xref: /openbmc/linux/drivers/md/bcache/journal.c (revision c4e78957)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * bcache journalling code, for btree insertions
4  *
5  * Copyright 2012 Google, Inc.
6  */
7 
8 #include "bcache.h"
9 #include "btree.h"
10 #include "debug.h"
11 #include "extents.h"
12 
13 #include <trace/events/bcache.h>
14 
15 /*
16  * Journal replay/recovery:
17  *
18  * This code is all driven from run_cache_set(); we first read the journal
19  * entries, do some other stuff, then we mark all the keys in the journal
20  * entries (same as garbage collection would), then we replay them - reinserting
21  * them into the cache in precisely the same order as they appear in the
22  * journal.
23  *
24  * We only journal keys that go in leaf nodes, which simplifies things quite a
25  * bit.
26  */
27 
28 static void journal_read_endio(struct bio *bio)
29 {
30 	struct closure *cl = bio->bi_private;
31 
32 	closure_put(cl);
33 }
34 
35 static int journal_read_bucket(struct cache *ca, struct list_head *list,
36 			       unsigned int bucket_index)
37 {
38 	struct journal_device *ja = &ca->journal;
39 	struct bio *bio = &ja->bio;
40 
41 	struct journal_replay *i;
42 	struct jset *j, *data = ca->set->journal.w[0].data;
43 	struct closure cl;
44 	unsigned int len, left, offset = 0;
45 	int ret = 0;
46 	sector_t bucket = bucket_to_sector(ca->set, ca->sb.d[bucket_index]);
47 
48 	closure_init_stack(&cl);
49 
50 	pr_debug("reading %u\n", bucket_index);
51 
52 	while (offset < ca->sb.bucket_size) {
53 reread:		left = ca->sb.bucket_size - offset;
54 		len = min_t(unsigned int, left, PAGE_SECTORS << JSET_BITS);
55 
56 		bio_reset(bio, ca->bdev, REQ_OP_READ);
57 		bio->bi_iter.bi_sector	= bucket + offset;
58 		bio->bi_iter.bi_size	= len << 9;
59 
60 		bio->bi_end_io	= journal_read_endio;
61 		bio->bi_private = &cl;
62 		bch_bio_map(bio, data);
63 
64 		closure_bio_submit(ca->set, bio, &cl);
65 		closure_sync(&cl);
66 
67 		/* This function could be simpler now since we no longer write
68 		 * journal entries that overlap bucket boundaries; this means
69 		 * the start of a bucket will always have a valid journal entry
70 		 * if it has any journal entries at all.
71 		 */
72 
73 		j = data;
74 		while (len) {
75 			struct list_head *where;
76 			size_t blocks, bytes = set_bytes(j);
77 
78 			if (j->magic != jset_magic(&ca->sb)) {
79 				pr_debug("%u: bad magic\n", bucket_index);
80 				return ret;
81 			}
82 
83 			if (bytes > left << 9 ||
84 			    bytes > PAGE_SIZE << JSET_BITS) {
85 				pr_info("%u: too big, %zu bytes, offset %u\n",
86 					bucket_index, bytes, offset);
87 				return ret;
88 			}
89 
90 			if (bytes > len << 9)
91 				goto reread;
92 
93 			if (j->csum != csum_set(j)) {
94 				pr_info("%u: bad csum, %zu bytes, offset %u\n",
95 					bucket_index, bytes, offset);
96 				return ret;
97 			}
98 
99 			blocks = set_blocks(j, block_bytes(ca));
100 
101 			/*
102 			 * Nodes in 'list' are in linear increasing order of
103 			 * i->j.seq, the node on head has the smallest (oldest)
104 			 * journal seq, the node on tail has the biggest
105 			 * (latest) journal seq.
106 			 */
107 
108 			/*
109 			 * Check from the oldest jset for last_seq. If
110 			 * i->j.seq < j->last_seq, it means the oldest jset
111 			 * in list is expired and useless, remove it from
112 			 * this list. Otherwise, j is a candidate jset for
113 			 * further following checks.
114 			 */
115 			while (!list_empty(list)) {
116 				i = list_first_entry(list,
117 					struct journal_replay, list);
118 				if (i->j.seq >= j->last_seq)
119 					break;
120 				list_del(&i->list);
121 				kfree(i);
122 			}
123 
124 			/* iterate list in reverse order (from latest jset) */
125 			list_for_each_entry_reverse(i, list, list) {
126 				if (j->seq == i->j.seq)
127 					goto next_set;
128 
129 				/*
130 				 * if j->seq is less than any i->j.last_seq
131 				 * in list, j is an expired and useless jset.
