1 /* 2 * bcache journalling code, for btree insertions 3 * 4 * Copyright 2012 Google, Inc. 5 */ 6 7 #include "bcache.h" 8 #include "btree.h" 9 #include "debug.h" 10 #include "request.h" 11 12 /* 13 * Journal replay/recovery: 14 * 15 * This code is all driven from run_cache_set(); we first read the journal 16 * entries, do some other stuff, then we mark all the keys in the journal 17 * entries (same as garbage collection would), then we replay them - reinserting 18 * them into the cache in precisely the same order as they appear in the 19 * journal. 20 * 21 * We only journal keys that go in leaf nodes, which simplifies things quite a 22 * bit. 23 */ 24 25 static void journal_read_endio(struct bio *bio, int error) 26 { 27 struct closure *cl = bio->bi_private; 28 closure_put(cl); 29 } 30 31 static int journal_read_bucket(struct cache *ca, struct list_head *list, 32 struct btree_op *op, unsigned bucket_index) 33 { 34 struct journal_device *ja = &ca->journal; 35 struct bio *bio = &ja->bio; 36 37 struct journal_replay *i; 38 struct jset *j, *data = ca->set->journal.w[0].data; 39 unsigned len, left, offset = 0; 40 int ret = 0; 41 sector_t bucket = bucket_to_sector(ca->set, ca->sb.d[bucket_index]); 42 43 pr_debug("reading %llu", (uint64_t) bucket); 44 45 while (offset < ca->sb.bucket_size) { 46 reread: left = ca->sb.bucket_size - offset; 47 len = min_t(unsigned, left, PAGE_SECTORS * 8); 48 49 bio_reset(bio); 50 bio->bi_sector = bucket + offset; 51 bio->bi_bdev = ca->bdev; 52 bio->bi_rw = READ; 53 bio->bi_size = len << 9; 54 55 bio->bi_end_io = journal_read_endio; 56 bio->bi_private = &op->cl; 57 bch_bio_map(bio, data); 58 59 closure_bio_submit(bio, &op->cl, ca); 60 closure_sync(&op->cl); 61 62 /* This function could be simpler now since we no longer write 63 * journal entries that overlap bucket boundaries; this means 64 * the start of a bucket will always have a valid journal entry 65 * if it has any journal entries at all. 66 */ 67 68 j = data; 69 while (len) { 70 struct list_head *where; 71 size_t blocks, bytes = set_bytes(j); 72 73 if (j->magic != jset_magic(ca->set)) 74 return ret; 75 76 if (bytes > left << 9) 77 return ret; 78 79 if (bytes > len << 9) 80 goto reread; 81 82 if (j->csum != csum_set(j)) 83 return ret; 84 85 blocks = set_blocks(j, ca->set); 86 87 while (!list_empty(list)) { 88 i = list_first_entry(list, 89 struct journal_replay, list); 90 if (i->j.seq >= j->last_seq) 91 break; 92 list_del(&i->list); 93 kfree(i); 94 } 95 96 list_for_each_entry_reverse(i, list, list) { 97 if (j->seq == i->j.seq) 98 goto next_set; 99 100 if (j->seq < i->j.last_seq) 101 goto next_set; 102 103 if (j->seq > i->j.seq) { 104 where = &i->list; 105 goto add; 106 } 107 } 108 109 where = list; 110 add: 111 i = kmalloc(offsetof(struct journal_replay, j) + 112 bytes, GFP_KERNEL); 113 if (!i) 114 return -ENOMEM; 115 memcpy(&i->j, j, bytes); 116 list_add(&i->list, where); 117 ret = 1; 118 119 ja->seq[bucket_index] = j->seq; 120 next_set: 121 offset += blocks * ca->sb.block_size; 122 len -= blocks * ca->sb.block_size; 123 j = ((void *) j) + blocks * block_bytes(ca); 124 } 125 } 126 127 return ret; 128 } 129 130 int bch_journal_read(struct cache_set *c, struct list_head *list, 131 struct btree_op *op) 132 { 133 #define read_bucket(b) \ 134 ({ \ 