1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * bcache journalling code, for btree insertions 4 * 5 * Copyright 2012 Google, Inc. 6 */ 7 8 #include "bcache.h" 9 #include "btree.h" 10 #include "debug.h" 11 #include "extents.h" 12 13 #include <trace/events/bcache.h> 14 15 /* 16 * Journal replay/recovery: 17 * 18 * This code is all driven from run_cache_set(); we first read the journal 19 * entries, do some other stuff, then we mark all the keys in the journal 20 * entries (same as garbage collection would), then we replay them - reinserting 21 * them into the cache in precisely the same order as they appear in the 22 * journal. 23 * 24 * We only journal keys that go in leaf nodes, which simplifies things quite a 25 * bit. 26 */ 27 28 static void journal_read_endio(struct bio *bio) 29 { 30 struct closure *cl = bio->bi_private; 31 32 closure_put(cl); 33 } 34 35 static int journal_read_bucket(struct cache *ca, struct list_head *list, 36 unsigned int bucket_index) 37 { 38 struct journal_device *ja = &ca->journal; 39 struct bio *bio = &ja->bio; 40 41 struct journal_replay *i; 42 struct jset *j, *data = ca->set->journal.w[0].data; 43 struct closure cl; 44 unsigned int len, left, offset = 0; 45 int ret = 0; 46 sector_t bucket = bucket_to_sector(ca->set, ca->sb.d[bucket_index]); 47 48 closure_init_stack(&cl); 49 50 pr_debug("reading %u\n", bucket_index); 51 52 while (offset < ca->sb.bucket_size) { 53 reread: left = ca->sb.bucket_size - offset; 54 len = min_t(unsigned int, left, PAGE_SECTORS << JSET_BITS); 55 56 bio_reset(bio); 57 bio->bi_iter.bi_sector = bucket + offset; 58 bio_set_dev(bio, ca->bdev); 59 bio->bi_iter.bi_size = len << 9; 60 61 bio->bi_end_io = journal_read_endio; 62 bio->bi_private = &cl; 63 bio_set_op_attrs(bio, REQ_OP_READ, 0); 64 bch_bio_map(bio, data); 65 66 closure_bio_submit(ca->set, bio, &cl); 67 closure_sync(&cl); 68 69 /* This function could be simpler now since we no longer write 70 * journal entries that overlap bucket boundaries; this means 71 * the start of a bucket will always have a valid journal entry 72 * if it has any journal entries at all. 73 */ 74 75 j = data; 76 while (len) { 77 struct list_head *where; 78 size_t blocks, bytes = set_bytes(j); 79 80 if (j->magic != jset_magic(&ca->sb)) { 81 pr_debug("%u: bad magic\n", bucket_index); 82 return ret; 83 } 84 85 if (bytes > left << 9 || 86 bytes > PAGE_SIZE << JSET_BITS) { 87 pr_info("%u: too big, %zu bytes, offset %u\n", 88 bucket_index, bytes, offset); 89 return ret; 90 } 91 92 if (bytes > len << 9) 93 goto reread; 94 95 if (j->csum != csum_set(j)) { 96 pr_info("%u: bad csum, %zu bytes, offset %u\n", 97 bucket_index, bytes, offset); 98 return ret; 99 } 100 101 blocks = set_blocks(j, block_bytes(ca->set)); 102 103 /* 104 * Nodes in 'list' are in linear increasing order of 105 * i->j.seq, the node on head has the smallest (oldest) 106 * journal seq, the node on tail has the biggest 107 * (latest) journal seq. 108 */ 109 110 /* 111 * Check from the oldest jset for last_seq. If 112 * i->j.seq < j->last_seq, it means the oldest jset 113 * in list is expired and useless, remove it from 114 * this list. Otherwise, j is a condidate jset for 115 * further following checks. 