xref: /openbmc/linux/drivers/md/bcache/journal.c (revision 5fa1f768)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * bcache journalling code, for btree insertions
4  *
5  * Copyright 2012 Google, Inc.
6  */
7 
8 #include "bcache.h"
9 #include "btree.h"
10 #include "debug.h"
11 #include "extents.h"
12 
13 #include <trace/events/bcache.h>
14 
15 /*
16  * Journal replay/recovery:
17  *
18  * This code is all driven from run_cache_set(); we first read the journal
19  * entries, do some other stuff, then we mark all the keys in the journal
20  * entries (same as garbage collection would), then we replay them - reinserting
21  * them into the cache in precisely the same order as they appear in the
22  * journal.
23  *
24  * We only journal keys that go in leaf nodes, which simplifies things quite a
25  * bit.
26  */
27 
28 static void journal_read_endio(struct bio *bio)
29 {
30 	struct closure *cl = bio->bi_private;
31 
32 	closure_put(cl);
33 }
34 
35 static int journal_read_bucket(struct cache *ca, struct list_head *list,
36 			       unsigned int bucket_index)
37 {
38 	struct journal_device *ja = &ca->journal;
39 	struct bio *bio = &ja->bio;
40 
41 	struct journal_replay *i;
42 	struct jset *j, *data = ca->set->journal.w[0].data;
43 	struct closure cl;
44 	unsigned int len, left, offset = 0;
45 	int ret = 0;
46 	sector_t bucket = bucket_to_sector(ca->set, ca->sb.d[bucket_index]);
47 
48 	closure_init_stack(&cl);
49 
50 	pr_debug("reading %u\n", bucket_index);
51 
52 	while (offset < ca->sb.bucket_size) {
53 reread:		left = ca->sb.bucket_size - offset;
54 		len = min_t(unsigned int, left, PAGE_SECTORS << JSET_BITS);
55 
56 		bio_reset(bio);
57 		bio->bi_iter.bi_sector	= bucket + offset;
58 		bio_set_dev(bio, ca->bdev);
59 		bio->bi_iter.bi_size	= len << 9;
60 
61 		bio->bi_end_io	= journal_read_endio;
62 		bio->bi_private = &cl;
63 		bio_set_op_attrs(bio, REQ_OP_READ, 0);
64 		bch_bio_map(bio, data);
65 
66 		closure_bio_submit(ca->set, bio, &cl);
67 		closure_sync(&cl);
68 
69 		/* This function could be simpler now since we no longer write
70 		 * journal entries that overlap bucket boundaries; this means
71 		 * the start of a bucket will always have a valid journal entry
72 		 * if it has any journal entries at all.
73 		 */
74 
75 		j = data;
76 		while (len) {
77 			struct list_head *where;
78 			size_t blocks, bytes = set_bytes(j);
79 
80 			if (j->magic != jset_magic(&ca->sb)) {
81 				pr_debug("%u: bad magic\n", bucket_index);
82 				return ret;
83 			}
84 
85 			if (bytes > left << 9 ||
86 			    bytes > PAGE_SIZE << JSET_BITS) {
87 				pr_info("%u: too big, %zu bytes, offset %u\n",
88 					bucket_index, bytes, offset);
89 				return ret;
90 			}
91 
92 			if (bytes > len << 9)
93 				goto reread;
94 
95 			if (j->csum != csum_set(j)) {
96 				pr_info("%u: bad csum, %zu bytes, offset %u\n",
97 					bucket_index, bytes, offset);
98 				return ret;
99 			}
100 
101 			blocks = set_blocks(j, block_bytes(ca->set));
102 
103 			/*
104 			 * Nodes in 'list' are in linear increasing order of
105 			 * i->j.seq, the node on head has the smallest (oldest)
106 			 * journal seq, the node on tail has the biggest
107 			 * (latest) journal seq.
108 			 */
109 
110 			/*
111 			 * Check from the oldest jset for last_seq. If
112 			 * i->j.seq < j->last_seq, it means the oldest jset
113 			 * in list is expired and useless, remove it from
114 			 * this list. Otherwise, j is a condidate jset for
115 			 * further following checks.
116 			 */
117 			while (!list_empty(list)) {
118 				i = list_first_entry(list,
119 					struct journal_replay, list);
120 				if (i->j.seq >= j->last_seq)
121 					break;
122 				list_del(&i->list);
123 				kfree(i);
124 			}
125 
126 			/* iterate list in reverse order (from latest jset) */
127 			list_for_each_entry_reverse(i, list, list) {
128 				if (j->seq == i->j.seq)
129 					goto next_set;
130 
131 				/*
132 				 * if j->seq is less than any i->j.last_seq
133 				 * in list, j is an expired and useless jset.