132 				 */
133 				if (j->seq < i->j.last_seq)
134 					goto next_set;
135 
136 				/*
137 				 * 'where' points to first jset in list which
138 				 * is elder then j.
139 				 */
140 				if (j->seq > i->j.seq) {
141 					where = &i->list;
142 					goto add;
143 				}
144 			}
145 
146 			where = list;
147 add:
148 			i = kmalloc(offsetof(struct journal_replay, j) +
149 				    bytes, GFP_KERNEL);
150 			if (!i)
151 				return -ENOMEM;
152 			memcpy(&i->j, j, bytes);
153 			/* Add to the location after 'where' points to */
154 			list_add(&i->list, where);
155 			ret = 1;
156 
157 			if (j->seq > ja->seq[bucket_index])
158 				ja->seq[bucket_index] = j->seq;
159 next_set:
160 			offset	+= blocks * ca->sb.block_size;
161 			len	-= blocks * ca->sb.block_size;
162 			j = ((void *) j) + blocks * block_bytes(ca);
163 		}
164 	}
165 
166 	return ret;
167 }
168 
169 int bch_journal_read(struct cache_set *c, struct list_head *list)
170 {
171 #define read_bucket(b)							\
172 	({								\
173 		ret = journal_read_bucket(ca, list, b);			\
174 		__set_bit(b, bitmap);					\
175 		if (ret < 0)						\
176 			return ret;					\
177 		ret;							\
178 	})
179 
180 	struct cache *ca = c->cache;
181 	int ret = 0;
182 	struct journal_device *ja = &ca->journal;
183 	DECLARE_BITMAP(bitmap, SB_JOURNAL_BUCKETS);
184 	unsigned int i, l, r, m;
185 	uint64_t seq;
186 
187 	bitmap_zero(bitmap, SB_JOURNAL_BUCKETS);
188 	pr_debug("%u journal buckets\n", ca->sb.njournal_buckets);
189 
190 	/*
191 	 * Read journal buckets ordered by golden ratio hash to quickly
192 	 * find a sequence of buckets with valid journal entries
193 	 */
194 	for (i = 0; i < ca->sb.njournal_buckets; i++) {
195 		/*
196 		 * We must try the index l with ZERO first for
197 		 * correctness due to the scenario that the journal
198 		 * bucket is circular buffer which might have wrapped
199 		 */
200 		l = (i * 2654435769U) % ca->sb.njournal_buckets;
201 
202 		if (test_bit(l, bitmap))
203 			break;
204 
205 		if (read_bucket(l))
206 			goto bsearch;
207 	}
208 
209 	/*
210 	 * If that fails, check all the buckets we haven't checked
211 	 * already
212 	 */
213 	pr_debug("falling back to linear search\n");
214 
215 	for_each_clear_bit(l, bitmap, ca->sb.njournal_buckets)
216 		if (read_bucket(l))
217 			goto bsearch;
218 
219 	/* no journal entries on this device? */
220 	if (l == ca->sb.njournal_buckets)
221 		goto out;
222 bsearch:
223 	BUG_ON(list_empty(list));
224 
225 	/* Binary search */
226 	m = l;
227 	r = find_next_bit(bitmap, ca->sb.njournal_buckets, l + 1);
228 	pr_debug("starting binary search, l %u r %u\n", l, r);
229 
230 	while (l + 1 < r) {
231 		seq = list_entry(list->prev, struct journal_replay,
232 				 list)->j.seq;
233 
234 		m = (l + r) >> 1;
235 		read_bucket(m);
236 
237 		if (seq != list_entry(list->prev, struct journal_replay,
238 				      list)->j.seq)
239 			l = m;
240 		else
241 			r = m;
242 	}
243 
244 	/*
245 	 * Read buckets in reverse order until we stop finding more
246 	 * journal entries
247 	 */
248 	pr_debug("finishing up: m %u njournal_buckets %u\n",
249 		 m, ca->sb.njournal_buckets);
250 	l = m;
251 
252 	while (1) {
253 		if (!l--)
254 			l = ca->sb.njournal_buckets - 1;
255 
256 		if (l == m)
257 			break;
258 
259 		if (test_bit(l, bitmap))
260 			continue;
261 
262 		if (!read_bucket(l))
263 			break;
264 	}
265 
266 	seq = 0;
267 
268 	for (i = 0; i < ca->sb.njournal_buckets; i++)
269 		if (ja->seq[i] > seq) {
270 			seq = ja->seq[i];
271 			/*
272 			 * When journal_reclaim() goes to allocate for
273 			 * the first time, it'll use the bucket after
274 			 * ja->cur_idx
275 			 */
276 			ja->cur_idx = i;
277 			ja->last_idx = ja->discard_idx = (i + 1) %
278 				ca->sb.njournal_buckets;
279 
280 		}
281 
282 out:
283 	if (!list_empty(list))
284 		c->journal.seq = list_entry(list->prev,
285 					    struct journal_replay,
286 					    list)->j.seq;
287 
288 	return 0;
289 #undef read_bucket
290 }
291 
292 void bch_journal_mark(struct cache_set *c, struct list_head *list)
293 {
294 	atomic_t p = { 0 };
295 	struct bkey *k;
296 	struct journal_replay *i;
297 	struct journal *j = &c->journal;
298 	uint64_t last = j->seq;
299 
300 	/*
301 	 * journal.pin should never fill up - we never write a journal
302 	 * entry when it would fill up. But if for some reason it does, we
303 	 * iterate over the list in reverse order so that we can just skip that
304 	 * refcount instead of bugging.