116 */ 117 while (!list_empty(list)) { 118 i = list_first_entry(list, 119 struct journal_replay, list); 120 if (i->j.seq >= j->last_seq) 121 break; 122 list_del(&i->list); 123 kfree(i); 124 } 125 126 /* iterate list in reverse order (from latest jset) */ 127 list_for_each_entry_reverse(i, list, list) { 128 if (j->seq == i->j.seq) 129 goto next_set; 130 131 /* 132 * if j->seq is less than any i->j.last_seq 133 * in list, j is an expired and useless jset. 134 */ 135 if (j->seq < i->j.last_seq) 136 goto next_set; 137 138 /* 139 * 'where' points to first jset in list which 140 * is elder then j. 141 */ 142 if (j->seq > i->j.seq) { 143 where = &i->list; 144 goto add; 145 } 146 } 147 148 where = list; 149 add: 150 i = kmalloc(offsetof(struct journal_replay, j) + 151 bytes, GFP_KERNEL); 152 if (!i) 153 return -ENOMEM; 154 memcpy(&i->j, j, bytes); 155 /* Add to the location after 'where' points to */ 156 list_add(&i->list, where); 157 ret = 1; 158 159 if (j->seq > ja->seq[bucket_index]) 160 ja->seq[bucket_index] = j->seq; 161 next_set: 162 offset += blocks * ca->sb.block_size; 163 len -= blocks * ca->sb.block_size; 164 j = ((void *) j) + blocks * block_bytes(ca); 165 } 166 } 167 168 return ret; 169 } 170 171 int bch_journal_read(struct cache_set *c, struct list_head *list) 172 { 173 #define read_bucket(b) \ 174 ({ \ 175 ret = journal_read_bucket(ca, list, b); \ 176 __set_bit(b, bitmap); \ 177 if (ret < 0) \ 178 return ret; \ 179 ret; \ 180 }) 181 182 struct cache *ca; 183 unsigned int iter; 184 int ret = 0; 185 186 for_each_cache(ca, c, iter) { 187 struct journal_device *ja = &ca->journal; 188 DECLARE_BITMAP(bitmap, SB_JOURNAL_BUCKETS); 189 unsigned int i, l, r, m; 190 uint64_t seq; 191 192 bitmap_zero(bitmap, SB_JOURNAL_BUCKETS); 193 pr_debug("%u journal buckets\n", ca->sb.njournal_buckets); 194 195 /* 196 * Read journal buckets ordered by golden ratio hash to quickly 197 * find a sequence of buckets with valid journal entries 198 */ 199 for (i = 0; i < ca->sb.njournal_buckets; i++) { 200 /* 201 * We must try the index l with ZERO first for 202 * correctness due to the scenario that the journal 203 * bucket is circular buffer which might have wrapped 204 */ 205 l = (i * 2654435769U) % ca->sb.njournal_buckets; 206 207 if (test_bit(l, bitmap)) 208 break; 209 210 if (read_bucket(l)) 211 goto bsearch; 212 } 213 214 /* 215 * If that fails, check all the buckets we haven't checked 216 * already 217 */ 218 pr_debug("falling back to linear search\n"); 219 220 for_each_clear_bit(l, bitmap, ca->sb.njournal_buckets) 221 if (read_bucket(l)) 222 goto bsearch; 223 224 /* no journal entries on this device? */ 225 if (l == ca->sb.njournal_buckets) 226 continue; 227 bsearch: 228 BUG_ON(list_empty(list)); 229 230 /* Binary search */ 231 m = l; 232 r = find_next_bit(bitmap, ca->sb.njournal_buckets, l + 1); 233 pr_debug("starting binary search, l %u r %u\n", l, r); 234 235 while (l + 1 < r) { 236 seq = list_entry(list->prev, struct journal_replay, 237 list)->j.seq; 238 239 m = (l + r) >> 1; 240 read_bucket(m); 241 242 if (seq != list_entry(list->prev, struct journal_replay, 243 list)->j.seq) 244 l = m; 245 else 246 r = m; 247 } 248 249 /* 250 * Read buckets in reverse order until we stop finding more 251 * journal entries 252 */ 253 pr_debug("finishing up: m %u