1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * bcache journalling code, for btree insertions 4 * 5 * Copyright 2012 Google, Inc. 6 */ 7 8 #include "bcache.h" 9 #include "btree.h" 10 #include "debug.h" 11 #include "extents.h" 12 13 #include <trace/events/bcache.h> 14 15 /* 16 * Journal replay/recovery: 17 * 18 * This code is all driven from run_cache_set(); we first read the journal 19 * entries, do some other stuff, then we mark all the keys in the journal 20 * entries (same as garbage collection would), then we replay them - reinserting 21 * them into the cache in precisely the same order as they appear in the 22 * journal. 23 * 24 * We only journal keys that go in leaf nodes, which simplifies things quite a 25 * bit. 26 */ 27 28 static void journal_read_endio(struct bio *bio) 29 { 30 struct closure *cl = bio->bi_private; 31 32 closure_put(cl); 33 } 34 35 static int journal_read_bucket(struct cache *ca, struct list_head *list, 36 unsigned int bucket_index) 37 { 38 struct journal_device *ja = &ca->journal; 39 struct bio *bio = &ja->bio; 40 41 struct journal_replay *i; 42 struct jset *j, *data = ca->set->journal.w[0].data; 43 struct closure cl; 44 unsigned int len, left, offset = 0; 45 int ret = 0; 46 sector_t bucket = bucket_to_sector(ca->set, ca->sb.d[bucket_index]); 47 48 closure_init_stack(&cl); 49 50 pr_debug("reading %u", bucket_index); 51 52 while (offset < ca->sb.bucket_size) { 53 reread: left = ca->sb.bucket_size - offset; 54 len = min_t(unsigned int, left, PAGE_SECTORS << JSET_BITS); 55 56 bio_reset(bio); 57 bio->bi_iter.bi_sector = bucket + offset; 58 bio_set_dev(bio, ca->bdev); 59 bio->bi_iter.bi_size = len << 9; 60 61 bio->bi_end_io = journal_read_endio; 62 bio->bi_private = &cl; 63 bio_set_op_attrs(bio, REQ_OP_READ, 0); 64 bch_bio_map(bio, data); 65 66 closure_bio_submit(ca->set, bio, &cl); 67 closure_sync(&cl); 68 69 /* This function could be simpler now since we no longer write 70 * journal entries that overlap bucket boundaries; this means 71 * the start of a bucket will always have a valid journal entry 72 * if it has any journal entries at all. 73 */ 74 75 j = data; 76 while (len) { 77 struct list_head *where; 78 size_t blocks, bytes = set_bytes(j); 79 80 if (j->magic != jset_magic(&ca->sb)) { 81 pr_debug("%u: bad magic", bucket_index); 82 return ret; 83 } 84 85 if (bytes > left << 9 || 86 bytes > PAGE_SIZE << JSET_BITS) { 87 pr_info("%u: too big, %zu bytes, offset %u", 88 bucket_index, bytes, offset); 89 return ret; 90 } 91 92 if (bytes > len << 9) 93 goto reread; 94 95 if (j->csum != csum_set(j)) { 96 pr_info("%u: bad csum, %zu bytes, offset %u", 97 bucket_index, bytes, offset); 98 return ret; 99 } 100 101 blocks = set_blocks(j, block_bytes(ca->set)); 102 103 /* 104 * Nodes in 'list' are in linear increasing order of 105 * i->j.seq, the node on head has the smallest (oldest) 106 * journal seq, the node on tail has the biggest 107 * (latest) journal seq. 108 */ 109 110 /* 111 * Check from the oldest jset for last_seq. If 112 * i->j.seq < j->last_seq, it means the oldest jset 113 * in list is expired and useless, remove it from 114 * this list. Otherwise, j is a condidate jset for 115 * further following checks. 