134 				 */
135 				if (j->seq < i->j.last_seq)
136 					goto next_set;
137 
138 				/*
139 				 * 'where' points to first jset in list which
140 				 * is elder then j.
141 				 */
142 				if (j->seq > i->j.seq) {
143 					where = &i->list;
144 					goto add;
145 				}
146 			}
147 
148 			where = list;
149 add:
150 			i = kmalloc(offsetof(struct journal_replay, j) +
151 				    bytes, GFP_KERNEL);
152 			if (!i)
153 				return -ENOMEM;
154 			memcpy(&i->j, j, bytes);
155 			/* Add to the location after 'where' points to */
156 			list_add(&i->list, where);
157 			ret = 1;
158 
159 			if (j->seq > ja->seq[bucket_index])
160 				ja->seq[bucket_index] = j->seq;
161 next_set:
162 			offset	+= blocks * ca->sb.block_size;
163 			len	-= blocks * ca->sb.block_size;
164 			j = ((void *) j) + blocks * block_bytes(ca);
165 		}
166 	}
167 
168 	return ret;
169 }
170 
171 int bch_journal_read(struct cache_set *c, struct list_head *list)
172 {
173 #define read_bucket(b)							\
174 	({								\
175 		ret = journal_read_bucket(ca, list, b);			\
176 		__set_bit(b, bitmap);					\
177 		if (ret < 0)						\
178 			return ret;					\
179 		ret;							\
180 	})
181 
182 	struct cache *ca;
183 	unsigned int iter;
184 	int ret = 0;
185 
186 	for_each_cache(ca, c, iter) {
187 		struct journal_device *ja = &ca->journal;
188 		DECLARE_BITMAP(bitmap, SB_JOURNAL_BUCKETS);
189 		unsigned int i, l, r, m;
190 		uint64_t seq;
191 
192 		bitmap_zero(bitmap, SB_JOURNAL_BUCKETS);
193 		pr_debug("%u journal buckets\n", ca->sb.njournal_buckets);
194 
195 		/*
196 		 * Read journal buckets ordered by golden ratio hash to quickly
197 		 * find a sequence of buckets with valid journal entries
198 		 */
199 		for (i = 0; i < ca->sb.njournal_buckets; i++) {
200 			/*
201 			 * We must try the index l with ZERO first for
202 			 * correctness due to the scenario that the journal
203 			 * bucket is circular buffer which might have wrapped
204 			 */
205 			l = (i * 2654435769U) % ca->sb.njournal_buckets;
206 
207 			if (test_bit(l, bitmap))
208 				break;
209 
210 			if (read_bucket(l))
211 				goto bsearch;
212 		}
213 
214 		/*
215 		 * If that fails, check all the buckets we haven't checked
216 		 * already
217 		 */
218 		pr_debug("falling back to linear search\n");
219 
220 		for_each_clear_bit(l, bitmap, ca->sb.njournal_buckets)
221 			if (read_bucket(l))
222 				goto bsearch;
223 
224 		/* no journal entries on this device? */
225 		if (l == ca->sb.njournal_buckets)
226 			continue;
227 bsearch:
228 		BUG_ON(list_empty(list));
229 
230 		/* Binary search */
231 		m = l;
232 		r = find_next_bit(bitmap, ca->sb.njournal_buckets, l + 1);
233 		pr_debug("starting binary search, l %u r %u\n", l, r);
234 
235 		while (l + 1 < r) {
236 			seq = list_entry(list->prev, struct journal_replay,
237 					 list)->j.seq;
238 
239 			m = (l + r) >> 1;
240 			read_bucket(m);
241 
242 			if (seq != list_entry(list->prev, struct journal_replay,
243 					      list)->j.seq)
244 				l = m;
245 			else
246 				r = m;
247 		}
248 
249 		/*
250 		 * Read buckets in reverse order until we stop finding more
251 		 * journal entries
252 		 */
253 		pr_debug("finishing up: m %u njournal_buckets %u\n",
254 			 m, ca->sb.njournal_buckets);
255 		l = m;
256 
257 		while (1) {
258 			if (!l--)
259 				l = ca->sb.njournal_buckets - 1;
260 
261 			if (l == m)
262 				break;
263 
264 			if (test_bit(l, bitmap))
265 				continue;
266 
267 			if (!read_bucket(l))
268 				break;
269 		}
270 
271 		seq = 0;
272 
273 		for (i = 0; i < ca->sb.njournal_buckets; i++)
274 			if (ja->seq[i] > seq) {