135 int ret = journal_read_bucket(ca, list, op, b); \ 136 __set_bit(b, bitmap); \ 137 if (ret < 0) \ 138 return ret; \ 139 ret; \ 140 }) 141 142 struct cache *ca; 143 unsigned iter; 144 145 for_each_cache(ca, c, iter) { 146 struct journal_device *ja = &ca->journal; 147 unsigned long bitmap[SB_JOURNAL_BUCKETS / BITS_PER_LONG]; 148 unsigned i, l, r, m; 149 uint64_t seq; 150 151 bitmap_zero(bitmap, SB_JOURNAL_BUCKETS); 152 pr_debug("%u journal buckets", ca->sb.njournal_buckets); 153 154 /* Read journal buckets ordered by golden ratio hash to quickly 155 * find a sequence of buckets with valid journal entries 156 */ 157 for (i = 0; i < ca->sb.njournal_buckets; i++) { 158 l = (i * 2654435769U) % ca->sb.njournal_buckets; 159 160 if (test_bit(l, bitmap)) 161 break; 162 163 if (read_bucket(l)) 164 goto bsearch; 165 } 166 167 /* If that fails, check all the buckets we haven't checked 168 * already 169 */ 170 pr_debug("falling back to linear search"); 171 172 for (l = 0; l < ca->sb.njournal_buckets; l++) { 173 if (test_bit(l, bitmap)) 174 continue; 175 176 if (read_bucket(l)) 177 goto bsearch; 178 } 179 bsearch: 180 /* Binary search */ 181 m = r = find_next_bit(bitmap, ca->sb.njournal_buckets, l + 1); 182 pr_debug("starting binary search, l %u r %u", l, r); 183 184 while (l + 1 < r) { 185 m = (l + r) >> 1; 186 187 if (read_bucket(m)) 188 l = m; 189 else 190 r = m; 191 } 192 193 /* Read buckets in reverse order until we stop finding more 194 * journal entries 195 */ 196 pr_debug("finishing up"); 197 l = m; 198 199 while (1) { 200 if (!l--) 201 l = ca->sb.njournal_buckets - 1; 202 203 if (l == m) 204 break; 205 206 if (test_bit(l, bitmap)) 207 continue; 208 209 if (!read_bucket(l)) 210 break; 211 } 212 213 seq = 0; 214 215 for (i = 0; i < ca->sb.njournal_buckets; i++) 216 if (ja->seq[i] > seq) { 217 seq = ja->seq[i]; 218 ja->cur_idx = ja->discard_idx = 219 ja->last_idx = i; 220 221 } 222 } 223 224 c->journal.seq = list_entry(list->prev, 225 struct journal_replay, 226 list)->j.seq; 227 228 return 0; 229 #undef read_bucket 230 } 231 232 void bch_journal_mark(struct cache_set *c, struct list_head *list) 233 { 234 atomic_t p = { 0 }; 235 struct bkey *k; 236 struct journal_replay *i; 237 struct journal *j = &c->journal; 238 uint64_t last = j->seq; 239 240 /* 241 * journal.pin should never fill up - we never write a journal 242 * entry when it would fill up. But if for some reason it does, we 243 * iterate over the list in reverse order so that we can just skip that 244 * refcount instead of bugging. 245 */ 246 247 list_for_each_entry_reverse(i, list, list) { 248 BUG_ON(last < i->j.seq); 249 i->pin = NULL; 250 251 while (last-- != i->j.seq) 252 if (fifo_free(&j->pin) > 1) { 253 fifo_push_front(&j->pin, p); 254 atomic_set(&fifo_front(&j->pin), 0); 255 } 256 257 if (fifo_free(&j->pin) > 1) { 258 fifo_push_front(&j->pin, p); 259 i->pin = &fifo_front(&j->pin); 260 atomic_set(i->pin, 1); 261 } 262 263 for (k = i->j.start; 264 k < end(&i->j); 265 k = bkey_next(k)) { 266 unsigned j; 267 268 for (j = 0; j < KEY_PTRS(k); j++) { 269 struct bucket *g = PTR_BUCKET(c, k, j); 270 atomic_inc(&g->pin); 271 272 if (g->prio == BTREE_PRIO && 273 !ptr_stale(c, k, j)) 274 g->prio = INITIAL_PRIO; 275 } 276 277 __bch_btree_mark_key(c, 0, k); 278 } 279 } 280 } 