1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * bcache journalling code, for btree insertions 4 * 5 * Copyright 2012 Google, Inc. 6 */ 7 8 #include "bcache.h" 9 #include "btree.h" 10 #include "debug.h" 11 #include "extents.h" 12 13 #include <trace/events/bcache.h> 14 15 /* 16 * Journal replay/recovery: 17 * 18 * This code is all driven from run_cache_set(); we first read the journal 19 * entries, do some other stuff, then we mark all the keys in the journal 20 * entries (same as garbage collection would), then we replay them - reinserting 21 * them into the cache in precisely the same order as they appear in the 22 * journal. 23 * 24 * We only journal keys that go in leaf nodes, which simplifies things quite a 25 * bit. 26 */ 27 28 static void journal_read_endio(struct bio *bio) 29 { 30 struct closure *cl = bio->bi_private; 31 32 closure_put(cl); 33 } 34 35 static int journal_read_bucket(struct cache *ca, struct list_head *list, 36 unsigned int bucket_index) 37 { 38 struct journal_device *ja = &ca->journal; 39 struct bio *bio = &ja->bio; 40 41 struct journal_replay *i; 42 struct jset *j, *data = ca->set->journal.w[0].data; 43 struct closure cl; 44 unsigned int len, left, offset = 0; 45 int ret = 0; 46 sector_t bucket = bucket_to_sector(ca->set, ca->sb.d[bucket_index]); 47 48 closure_init_stack(&cl); 49 50 pr_debug("reading %u\n", bucket_index); 51 52 while (offset < ca->sb.bucket_size) { 53 reread: left = ca->sb.bucket_size - offset; 54 len = min_t(unsigned int, left, PAGE_SECTORS << JSET_BITS); 55 56 bio_reset(bio, ca->bdev, REQ_OP_READ); 57 bio->bi_iter.bi_sector = bucket + offset; 58 bio->bi_iter.bi_size = len << 9; 59 60 bio->bi_end_io = journal_read_endio; 61 bio->bi_private = &cl; 62 bch_bio_map(bio, data); 63 64 closure_bio_submit(ca->set, bio, &cl); 65 closure_sync(&cl); 66 67 /* This function could be simpler now since we no longer write 68 * journal entries that overlap bucket boundaries; this means 69 * the start of a bucket will always have a valid journal entry 70 * if it has any journal entries at all. 71 */ 72 73 j = data; 74 while (len) { 75 struct list_head *where; 76 size_t blocks, bytes = set_bytes(j); 77 78 if (j->magic != jset_magic(&ca->sb)) { 79 pr_debug("%u: bad magic\n", bucket_index); 80 return ret; 81 } 82 83 if (bytes > left << 9 || 84 bytes > PAGE_SIZE << JSET_BITS) { 85 pr_info("%u: too big, %zu bytes, offset %u\n", 86 bucket_index, bytes, offset); 87 return ret; 88 } 89 90 if (bytes > len << 9) 91 goto reread; 92 93 if (j->csum != csum_set(j)) { 94 pr_info("%u: bad csum, %zu bytes, offset %u\n", 95 bucket_index, bytes, offset); 96 return ret; 97 } 98 99 blocks = set_blocks(j, block_bytes(ca)); 100 101 /* 102 * Nodes in 'list' are in linear increasing order of 103 * i->j.seq, the node on head has the smallest (oldest) 104 * journal seq, the node on tail has the biggest 105 * (latest) journal seq. 106 */ 107 108 /* 109 * Check from the oldest jset for last_seq. If 110 * i->j.seq < j->last_seq, it means the oldest jset 111 * in list is expired and useless, remove it from 112 * this list. Otherwise, j is a candidate jset for 113 * further following checks. 