275 				seq = ja->seq[i];
276 				/*
277 				 * When journal_reclaim() goes to allocate for
278 				 * the first time, it'll use the bucket after
279 				 * ja->cur_idx
280 				 */
281 				ja->cur_idx = i;
282 				ja->last_idx = ja->discard_idx = (i + 1) %
283 					ca->sb.njournal_buckets;
284 
285 			}
286 	}
287 
288 	if (!list_empty(list))
289 		c->journal.seq = list_entry(list->prev,
290 					    struct journal_replay,
291 					    list)->j.seq;
292 
293 	return 0;
294 #undef read_bucket
295 }
296 
297 void bch_journal_mark(struct cache_set *c, struct list_head *list)
298 {
299 	atomic_t p = { 0 };
300 	struct bkey *k;
301 	struct journal_replay *i;
302 	struct journal *j = &c->journal;
303 	uint64_t last = j->seq;
304 
305 	/*
306 	 * journal.pin should never fill up - we never write a journal
307 	 * entry when it would fill up. But if for some reason it does, we
308 	 * iterate over the list in reverse order so that we can just skip that
309 	 * refcount instead of bugging.
310 	 */
311 
312 	list_for_each_entry_reverse(i, list, list) {
313 		BUG_ON(last < i->j.seq);
314 		i->pin = NULL;
315 
316 		while (last-- != i->j.seq)
317 			if (fifo_free(&j->pin) > 1) {
318 				fifo_push_front(&j->pin, p);
319 				atomic_set(&fifo_front(&j->pin), 0);
320 			}
321 
322 		if (fifo_free(&j->pin) > 1) {
323 			fifo_push_front(&j->pin, p);
324 			i->pin = &fifo_front(&j->pin);
325 			atomic_set(i->pin, 1);
326 		}
327 
328 		for (k = i->j.start;
329 		     k < bset_bkey_last(&i->j);
330 		     k = bkey_next(k))
331 			if (!__bch_extent_invalid(c, k)) {
332 				unsigned int j;
333 
334 				for (j = 0; j < KEY_PTRS(k); j++)
335 					if (ptr_available(c, k, j))
336 						atomic_inc(&PTR_BUCKET(c, k, j)->pin);
337 
338 				bch_initial_mark_key(c, 0, k);
339 			}
340 	}
341 }
342 
343 static bool is_discard_enabled(struct cache_set *s)
344 {
345 	struct cache *ca;
346 	unsigned int i;
347 
348 	for_each_cache(ca, s, i)
349 		if (ca->discard)
350 			return true;
351 
352 	return false;
353 }
354 
355 int bch_journal_replay(struct cache_set *s, struct list_head *list)
356 {
357 	int ret = 0, keys = 0, entries = 0;
358 	struct bkey *k;
359 	struct journal_replay *i =
360 		list_entry(list->prev, struct journal_replay, list);
361 
362 	uint64_t start = i->j.last_seq, end = i->j.seq, n = start;
363 	struct keylist keylist;
364 
365 	list_for_each_entry(i, list, list) {
366 		BUG_ON(i->pin && atomic_read(i->pin) != 1);
367 
368 		if (n != i->j.seq) {
369 			if (n == start && is_discard_enabled(s))
370 				pr_info("journal entries %llu-%llu may be discarded! (replaying %llu-%llu)\n",
371 					n, i->j.seq - 1, start, end);
372 			else {
373 				pr_err("journal entries %llu-%llu missing! (replaying %llu-%llu)\n",
374 					n, i->j.seq - 1, start, end);
375 				ret = -EIO;
376 				goto err;
377 			}
378 		}
379 
380 		for (k = i->j.start;
381 		     k < bset_bkey_last(&i->j);
382 		     k = bkey_next(k)) {
383 			trace_bcache_journal_replay_key(k);
384 
385 			bch_keylist_init_single(&keylist, k);
386 
387 			ret = bch_btree_insert(s, &keylist, i->pin, NULL);
388 			if (ret)
389 				goto err;
390 
391 			BUG_ON(!bch_keylist_empty(&keylist));
392 			keys++;
393 
394 			cond_resched();
395 		}
396 
397 		if (i->pin)
398 			atomic_dec(i->pin);
399 		n = i->j.seq + 1;
400 		entries++;
401 	}
402 
403 	pr_info("journal replay done, %i keys in %i entries, seq %llu\n",
404 		keys, entries, end);
405 err:
406 	while (!list_empty(list)) {
407 		i = list_first_entry(list, struct journal_replay, list);
408 		list_del(&i->list);
409 		kfree(i);