116 */ 117 while (!list_empty(list)) { 118 i = list_first_entry(list, 119 struct journal_replay, list); 120 if (i->j.seq >= j->last_seq) 121 break; 122 list_del(&i->list); 123 kfree(i); 124 } 125 126 /* iterate list in reverse order (from latest jset) */ 127 list_for_each_entry_reverse(i, list, list) { 128 if (j->seq == i->j.seq) 129 goto next_set; 130 131 /* 132 * if j->seq is less than any i->j.last_seq 133 * in list, j is an expired and useless jset. 134 */ 135 if (j->seq < i->j.last_seq) 136 goto next_set; 137 138 /* 139 * 'where' points to first jset in list which 140 * is elder then j. 141 */ 142 if (j->seq > i->j.seq) { 143 where = &i->list; 144 goto add; 145 } 146 } 147 148 where = list; 149 add: 150 i = kmalloc(offsetof(struct journal_replay, j) + 151 bytes, GFP_KERNEL); 152 if (!i) 153 return -ENOMEM; 154 memcpy(&i->j, j, bytes); 155 /* Add to the location after 'where' points to */ 156 list_add(&i->list, where); 157 ret = 1; 158 159 if (j->seq > ja->seq[bucket_index]) 160 ja->seq[bucket_index] = j->seq; 161 next_set: 162 offset += blocks * ca->sb.block_size; 163 len -= blocks * ca->sb.block_size; 164 j = ((void *) j) + blocks * block_bytes(ca); 165 } 166 } 167 168 return ret; 169 } 170 171 int bch_journal_read(struct cache_set *c, struct list_head *list) 172 { 173 #define read_bucket(b) \ 174 ({ \ 175 ret = journal_read_bucket(ca, list, b); \ 176 __set_bit(b, bitmap); \ 177 if (ret < 0) \ 178 return ret; \ 179 ret; \ 180 }) 181 182 struct cache *ca; 183 unsigned int iter; 184 int ret = 0; 185 186 for_each_cache(ca, c, iter) { 187 struct journal_device *ja = &ca->journal; 188 DECLARE_BITMAP(bitmap, SB_JOURNAL_BUCKETS); 189 unsigned int i, l, r, m; 190 uint64_t seq; 191 192 bitmap_zero(bitmap, SB_JOURNAL_BUCKETS); 193 pr_debug("%u journal buckets", ca->sb.njournal_buckets); 194 195 /* 196 * Read journal buckets ordered by golden ratio hash to quickly 197 * find a sequence of buckets with valid journal entries 198 */ 199 for (i = 0; i < ca->sb.njournal_buckets; i++) { 200 /* 201 * We must try the index l with ZERO first for 202 * correctness due to the scenario that the journal 203 * bucket is circular buffer which might have wrapped 204 */ 205 l = (i * 2654435769U) % ca->sb.njournal_buckets; 206 207 if (test_bit(l, bitmap)) 208 break; 209 210 if (read_bucket(l)) 211 goto bsearch; 212 } 213 214 /* 215 * If that fails, check all the buckets we haven't checked 216 * already 217 */ 218 pr_debug("falling back to linear search"); 219 220 for (l = find_first_zero_bit(bitmap, ca->sb.njournal_buckets); 221 l < ca->sb.njournal_buckets; 222 l = find_next_zero_bit(bitmap, ca->sb.njournal_buckets, 223 l + 1)) 224 if (read_bucket(l)) 225 goto bsearch; 226 227 /* no journal entries on this device? */ 228 if (l == ca->sb.njournal_buckets) 229 continue; 230 bsearch: 231 BUG_ON(list_empty(list)); 232 233 /* Binary search */ 234 m = l; 235 r = find_next_bit(bitmap, ca->sb.njournal_buckets, l + 1); 236 pr_debug("starting binary search, l %u r %u", l, r); 237 238 while (l + 1 < r) { 239 seq = list_entry(list->prev, struct journal_replay, 240 list)->j.seq; 241 242 m = (l + r) >> 1; 243 read_bucket(m); 244 245 if (seq != list_entry(list->prev, struct journal_replay, 246 list)->j.seq) 247 l = m; 248 else 249 r = m; 250 } 251 252 /* 253 * Read buckets in reverse order until we stop finding more 254 * journal entries 255 */ 256 pr_debug("finishing up: m %u njournal_buckets %u", 257 m, ca->sb.njournal_buckets); 258 l = m; 259 260 while (1) { 261 if (!l--) 262 l = ca->sb.njournal_buckets - 1; 263 264 if (l == m) 265 break; 266 267 if (test_bit(l, bitmap)) 268 continue; 269 270 if (!read_bucket(l)) 271 break; 272 } 273 274 seq = 0; 275 276 for (i = 0; i < ca->sb.njournal_buckets; i++) 277 if (ja->seq[i] > seq) { 278 seq = ja->seq[i]; 279 /* 280 * When journal_reclaim() goes to allocate for 281 * the first time, it'll use the bucket after 282 * ja->cur_idx 283 */ 284 ja->cur_idx = i; 285 ja->last_idx = ja->discard_idx = (i + 1) % 286 ca->sb.njournal_buckets; 287 288 } 289 } 290 291 if (!list_empty(list)) 292 c->journal.seq = list_entry(list->prev, 293 struct journal_replay, 294 list)->j.seq; 295 296 return 0; 297 #undef read_bucket 298 } 299 300 void bch_journal_mark(struct cache_set *c, struct list_head *list) 301 { 302 atomic_t p = { 0 }; 303 struct bkey *k; 304 struct journal_replay *i; 305 struct journal *j = &c->journal; 306 uint64_t last = j->seq; 307 308 /* 309 * journal.pin should never fill up - we never write a journal 310 * entry when it would fill up. But if for some reason it does, we 311 * iterate over the list in reverse order so that we can just skip that 312 * refcount instead of bugging. 313 */ 314 315 list_for_each_entry_reverse(i, list, list) { 316 BUG_ON(last < i->j.seq); 317 i->pin = NULL; 318 319 while (last-- != i->j.seq) 320 if (fifo_free(&j->pin) > 1) { 321 fifo_push_front(&j->pin, p); 322 atomic_set(&fifo_front(&j->pin), 0); 323 } 324 325 if (fifo_free(&j->pin) > 1) { 326 fifo_push_front(&j->pin, p); 327 i->pin = &fifo_front(&j->pin); 328 atomic_set(i->pin, 1); 329 } 330 331 for (k = i->j.start; 332 k < bset_bkey_last(&i->j); 333 k = bkey_next(k)) 334 if (!__bch_extent_invalid(c, k)) { 335 unsigned int j; 336 337 for (j = 0; j < KEY_PTRS(k); j++) 338 if (ptr_available(c, k, j)) 339 atomic_inc(&PTR_BUCKET(c, k, j)->pin); 340 341 bch_initial_mark_key(c, 0, k); 342 } 343 } 344 } 345 346 static bool is_discard_enabled(struct cache_set *s) 347 { 348 struct cache *ca; 349 unsigned int i; 350 351 for_each_cache(ca, s, i) 352 if (ca->discard) 353 return true; 354 355 return false; 356 } 357 358 int bch_journal_replay(struct cache_set *s, struct list_head *list) 359 { 360 int ret = 0, keys = 0, entries = 0; 361 struct bkey *k; 362 struct journal_replay *i = 363 list_entry(list->prev, struct journal_replay, list); 364 365 uint64_t start = i->j.last_seq, end = i->j.seq, n = start; 366 struct keylist keylist; 367 368 list_for_each_entry(i, list, list) { 369 BUG_ON(i->pin && atomic_read(i->pin) != 1); 370 371 if (n != i->j.seq) { 372 if (n == start && is_discard_enabled(s)) 373 pr_info("bcache: journal entries %llu-%llu may be discarded! (replaying %llu-%llu)", 374 n, i->j.seq - 1, start, end); 375 else { 376 pr_err("bcache: journal entries %llu-%llu missing! (replaying %llu-%llu)", 377 n, i->j.seq - 1, start, end); 378 ret = -EIO; 379 goto err; 380 } 381 } 382 383 for (k = i->j.start; 384 k < bset_bkey_last(&i->j); 385 k = bkey_next(k)) { 386 trace_bcache_journal_replay_key(k); 387 388 bch_keylist_init_single(&keylist, k); 389 390 ret = bch_btree_insert(s, &keylist, i->pin, NULL); 391 if (ret) 392 goto err; 393 394 BUG_ON(!bch_keylist_empty(&keylist)); 395 keys++; 396 397 cond_resched(); 398 } 399 400 if (i->pin) 401 atomic_dec(i->pin); 402 n = i->j.seq + 1; 403 entries++; 404 } 405 406 pr_info("journal replay done, %i keys in %i entries, seq %llu", 407 keys, entries, end); 408 err: 409 while (!list_empty(list)) { 410 i = list_first_entry(list, struct journal_replay, list); 411 list_del(&i->list); 412 kfree(i); 