114 */ 115 while (!list_empty(list)) { 116 i = list_first_entry(list, 117 struct journal_replay, list); 118 if (i->j.seq >= j->last_seq) 119 break; 120 list_del(&i->list); 121 kfree(i); 122 } 123 124 /* iterate list in reverse order (from latest jset) */ 125 list_for_each_entry_reverse(i, list, list) { 126 if (j->seq == i->j.seq) 127 goto next_set; 128 129 /* 130 * if j->seq is less than any i->j.last_seq 131 * in list, j is an expired and useless jset. 132 */ 133 if (j->seq < i->j.last_seq) 134 goto next_set; 135 136 /* 137 * 'where' points to first jset in list which 138 * is elder then j. 139 */ 140 if (j->seq > i->j.seq) { 141 where = &i->list; 142 goto add; 143 } 144 } 145 146 where = list; 147 add: 148 i = kmalloc(offsetof(struct journal_replay, j) + 149 bytes, GFP_KERNEL); 150 if (!i) 151 return -ENOMEM; 152 memcpy(&i->j, j, bytes); 153 /* Add to the location after 'where' points to */ 154 list_add(&i->list, where); 155 ret = 1; 156 157 if (j->seq > ja->seq[bucket_index]) 158 ja->seq[bucket_index] = j->seq; 159 next_set: 160 offset += blocks * ca->sb.block_size; 161 len -= blocks * ca->sb.block_size; 162 j = ((void *) j) + blocks * block_bytes(ca); 163 } 164 } 165 166 return ret; 167 } 168 169 int bch_journal_read(struct cache_set *c, struct list_head *list) 170 { 171 #define read_bucket(b) \ 172 ({ \ 173 ret = journal_read_bucket(ca, list, b); \ 174 __set_bit(b, bitmap); \ 175 if (ret < 0) \ 176 return ret; \ 177 ret; \ 178 }) 179 180 struct cache *ca = c->cache; 181 int ret = 0; 182 struct journal_device *ja = &ca->journal; 183 DECLARE_BITMAP(bitmap, SB_JOURNAL_BUCKETS); 184 unsigned int i, l, r, m; 185 uint64_t seq; 186 187 bitmap_zero(bitmap, SB_JOURNAL_BUCKETS); 188 pr_debug("%u journal buckets\n", ca->sb.njournal_buckets); 189 190 /* 191 * Read journal buckets ordered by golden ratio hash to quickly 192 * find a sequence of buckets with valid journal entries 193 */ 194 for (i = 0; i < ca->sb.njournal_buckets; i++) { 195 /* 196 * We must try the index l with ZERO first for 197 * correctness due to the scenario that the journal 198 * bucket is circular buffer which might have wrapped 199 */ 200 l = (i * 2654435769U) % ca->sb.njournal_buckets; 201 202 if (test_bit(l, bitmap)) 203 break; 204 205 if (read_bucket(l)) 206 goto bsearch; 207 } 208 209 /* 210 * If that fails, check all the buckets we haven't checked 211 * already 212 */ 213 pr_debug("falling back to linear search\n"); 214 215 for_each_clear_bit(l, bitmap, ca->sb.njournal_buckets) 216 if (read_bucket(l)) 217 goto bsearch; 218 219 /* no journal entries on this device? */ 220 if (l == ca->sb.njournal_buckets) 221 goto out; 222 bsearch: 223 BUG_ON(list_empty(list)); 224 225 /* Binary search */ 226 m = l; 227 r = find_next_bit(bitmap, ca->sb.njournal_buckets, l + 1); 228 pr_debug("starting binary search, l %u r %u\n", l, r); 229 230 while (l + 1 < r) { 231 seq = list_entry(list->prev, struct journal_replay, 232 list)->j.seq; 233 234 m = (l + r) >> 1; 235 read_bucket(m); 236 237 if (seq != list_entry(list->prev, struct journal_replay, 238 list)->j.seq) 239 l = m; 240 else 241 r = m; 242 } 243 244 /* 245 * Read buckets in reverse order until we stop finding more 246 * journal entries 247 */ 248 pr_debug("finishing up: m %u njournal_buckets %u\n", 249 m, ca->sb.njournal_buckets); 250 l = m; 251 252 while (1) { 253 if (!l--) 254 l = ca->sb.njournal_buckets - 1; 255 256 if (l == m) 257 break; 258 259 if (test_bit(l, bitmap)) 260 continue; 261 262 if (!read_bucket(l)) 263 break; 264 } 265 266 seq = 0; 267 268 for (i = 0; i < ca->sb.njournal_buckets; i++) 269 if (ja->seq[i] > seq) { 270 seq = ja->seq[i]; 271 /* 272 * When journal_reclaim() goes to allocate for 273 * the first time, it'll use the bucket after 274 * ja->cur_idx 275 */ 276 ja->cur_idx = i; 277 ja->last_idx = ja->discard_idx = (i + 1) % 278 ca->sb.njournal_buckets; 279 280 } 281 282 out: 283 if (!list_empty(list)) 284 c->journal.seq = list_entry(list->prev, 285 struct journal_replay, 286 list)->j.seq; 287 288 return 0; 289 #undef read_bucket 290 } 291 292 void bch_journal_mark(struct cache_set *c, struct list_head *list) 293 { 294 atomic_t p = { 0 }; 295 struct bkey *k; 296 struct journal_replay *i; 297 struct journal *j = &c->journal; 298 uint64_t last = j->seq; 299 300 /* 301 * journal.pin should never fill up - we never write a journal 302 * entry when it would fill up. But if for some reason it does, we 303 * iterate over the list in reverse order so that we can just skip that 304 * refcount instead of bugging. 305 */ 306 307 list_for_each_entry_reverse(i, list, list) { 308 BUG_ON(last < i->j.seq); 309 i->pin = NULL; 310 311 while (last-- != i->j.seq) 312 if (fifo_free(&j->pin) > 1) { 313 fifo_push_front(&j->pin, p); 314 atomic_set(&fifo_front(&j->pin), 0); 315 } 316 317 if (fifo_free(&j->pin) > 1) { 318 fifo_push_front(&j->pin, p); 319 i->pin = &fifo_front(&j->pin); 320 atomic_set(i->pin, 1); 321 } 322 323 for (k = i->j.start; 324 k < bset_bkey_last(&i->j); 325 k = bkey_next(k)) 326 if (!__bch_extent_invalid(c, k)) { 327 unsigned int j; 328 329 for (j = 0; j < KEY_PTRS(k); j++) 330 if (ptr_available(c, k, j)) 331 atomic_inc(&PTR_BUCKET(c, k, j)->pin); 332 333 bch_initial_mark_key(c, 0, k); 334 } 335 } 336 } 337 338 static bool is_discard_enabled(struct cache_set *s) 339 { 340 struct cache *ca = s->cache; 341 342 if (ca->discard) 343 return true; 344 345 return false; 346 } 347 348 int bch_journal_replay(struct cache_set *s, struct list_head *list) 349 { 350 int ret = 0, keys = 0, entries = 0; 351 struct bkey *k; 352 struct journal_replay *i = 353 list_entry(list->prev, struct journal_replay, list); 354 355 uint64_t start = i->j.last_seq, end = i->j.seq, n = start; 356 struct keylist keylist; 357 358 list_for_each_entry(i, list, list) { 359 BUG_ON(i->pin && atomic_read(i->pin) != 1); 360 361 if (n != i->j.seq) { 362 if (n == start && is_discard_enabled(s)) 363 pr_info("journal entries %llu-%llu may be discarded! (replaying %llu-%llu)\n", 364 n, i->j.seq - 1, start, end); 365 else { 366 pr_err("journal entries %llu-%llu missing! (replaying %llu-%llu)\n", 367 n, i->j.seq - 1, start, end); 368 ret = -EIO; 369 goto err; 370 } 371 } 372 373 for (k = i->j.start; 374 k < bset_bkey_last(&i->j); 375 k = bkey_next(k)) { 376 trace_bcache_journal_replay_key(k); 377 378 bch_keylist_init_single(&keylist, k); 379 380 ret = bch_btree_insert(s, &keylist, i->pin, NULL); 381 if (ret) 382 goto err; 383 384 BUG_ON(!bch_keylist_empty(&keylist)); 385 keys++; 386 387 cond_resched(); 388 } 389 390 if (i->pin) 391 atomic_dec(i->pin); 392 n = i->j.seq + 1; 393 entries++; 394 } 395 396 pr_info("journal replay done, %i