305 	 */
306 
307 	list_for_each_entry_reverse(i, list, list) {
308 		BUG_ON(last < i->j.seq);
309 		i->pin = NULL;
310 
311 		while (last-- != i->j.seq)
312 			if (fifo_free(&j->pin) > 1) {
313 				fifo_push_front(&j->pin, p);
314 				atomic_set(&fifo_front(&j->pin), 0);
315 			}
316 
317 		if (fifo_free(&j->pin) > 1) {
318 			fifo_push_front(&j->pin, p);
319 			i->pin = &fifo_front(&j->pin);
320 			atomic_set(i->pin, 1);
321 		}
322 
323 		for (k = i->j.start;
324 		     k < bset_bkey_last(&i->j);
325 		     k = bkey_next(k))
326 			if (!__bch_extent_invalid(c, k)) {
327 				unsigned int j;
328 
329 				for (j = 0; j < KEY_PTRS(k); j++)
330 					if (ptr_available(c, k, j))
331 						atomic_inc(&PTR_BUCKET(c, k, j)->pin);
332 
333 				bch_initial_mark_key(c, 0, k);
334 			}
335 	}
336 }
337 
338 static bool is_discard_enabled(struct cache_set *s)
339 {
340 	struct cache *ca = s->cache;
341 
342 	if (ca->discard)
343 		return true;
344 
345 	return false;
346 }
347 
348 int bch_journal_replay(struct cache_set *s, struct list_head *list)
349 {
350 	int ret = 0, keys = 0, entries = 0;
351 	struct bkey *k;
352 	struct journal_replay *i =
353 		list_entry(list->prev, struct journal_replay, list);
354 
355 	uint64_t start = i->j.last_seq, end = i->j.seq, n = start;
356 	struct keylist keylist;
357 
358 	list_for_each_entry(i, list, list) {
359 		BUG_ON(i->pin && atomic_read(i->pin) != 1);
360 
361 		if (n != i->j.seq) {
362 			if (n == start && is_discard_enabled(s))
363 				pr_info("journal entries %llu-%llu may be discarded! (replaying %llu-%llu)\n",
364 					n, i->j.seq - 1, start, end);
365 			else {
366 				pr_err("journal entries %llu-%llu missing! (replaying %llu-%llu)\n",
367 					n, i->j.seq - 1, start, end);
368 				ret = -EIO;
369 				goto err;
370 			}
371 		}
372 
373 		for (k = i->j.start;
374 		     k < bset_bkey_last(&i->j);
375 		     k = bkey_next(k)) {
376 			trace_bcache_journal_replay_key(k);
377 
378 			bch_keylist_init_single(&keylist, k);
379 
380 			ret = bch_btree_insert(s, &keylist, i->pin, NULL);
381 			if (ret)
382 				goto err;
383 
384 			BUG_ON(!bch_keylist_empty(&keylist));
385 			keys++;
386 
387 			cond_resched();
388 		}
389 
390 		if (i->pin)
391 			atomic_dec(i->pin);
392 		n = i->j.seq + 1;
393 		entries++;
394 	}
395 
396 	pr_info("journal replay done, %i keys in %i entries, seq %llu\n",
397 		keys, entries, end);
398 err:
399 	while (!list_empty(list)) {
400 		i = list_first_entry(list, struct journal_replay, list);
401 		list_del(&i->list);
402 		kfree(i);
403 	}
404 
405 	return ret;
406 }
407 
408 void bch_journal_space_reserve(struct journal *j)
409 {
410 	j->do_reserve = true;
411 }
412 
413 /* Journalling */
414 
415 static void btree_flush_write(struct cache_set *c)
416 {
417 	struct btree *b, *t, *btree_nodes[BTREE_FLUSH_NR];
418 	unsigned int i, nr;
419 	int ref_nr;
420 	atomic_t *fifo_front_p, *now_fifo_front_p;
421 	size_t mask;
422 
423 	if (c->journal.btree_flushing)
424 		return;
425 
426 	spin_lock(&c->journal.flush_write_lock);
427 	if (c->journal.btree_flushing) {
428 		spin_unlock(&c->journal.flush_write_lock);