413 } 414 415 return ret; 416 } 417 418 /* Journalling */ 419 420 static void btree_flush_write(struct cache_set *c) 421 { 422 struct btree *b, *t, *btree_nodes[BTREE_FLUSH_NR]; 423 unsigned int i, n; 424 425 if (c->journal.btree_flushing) 426 return; 427 428 spin_lock(&c->journal.flush_write_lock); 429 if (c->journal.btree_flushing) { 430 spin_unlock(&c->journal.flush_write_lock); 431 return; 432 } 433 c->journal.btree_flushing = true; 434 spin_unlock(&c->journal.flush_write_lock); 435 436 atomic_long_inc(&c->flush_write); 437 memset(btree_nodes, 0, sizeof(btree_nodes)); 438 n = 0; 439 440 mutex_lock(&c->bucket_lock); 441 list_for_each_entry_safe_reverse(b, t, &c->btree_cache, list) { 442 if (btree_node_journal_flush(b)) 443 pr_err("BUG: flush_write bit should not be set here!"); 444 445 mutex_lock(&b->write_lock); 446 447 if (!btree_node_dirty(b)) { 448 mutex_unlock(&b->write_lock); 449 continue; 450 } 451 452 if (!btree_current_write(b)->journal) { 453 mutex_unlock(&b->write_lock); 454 continue; 455 } 456 457 set_btree_node_journal_flush(b); 458 459 mutex_unlock(&b->write_lock); 460 461 btree_nodes[n++] = b; 462 if (n == BTREE_FLUSH_NR) 463 break; 464 } 465 mutex_unlock(&c->bucket_lock); 466 467 for (i = 0; i < n; i++) { 468 b = btree_nodes[i]; 469 if (!b) { 470 pr_err("BUG: btree_nodes[%d] is NULL", i); 471 continue; 472 } 473 474 /* safe to check without holding b->write_lock */ 475 if (!btree_node_journal_flush(b)) { 476 pr_err("BUG: bnode %p: journal_flush bit cleaned", b); 477 continue; 478 } 479 480 mutex_lock(&b->write_lock); 481 if (!btree_current_write(b)->journal) { 482 clear_bit(BTREE_NODE_journal_flush, &b->flags); 483 mutex_unlock(&b->write_lock); 484 pr_debug("bnode %p: written by others", b); 485 continue; 486 } 487 488 if (!btree_node_dirty(b)) { 489 clear_bit(BTREE_NODE_journal_flush, &b->flags); 490 mutex_unlock(&b->write_lock); 491 pr_debug("bnode %p: dirty bit cleaned by others", b); 492 continue; 493 } 494 495 __bch_btree_node_write(b, NULL); 496 clear_bit(BTREE_NODE_journal_flush, &b->flags); 497 mutex_unlock(&b->write_lock); 498 } 499 500 spin_lock(&c->journal.flush_write_lock); 501 c->journal.btree_flushing = false; 502 spin_unlock(&c->journal.flush_write_lock); 503 } 504 505 #define last_seq(j) ((j)->seq - fifo_used(&(j)->pin) + 1) 506 507 static void journal_discard_endio(struct bio *bio) 508 { 509 struct journal_device *ja = 510 container_of(bio, struct journal_device, discard_bio); 511 struct cache *ca = container_of(ja, struct cache, journal); 512 513 atomic_set(&ja->discard_in_flight, DISCARD_DONE); 514 515 closure_wake_up(&ca->set->journal.wait); 516 closure_put(&ca->set->cl); 517 } 518 519 static void journal_discard_work(struct work_struct *work) 520 { 521 struct journal_device *ja = 522 container_of(work, struct journal_device, discard_work); 523 524 submit_bio(&ja->discard_bio); 525 } 526 527 static void do_journal_discard(struct cache *ca) 528 { 529 struct journal_device *ja = &ca->journal; 530 struct bio *bio = &ja->discard_bio; 531 532 if (!ca->discard) { 533 ja->discard_idx = ja->last_idx; 534 return; 535 } 536 537 switch (atomic_read(&ja->discard_in_flight)) { 538 case DISCARD_IN_FLIGHT: 539 return; 540 541 case DISCARD_DONE: 542 ja->discard_idx = (ja->discard_idx + 1) % 543 ca->sb.njournal_buckets; 544 545 atomic_set(&ja->discard_in_flight, DISCARD_READY); 546 /* fallthrough */ 547 548 case DISCARD_READY: 549 