410 	}
411 
412 	return ret;
413 }
414 
415 /* Journalling */
416 
417 static void btree_flush_write(struct cache_set *c)
418 {
419 	struct btree *b, *t, *btree_nodes[BTREE_FLUSH_NR];
420 	unsigned int i, nr;
421 	int ref_nr;
422 	atomic_t *fifo_front_p, *now_fifo_front_p;
423 	size_t mask;
424 
425 	if (c->journal.btree_flushing)
426 		return;
427 
428 	spin_lock(&c->journal.flush_write_lock);
429 	if (c->journal.btree_flushing) {
430 		spin_unlock(&c->journal.flush_write_lock);
431 		return;
432 	}
433 	c->journal.btree_flushing = true;
434 	spin_unlock(&c->journal.flush_write_lock);
435 
436 	/* get the oldest journal entry and check its refcount */
437 	spin_lock(&c->journal.lock);
438 	fifo_front_p = &fifo_front(&c->journal.pin);
439 	ref_nr = atomic_read(fifo_front_p);
440 	if (ref_nr <= 0) {
441 		/*
442 		 * do nothing if no btree node references
443 		 * the oldest journal entry
444 		 */
445 		spin_unlock(&c->journal.lock);
446 		goto out;
447 	}
448 	spin_unlock(&c->journal.lock);
449 
450 	mask = c->journal.pin.mask;
451 	nr = 0;
452 	atomic_long_inc(&c->flush_write);
453 	memset(btree_nodes, 0, sizeof(btree_nodes));
454 
455 	mutex_lock(&c->bucket_lock);
456 	list_for_each_entry_safe_reverse(b, t, &c->btree_cache, list) {
457 		/*
458 		 * It is safe to get now_fifo_front_p without holding
459 		 * c->journal.lock here, because we don't need to know
460 		 * the exactly accurate value, just check whether the
461 		 * front pointer of c->journal.pin is changed.
462 		 */
463 		now_fifo_front_p = &fifo_front(&c->journal.pin);
464 		/*
465 		 * If the oldest journal entry is reclaimed and front
466 		 * pointer of c->journal.pin changes, it is unnecessary
467 		 * to scan c->btree_cache anymore, just quit the loop and
468 		 * flush out what we have already.
469 		 */
470 		if (now_fifo_front_p != fifo_front_p)
471 			break;
472 		/*
473 		 * quit this loop if all matching btree nodes are
474 		 * scanned and record in btree_nodes[] already.
475 		 */
476 		ref_nr = atomic_read(fifo_front_p);
477 		if (nr >= ref_nr)
478 			break;
479 
480 		if (btree_node_journal_flush(b))
481 			pr_err("BUG: flush_write bit should not be set here!\n");
482 
483 		mutex_lock(&b->write_lock);
484 
485 		if (!btree_node_dirty(b)) {
486 			mutex_unlock(&b->write_lock);
487 			continue;
488 		}
489 
490 		if (!btree_current_write(b)->journal) {
491 			mutex_unlock(&b->write_lock);
492 			continue;
493 		}
494 
495 		/*
496 		 * Only select the btree node which exactly references
497 		 * the oldest journal entry.
498 		 *
499 		 * If the journal entry pointed by fifo_front_p is
500 		 * reclaimed in parallel, don't worry:
501 		 * - the list_for_each_xxx loop will quit when checking
502 		 *   next now_fifo_front_p.
503 		 * - If there are matched nodes recorded in btree_nodes[],
504 		 *   they are clean now (this is why and how the oldest
505 		 *   journal entry can be reclaimed). These selected nodes
506 		 *   will be ignored and skipped in the folowing for-loop.
507 		 */
508 		if (((btree_current_write(b)->journal - fifo_front_p) &
509 		     mask) != 0) {
510 			mutex_unlock(&b->write_lock);
511 			continue;
512 		}
513 
514 		set_btree_node_journal_flush(b);
515 
516 		mutex_unlock(&b->write_lock);
517 
518 		btree_nodes[nr++] = b;
519 		/*
520 		 * To avoid holding c->bucket_lock too long time,
521 		 * only scan for BTREE_FLUSH_NR matched btree nodes
522 		 * at most. If there are more btree nodes reference
523 		 * the oldest journal entry, try to flush them next
524 		 * time when btree_flush_write() is called.