njournal_buckets %u\n", 254 m, ca->sb.njournal_buckets); 255 l = m; 256 257 while (1) { 258 if (!l--) 259 l = ca->sb.njournal_buckets - 1; 260 261 if (l == m) 262 break; 263 264 if (test_bit(l, bitmap)) 265 continue; 266 267 if (!read_bucket(l)) 268 break; 269 } 270 271 seq = 0; 272 273 for (i = 0; i < ca->sb.njournal_buckets; i++) 274 if (ja->seq[i] > seq) { 275 seq = ja->seq[i]; 276 /* 277 * When journal_reclaim() goes to allocate for 278 * the first time, it'll use the bucket after 279 * ja->cur_idx 280 */ 281 ja->cur_idx = i; 282 ja->last_idx = ja->discard_idx = (i + 1) % 283 ca->sb.njournal_buckets; 284 285 } 286 } 287 288 if (!list_empty(list)) 289 c->journal.seq = list_entry(list->prev, 290 struct journal_replay, 291 list)->j.seq; 292 293 return 0; 294 #undef read_bucket 295 } 296 297 void bch_journal_mark(struct cache_set *c, struct list_head *list) 298 { 299 atomic_t p = { 0 }; 300 struct bkey *k; 301 struct journal_replay *i; 302 struct journal *j = &c->journal; 303 uint64_t last = j->seq; 304 305 /* 306 * journal.pin should never fill up - we never write a journal 307 * entry when it would fill up. But if for some reason it does, we 308 * iterate over the list in reverse order so that we can just skip that 309 * refcount instead of bugging. 310 */ 311 312 list_for_each_entry_reverse(i, list, list) { 313 BUG_ON(last < i->j.seq); 314 i->pin = NULL; 315 316 while (last-- != i->j.seq) 317 if (fifo_free(&j->pin) > 1) { 318 fifo_push_front(&j->pin, p); 319 atomic_set(&fifo_front(&j->pin), 0); 320 } 321 322 if (fifo_free(&j->pin) > 1) { 323 fifo_push_front(&j->pin, p); 324 i->pin = &fifo_front(&j->pin); 325 atomic_set(i->pin, 1); 326 } 327 328 for (k = i->j.start; 329 k < bset_bkey_last(&i->j); 330 k = bkey_next(k)) 331 if (!__bch_extent_invalid(c, k)) { 332 unsigned int j; 333 334 for (j = 0; j < KEY_PTRS(k); j++) 335 if (ptr_available(c, k, j)) 336 atomic_inc(&PTR_BUCKET(c, k, j)->pin); 337 338 bch_initial_mark_key(c, 0, k); 339 } 340 } 341 } 342 343 static bool is_discard_enabled(struct cache_set *s) 344 { 345 struct cache *ca; 346 unsigned int i; 347 348 for_each_cache(ca, s, i) 349 if (ca->discard) 350 return true; 351 352 return false; 353 } 354 355 int bch_journal_replay(struct cache_set *s, struct list_head *list) 356 { 357 int ret = 0, keys = 0, entries = 0; 358 struct bkey *k; 359 struct journal_replay *i = 360 list_entry(list->prev, struct journal_replay, list); 361 362 uint64_t start = i->j.last_seq, end = i->j.seq, n = start; 363 struct keylist keylist; 364 365 list_for_each_entry(i, list, list) { 366 BUG_ON(i->pin && atomic_read(i->pin) != 1); 367 368 if (n != i->j.seq) { 369 if (n == start && is_discard_enabled(s)) 370 pr_info("journal entries %llu-%llu may be discarded! (replaying %llu-%llu)\n", 371 n, i->j.seq - 1, start, end); 372 else { 373 pr_err("journal entries %llu-%llu missing! (replaying %llu-%llu)\n", 374 n, i->j.seq - 1, start, end); 375 ret = -EIO; 376 goto err; 377 } 378 } 379 380 for (k = i->j.start; 381 k < bset_bkey_last(&i->j); 382 k = bkey_next(k)) { 383 trace_bcache_journal_replay_key(k); 384 385 bch_keylist_init_single(&keylist, k); 386 387 ret = bch_btree_insert(s, &keylist, i->pin, NULL); 388 if (ret) 389 goto err; 390 391 BUG_ON(!bch_keylist_empty(&keylist)); 