); 585 586 closure_wake_up(&ca->set->journal.wait); 587 closure_put(&ca->set->cl); 588 } 589 590 static void journal_discard_work(struct work_struct *work) 591 { 592 struct journal_device *ja = 593 container_of(work, struct journal_device, discard_work); 594 595 submit_bio(&ja->discard_bio); 596 } 597 598 static void do_journal_discard(struct cache *ca) 599 { 600 struct journal_device *ja = &ca->journal; 601 struct bio *bio = &ja->discard_bio; 602 603 if (!ca->discard) { 604 ja->discard_idx = ja->last_idx; 605 return; 606 } 607 608 switch (atomic_read(&ja->discard_in_flight)) { 609 case DISCARD_IN_FLIGHT: 610 return; 611 612 case DISCARD_DONE: 613 ja->discard_idx = (ja->discard_idx + 1) % 614 ca->sb.njournal_buckets; 615 616 atomic_set(&ja->discard_in_flight, DISCARD_READY); 617 /* fallthrough */ 618 619 case DISCARD_READY: 620 if (ja->discard_idx == ja->last_idx) 621 return; 622 623 atomic_set(&ja->discard_in_flight, DISCARD_IN_FLIGHT); 624 625 bio_init(bio, bio->bi_inline_vecs, 1); 626 bio_set_op_attrs(bio, REQ_OP_DISCARD, 0); 627 bio->bi_iter.bi_sector = bucket_to_sector(ca->set, 628 ca->sb.d[ja->discard_idx]); 629 bio_set_dev(bio, ca->bdev); 630 bio->bi_iter.bi_size = bucket_bytes(ca); 631 bio->bi_end_io = journal_discard_endio; 632 633 closure_get(&ca->set->cl); 634 INIT_WORK(&ja->discard_work, journal_discard_work); 635 queue_work(bch_journal_wq, &ja->discard_work); 636 } 637 } 638 639 static void journal_reclaim(struct cache_set *c) 640 { 641 struct bkey *k = &c->journal.key; 642 struct cache *ca; 643 uint64_t last_seq; 644 unsigned int iter, n = 0; 645 atomic_t p __maybe_unused; 646 647 atomic_long_inc(&c->reclaim); 648 649 while (!atomic_read(&fifo_front(&c->journal.pin))) 650 fifo_pop(&c->journal.pin, p); 651 652 last_seq = last_seq(&c->journal); 653 654 /* Update last_idx */ 655 656 for_each_cache(ca, c, iter) { 657 struct journal_device *ja = &ca->journal; 658 659 while (ja->last_idx != ja->cur_idx && 660 ja->seq[ja->last_idx] < last_seq) 661 ja->last_idx = (ja->last_idx + 1) % 662 ca->sb.njournal_buckets; 663 } 664 665 for_each_cache(ca, c, iter) 666 do_journal_discard(ca); 667 668 if (c->journal.blocks_free) 669 goto out; 670 671 /* 672 * Allocate: 673 * XXX: Sort by free journal space 674 */ 675 676 for_each_cache(ca, c, iter) { 677 struct journal_device *ja = &ca->journal; 678 unsigned int next = (ja->cur_idx + 1) % ca->sb.njournal_buckets; 679 680 /* No space available on this device */ 681 if (next == ja->discard_idx) 682 continue; 683 684 ja->cur_idx = next; 685 k->ptr[n++] = MAKE_PTR(0, 686 bucket_to_sector(c, ca->sb.d[ja->cur_idx]), 687 ca->sb.nr_this_dev); 688 atomic_long_inc(&c->reclaimed_journal_buckets); 689 } 690 691 if (n) { 692 bkey_init(k); 693 SET_KEY_PTRS(k, n); 694 c->journal.blocks_free = c->sb.bucket_size >> c->block_bits; 695 } 696 out: 697 if (!journal_full(&c->journal)) 698 __closure_wake_up(&c->journal.wait); 699 } 700 701 void bch_journal_next(struct journal *j) 702 { 703 atomic_t p = { 1 }; 704 705 j->cur = (j->cur == j->w) 706 ? &j->w[1] 707 : &j->w[0]; 708 709 /* 710 * The fifo_push() needs to happen at the same time as j->seq is 711 * incremented for last_seq() to be calculated correctly 712 */ 713 BUG_ON(!fifo_push(&j->pin, p)); 714 atomic_set(&fifo_back(&j->pin), 1); 715 716 j->cur->data->seq = ++j->seq; 717 j->cur->dirty = false; 718 j->cur->need_write = false; 719 j->cur->data->keys = 0; 720 721 if (fifo_full(&j->pin)) 722 pr_debug("journal_pin full (%zu)", fifo_used(&j->pin)); 723 } 724 725 static void journal_write_endio(struct bio *bio) 726 { 727 struct journal_write *w = bio->bi_private; 728 729 cache_set_err_on(bio->bi_status, w->c, "journal io error"); 730 closure_put(&w->c->journal.io); 