429 		return;
430 	}
431 	c->journal.btree_flushing = true;
432 	spin_unlock(&c->journal.flush_write_lock);
433 
434 	/* get the oldest journal entry and check its refcount */
435 	spin_lock(&c->journal.lock);
436 	fifo_front_p = &fifo_front(&c->journal.pin);
437 	ref_nr = atomic_read(fifo_front_p);
438 	if (ref_nr <= 0) {
439 		/*
440 		 * do nothing if no btree node references
441 		 * the oldest journal entry
442 		 */
443 		spin_unlock(&c->journal.lock);
444 		goto out;
445 	}
446 	spin_unlock(&c->journal.lock);
447 
448 	mask = c->journal.pin.mask;
449 	nr = 0;
450 	atomic_long_inc(&c->flush_write);
451 	memset(btree_nodes, 0, sizeof(btree_nodes));
452 
453 	mutex_lock(&c->bucket_lock);
454 	list_for_each_entry_safe_reverse(b, t, &c->btree_cache, list) {
455 		/*
456 		 * It is safe to get now_fifo_front_p without holding
457 		 * c->journal.lock here, because we don't need to know
458 		 * the exactly accurate value, just check whether the
459 		 * front pointer of c->journal.pin is changed.
460 		 */
461 		now_fifo_front_p = &fifo_front(&c->journal.pin);
462 		/*
463 		 * If the oldest journal entry is reclaimed and front
464 		 * pointer of c->journal.pin changes, it is unnecessary
465 		 * to scan c->btree_cache anymore, just quit the loop and
466 		 * flush out what we have already.
467 		 */
468 		if (now_fifo_front_p != fifo_front_p)
469 			break;
470 		/*
471 		 * quit this loop if all matching btree nodes are
472 		 * scanned and record in btree_nodes[] already.
473 		 */
474 		ref_nr = atomic_read(fifo_front_p);
475 		if (nr >= ref_nr)
476 			break;
477 
478 		if (btree_node_journal_flush(b))
479 			pr_err("BUG: flush_write bit should not be set here!\n");
480 
481 		mutex_lock(&b->write_lock);
482 
483 		if (!btree_node_dirty(b)) {
484 			mutex_unlock(&b->write_lock);
485 			continue;
486 		}
487 
488 		if (!btree_current_write(b)->journal) {
489 			mutex_unlock(&b->write_lock);
490 			continue;
491 		}
492 
493 		/*
494 		 * Only select the btree node which exactly references
495 		 * the oldest journal entry.
496 		 *
497 		 * If the journal entry pointed by fifo_front_p is
498 		 * reclaimed in parallel, don't worry:
499 		 * - the list_for_each_xxx loop will quit when checking
500 		 *   next now_fifo_front_p.
501 		 * - If there are matched nodes recorded in btree_nodes[],
502 		 *   they are clean now (this is why and how the oldest
503 		 *   journal entry can be reclaimed). These selected nodes
504 		 *   will be ignored and skipped in the following for-loop.
505 		 */
506 		if (((btree_current_write(b)->journal - fifo_front_p) &
507 		     mask) != 0) {
508 			mutex_unlock(&b->write_lock);
509 			continue;
510 		}
511 
512 		set_btree_node_journal_flush(b);
513 
514 		mutex_unlock(&b->write_lock);
515 
516 		btree_nodes[nr++] = b;
517 		/*
518 		 * To avoid holding c->bucket_lock too long time,
519 		 * only scan for BTREE_FLUSH_NR matched btree nodes
520 		 * at most. If there are more btree nodes reference
521 		 * the oldest journal entry, try to flush them next
522 		 * time when btree_flush_write() is called.