if (ja->discard_idx == ja->last_idx) 550 return; 551 552 atomic_set(&ja->discard_in_flight, DISCARD_IN_FLIGHT); 553 554 bio_init(bio, bio->bi_inline_vecs, 1); 555 bio_set_op_attrs(bio, REQ_OP_DISCARD, 0); 556 bio->bi_iter.bi_sector = bucket_to_sector(ca->set, 557 ca->sb.d[ja->discard_idx]); 558 bio_set_dev(bio, ca->bdev); 559 bio->bi_iter.bi_size = bucket_bytes(ca); 560 bio->bi_end_io = journal_discard_endio; 561 562 closure_get(&ca->set->cl); 563 INIT_WORK(&ja->discard_work, journal_discard_work); 564 queue_work(bch_journal_wq, &ja->discard_work); 565 } 566 } 567 568 static void journal_reclaim(struct cache_set *c) 569 { 570 struct bkey *k = &c->journal.key; 571 struct cache *ca; 572 uint64_t last_seq; 573 unsigned int iter, n = 0; 574 atomic_t p __maybe_unused; 575 576 atomic_long_inc(&c->reclaim); 577 578 while (!atomic_read(&fifo_front(&c->journal.pin))) 579 fifo_pop(&c->journal.pin, p); 580 581 last_seq = last_seq(&c->journal); 582 583 /* Update last_idx */ 584 585 for_each_cache(ca, c, iter) { 586 struct journal_device *ja = &ca->journal; 587 588 while (ja->last_idx != ja->cur_idx && 589 ja->seq[ja->last_idx] < last_seq) 590 ja->last_idx = (ja->last_idx + 1) % 591 ca->sb.njournal_buckets; 592 } 593 594 for_each_cache(ca, c, iter) 595 do_journal_discard(ca); 596 597 if (c->journal.blocks_free) 598 goto out; 599 600 /* 601 * Allocate: 602 * XXX: Sort by free journal space 603 */ 604 605 for_each_cache(ca, c, iter) { 606 struct journal_device *ja = &ca->journal; 607 unsigned int next = (ja->cur_idx + 1) % ca->sb.njournal_buckets; 608 609 /* No space available on this device */ 610 if (next == ja->discard_idx) 611 continue; 612 613 ja->cur_idx = next; 614 k->ptr[n++] = MAKE_PTR(0, 615 bucket_to_sector(c, ca->sb.d[ja->cur_idx]), 616 ca->sb.nr_this_dev); 617 atomic_long_inc(&c->reclaimed_journal_buckets); 618 } 619 620 if (n) { 621 bkey_init(k); 622 SET_KEY_PTRS(k, n); 623 c->journal.blocks_free = c->sb.bucket_size >> c->block_bits; 624 } 625 out: 626 if (!journal_full(&c->journal)) 627 __closure_wake_up(&c->journal.wait); 628 } 629 630 void bch_journal_next(struct journal *j) 631 { 632 atomic_t p = { 1 }; 633 634 j->cur = (j->cur == j->w) 635 ? &j->w[1] 636 : &j->w[0]; 637 638 /* 639 * The fifo_push() needs to happen at the same time as j->seq is 640 * incremented for last_seq() to be calculated correctly 641 */ 642 BUG_ON(!fifo_push(&j->pin, p)); 643 atomic_set(&fifo_back(&j->pin), 1); 644 645 j->cur->data->seq = ++j->seq; 646 j->cur->dirty = false; 647 j->cur->need_write = false; 648 j->cur->data->keys = 0; 649 650 if (fifo_full(&j->pin)) 651 pr_debug("journal_pin full (%zu)", fifo_used(&j->pin)); 652 } 653 654 static void journal_write_endio(struct bio *bio) 655 { 656 struct journal_write *w = bio->bi_private; 657 658 cache_set_err_on(bio->bi_status, w->c, "journal io error"); 659 closure_put(&w->c->journal.io); 660 } 661 662 static void journal_write(struct closure *cl); 663 664 static void journal_write_done(struct closure *cl) 665 { 666 struct journal *j = container_of(cl, struct journal, io); 667 struct journal_write *w = (j->cur == j->w) 668 ? &j->w[1] 669 : &j->w[0]; 670 671 __closure_wake_up(&w->wait); 672 continue_at_nobarrier(cl, journal_write, bch_journal_wq); 673 } 674 675 static void journal_write_unlock(struct closure *cl) 676 __releases(&c->journal.lock) 677 { 678 struct cache_set *c = container_of(cl, struct cache_set, journal.io); 