keys in %i entries, seq %llu\n", 397 keys, entries, end); 398 err: 399 while (!list_empty(list)) { 400 i = list_first_entry(list, struct journal_replay, list); 401 list_del(&i->list); 402 kfree(i); 403 } 404 405 return ret; 406 } 407 408 void bch_journal_space_reserve(struct journal *j) 409 { 410 j->do_reserve = true; 411 } 412 413 /* Journalling */ 414 415 static void btree_flush_write(struct cache_set *c) 416 { 417 struct btree *b, *t, *btree_nodes[BTREE_FLUSH_NR]; 418 unsigned int i, nr; 419 int ref_nr; 420 atomic_t *fifo_front_p, *now_fifo_front_p; 421 size_t mask; 422 423 if (c->journal.btree_flushing) 424 return; 425 426 spin_lock(&c->journal.flush_write_lock); 427 if (c->journal.btree_flushing) { 428 spin_unlock(&c->journal.flush_write_lock); 429 return; 430 } 431 c->journal.btree_flushing = true; 432 spin_unlock(&c->journal.flush_write_lock); 433 434 /* get the oldest journal entry and check its refcount */ 435 spin_lock(&c->journal.lock); 436 fifo_front_p = &fifo_front(&c->journal.pin); 437 ref_nr = atomic_read(fifo_front_p); 438 if (ref_nr <= 0) { 439 /* 440 * do nothing if no btree node references 441 * the oldest journal entry 442 */ 443 spin_unlock(&c->journal.lock); 444 goto out; 445 } 446 spin_unlock(&c->journal.lock); 447 448 mask = c->journal.pin.mask; 449 nr = 0; 450 atomic_long_inc(&c->flush_write); 451 memset(btree_nodes, 0, sizeof(btree_nodes)); 452 453 mutex_lock(&c->bucket_lock); 454 list_for_each_entry_safe_reverse(b, t, &c->btree_cache, list) { 455 /* 456 * It is safe to get now_fifo_front_p without holding 457 * c->journal.lock here, because we don't need to know 458 * the exactly accurate value, just check whether the 459 * front pointer of c->journal.pin is changed. 460 */ 461 now_fifo_front_p = &fifo_front(&c->journal.pin); 462 /* 463 * If the oldest journal entry is reclaimed and front 464 * pointer of c->journal.pin changes, it is unnecessary 465 * to scan c->btree_cache anymore, just quit the loop and 466 * flush out what we have already. 467 */ 468 if (now_fifo_front_p != fifo_front_p) 469 break; 470 /* 471 * quit this loop if all matching btree nodes are 472 * scanned and record in btree_nodes[] already. 473 */ 474 ref_nr = atomic_read(fifo_front_p); 475 if (nr >= ref_nr) 476 break; 477 478 if (btree_node_journal_flush(b)) 479 pr_err("BUG: flush_write bit should not be set here!\n"); 480 481 mutex_lock(&b->write_lock); 482 483 if (!btree_node_dirty(b)) { 484 mutex_unlock(&b->write_lock); 485 continue; 486 } 487 488 if (!btree_current_write(b)->journal) { 489 mutex_unlock(&b->write_lock); 490 continue; 491 } 492 493 /* 494 * Only select the btree node which exactly references 495 * the oldest journal entry. 496 * 497 * If the journal entry pointed by fifo_front_p is 498 * reclaimed in parallel, don't worry: 499 * - the list_for_each_xxx loop will quit when checking 500 * next now_fifo_front_p. 501 * - If there are matched nodes recorded in btree_nodes[], 502 * they are clean now (this is why and how the oldest 503 * journal entry can be reclaimed). These selected nodes 504 * will be ignored and skipped in the following for-loop. 505 */ 506 if (((btree_current_write(b)->journal - fifo_front_p) & 507 mask) != 0) { 508 mutex_unlock(&b->write_lock); 509 continue; 510 } 511 512 set_btree_node_journal_flush(b); 513 514 mutex_unlock(&b->write_lock); 515 516 btree_nodes[nr++] = b; 517 /* 518 * To avoid holding c->bucket_lock too long time, 519 * only scan for BTREE_FLUSH_NR matched btree nodes 520 * at most. If there are more btree nodes reference 521 * the oldest journal entry, try to flush them next 522 * time when btree_flush_write() is called. 