523 		 */
524 		if (nr == BTREE_FLUSH_NR)
525 			break;
526 	}
527 	mutex_unlock(&c->bucket_lock);
528 
529 	for (i = 0; i < nr; i++) {
530 		b = btree_nodes[i];
531 		if (!b) {
532 			pr_err("BUG: btree_nodes[%d] is NULL\n", i);
533 			continue;
534 		}
535 
536 		/* safe to check without holding b->write_lock */
537 		if (!btree_node_journal_flush(b)) {
538 			pr_err("BUG: bnode %p: journal_flush bit cleaned\n", b);
539 			continue;
540 		}
541 
542 		mutex_lock(&b->write_lock);
543 		if (!btree_current_write(b)->journal) {
544 			clear_bit(BTREE_NODE_journal_flush, &b->flags);
545 			mutex_unlock(&b->write_lock);
546 			pr_debug("bnode %p: written by others\n", b);
547 			continue;
548 		}
549 
550 		if (!btree_node_dirty(b)) {
551 			clear_bit(BTREE_NODE_journal_flush, &b->flags);
552 			mutex_unlock(&b->write_lock);
553 			pr_debug("bnode %p: dirty bit cleaned by others\n", b);
554 			continue;
555 		}
556 
557 		__bch_btree_node_write(b, NULL);
558 		clear_bit(BTREE_NODE_journal_flush, &b->flags);
559 		mutex_unlock(&b->write_lock);
560 	}
561 
562 out:
563 	spin_lock(&c->journal.flush_write_lock);
564 	c->journal.btree_flushing = false;
565 	spin_unlock(&c->journal.flush_write_lock);
566 }
567 
568 #define last_seq(j)	((j)->seq - fifo_used(&(j)->pin) + 1)
569 
570 static void journal_discard_endio(struct bio *bio)
571 {
572 	struct journal_device *ja =
573 		container_of(bio, struct journal_device, discard_bio);
574 	struct cache *ca = container_of(ja, struct cache, journal);
575 
576 	atomic_set(&ja->discard_in_flight, DISCARD_DONE);
577 
578 	closure_wake_up(&ca->set->journal.wait);
579 	closure_put(&ca->set->cl);
580 }
581 
582 static void journal_discard_work(struct work_struct *work)
583 {
584 	struct journal_device *ja =
585 		container_of(work, struct journal_device, discard_work);
586 
587 	submit_bio(&ja->discard_bio);
588 }
589 
590 static void do_journal_discard(struct cache *ca)
591 {
592 	struct journal_device *ja = &ca->journal;
593 	struct bio *bio = &ja->discard_bio;
594 
595 	if (!ca->discard) {
596 		ja->discard_idx = ja->last_idx;
597 		return;
598 	}
599 
600 	switch (atomic_read(&ja->discard_in_flight)) {
601 	case DISCARD_IN_FLIGHT:
602 		return;
603 
604 	case DISCARD_DONE:
605 		ja->discard_idx = (ja->discard_idx + 1) %
606 			ca->sb.njournal_buckets;
607 
608 		atomic_set(&ja->discard_in_flight, DISCARD_READY);
609 		fallthrough;
610 
611 	case DISCARD_READY:
612 		if (ja->discard_idx == ja->last_idx)
613 			return;
614 
615 		atomic_set(&ja->discard_in_flight, DISCARD_IN_FLIGHT);
616 
617 		bio_init(bio, ca->bdev, bio->bi_inline_vecs, 1, REQ_OP_DISCARD);
618 		bio->bi_iter.bi_sector	= bucket_to_sector(ca->set,
619 						ca->sb.d[ja->discard_idx]);
620 		bio->bi_iter.bi_size	= bucket_bytes(ca);
621 		bio->bi_end_io		= journal_discard_endio;
622 
623 		closure_get(&ca->set->cl);
624 		INIT_WORK(&ja->discard_work, journal_discard_work);
625 		queue_work(bch_journal_wq, &ja->discard_work);
626 	}
627 }
628 
629 static unsigned int free_journal_buckets(struct cache_set *c)
630 {
631 	struct journal *j = &c->journal;
632 	struct cache *ca = c->cache;
633 	struct journal_device *ja = &c->cache->journal;
634 	unsigned int n;
635 
636 	/* In case njournal_buckets is not power of 2 */
637 	if (ja->cur_idx >= ja->discard_idx)
638 		n = ca->sb.njournal_buckets +  ja->discard_idx - ja->cur_idx;
639 	else
640 		n = ja->discard_idx - ja->cur_idx;
641 