525 		 */
526 		if (nr == BTREE_FLUSH_NR)
527 			break;
528 	}
529 	mutex_unlock(&c->bucket_lock);
530 
531 	for (i = 0; i < nr; i++) {
532 		b = btree_nodes[i];
533 		if (!b) {
534 			pr_err("BUG: btree_nodes[%d] is NULL\n", i);
535 			continue;
536 		}
537 
538 		/* safe to check without holding b->write_lock */
539 		if (!btree_node_journal_flush(b)) {
540 			pr_err("BUG: bnode %p: journal_flush bit cleaned\n", b);
541 			continue;
542 		}
543 
544 		mutex_lock(&b->write_lock);
545 		if (!btree_current_write(b)->journal) {
546 			clear_bit(BTREE_NODE_journal_flush, &b->flags);
547 			mutex_unlock(&b->write_lock);
548 			pr_debug("bnode %p: written by others\n", b);
549 			continue;
550 		}
551 
552 		if (!btree_node_dirty(b)) {
553 			clear_bit(BTREE_NODE_journal_flush, &b->flags);
554 			mutex_unlock(&b->write_lock);
555 			pr_debug("bnode %p: dirty bit cleaned by others\n", b);
556 			continue;
557 		}
558 
559 		__bch_btree_node_write(b, NULL);
560 		clear_bit(BTREE_NODE_journal_flush, &b->flags);
561 		mutex_unlock(&b->write_lock);
562 	}
563 
564 out:
565 	spin_lock(&c->journal.flush_write_lock);
566 	c->journal.btree_flushing = false;
567 	spin_unlock(&c->journal.flush_write_lock);
568 }
569 
570 #define last_seq(j)	((j)->seq - fifo_used(&(j)->pin) + 1)
571 
572 static void journal_discard_endio(struct bio *bio)
573 {
574 	struct journal_device *ja =
575 		container_of(bio, struct journal_device, discard_bio);
576 	struct cache *ca = container_of(ja, struct cache, journal);
577 
578 	atomic_set(&ja->discard_in_flight, DISCARD_DONE);
579 
580 	closure_wake_up(&ca->set->journal.wait);
581 	closure_put(&ca->set->cl);
582 }
583 
584 static void journal_discard_work(struct work_struct *work)
585 {
586 	struct journal_device *ja =
587 		container_of(work, struct journal_device, discard_work);
588 
589 	submit_bio(&ja->discard_bio);
590 }
591 
592 static void do_journal_discard(struct cache *ca)
593 {
594 	struct journal_device *ja = &ca->journal;
595 	struct bio *bio = &ja->discard_bio;
596 
597 	if (!ca->discard) {
598 		ja->discard_idx = ja->last_idx;
599 		return;
600 	}
601 
602 	switch (atomic_read(&ja->discard_in_flight)) {
603 	case DISCARD_IN_FLIGHT:
604 		return;
605 
606 	case DISCARD_DONE:
607 		ja->discard_idx = (ja->discard_idx + 1) %
608 			ca->sb.njournal_buckets;
609 
610 		atomic_set(&ja->discard_in_flight, DISCARD_READY);
611 		/* fallthrough */
612 
613 	case DISCARD_READY:
614 		if (ja->discard_idx == ja->last_idx)
615 			return;
616 
617 		atomic_set(&ja->discard_in_flight, DISCARD_IN_FLIGHT);
618 
619 		bio_init(bio, bio->bi_inline_vecs, 1);
620 		bio_set_op_attrs(bio, REQ_OP_DISCARD, 0);
621 		bio->bi_iter.bi_sector	= bucket_to_sector(ca->set,
622 						ca->sb.d[ja->discard_idx]);
623 		bio_set_dev(bio, ca->bdev);
624 		bio->bi_iter.bi_size	= bucket_bytes(ca);
625 		bio->bi_end_io		= journal_discard_endio;
626 
627 		closure_get(&ca->set->cl);
628 		INIT_WORK(&ja->discard_work, journal_discard_work);
629 		queue_work(bch_journal_wq, &ja->discard_work);
630 	}
631 }
632 
633 static void journal_reclaim(struct cache_set *c)
634 {
635 	struct bkey *k = &c->journal.key;
636 	struct cache *ca;
637 	uint64_t last_seq;
638 	unsigned int iter, n = 0;
639 	atomic_t p __maybe_unused;
640 
641 	atomic_long_inc(&c->reclaim);
642 
643 	while (!atomic_read(&fifo_front(&c->journal.pin)))
644 		fifo_pop(&c->journal.pin, p);
645 