523 */ 524 if (nr == BTREE_FLUSH_NR) 525 break; 526 } 527 mutex_unlock(&c->bucket_lock); 528 529 for (i = 0; i < nr; i++) { 530 b = btree_nodes[i]; 531 if (!b) { 532 pr_err("BUG: btree_nodes[%d] is NULL\n", i); 533 continue; 534 } 535 536 /* safe to check without holding b->write_lock */ 537 if (!btree_node_journal_flush(b)) { 538 pr_err("BUG: bnode %p: journal_flush bit cleaned\n", b); 539 continue; 540 } 541 542 mutex_lock(&b->write_lock); 543 if (!btree_current_write(b)->journal) { 544 clear_bit(BTREE_NODE_journal_flush, &b->flags); 545 mutex_unlock(&b->write_lock); 546 pr_debug("bnode %p: written by others\n", b); 547 continue; 548 } 549 550 if (!btree_node_dirty(b)) { 551 clear_bit(BTREE_NODE_journal_flush, &b->flags); 552 mutex_unlock(&b->write_lock); 553 pr_debug("bnode %p: dirty bit cleaned by others\n", b); 554 continue; 555 } 556 557 __bch_btree_node_write(b, NULL); 558 clear_bit(BTREE_NODE_journal_flush, &b->flags); 559 mutex_unlock(&b->write_lock); 560 } 561 562 out: 563 spin_lock(&c->journal.flush_write_lock); 564 c->journal.btree_flushing = false; 565 spin_unlock(&c->journal.flush_write_lock); 566 } 567 568 #define last_seq(j) ((j)->seq - fifo_used(&(j)->pin) + 1) 569 570 static void journal_discard_endio(struct bio *bio) 571 { 572 struct journal_device *ja = 573 container_of(bio, struct journal_device, discard_bio); 574 struct cache *ca = container_of(ja, struct cache, journal); 575 576 atomic_set(&ja->discard_in_flight, DISCARD_DONE); 577 578 closure_wake_up(&ca->set->journal.wait); 579 closure_put(&ca->set->cl); 580 } 581 582 static void journal_discard_work(struct work_struct *work) 583 { 584 struct journal_device *ja = 585 container_of(work, struct journal_device, discard_work); 586 587 submit_bio(&ja->discard_bio); 588 } 589 590 static void do_journal_discard(struct cache *ca) 591 { 592 struct journal_device *ja = &ca->journal; 593 struct bio *bio = &ja->discard_bio; 594 595 if (!ca->discard) { 596 ja->discard_idx = ja->last_idx; 597 return; 598 } 599 600 switch (atomic_read(&ja->discard_in_flight)) { 601 case DISCARD_IN_FLIGHT: 602 return; 603 604 case DISCARD_DONE: 605 ja->discard_idx = (ja->discard_idx + 1) % 606 ca->sb.njournal_buckets; 607 608 atomic_set(&ja->discard_in_flight, DISCARD_READY); 609 fallthrough; 610 611 case DISCARD_READY: 612 if (ja->discard_idx == ja->last_idx) 613 return; 614 615 atomic_set(&ja->discard_in_flight, DISCARD_IN_FLIGHT); 616 617 bio_init(bio, ca->bdev, bio->bi_inline_vecs, 1, REQ_OP_DISCARD); 618 bio->bi_iter.bi_sector = bucket_to_sector(ca->set, 619 ca->sb.d[ja->discard_idx]); 620 bio->bi_iter.bi_size = bucket_bytes(ca); 621 bio->bi_end_io = journal_discard_endio; 622 623 closure_get(&ca->set->cl); 624 INIT_WORK(&ja->discard_work, journal_discard_work); 625 queue_work(bch_journal_wq, &ja->discard_work); 626 } 627 } 628 629 static unsigned int free_journal_buckets(struct cache_set *c) 630 { 631 struct journal *j = &c->journal; 632 struct cache *ca = c->cache; 633 struct journal_device *ja = &c->cache->journal; 634 unsigned int n; 635 636 /* In case njournal_buckets is not power of 2 */ 637 if (ja->cur_idx >= ja->discard_idx) 638 n = ca->sb.njournal_buckets + ja->discard_idx - ja->cur_idx; 639 else 640 n = ja->discard_idx - ja->cur_idx; 641 642 if (n > (1 + j->do_reserve)) 643 return n - (1 + j->do_reserve); 644 645 return 0; 646 } 647 648 static void journal_reclaim(struct cache_set *c) 649 { 650 struct bkey *k = &c->journal.key; 651 struct cache *ca = c->cache; 652 uint64_t last_seq; 653 struct journal_device *ja = &ca->journal; 654 atomic_t p __maybe_unused; 655 656 atomic_long_inc(&c->reclaim); 657 658 while (!atomic_read(&fifo_front(&c->journal.pin))) 659 fifo_pop(&c->journal.pin, p); 660 661 last_seq = last_seq(&c->journal); 662 663 /* Update last_idx */ 664 665 while (ja->last_idx != ja->cur_idx && 666 ja->seq[ja->last_idx] < last_seq) 667 ja->last_idx = (ja->last_idx + 1) % 668 ca->sb.njournal_buckets; 669 670 do_journal_discard(ca); 671 672 if (c->journal.blocks_free) 673 goto out; 674 675 if (!free_journal_buckets(c)) 676 goto out; 677 678 ja->cur_idx = (ja->cur_idx + 1) % ca->sb.njournal_buckets; 679 k->ptr[0] = MAKE_PTR(0, 680 bucket_to_sector(c, ca->sb.d[ja->cur_idx]), 681 ca->sb.nr_this_dev); 682 atomic_long_inc(&c->reclaimed_journal_buckets); 683 684 bkey_init(k); 685 SET_KEY_PTRS(k, 1); 686 c->journal.blocks_free = ca->sb.bucket_size >> c->block_bits; 687 688 out: 689 if (!journal_full(&c->journal)) 690 __closure_wake_up(&c->journal.wait); 691 } 692 693 void bch_journal_next(struct journal *j) 694 { 695 atomic_t p = { 1 }; 696 697 j->cur = (j->cur == j->w) 698 ? &j->w[1] 699 : &j->w[0]; 700 701 /* 702 * The fifo_push() needs to happen at the same time as j->seq is 703 * incremented for last_seq() to be calculated correctly 704 */ 705 BUG_ON(!fifo_push(&j->pin, p)); 706 atomic_set(&fifo_back(&j->pin), 1); 707 708 j->cur->data->seq = ++j->seq; 709 j->cur->dirty = false; 710 j->cur->need_write = false; 711 j->cur->data->keys = 0; 712 713 if (fifo_full(&j->pin)) 714 pr_debug("journal_pin full (%zu)\n", fifo_used(&j->pin)); 715 } 716 717 static void journal_write_endio(struct bio *bio) 718 { 719 struct journal_write *w = bio->bi_private; 720 721 cache_set_err_on(bio->bi_status, w->c, "journal io error"); 722 closure_put(&w->c->journal.io); 723 } 724 725 static void journal_write(struct closure *cl); 726 727 static void journal_write_done(struct closure *cl) 728 { 729 struct journal *j = container_of(cl, struct journal, io); 730 struct journal_write *w = (j->cur == j->w) 731 ? &j->w[1] 732 : &j->w[0]; 733 734 __closure_wake_up(&w->wait); 735 continue_at_nobarrier(cl, journal_write, bch_journal_wq); 736 } 737 738 static void journal_write_unlock(struct closure *cl) 739 __releases(&c->journal.lock) 740 { 741 struct cache_set *c = container_of(cl, struct cache_set, journal.io); 742 743 c->journal.io_in_flight = 0; 744 spin_unlock(&c->journal.lock); 745 } 746 747 static void journal_write_unlocked(struct closure *cl) 748 __releases(c->journal.lock) 749 { 750 struct cache_set *c = container_of(cl, struct cache_set, journal.io); 751 struct cache *ca = c->cache; 752 struct