642 	if (n > (1 + j->do_reserve))
643 		return n - (1 + j->do_reserve);
644 
645 	return 0;
646 }
647 
648 static void journal_reclaim(struct cache_set *c)
649 {
650 	struct bkey *k = &c->journal.key;
651 	struct cache *ca = c->cache;
652 	uint64_t last_seq;
653 	struct journal_device *ja = &ca->journal;
654 	atomic_t p __maybe_unused;
655 
656 	atomic_long_inc(&c->reclaim);
657 
658 	while (!atomic_read(&fifo_front(&c->journal.pin)))
659 		fifo_pop(&c->journal.pin, p);
660 
661 	last_seq = last_seq(&c->journal);
662 
663 	/* Update last_idx */
664 
665 	while (ja->last_idx != ja->cur_idx &&
666 	       ja->seq[ja->last_idx] < last_seq)
667 		ja->last_idx = (ja->last_idx + 1) %
668 			ca->sb.njournal_buckets;
669 
670 	do_journal_discard(ca);
671 
672 	if (c->journal.blocks_free)
673 		goto out;
674 
675 	if (!free_journal_buckets(c))
676 		goto out;
677 
678 	ja->cur_idx = (ja->cur_idx + 1) % ca->sb.njournal_buckets;
679 	k->ptr[0] = MAKE_PTR(0,
680 			     bucket_to_sector(c, ca->sb.d[ja->cur_idx]),
681 			     ca->sb.nr_this_dev);
682 	atomic_long_inc(&c->reclaimed_journal_buckets);
683 
684 	bkey_init(k);
685 	SET_KEY_PTRS(k, 1);
686 	c->journal.blocks_free = ca->sb.bucket_size >> c->block_bits;
687 
688 out:
689 	if (!journal_full(&c->journal))
690 		__closure_wake_up(&c->journal.wait);
691 }
692 
693 void bch_journal_next(struct journal *j)
694 {
695 	atomic_t p = { 1 };
696 
697 	j->cur = (j->cur == j->w)
698 		? &j->w[1]
699 		: &j->w[0];
700 
701 	/*
702 	 * The fifo_push() needs to happen at the same time as j->seq is
703 	 * incremented for last_seq() to be calculated correctly
704 	 */
705 	BUG_ON(!fifo_push(&j->pin, p));
706 	atomic_set(&fifo_back(&j->pin), 1);
707 
708 	j->cur->data->seq	= ++j->seq;
709 	j->cur->dirty		= false;
710 	j->cur->need_write	= false;
711 	j->cur->data->keys	= 0;
712 
713 	if (fifo_full(&j->pin))
714 		pr_debug("journal_pin full (%zu)\n", fifo_used(&j->pin));
715 }
716 
717 static void journal_write_endio(struct bio *bio)
718 {
719 	struct journal_write *w = bio->bi_private;
720 
721 	cache_set_err_on(bio->bi_status, w->c, "journal io error");
722 	closure_put(&w->c->journal.io);
723 }
724 
725 static void journal_write(struct closure *cl);
726 
727 static void journal_write_done(struct closure *cl)
728 {
729 	struct journal *j = container_of(cl, struct journal, io);
730 	struct journal_write *w = (j->cur == j->w)
731 		? &j->w[1]
732 		: &j->w[0];
733 
734 	__closure_wake_up(&w->wait);
735 	continue_at_nobarrier(cl, journal_write, bch_journal_wq);
736 }
737 
738 static void journal_write_unlock(struct closure *cl)
739 	__releases(&c->journal.lock)
740 {
741 	struct cache_set *c = container_of(cl, struct cache_set, journal.io);
742 
743 	c->journal.io_in_flight = 0;
744 	spin_unlock(&c->journal.lock);
745 }
746 
747 static void journal_write_unlocked(struct closure *cl)
748 	__releases(c->journal.lock)
749 {
750 	struct cache_set *c = container_of(cl, struct cache_set, journal.io);
751 	struct cache *ca = c->cache;
752 	struct journal_write *w = c->journal.cur;
753 	struct bkey *k = &c->journal.key;
754 	unsigned int i, sectors = set_blocks(w->data, block_bytes(ca)) *
755 		ca->sb.block_size;
756 
757 	struct bio *bio;
758 	struct bio_list list;
759 
760 	bio_list_init(&list);
761 
762 	if (!w->need_write) {
763 		closure_return_with_destructor(cl, journal_write_unlock);
764 		return;
765 	} else if (journal_full(&c->journal)) {
766 		journal_reclaim(c);