392 keys++; 393 394 cond_resched(); 395 } 396 397 if (i->pin) 398 atomic_dec(i->pin); 399 n = i->j.seq + 1; 400 entries++; 401 } 402 403 pr_info("journal replay done, %i keys in %i entries, seq %llu\n", 404 keys, entries, end); 405 err: 406 while (!list_empty(list)) { 407 i = list_first_entry(list, struct journal_replay, list); 408 list_del(&i->list); 409 kfree(i); 410 } 411 412 return ret; 413 } 414 415 /* Journalling */ 416 417 static void btree_flush_write(struct cache_set *c) 418 { 419 struct btree *b, *t, *btree_nodes[BTREE_FLUSH_NR]; 420 unsigned int i, nr; 421 int ref_nr; 422 atomic_t *fifo_front_p, *now_fifo_front_p; 423 size_t mask; 424 425 if (c->journal.btree_flushing) 426 return; 427 428 spin_lock(&c->journal.flush_write_lock); 429 if (c->journal.btree_flushing) { 430 spin_unlock(&c->journal.flush_write_lock); 431 return; 432 } 433 c->journal.btree_flushing = true; 434 spin_unlock(&c->journal.flush_write_lock); 435 436 /* get the oldest journal entry and check its refcount */ 437 spin_lock(&c->journal.lock); 438 fifo_front_p = &fifo_front(&c->journal.pin); 439 ref_nr = atomic_read(fifo_front_p); 440 if (ref_nr <= 0) { 441 /* 442 * do nothing if no btree node references 443 * the oldest journal entry 444 */ 445 spin_unlock(&c->journal.lock); 446 goto out; 447 } 448 spin_unlock(&c->journal.lock); 449 450 mask = c->journal.pin.mask; 451 nr = 0; 452 atomic_long_inc(&c->flush_write); 453 memset(btree_nodes, 0, sizeof(btree_nodes)); 454 455 mutex_lock(&c->bucket_lock); 456 list_for_each_entry_safe_reverse(b, t, &c->btree_cache, list) { 457 /* 458 * It is safe to get now_fifo_front_p without holding 459 * c->journal.lock here, because we don't need to know 460 * the exactly accurate value, just check whether the 461 * front pointer of c->journal.pin is changed. 462 */ 463 now_fifo_front_p = &fifo_front(&c->journal.pin); 464 /* 465 * If the oldest journal entry is reclaimed and front 466 * pointer of c->journal.pin changes, it is unnecessary 467 * to scan c->btree_cache anymore, just quit the loop and 468 * flush out what we have already. 469 */ 470 if (now_fifo_front_p != fifo_front_p) 471 break; 472 /* 473 * quit this loop if all matching btree nodes are 474 * scanned and record in btree_nodes[] already. 475 */ 476 ref_nr = atomic_read(fifo_front_p); 477 if (nr >= ref_nr) 478 break; 479 480 if (btree_node_journal_flush(b)) 481 pr_err("BUG: flush_write bit should not be set here!\n"); 482 483 mutex_lock(&b->write_lock); 484 485 if (!btree_node_dirty(b)) { 486 mutex_unlock(&b->write_lock); 487 continue; 488 } 489 490 if (!btree_current_write(b)->journal) { 491 mutex_unlock(&b->write_lock); 492 continue; 493 } 494 495 /* 496 * Only select the btree node which exactly references 497 * the oldest journal entry. 498 * 499 * If the journal entry pointed by fifo_front_p is 500 * reclaimed in parallel, don't worry: 501 * - the list_for_each_xxx loop will quit when checking 502 * next now_fifo_front_p. 503 * - If there are matched nodes recorded in btree_nodes[], 504 * they are clean now (this is why and how the oldest 505 * journal entry can be reclaimed). These selected nodes 506 * will be ignored and skipped in the folowing for-loop. 507 */ 508 if (((btree_current_write(b)->journal - fifo_front_p) & 509 mask) != 0) { 510 mutex_unlock(&b->write_lock); 511 continue; 512 } 513 514 set_btree_node_journal_flush(b); 515 516 mutex_unlock(&b->write_lock); 517 518 btree_nodes[nr++] = b; 519 /* 520 * To avoid holding c->bucket_lock too long time, 521 * only scan for BTREE_FLUSH_NR matched btree nodes 522 * at most. If there are more btree nodes reference 523 * the oldest journal entry, try to flush them next 524 * time when btree_flush_write() is called. 