281 282 int bch_journal_replay(struct cache_set *s, struct list_head *list, 283 struct btree_op *op) 284 { 285 int ret = 0, keys = 0, entries = 0; 286 struct bkey *k; 287 struct journal_replay *i = 288 list_entry(list->prev, struct journal_replay, list); 289 290 uint64_t start = i->j.last_seq, end = i->j.seq, n = start; 291 292 list_for_each_entry(i, list, list) { 293 BUG_ON(i->pin && atomic_read(i->pin) != 1); 294 295 if (n != i->j.seq) 296 pr_err( 297 "journal entries %llu-%llu missing! (replaying %llu-%llu)\n", 298 n, i->j.seq - 1, start, end); 299 300 for (k = i->j.start; 301 k < end(&i->j); 302 k = bkey_next(k)) { 303 pr_debug("%s", pkey(k)); 304 bkey_copy(op->keys.top, k); 305 bch_keylist_push(&op->keys); 306 307 op->journal = i->pin; 308 atomic_inc(op->journal); 309 310 ret = bch_btree_insert(op, s); 311 if (ret) 312 goto err; 313 314 BUG_ON(!bch_keylist_empty(&op->keys)); 315 keys++; 316 317 cond_resched(); 318 } 319 320 if (i->pin) 321 atomic_dec(i->pin); 322 n = i->j.seq + 1; 323 entries++; 324 } 325 326 pr_info("journal replay done, %i keys in %i entries, seq %llu", 327 keys, entries, end); 328 329 while (!list_empty(list)) { 330 i = list_first_entry(list, struct journal_replay, list); 331 list_del(&i->list); 332 kfree(i); 333 } 334 err: 335 closure_sync(&op->cl); 336 return ret; 337 } 338 339 /* Journalling */ 340 341 static void btree_flush_write(struct cache_set *c) 342 { 343 /* 344 * Try to find the btree node with that references the oldest journal 345 * entry, best is our current candidate and is locked if non NULL: 346 */ 347 struct btree *b, *best = NULL; 348 unsigned iter; 349 350 for_each_cached_btree(b, c, iter) { 351 if (!down_write_trylock(&b->lock)) 352 continue; 353 354 if (!btree_node_dirty(b) || 355 !btree_current_write(b)->journal) { 356 rw_unlock(true, b); 357 continue; 358 } 359 360 if (!best) 361 best = b; 362 else if (journal_pin_cmp(c, 363 btree_current_write(best), 364 btree_current_write(b))) { 365 rw_unlock(true, best); 366 best = b; 367 } else 368 rw_unlock(true, b); 369 } 370 371 if (best) 372 goto out; 373 374 /* We can't find the best btree node, just pick the first */ 375 list_for_each_entry(b, &c->btree_cache, list) 376 if (!b->level && btree_node_dirty(b)) { 377 best = b; 378 rw_lock(true, best, best->level); 379 goto found; 380 } 381 382 out: 383 if (!best) 384 return; 385 found: 386 if (btree_node_dirty(best)) 387 bch_btree_write(best, true, NULL); 388 rw_unlock(true, best); 389 } 390 391 #define last_seq(j) ((j)->seq - fifo_used(&(j)->pin) + 1) 392 393 static void journal_discard_endio(struct bio *bio, int error) 394 { 395 struct journal_device *ja = 396 container_of(bio, struct journal_device, discard_bio); 397 struct cache *ca = container_of(ja, struct cache, journal); 398 399 atomic_set(&ja->discard_in_flight, DISCARD_DONE); 400 401 closure_wake_up(&ca->set->journal.wait); 402 closure_put(&ca->set->cl); 403 } 404 405 static void journal_discard_work(struct work_struct *work) 406 { 407 struct journal_device *ja = 408 container_of(work, struct journal_device, discard_work); 409 410 submit_bio(0, &ja->discard_bio); 411 } 412 413 static void do_journal_discard(struct cache *ca) 414 { 415 struct journal_device *ja = &ca->journal; 416 struct bio *bio = &ja->discard_bio; 417 418 