journal_write *w = c->journal.cur; 753 struct bkey *k = &c->journal.key; 754 unsigned int i, sectors = set_blocks(w->data, block_bytes(ca)) * 755 ca->sb.block_size; 756 757 struct bio *bio; 758 struct bio_list list; 759 760 bio_list_init(&list); 761 762 if (!w->need_write) { 763 closure_return_with_destructor(cl, journal_write_unlock); 764 return; 765 } else if (journal_full(&c->journal)) { 766 journal_reclaim(c); 767 spin_unlock(&c->journal.lock); 768 769 btree_flush_write(c); 770 continue_at(cl, journal_write, bch_journal_wq); 771 return; 772 } 773 774 c->journal.blocks_free -= set_blocks(w->data, block_bytes(ca)); 775 776 w->data->btree_level = c->root->level; 777 778 bkey_copy(&w->data->btree_root, &c->root->key); 779 bkey_copy(&w->data->uuid_bucket, &c->uuid_bucket); 780 781 w->data->prio_bucket[ca->sb.nr_this_dev] = ca->prio_buckets[0]; 782 w->data->magic = jset_magic(&ca->sb); 783 w->data->version = BCACHE_JSET_VERSION; 784 w->data->last_seq = last_seq(&c->journal); 785 w->data->csum = csum_set(w->data); 786 787 for (i = 0; i < KEY_PTRS(k); i++) { 788 ca = c->cache; 789 bio = &ca->journal.bio; 790 791 atomic_long_add(sectors, &ca->meta_sectors_written); 792 793 bio_reset(bio, ca->bdev, REQ_OP_WRITE | 794 REQ_SYNC | REQ_META | REQ_PREFLUSH | REQ_FUA); 795 bio->bi_iter.bi_sector = PTR_OFFSET(k, i); 796 bio->bi_iter.bi_size = sectors << 9; 797 798 bio->bi_end_io = journal_write_endio; 799 bio->bi_private = w; 800 bch_bio_map(bio, w->data); 801 802 trace_bcache_journal_write(bio, w->data->keys); 803 bio_list_add(&list, bio); 804 805 SET_PTR_OFFSET(k, i, PTR_OFFSET(k, i) + sectors); 806 807 ca->journal.seq[ca->journal.cur_idx] = w->data->seq; 808 } 809 810 /* If KEY_PTRS(k) == 0, this jset gets lost in air */ 811 BUG_ON(i == 0); 812 813 atomic_dec_bug(&fifo_back(&c->journal.pin)); 814 bch_journal_next(&c->journal); 815 journal_reclaim(c); 816 817 spin_unlock(&c->journal.lock); 818 819 while ((bio = bio_list_pop(&list))) 820 closure_bio_submit(c, bio, cl); 821 822 continue_at(cl, journal_write_done, NULL); 823 } 824 825 static void journal_write(struct closure *cl) 826 { 827 struct cache_set *c = container_of(cl, struct cache_set, journal.io); 828 829 spin_lock(&c->journal.lock); 830 journal_write_unlocked(cl); 831 } 832 833 static void journal_try_write(struct cache_set *c) 834 __releases(c->journal.lock) 835 { 836 struct closure *cl = &c->journal.io; 837 struct journal_write *w = c->journal.cur; 838 839 w->need_write = true; 840 841 if (!c->journal.io_in_flight) { 842 c->journal.io_in_flight = 1; 843 closure_call(cl, journal_write_unlocked, NULL, &c->cl); 844 } else { 845 spin_unlock(&c->journal.lock); 846 } 847 } 848 849 static struct journal_write *journal_wait_for_write(struct cache_set *c, 850 unsigned int nkeys) 851 __acquires(&c->journal.lock) 852 { 853 size_t sectors; 854 struct closure cl; 855 bool wait = false; 856 struct cache *ca = c->cache; 857 858 closure_init_stack(&cl); 859 860 spin_lock(&c->journal.lock); 861 862 while (1) { 863 struct journal_write *w = c->journal.cur; 864 865 sectors = __set_blocks(w->data, w->data->keys + nkeys, 866 block_bytes(ca)) * ca->sb.block_size; 867 868 if (sectors <= min_t(size_t, 869 c->journal.blocks_free * ca->sb.block_size, 870 PAGE_SECTORS << JSET_BITS)) 871 return w; 872 873 if (wait) 874 closure_wait(&c->journal.wait, &cl); 875 876 if (!journal_full(&c->journal)) { 877 if (wait) 878 trace_bcache_journal_entry_full(c); 879 880 /* 881 * XXX: If we were inserting so many keys that they 882 * won't fit in an _empty_ journal write, we'll 883 * deadlock. For now, handle this in 884 * bch_keylist_realloc() - but something to think about. 