731 } 732 733 static void journal_write(struct closure *cl); 734 735 static void journal_write_done(struct closure *cl) 736 { 737 struct journal *j = container_of(cl, struct journal, io); 738 struct journal_write *w = (j->cur == j->w) 739 ? &j->w[1] 740 : &j->w[0]; 741 742 __closure_wake_up(&w->wait); 743 continue_at_nobarrier(cl, journal_write, bch_journal_wq); 744 } 745 746 static void journal_write_unlock(struct closure *cl) 747 __releases(&c->journal.lock) 748 { 749 struct cache_set *c = container_of(cl, struct cache_set, journal.io); 750 751 c->journal.io_in_flight = 0; 752 spin_unlock(&c->journal.lock); 753 } 754 755 static void journal_write_unlocked(struct closure *cl) 756 __releases(c->journal.lock) 757 { 758 struct cache_set *c = container_of(cl, struct cache_set, journal.io); 759 struct cache *ca; 760 struct journal_write *w = c->journal.cur; 761 struct bkey *k = &c->journal.key; 762 unsigned int i, sectors = set_blocks(w->data, block_bytes(c)) * 763 c->sb.block_size; 764 765 struct bio *bio; 766 struct bio_list list; 767 768 bio_list_init(&list); 769 770 if (!w->need_write) { 771 closure_return_with_destructor(cl, journal_write_unlock); 772 return; 773 } else if (journal_full(&c->journal)) { 774 journal_reclaim(c); 775 spin_unlock(&c->journal.lock); 776 777 btree_flush_write(c); 778 continue_at(cl, journal_write, bch_journal_wq); 779 return; 780 } 781 782 c->journal.blocks_free -= set_blocks(w->data, block_bytes(c)); 783 784 w->data->btree_level = c->root->level; 785 786 bkey_copy(&w->data->btree_root, &c->root->key); 787 bkey_copy(&w->data->uuid_bucket, &c->uuid_bucket); 788 789 for_each_cache(ca, c, i) 790 w->data->prio_bucket[ca->sb.nr_this_dev] = ca->prio_buckets[0]; 791 792 w->data->magic = jset_magic(&c->sb); 793 w->data->version = BCACHE_JSET_VERSION; 794 w->data->last_seq = last_seq(&c->journal); 795 w->data->csum = csum_set(w->data); 796 797 for (i = 0; i < KEY_PTRS(k); i++) { 798 ca = PTR_CACHE(c, k, i); 799 bio = &ca->journal.bio; 800 801 atomic_long_add(sectors, &ca->meta_sectors_written); 802 803 bio_reset(bio); 804 bio->bi_iter.bi_sector = PTR_OFFSET(k, i); 805 bio_set_dev(bio, ca->bdev); 806 bio->bi_iter.bi_size = sectors << 9; 807 808 bio->bi_end_io = journal_write_endio; 809 bio->bi_private = w; 810 bio_set_op_attrs(bio, REQ_OP_WRITE, 811 REQ_SYNC|REQ_META|REQ_PREFLUSH|REQ_FUA); 812 bch_bio_map(bio, w->data); 813 814 trace_bcache_journal_write(bio, w->data->keys); 815 bio_list_add(&list, bio); 816 817 SET_PTR_OFFSET(k, i, PTR_OFFSET(k, i) + sectors); 818 819 ca->journal.seq[ca->journal.cur_idx] = w->data->seq; 820 } 821 822 /* If KEY_PTRS(k) == 0, this jset gets lost in air */ 823 BUG_ON(i == 0); 824 825 atomic_dec_bug(&fifo_back(&c->journal.pin)); 826 bch_journal_next(&c->journal); 827 journal_reclaim(c); 828 829 spin_unlock(&c->journal.lock); 830 831 while ((bio = bio_list_pop(&list))) 832 closure_bio_submit(c, bio, cl); 833 834 continue_at(cl, journal_write_done, NULL); 835 } 836 837 static void journal_write(struct closure *cl) 838 { 839 struct cache_set *c = container_of(cl, struct cache_set, journal.io); 840 841 spin_lock(&c->journal.lock); 842 journal_write_unlocked(cl); 843 } 844 845 static void journal_try_write(struct cache_set *c) 846 __releases(c->journal.lock) 847 { 848 struct closure *cl = &c->journal.io; 849 struct journal_write *w = c->journal.cur; 850 851 w->need_write = true; 852 853 if (!c->journal.io_in_flight) { 854 c->journal.io_in_flight = 1; 855 closure_call(cl, journal_write_unlocked, NULL, &c->cl); 856 } else { 857 spin_unlock(&c->journal.lock); 858 } 859 } 860 861 static struct journal_write *journal_wait_for_write(struct cache_set *c, 862 unsigned int nkeys) 