if (!ca->discard) { 419 ja->discard_idx = ja->last_idx; 420 return; 421 } 422 423 switch (atomic_read(&ja->discard_in_flight) == DISCARD_IN_FLIGHT) { 424 case DISCARD_IN_FLIGHT: 425 return; 426 427 case DISCARD_DONE: 428 ja->discard_idx = (ja->discard_idx + 1) % 429 ca->sb.njournal_buckets; 430 431 atomic_set(&ja->discard_in_flight, DISCARD_READY); 432 /* fallthrough */ 433 434 case DISCARD_READY: 435 if (ja->discard_idx == ja->last_idx) 436 return; 437 438 atomic_set(&ja->discard_in_flight, DISCARD_IN_FLIGHT); 439 440 bio_init(bio); 441 bio->bi_sector = bucket_to_sector(ca->set, 442 ca->sb.d[ja->discard_idx]); 443 bio->bi_bdev = ca->bdev; 444 bio->bi_rw = REQ_WRITE|REQ_DISCARD; 445 bio->bi_max_vecs = 1; 446 bio->bi_io_vec = bio->bi_inline_vecs; 447 bio->bi_size = bucket_bytes(ca); 448 bio->bi_end_io = journal_discard_endio; 449 450 closure_get(&ca->set->cl); 451 INIT_WORK(&ja->discard_work, journal_discard_work); 452 schedule_work(&ja->discard_work); 453 } 454 } 455 456 static void journal_reclaim(struct cache_set *c) 457 { 458 struct bkey *k = &c->journal.key; 459 struct cache *ca; 460 uint64_t last_seq; 461 unsigned iter, n = 0; 462 atomic_t p; 463 464 while (!atomic_read(&fifo_front(&c->journal.pin))) 465 fifo_pop(&c->journal.pin, p); 466 467 last_seq = last_seq(&c->journal); 468 469 /* Update last_idx */ 470 471 for_each_cache(ca, c, iter) { 472 struct journal_device *ja = &ca->journal; 473 474 while (ja->last_idx != ja->cur_idx && 475 ja->seq[ja->last_idx] < last_seq) 476 ja->last_idx = (ja->last_idx + 1) % 477 ca->sb.njournal_buckets; 478 } 479 480 for_each_cache(ca, c, iter) 481 do_journal_discard(ca); 482 483 if (c->journal.blocks_free) 484 return; 485 486 /* 487 * Allocate: 488 * XXX: Sort by free journal space 489 */ 490 491 for_each_cache(ca, c, iter) { 492 struct journal_device *ja = &ca->journal; 493 unsigned next = (ja->cur_idx + 1) % ca->sb.njournal_buckets; 494 495 /* No space available on this device */ 496 if (next == ja->discard_idx) 497 continue; 498 499 ja->cur_idx = next; 500 k->ptr[n++] = PTR(0, 501 bucket_to_sector(c, ca->sb.d[ja->cur_idx]), 502 ca->sb.nr_this_dev); 503 } 504 505 bkey_init(k); 506 SET_KEY_PTRS(k, n); 507 508 if (n) 509 c->journal.blocks_free = c->sb.bucket_size >> c->block_bits; 510 511 if (!journal_full(&c->journal)) 512 __closure_wake_up(&c->journal.wait); 513 } 514 515 void bch_journal_next(struct journal *j) 516 { 517 atomic_t p = { 1 }; 518 519 j->cur = (j->cur == j->w) 520 ? &j->w[1] 521 : &j->w[0]; 522 523 /* 524 * The fifo_push() needs to happen at the same time as j->seq is 525 * incremented for last_seq() to be calculated correctly 526 */ 527 BUG_ON(!fifo_push(&j->pin, p)); 528 atomic_set(&fifo_back(&j->pin), 1); 529 530 j->cur->data->seq = ++j->seq; 531 j->cur->need_write = false; 532 j->cur->data->keys = 0; 533 534 if (fifo_full(&j->pin)) 535 pr_debug("journal_pin full (%zu)", fifo_used(&j->pin)); 536 } 537 538 static void journal_write_endio(struct bio *bio, int error) 539 { 540 struct journal_write *w = bio->bi_private; 541 542 cache_set_err_on(error, w->c, "journal io error"); 543 closure_put(&w->c->journal.io.cl); 544 } 545 546 static void journal_write(struct closure *); 547 548 static void journal_write_done(struct closure *cl) 549 { 550 struct journal *j = container_of(cl, struct journal, io.cl); 551 struct cache_set *c = container_of(j, struct cache_set, journal); 552 553 struct journal_write *w = (j->cur == j->w) 554 ? &j->w[1] 555 : &j->w[0]; 556 557 __closure_wake_up(&w->wait); 558 559 if (c->journal_delay_ms) 560 closure_delay(&j->io, msecs_to_jiffies(c->journal_delay_ms)); 561 562 continue_at(cl, journal_write, system_wq); 563 } 564 565 static void journal_write_unlocked(struct closure *cl) 566 __releases(c->journal.lock) 567 { 568 struct cache_set *c = container_of(cl, struct cache_set, journal.io.cl); 569 struct cache *ca; 570 struct journal_write *w = c->journal.cur; 571 struct bkey *k = &c->journal.key; 572 unsigned i, sectors = set_blocks(w->data, c) * c->sb.block_size; 573 574 struct bio *bio; 575 struct bio_list list; 576 bio_list_init(&list); 577 578 if (!w->need_write) { 579 /* 580 * XXX: have to unlock closure before we unlock journal lock, 581 * else we race with bch_journal(). But this way we race 582 * against cache set unregister. Doh. 583 */ 584 set_closure_fn(cl, NULL, NULL); 585 closure_sub(cl, CLOSURE_RUNNING + 1); 586 spin_unlock(&c->journal.lock); 587 return; 588 } else if (journal_full(&c->journal)) { 589 journal_reclaim(c); 590 spin_unlock(&c->journal.lock); 591 592 btree_flush_write(c); 593 continue_at(cl, journal_write, system_wq); 594 } 595 596 c->journal.blocks_free -= set_blocks(w->data, c); 597 598 w->data->btree_level = c->root->level; 599 600 bkey_copy(&w->data->btree_root, &c->root->key); 601 bkey_copy(&w->data->uuid_bucket, &c->uuid_bucket); 602 603 for_each_cache(ca, c, i) 604 w->data->prio_bucket[ca->sb.nr_this_dev] = ca->prio_buckets[0]; 605 606 w->data->magic = jset_magic(c); 607 w->data->version = BCACHE_JSET_VERSION; 608 w->data->last_seq = last_seq(&c->journal); 609 w->data->csum = csum_set(w->data); 610 611 for (i = 0; i < KEY_PTRS(k); i++) { 612 ca = PTR_CACHE(c, k, i); 613 bio = &ca->journal.bio; 614 615 atomic_long_add(sectors, &ca->meta_sectors_written); 616 617 bio_reset(bio); 618 bio->bi_sector = PTR_OFFSET(k, i); 619 bio->bi_bdev = ca->bdev; 620 bio->bi_rw = REQ_WRITE|REQ_SYNC|REQ_META|REQ_FLUSH; 621 bio->bi_size = sectors << 9; 622 623 bio->bi_end_io = journal_write_endio; 624 bio->bi_private = w; 625 bch_bio_map(bio, w->data); 626 627 trace_bcache_journal_write(bio); 628 bio_list_add(&list, bio); 629 630 SET_PTR_OFFSET(k, i, PTR_OFFSET(k, i) + sectors); 631 632 ca->journal.seq[ca->journal.cur_idx] = w->data->seq; 633 } 634 635 atomic_dec_bug(&fifo_back(&c->journal.pin)); 636 bch_journal_next(&c->journal); 637 journal_reclaim(c); 638 639 spin_unlock(&c->journal.lock); 640 641 while ((bio = bio_list_pop(&list))) 642 closure_bio_submit(bio, cl, c->cache[0]); 643 644 continue_at(cl, journal_write_done, NULL); 645 } 646 647 static void journal_write(struct closure *cl) 648 { 649 struct cache_set *c = container_of(cl, struct cache_set, journal.io.cl); 650 651 spin_lock(&c->journal.lock); 652 journal_write_unlocked(cl); 653 } 654 655 static void __journal_try_write(struct cache_set *c, bool noflush) 656 __releases(c->journal.lock) 657 { 658 struct closure *cl = &c->journal.io.cl; 659 660 if (!closure_trylock(cl, &c->cl)) 661 spin_unlock(&c->journal.lock); 662 else if (noflush && journal_full(&c->journal)) { 663 spin_unlock(&c->journal.lock); 