767 		spin_unlock(&c->journal.lock);
768 
769 		btree_flush_write(c);
770 		continue_at(cl, journal_write, bch_journal_wq);
771 		return;
772 	}
773 
774 	c->journal.blocks_free -= set_blocks(w->data, block_bytes(ca));
775 
776 	w->data->btree_level = c->root->level;
777 
778 	bkey_copy(&w->data->btree_root, &c->root->key);
779 	bkey_copy(&w->data->uuid_bucket, &c->uuid_bucket);
780 
781 	w->data->prio_bucket[ca->sb.nr_this_dev] = ca->prio_buckets[0];
782 	w->data->magic		= jset_magic(&ca->sb);
783 	w->data->version	= BCACHE_JSET_VERSION;
784 	w->data->last_seq	= last_seq(&c->journal);
785 	w->data->csum		= csum_set(w->data);
786 
787 	for (i = 0; i < KEY_PTRS(k); i++) {
788 		ca = c->cache;
789 		bio = &ca->journal.bio;
790 
791 		atomic_long_add(sectors, &ca->meta_sectors_written);
792 
793 		bio_reset(bio, ca->bdev, REQ_OP_WRITE |
794 			  REQ_SYNC | REQ_META | REQ_PREFLUSH | REQ_FUA);
795 		bio->bi_iter.bi_sector	= PTR_OFFSET(k, i);
796 		bio->bi_iter.bi_size = sectors << 9;
797 
798 		bio->bi_end_io	= journal_write_endio;
799 		bio->bi_private = w;
800 		bch_bio_map(bio, w->data);
801 
802 		trace_bcache_journal_write(bio, w->data->keys);
803 		bio_list_add(&list, bio);
804 
805 		SET_PTR_OFFSET(k, i, PTR_OFFSET(k, i) + sectors);
806 
807 		ca->journal.seq[ca->journal.cur_idx] = w->data->seq;
808 	}
809 
810 	/* If KEY_PTRS(k) == 0, this jset gets lost in air */
811 	BUG_ON(i == 0);
812 
813 	atomic_dec_bug(&fifo_back(&c->journal.pin));
814 	bch_journal_next(&c->journal);
815 	journal_reclaim(c);
816 
817 	spin_unlock(&c->journal.lock);
818 
819 	while ((bio = bio_list_pop(&list)))
820 		closure_bio_submit(c, bio, cl);
821 
822 	continue_at(cl, journal_write_done, NULL);
823 }
824 
825 static void journal_write(struct closure *cl)
826 {
827 	struct cache_set *c = container_of(cl, struct cache_set, journal.io);
828 
829 	spin_lock(&c->journal.lock);
830 	journal_write_unlocked(cl);
831 }
832 
833 static void journal_try_write(struct cache_set *c)
834 	__releases(c->journal.lock)
835 {
836 	struct closure *cl = &c->journal.io;
837 	struct journal_write *w = c->journal.cur;
838 
839 	w->need_write = true;
840 
841 	if (!c->journal.io_in_flight) {
842 		c->journal.io_in_flight = 1;
843 		closure_call(cl, journal_write_unlocked, NULL, &c->cl);
844 	} else {
845 		spin_unlock(&c->journal.lock);
846 	}
847 }
848 
849 static struct journal_write *journal_wait_for_write(struct cache_set *c,
850 						    unsigned int nkeys)
851 	__acquires(&c->journal.lock)
852 {
853 	size_t sectors;
854 	struct closure cl;
855 	bool wait = false;
856 	struct cache *ca = c->cache;
857 
858 	closure_init_stack(&cl);
859 
860 	spin_lock(&c->journal.lock);
861 
862 	while (1) {
863 		struct journal_write *w = c->journal.cur;
864 
865 		sectors = __set_blocks(w->data, w->data->keys + nkeys,
866 				       block_bytes(ca)) * ca->sb.block_size;
867 
868 		if (sectors <= min_t(size_t,
869 				     c->journal.blocks_free * ca->sb.block_size,
870 				     PAGE_SECTORS << JSET_BITS))
871 			return w;
872 
873 		if (wait)
874 			closure_wait(&c->journal.wait, &cl);
875 
876 		if (!journal_full(&c->journal)) {
877 			if (wait)
878 				trace_bcache_journal_entry_full(c);
879 
880 			/*
881 			 * XXX: If we were inserting so many keys that they
882 			 * won't fit in an _empty_ journal write, we'll
883 			 * deadlock. For now, handle this in
884 			 * bch_keylist_realloc() - but something to think about.