885 */ 886 BUG_ON(!w->data->keys); 887 888 journal_try_write(c); /* unlocks */ 889 } else { 890 if (wait) 891 trace_bcache_journal_full(c); 892 893 journal_reclaim(c); 894 spin_unlock(&c->journal.lock); 895 896 btree_flush_write(c); 897 } 898 899 closure_sync(&cl); 900 spin_lock(&c->journal.lock); 901 wait = true; 902 } 903 } 904 905 static void journal_write_work(struct work_struct *work) 906 { 907 struct cache_set *c = container_of(to_delayed_work(work), 908 struct cache_set, 909 journal.work); 910 spin_lock(&c->journal.lock); 911 if (c->journal.cur->dirty) 912 journal_try_write(c); 913 else 914 spin_unlock(&c->journal.lock); 915 } 916 917 /* 918 * Entry point to the journalling code - bio_insert() and btree_invalidate() 919 * pass bch_journal() a list of keys to be journalled, and then 920 * bch_journal() hands those same keys off to btree_insert_async() 921 */ 922 923 atomic_t *bch_journal(struct cache_set *c, 924 struct keylist *keys, 925 struct closure *parent) 926 { 927 struct journal_write *w; 928 atomic_t *ret; 929 930 /* No journaling if CACHE_SET_IO_DISABLE set already */ 931 if (unlikely(test_bit(CACHE_SET_IO_DISABLE, &c->flags))) 932 return NULL; 933 934 if (!CACHE_SYNC(&c->cache->sb)) 935 return NULL; 936 937 w = journal_wait_for_write(c, bch_keylist_nkeys(keys)); 938 939 memcpy(bset_bkey_last(w->data), keys->keys, bch_keylist_bytes(keys)); 940 w->data->keys += bch_keylist_nkeys(keys); 941 942 ret = &fifo_back(&c->journal.pin); 943 atomic_inc(ret); 944 945 if (parent) { 946 closure_wait(&w->wait, parent); 947 journal_try_write(c); 948 } else if (!w->dirty) { 949 w->dirty = true; 950 queue_delayed_work(bch_flush_wq, &c->journal.work, 951 msecs_to_jiffies(c->journal_delay_ms)); 952 spin_unlock(&c->journal.lock); 953 } else { 954 spin_unlock(&c->journal.lock); 955 } 956 957 958 return ret; 959 } 960 961 void bch_journal_meta(struct cache_set *c, struct closure *cl) 962 { 963 struct keylist keys; 964 atomic_t *ref; 965 966 bch_keylist_init(&keys); 967 968 ref = bch_journal(c, &keys, cl); 969 if (ref) 970 atomic_dec_bug(ref); 971 } 972 973 void bch_journal_free(struct cache_set *c) 974 { 975 free_pages((unsigned long) c->journal.w[1].data, JSET_BITS); 976 free_pages((unsigned long) c->journal.w[0].data, JSET_BITS); 977 free_fifo(&c->journal.pin); 978 } 979 980 int bch_journal_alloc(struct cache_set *c) 981 { 982 struct journal *j = &c->journal; 983 984 spin_lock_init(&j->lock); 985 spin_lock_init(&j->flush_write_lock); 986 INIT_DELAYED_WORK(&j->work, journal_write_work); 987 988 c->journal_delay_ms = 100; 989 990 j->w[0].c = c; 991 j->w[1].c = c; 992 993 if (!(init_fifo(&j->pin, JOURNAL_PIN, GFP_KERNEL)) || 994 !(j->w[0].data = (void *) __get_free_pages(GFP_KERNEL|__GFP_COMP, JSET_BITS)) || 995 !(j->w[1].data = (void *) __get_free_pages(GFP_KERNEL|__GFP_COMP, JSET_BITS))) 996 return -ENOMEM; 997 998 return 0; 999 } 1000