664 continue_at(cl, journal_write, system_wq); 665 } else 666 journal_write_unlocked(cl); 667 } 668 669 #define journal_try_write(c) __journal_try_write(c, false) 670 671 void bch_journal_meta(struct cache_set *c, struct closure *cl) 672 { 673 struct journal_write *w; 674 675 if (CACHE_SYNC(&c->sb)) { 676 spin_lock(&c->journal.lock); 677 678 w = c->journal.cur; 679 w->need_write = true; 680 681 if (cl) 682 BUG_ON(!closure_wait(&w->wait, cl)); 683 684 __journal_try_write(c, true); 685 } 686 } 687 688 /* 689 * Entry point to the journalling code - bio_insert() and btree_invalidate() 690 * pass bch_journal() a list of keys to be journalled, and then 691 * bch_journal() hands those same keys off to btree_insert_async() 692 */ 693 694 void bch_journal(struct closure *cl) 695 { 696 struct btree_op *op = container_of(cl, struct btree_op, cl); 697 struct cache_set *c = op->c; 698 struct journal_write *w; 699 size_t b, n = ((uint64_t *) op->keys.top) - op->keys.list; 700 701 if (op->type != BTREE_INSERT || 702 !CACHE_SYNC(&c->sb)) 703 goto out; 704 705 /* 706 * If we're looping because we errored, might already be waiting on 707 * another journal write: 708 */ 709 while (atomic_read(&cl->parent->remaining) & CLOSURE_WAITING) 710 closure_sync(cl->parent); 711 712 spin_lock(&c->journal.lock); 713 714 if (journal_full(&c->journal)) { 715 /* XXX: tracepoint */ 716 closure_wait(&c->journal.wait, cl); 717 718 journal_reclaim(c); 719 spin_unlock(&c->journal.lock); 720 721 btree_flush_write(c); 722 continue_at(cl, bch_journal, bcache_wq); 723 } 724 725 w = c->journal.cur; 726 w->need_write = true; 727 b = __set_blocks(w->data, w->data->keys + n, c); 728 729 if (b * c->sb.block_size > PAGE_SECTORS << JSET_BITS || 730 b > c->journal.blocks_free) { 731 /* XXX: If we were inserting so many keys that they won't fit in 732 * an _empty_ journal write, we'll deadlock. For now, handle 733 * this in bch_keylist_realloc() - but something to think about. 734 */ 735 BUG_ON(!w->data->keys); 736 737 /* XXX: tracepoint */ 738 BUG_ON(!closure_wait(&w->wait, cl)); 739 740 closure_flush(&c->journal.io); 741 742 journal_try_write(c); 743 continue_at(cl, bch_journal, bcache_wq); 744 } 745 746 memcpy(end(w->data), op->keys.list, n * sizeof(uint64_t)); 747 w->data->keys += n; 748 749 op->journal = &fifo_back(&c->journal.pin); 750 atomic_inc(op->journal); 751 752 if (op->flush_journal) { 753 closure_flush(&c->journal.io); 754 closure_wait(&w->wait, cl->parent); 755 } 756 757 journal_try_write(c); 758 out: 759 bch_btree_insert_async(cl); 760 } 761 762 void bch_journal_free(struct cache_set *c) 763 { 764 free_pages((unsigned long) c->journal.w[1].data, JSET_BITS); 765 free_pages((unsigned long) c->journal.w[0].data, JSET_BITS); 766 free_fifo(&c->journal.pin); 767 } 768 769 int bch_journal_alloc(struct cache_set *c) 770 { 771 struct journal *j = &c->journal; 772 773 closure_init_unlocked(&j->io); 774 spin_lock_init(&j->lock); 775 776 c->journal_delay_ms = 100; 777 778 j->w[0].c = c; 779 j->w[1].c = c; 780 781 if (!(init_fifo(&j->pin, JOURNAL_PIN, GFP_KERNEL)) || 782 !(j->w[0].data = (void *) __get_free_pages(GFP_KERNEL, JSET_BITS)) || 783 !(j->w[1].data = (void *) __get_free_pages(GFP_KERNEL, JSET_BITS))) 784 return -ENOMEM; 785 786 return 0; 787 } 788