885 			 */
886 			BUG_ON(!w->data->keys);
887 
888 			journal_try_write(c); /* unlocks */
889 		} else {
890 			if (wait)
891 				trace_bcache_journal_full(c);
892 
893 			journal_reclaim(c);
894 			spin_unlock(&c->journal.lock);
895 
896 			btree_flush_write(c);
897 		}
898 
899 		closure_sync(&cl);
900 		spin_lock(&c->journal.lock);
901 		wait = true;
902 	}
903 }
904 
905 static void journal_write_work(struct work_struct *work)
906 {
907 	struct cache_set *c = container_of(to_delayed_work(work),
908 					   struct cache_set,
909 					   journal.work);
910 	spin_lock(&c->journal.lock);
911 	if (c->journal.cur->dirty)
912 		journal_try_write(c);
913 	else
914 		spin_unlock(&c->journal.lock);
915 }
916 
917 /*
918  * Entry point to the journalling code - bio_insert() and btree_invalidate()
919  * pass bch_journal() a list of keys to be journalled, and then
920  * bch_journal() hands those same keys off to btree_insert_async()
921  */
922 
923 atomic_t *bch_journal(struct cache_set *c,
924 		      struct keylist *keys,
925 		      struct closure *parent)
926 {
927 	struct journal_write *w;
928 	atomic_t *ret;
929 
930 	/* No journaling if CACHE_SET_IO_DISABLE set already */
931 	if (unlikely(test_bit(CACHE_SET_IO_DISABLE, &c->flags)))
932 		return NULL;
933 
934 	if (!CACHE_SYNC(&c->cache->sb))
935 		return NULL;
936 
937 	w = journal_wait_for_write(c, bch_keylist_nkeys(keys));
938 
939 	memcpy(bset_bkey_last(w->data), keys->keys, bch_keylist_bytes(keys));
940 	w->data->keys += bch_keylist_nkeys(keys);
941 
942 	ret = &fifo_back(&c->journal.pin);
943 	atomic_inc(ret);
944 
945 	if (parent) {
946 		closure_wait(&w->wait, parent);
947 		journal_try_write(c);
948 	} else if (!w->dirty) {
949 		w->dirty = true;
950 		queue_delayed_work(bch_flush_wq, &c->journal.work,
951 				   msecs_to_jiffies(c->journal_delay_ms));
952 		spin_unlock(&c->journal.lock);
953 	} else {
954 		spin_unlock(&c->journal.lock);
955 	}
956 
957 
958 	return ret;
959 }
960 
961 void bch_journal_meta(struct cache_set *c, struct closure *cl)
962 {
963 	struct keylist keys;
964 	atomic_t *ref;
965 
966 	bch_keylist_init(&keys);
967 
968 	ref = bch_journal(c, &keys, cl);
969 	if (ref)
970 		atomic_dec_bug(ref);
971 }
972 
973 void bch_journal_free(struct cache_set *c)
974 {
975 	free_pages((unsigned long) c->journal.w[1].data, JSET_BITS);
976 	free_pages((unsigned long) c->journal.w[0].data, JSET_BITS);
977 	free_fifo(&c->journal.pin);
978 }
979 
980 int bch_journal_alloc(struct cache_set *c)
981 {
982 	struct journal *j = &c->journal;
983 
984 	spin_lock_init(&j->lock);
985 	spin_lock_init(&j->flush_write_lock);
986 	INIT_DELAYED_WORK(&j->work, journal_write_work);
987 
988 	c->journal_delay_ms = 100;
989 
990 	j->w[0].c = c;
991 	j->w[1].c = c;
992 
993 	if (!(init_fifo(&j->pin, JOURNAL_PIN, GFP_KERNEL)) ||
994 	    !(j->w[0].data = (void *) __get_free_pages(GFP_KERNEL|__GFP_COMP, JSET_BITS)) ||
995 	    !(j->w[1].data = (void *) __get_free_pages(GFP_KERNEL|__GFP_COMP, JSET_BITS)))
996 		return -ENOMEM;
997 
998 	return 0;
999 }
1000