679 680 c->journal.io_in_flight = 0; 681 spin_unlock(&c->journal.lock); 682 } 683 684 static void journal_write_unlocked(struct closure *cl) 685 __releases(c->journal.lock) 686 { 687 struct cache_set *c = container_of(cl, struct cache_set, journal.io); 688 struct cache *ca; 689 struct journal_write *w = c->journal.cur; 690 struct bkey *k = &c->journal.key; 691 unsigned int i, sectors = set_blocks(w->data, block_bytes(c)) * 692 c->sb.block_size; 693 694 struct bio *bio; 695 struct bio_list list; 696 697 bio_list_init(&list); 698 699 if (!w->need_write) { 700 closure_return_with_destructor(cl, journal_write_unlock); 701 return; 702 } else if (journal_full(&c->journal)) { 703 journal_reclaim(c); 704 spin_unlock(&c->journal.lock); 705 706 btree_flush_write(c); 707 continue_at(cl, journal_write, bch_journal_wq); 708 return; 709 } 710 711 c->journal.blocks_free -= set_blocks(w->data, block_bytes(c)); 712 713 w->data->btree_level = c->root->level; 714 715 bkey_copy(&w->data->btree_root, &c->root->key); 716 bkey_copy(&w->data->uuid_bucket, &c->uuid_bucket); 717 718 for_each_cache(ca, c, i) 719 w->data->prio_bucket[ca->sb.nr_this_dev] = ca->prio_buckets[0]; 720 721 w->data->magic = jset_magic(&c->sb); 722 w->data->version = BCACHE_JSET_VERSION; 723 w->data->last_seq = last_seq(&c->journal); 724 w->data->csum = csum_set(w->data); 725 726 for (i = 0; i < KEY_PTRS(k); i++) { 727 ca = PTR_CACHE(c, k, i); 728 bio = &ca->journal.bio; 729 730 atomic_long_add(sectors, &ca->meta_sectors_written); 731 732 bio_reset(bio); 733 bio->bi_iter.bi_sector = PTR_OFFSET(k, i); 734 bio_set_dev(bio, ca->bdev); 735 bio->bi_iter.bi_size = sectors << 9; 736 737 bio->bi_end_io = journal_write_endio; 738 bio->bi_private = w; 739 bio_set_op_attrs(bio, REQ_OP_WRITE, 740 REQ_SYNC|REQ_META|REQ_PREFLUSH|REQ_FUA); 741 bch_bio_map(bio, w->data); 742 743 trace_bcache_journal_write(bio, w->data->keys); 744 bio_list_add(&list, bio); 745 746 SET_PTR_OFFSET(k, i, PTR_OFFSET(k, i) + sectors); 747 748 ca->journal.seq[ca->journal.cur_idx] = w->data->seq; 749 } 750 751 /* If KEY_PTRS(k) == 0, this jset gets lost in air */ 752 BUG_ON(i == 0); 753 754 atomic_dec_bug(&fifo_back(&c->journal.pin)); 755 bch_journal_next(&c->journal); 756 journal_reclaim(c); 757 758 spin_unlock(&c->journal.lock); 759 760 while ((bio = bio_list_pop(&list))) 761 closure_bio_submit(c, bio, cl); 762 763 continue_at(cl, journal_write_done, NULL); 764 } 765 766 static void journal_write(struct closure *cl) 767 { 768 struct cache_set *c = container_of(cl, struct cache_set, journal.io); 769 770 spin_lock(&c->journal.lock); 771 journal_write_unlocked(cl); 772 } 773 774 static void journal_try_write(struct cache_set *c) 775 __releases(c->journal.lock) 776 { 777 struct closure *cl = &c->journal.io; 778 struct journal_write *w = c->journal.cur; 779 780 w->need_write = true; 781 782 if (!c->journal.io_in_flight) { 783 c->journal.io_in_flight = 1; 784 closure_call(cl, journal_write_unlocked, NULL, &c->cl); 785 } else { 786 spin_unlock(&c->journal.lock); 787 } 788 } 789 790 static struct journal_write *journal_wait_for_write(struct cache_set *c, 791 unsigned int nkeys) 792 __acquires(&c->journal.lock) 793 { 794 size_t sectors; 795 struct closure cl; 796 bool wait = false; 797 798 closure_init_stack(&cl); 799 800 spin_lock(&c->journal.lock); 801 802 while (1) { 803 struct journal_write *w = c->journal.cur; 804 805 sectors = __set_blocks(w->data, w->data->keys + nkeys, 806 block_bytes(c)) * c->sb.block_size; 807 808 if (sectors <= min_t(size_t, 809 c->journal.blocks_free * c->sb.block_size, 810 PAGE_SECTORS << JSET_BITS)) 811 return w; 812 813 if (wait) 814 closure_wait(&c->journal.wait, &cl); 815 816 if (!journal_full(&c->journal)) { 817 if (wait) 818 trace_bcache_journal_entry_full(c); 819 820 /* 821 * XXX: If we were inserting so many keys that they 822 * won't fit in an _empty_ journal write, we'll 823 * deadlock. For now, handle this in 824 * bch_keylist_realloc() - but something to think about. 825 */ 826 BUG_ON(!w->data->keys); 827 828 journal_try_write(c); /* unlocks */ 829 } else { 830 if (wait) 831 trace_bcache_journal_full(c); 832 833 journal_reclaim(c); 834 spin_unlock(&c->journal.lock); 835 836 btree_flush_write(c); 837 } 838 839 closure_sync(&cl); 840 spin_lock(&c->journal.lock); 841 wait = true; 842 } 843 } 844 845 static void journal_write_work(struct work_struct *work) 846 { 847 struct cache_set *c = container_of(to_delayed_work(work), 848 struct cache_set, 849 journal.work); 850 spin_lock(&c->journal.lock); 851 if (c->journal.cur->dirty) 852 journal_try_write(c); 853 else 854 spin_unlock(&c->journal.lock); 855 } 856 857 /* 858 * Entry point to the journalling code - bio_insert() and btree_invalidate() 859 * pass bch_journal() a list of keys to be journalled, and then 860 * bch_journal() hands those same keys off to btree_insert_async() 861 */ 862 863 atomic_t *bch_journal(struct cache_set *c, 864 struct keylist *keys, 865 struct closure *parent) 866 { 867 struct journal_write *w; 868 atomic_t *ret; 869 870 /* No journaling if CACHE_SET_IO_DISABLE set already */ 871 if (unlikely(test_bit(CACHE_SET_IO_DISABLE, &c->flags))) 872 return NULL; 873 874 if (!CACHE_SYNC(&c->sb)) 875 return NULL; 876 877 w = journal_wait_for_write(c, bch_keylist_nkeys(keys)); 878 879 memcpy(bset_bkey_last(w->data), keys->keys, bch_keylist_bytes(keys)); 880 w->data->keys += bch_keylist_nkeys(keys); 881 882 ret = &fifo_back(&c->journal.pin); 883 atomic_inc(ret); 884 885 if (parent) { 886 closure_wait(&w->wait, parent); 887 journal_try_write(c); 888 } else if (!w->dirty) { 889 w->dirty = true; 890 schedule_delayed_work(&c->journal.work, 891 msecs_to_jiffies(c->journal_delay_ms)); 892 spin_unlock(&c->journal.lock); 893 } else { 894 spin_unlock(&c->journal.lock); 895 } 896 897 898 return ret; 899 } 900 901 void bch_journal_meta(struct cache_set *c, struct closure *cl) 902 { 903 struct keylist keys; 904 atomic_t *ref; 905 906 bch_keylist_init(&keys); 907 908 ref = bch_journal(c, &keys, cl); 909 if (ref) 910 atomic_dec_bug(ref); 911 } 912 913 void bch_journal_free(struct cache_set *c) 914 { 915 free_pages((unsigned long) c->journal.w[1].data, JSET_BITS); 916 free_pages((unsigned long) c->journal.w[0].data, JSET_BITS); 917 free_fifo(&c->journal.pin); 918 } 919 920 int bch_journal_alloc(struct cache_set *c) 921 { 922 struct journal *j = &c->journal; 923 924 spin_lock_init(&j->lock); 925 spin_lock_init(&j->flush_write_lock); 926 INIT_DELAYED_WORK(&j->work, journal_write_work); 927 928 c->journal_delay_ms = 100; 929 930 j->w[0].c = c; 931 j->w[1].c = c; 932 933 if (!(init_fifo(&j->pin, JOURNAL_PIN, GFP_KERNEL)) || 934 !(j->w[0].data = (void *) __get_free_pages(GFP_KERNEL, JSET_BITS)) || 935 !(j->w[1].data = (void *) __get_free_pages(GFP_KERNEL, JSET_BITS))) 936 return -ENOMEM; 937 938 return 0; 939 } 940