646 	last_seq = last_seq(&c->journal);
647 
648 	/* Update last_idx */
649 
650 	for_each_cache(ca, c, iter) {
651 		struct journal_device *ja = &ca->journal;
652 
653 		while (ja->last_idx != ja->cur_idx &&
654 		       ja->seq[ja->last_idx] < last_seq)
655 			ja->last_idx = (ja->last_idx + 1) %
656 				ca->sb.njournal_buckets;
657 	}
658 
659 	for_each_cache(ca, c, iter)
660 		do_journal_discard(ca);
661 
662 	if (c->journal.blocks_free)
663 		goto out;
664 
665 	/*
666 	 * Allocate:
667 	 * XXX: Sort by free journal space
668 	 */
669 
670 	for_each_cache(ca, c, iter) {
671 		struct journal_device *ja = &ca->journal;
672 		unsigned int next = (ja->cur_idx + 1) % ca->sb.njournal_buckets;
673 
674 		/* No space available on this device */
675 		if (next == ja->discard_idx)
676 			continue;
677 
678 		ja->cur_idx = next;
679 		k->ptr[n++] = MAKE_PTR(0,
680 				  bucket_to_sector(c, ca->sb.d[ja->cur_idx]),
681 				  ca->sb.nr_this_dev);
682 		atomic_long_inc(&c->reclaimed_journal_buckets);
683 	}
684 
685 	if (n) {
686 		bkey_init(k);
687 		SET_KEY_PTRS(k, n);
688 		c->journal.blocks_free = c->sb.bucket_size >> c->block_bits;
689 	}
690 out:
691 	if (!journal_full(&c->journal))
692 		__closure_wake_up(&c->journal.wait);
693 }
694 
695 void bch_journal_next(struct journal *j)
696 {
697 	atomic_t p = { 1 };
698 
699 	j->cur = (j->cur == j->w)
700 		? &j->w[1]
701 		: &j->w[0];
702 
703 	/*
704 	 * The fifo_push() needs to happen at the same time as j->seq is
705 	 * incremented for last_seq() to be calculated correctly
706 	 */
707 	BUG_ON(!fifo_push(&j->pin, p));
708 	atomic_set(&fifo_back(&j->pin), 1);
709 
710 	j->cur->data->seq	= ++j->seq;
711 	j->cur->dirty		= false;
712 	j->cur->need_write	= false;
713 	j->cur->data->keys	= 0;
714 
715 	if (fifo_full(&j->pin))
716 		pr_debug("journal_pin full (%zu)\n", fifo_used(&j->pin));
717 }
718 
719 static void journal_write_endio(struct bio *bio)
720 {
721 	struct journal_write *w = bio->bi_private;
722 
723 	cache_set_err_on(bio->bi_status, w->c, "journal io error");
724 	closure_put(&w->c->journal.io);
725 }
726 
727 static void journal_write(struct closure *cl);
728 
729 static void journal_write_done(struct closure *cl)
730 {
731 	struct journal *j = container_of(cl, struct journal, io);
732 	struct journal_write *w = (j->cur == j->w)
733 		? &j->w[1]
734 		: &j->w[0];
735 
736 	__closure_wake_up(&w->wait);
737 	continue_at_nobarrier(cl, journal_write, bch_journal_wq);
738 }
739 
740 static void journal_write_unlock(struct closure *cl)
741 	__releases(&c->journal.lock)
742 {
743 	struct cache_set *c = container_of(cl, struct cache_set, journal.io);
744 
745 	c->journal.io_in_flight = 0;
746 	spin_unlock(&c->journal.lock);
747 }
748 
749 static void journal_write_unlocked(struct closure *cl)
750 	__releases(c->journal.lock)
751 {
752 	struct cache_set *c = container_of(cl, struct cache_set, journal.io);
753 	struct cache *ca;
754 	struct journal_write *w = c->journal.cur;
755 	struct bkey *k = &c->journal.key;
756 	unsigned int i, sectors = set_blocks(w->data, block_bytes(c)) *
757 		c->sb.block_size;
758 
759 	struct bio *bio;
760 	struct bio_list list;
761 
762 	bio_list_init(&list);
763 
764 	if (!w->need_write) {
765 		closure_return_with_destructor(cl, journal_write_unlock);
766 		return;
767 	} else if (journal_full(&c->journal)) {
768 		journal_reclaim(c);
769 		spin_unlock(&c->journal.lock);
770 
771 		btree_flush_write(c);