863 __acquires(&c->journal.lock) 864 { 865 size_t sectors; 866 struct closure cl; 867 bool wait = false; 868 869 closure_init_stack(&cl); 870 871 spin_lock(&c->journal.lock); 872 873 while (1) { 874 struct journal_write *w = c->journal.cur; 875 876 sectors = __set_blocks(w->data, w->data->keys + nkeys, 877 block_bytes(c)) * c->sb.block_size; 878 879 if (sectors <= min_t(size_t, 880 c->journal.blocks_free * c->sb.block_size, 881 PAGE_SECTORS << JSET_BITS)) 882 return w; 883 884 if (wait) 885 closure_wait(&c->journal.wait, &cl); 886 887 if (!journal_full(&c->journal)) { 888 if (wait) 889 trace_bcache_journal_entry_full(c); 890 891 /* 892 * XXX: If we were inserting so many keys that they 893 * won't fit in an _empty_ journal write, we'll 894 * deadlock. For now, handle this in 895 * bch_keylist_realloc() - but something to think about. 896 */ 897 BUG_ON(!w->data->keys); 898 899 journal_try_write(c); /* unlocks */ 900 } else { 901 if (wait) 902 trace_bcache_journal_full(c); 903 904 journal_reclaim(c); 905 spin_unlock(&c->journal.lock); 906 907 btree_flush_write(c); 908 } 909 910 closure_sync(&cl); 911 spin_lock(&c->journal.lock); 912 wait = true; 913 } 914 } 915 916 static void journal_write_work(struct work_struct *work) 917 { 918 struct cache_set *c = container_of(to_delayed_work(work), 919 struct cache_set, 920 journal.work); 921 spin_lock(&c->journal.lock); 922 if (c->journal.cur->dirty) 923 journal_try_write(c); 924 else 925 spin_unlock(&c->journal.lock); 926 } 927 928 /* 929 * Entry point to the journalling code - bio_insert() and btree_invalidate() 930 * pass bch_journal() a list of keys to be journalled, and then 931 * bch_journal() hands those same keys off to btree_insert_async() 932 */ 933 934 atomic_t *bch_journal(struct cache_set *c, 935 struct keylist *keys, 936 struct closure *parent) 937 { 938 struct journal_write *w; 939 atomic_t *ret; 940 941 /* No journaling if CACHE_SET_IO_DISABLE set already */ 942 if (unlikely(test_bit(CACHE_SET_IO_DISABLE, &c->flags))) 943 return NULL; 944 945 if (!CACHE_SYNC(&c->sb)) 946 return NULL; 947 948 w = journal_wait_for_write(c, bch_keylist_nkeys(keys)); 949 950 memcpy(bset_bkey_last(w->data), keys->keys, bch_keylist_bytes(keys)); 951 w->data->keys += bch_keylist_nkeys(keys); 952 953 ret = &fifo_back(&c->journal.pin); 954 atomic_inc(ret); 955 956 if (parent) { 957 closure_wait(&w->wait, parent); 958 journal_try_write(c); 959 } else if (!w->dirty) { 960 w->dirty = true; 961 schedule_delayed_work(&c->journal.work, 962 msecs_to_jiffies(c->journal_delay_ms)); 963 spin_unlock(&c->journal.lock); 964 } else { 965 spin_unlock(&c->journal.lock); 966 } 967 968 969 return ret; 970 } 971 972 void bch_journal_meta(struct cache_set *c, struct closure *cl) 973 { 974 struct keylist keys; 975 atomic_t *ref; 976 977 bch_keylist_init(&keys); 978 979 ref = bch_journal(c, &keys, cl); 980 if (ref) 981 atomic_dec_bug(ref); 982 } 983 984 void bch_journal_free(struct cache_set *c) 985 { 986 free_pages((unsigned long) c->journal.w[1].data, JSET_BITS); 987 free_pages((unsigned long) c->journal.w[0].data, JSET_BITS); 988 free_fifo(&c->journal.pin); 989 } 990 991 int bch_journal_alloc(struct cache_set *c) 992 { 993 struct journal *j = &c->journal; 994 995 spin_lock_init(&j->lock); 996 spin_lock_init(&j->flush_write_lock); 997 INIT_DELAYED_WORK(&j->work, journal_write_work); 998 999 c->journal_delay_ms = 100; 1000 1001 j->w[0].c = c; 1002 j->w[1].c = c; 1003 1004 if (!(init_fifo(&j->pin, JOURNAL_PIN, GFP_KERNEL)) || 1005 !(j->w[0].data = (void *) __get_free_pages(GFP_KERNEL, JSET_BITS)) || 1006 !(j->w[1].data = (void *) __get_free_pages(GFP_KERNEL, JSET_BITS))) 1007 return -ENOMEM; 1008 1009 return 0; 1010 } 1011