772 		continue_at(cl, journal_write, bch_journal_wq);
773 		return;
774 	}
775 
776 	c->journal.blocks_free -= set_blocks(w->data, block_bytes(c));
777 
778 	w->data->btree_level = c->root->level;
779 
780 	bkey_copy(&w->data->btree_root, &c->root->key);
781 	bkey_copy(&w->data->uuid_bucket, &c->uuid_bucket);
782 
783 	for_each_cache(ca, c, i)
784 		w->data->prio_bucket[ca->sb.nr_this_dev] = ca->prio_buckets[0];
785 
786 	w->data->magic		= jset_magic(&c->sb);
787 	w->data->version	= BCACHE_JSET_VERSION;
788 	w->data->last_seq	= last_seq(&c->journal);
789 	w->data->csum		= csum_set(w->data);
790 
791 	for (i = 0; i < KEY_PTRS(k); i++) {
792 		ca = PTR_CACHE(c, k, i);
793 		bio = &ca->journal.bio;
794 
795 		atomic_long_add(sectors, &ca->meta_sectors_written);
796 
797 		bio_reset(bio);
798 		bio->bi_iter.bi_sector	= PTR_OFFSET(k, i);
799 		bio_set_dev(bio, ca->bdev);
800 		bio->bi_iter.bi_size = sectors << 9;
801 
802 		bio->bi_end_io	= journal_write_endio;
803 		bio->bi_private = w;
804 		bio_set_op_attrs(bio, REQ_OP_WRITE,
805 				 REQ_SYNC|REQ_META|REQ_PREFLUSH|REQ_FUA);
806 		bch_bio_map(bio, w->data);
807 
808 		trace_bcache_journal_write(bio, w->data->keys);
809 		bio_list_add(&list, bio);
810 
811 		SET_PTR_OFFSET(k, i, PTR_OFFSET(k, i) + sectors);
812 
813 		ca->journal.seq[ca->journal.cur_idx] = w->data->seq;
814 	}
815 
816 	/* If KEY_PTRS(k) == 0, this jset gets lost in air */
817 	BUG_ON(i == 0);
818 
819 	atomic_dec_bug(&fifo_back(&c->journal.pin));
820 	bch_journal_next(&c->journal);
821 	journal_reclaim(c);
822 
823 	spin_unlock(&c->journal.lock);
824 
825 	while ((bio = bio_list_pop(&list)))
826 		closure_bio_submit(c, bio, cl);
827 
828 	continue_at(cl, journal_write_done, NULL);
829 }
830 
831 static void journal_write(struct closure *cl)
832 {
833 	struct cache_set *c = container_of(cl, struct cache_set, journal.io);
834 
835 	spin_lock(&c->journal.lock);
836 	journal_write_unlocked(cl);
837 }
838 
839 static void journal_try_write(struct cache_set *c)
840 	__releases(c->journal.lock)
841 {
842 	struct closure *cl = &c->journal.io;
843 	struct journal_write *w = c->journal.cur;
844 
845 	w->need_write = true;
846 
847 	if (!c->journal.io_in_flight) {
848 		c->journal.io_in_flight = 1;
849 		closure_call(cl, journal_write_unlocked, NULL, &c->cl);
850 	} else {
851 		spin_unlock(&c->journal.lock);
852 	}
853 }
854 
855 static struct journal_write *journal_wait_for_write(struct cache_set *c,
856 						    unsigned int nkeys)
857 	__acquires(&c->journal.lock)
858 {
859 	size_t sectors;
860 	struct closure cl;
861 	bool wait = false;
862 
863 	closure_init_stack(&cl);
864 
865 	spin_lock(&c->journal.lock);
866 
867 	while (1) {
868 		struct journal_write *w = c->journal.cur;
869 
870 		sectors = __set_blocks(w->data, w->data->keys + nkeys,
871 				       block_bytes(c)) * c->sb.block_size;
872 
873 		if (sectors <= min_t(size_t,
874 				     c->journal.blocks_free * c->sb.block_size,
875 				     PAGE_SECTORS << JSET_BITS))
876 			return w;
877 
878 		if (wait)
879 			closure_wait(&c->journal.wait, &cl);
880 
881 		if (!journal_full(&c->journal)) {
882 			if (wait)
883 				trace_bcache_journal_entry_full(c);
884 
885 			/*
886 			 * XXX: If we were inserting so many keys that they
887 			 * won't fit in an _empty_ journal write, we'll
888 			 * deadlock. For now, handle this in
889 			 * bch_keylist_realloc() - but something to think about.
890 			 */
891 			BUG_ON(!w->data->keys);
892 
893 			journal_try_write(c); /* unlocks */
894 		} else {
895 			if (wait)
896 				trace_bcache_journal_full(c);
897 
898 			journal_reclaim(c);
899 			spin_unlock(&c->journal.lock);
900 
901 			btree_flush_write(c);
902 		}
903 
904 		closure_sync(&cl);
905 		spin_lock(&c->journal.lock);
906 		wait = true;
907 	}
908 }
909 
910 static void journal_write_work(struct work_struct *work)
911 {
912 	struct cache_set *c = container_of(to_delayed_work(work),
913 					   struct cache_set,
914 					   journal.work);
915 	spin_lock(&c->journal.lock);
916 	if (c->journal.cur->dirty)
917 		journal_try_write(c);
918 	else
919 		spin_unlock(&c->journal.lock);
920 }
921 
922 /*
923  * Entry point to the journalling code - bio_insert() and btree_invalidate()
924  * pass bch_journal() a list of keys to be journalled, and then
925  * bch_journal() hands those same keys off to btree_insert_async()
926  */
927 
928 atomic_t *bch_journal(struct cache_set *c,
929 		      struct keylist *keys,
930 		      struct closure *parent)
931 {
932 	struct journal_write *w;
933 	atomic_t *ret;
934 
935 	/* No journaling if CACHE_SET_IO_DISABLE set already */
936 	if (unlikely(test_bit(CACHE_SET_IO_DISABLE, &c->flags)))
937 		return NULL;
938 
939 	if (!CACHE_SYNC(&c->sb))
940 		return NULL;
941 
942 	w = journal_wait_for_write(c, bch_keylist_nkeys(keys));
943 
944 	memcpy(bset_bkey_last(w->data), keys->keys, bch_keylist_bytes(keys));
945 	w->data->keys += bch_keylist_nkeys(keys);
946 
947 	ret = &fifo_back(&c->journal.pin);
948 	atomic_inc(ret);
949 
950 	if (parent) {
951 		closure_wait(&w->wait, parent);
952 		journal_try_write(c);
953 	} else if (!w->dirty) {
954 		w->dirty = true;
955 		schedule_delayed_work(&c->journal.work,
956 				      msecs_to_jiffies(c->journal_delay_ms));
957 		spin_unlock(&c->journal.lock);
958 	} else {
959 		spin_unlock(&c->journal.lock);
960 	}
961 
962 
963 	return ret;
964 }
965 
966 void bch_journal_meta(struct cache_set *c, struct closure *cl)
967 {
968 	struct keylist keys;
969 	atomic_t *ref;
970 
971 	bch_keylist_init(&keys);
972 
973 	ref = bch_journal(c, &keys, cl);
974 	if (ref)
975 		atomic_dec_bug(ref);
976 }
977 
978 void bch_journal_free(struct cache_set *c)
979 {
980 	free_pages((unsigned long) c->journal.w[1].data, JSET_BITS);
981 	free_pages((unsigned long) c->journal.w[0].data, JSET_BITS);
982 	free_fifo(&c->journal.pin);
983 }
984 
985 int bch_journal_alloc(struct cache_set *c)
986 {
987 	struct journal *j = &c->journal;
988 
989 	spin_lock_init(&j->lock);
990 	spin_lock_init(&j->flush_write_lock);
991 	INIT_DELAYED_WORK(&j->work, journal_write_work);
992 
993 	c->journal_delay_ms = 100;
994 
995 	j->w[0].c = c;
996 	j->w[1].c = c;
997 
998 	if (!(init_fifo(&j->pin, JOURNAL_PIN, GFP_KERNEL)) ||
999 	    !(j->w[0].data = (void *) __get_free_pages(GFP_KERNEL|__GFP_COMP, JSET_BITS)) ||
1000 	    !(j->w[1].data = (void *) __get_free_pages(GFP_KERNEL|__GFP_COMP, JSET_BITS)))
1001 		return -ENOMEM;
1002 
1003 	return 0;
1004 }
1005