525 */ 526 if (nr == BTREE_FLUSH_NR) 527 break; 528 } 529 mutex_unlock(&c->bucket_lock); 530 531 for (i = 0; i < nr; i++) { 532 b = btree_nodes[i]; 533 if (!b) { 534 pr_err("BUG: btree_nodes[%d] is NULL\n", i); 535 continue; 536 } 537 538 /* safe to check without holding b->write_lock */ 539 if (!btree_node_journal_flush(b)) { 540 pr_err("BUG: bnode %p: journal_flush bit cleaned\n", b); 541 continue; 542 } 543 544 mutex_lock(&b->write_lock); 545 if (!btree_current_write(b)->journal) { 546 clear_bit(BTREE_NODE_journal_flush, &b->flags); 547 mutex_unlock(&b->write_lock); 548 pr_debug("bnode %p: written by others\n", b); 549 continue; 550 } 551 552 if (!btree_node_dirty(b)) { 553 clear_bit(BTREE_NODE_journal_flush, &b->flags); 554 mutex_unlock(&b->write_lock); 555 pr_debug("bnode %p: dirty bit cleaned by others\n", b); 556 continue; 557 } 558 559 __bch_btree_node_write(b, NULL); 560 clear_bit(BTREE_NODE_journal_flush, &b->flags); 561 mutex_unlock(&b->write_lock); 562 } 563 564 out: 565 spin_lock(&c->journal.flush_write_lock); 566 c->journal.btree_flushing = false; 567 spin_unlock(&c->journal.flush_write_lock); 568 } 569 570 #define last_seq(j) ((j)->seq - fifo_used(&(j)->pin) + 1) 571 572 static void journal_discard_endio(struct bio *bio) 573 { 574 struct journal_device *ja = 575 container_of(bio, struct journal_device, discard_bio); 576 struct cache *ca = container_of(ja, struct cache, journal); 577 578 atomic_set(&ja->discard_in_flight, DISCARD_DONE); 579 580 closure_wake_up(&ca->set->journal.wait); 581 closure_put(&ca->set->cl); 582 } 583 584 static void journal_discard_work(struct work_struct *work) 585 { 586 struct journal_device *ja = 587 container_of(work, struct journal_device, discard_work); 588 589 submit_bio(&ja->discard_bio); 590 } 591 592 static void do_journal_discard(struct cache *ca) 593 { 594 struct journal_device *ja = &ca->journal; 595 struct bio *bio = &ja->discard_bio; 596 597 if (!ca->discard) { 598 ja->discard_idx = ja->last_idx; 599 return; 600 } 601 602 switch (atomic_read(&ja->discard_in_flight)) { 603 case DISCARD_IN_FLIGHT: 604 return; 605 606 case DISCARD_DONE: 607 ja->discard_idx = (ja->discard_idx + 1) % 608 ca->sb.njournal_buckets; 609 610 atomic_set(&ja->discard_in_flight, DISCARD_READY); 611 /* fallthrough */ 612 613 case DISCARD_READY: 614 if (ja->discard_idx == ja->last_idx) 615 return; 616 617 atomic_set(&ja->discard_in_flight, DISCARD_IN_FLIGHT); 618 619 bio_init(bio, bio->bi_inline_vecs, 1); 620 bio_set_op_attrs(bio, REQ_OP_DISCARD, 0); 621 bio->bi_iter.bi_sector = bucket_to_sector(ca->set, 622 ca->sb.d[ja->discard_idx]); 623 bio_set_dev(bio, ca->bdev); 624 bio->bi_iter.bi_size = bucket_bytes(ca); 625 bio->bi_end_io = journal_discard_endio; 626 627 closure_get(&ca->set->cl); 628 INIT_WORK(&ja->discard_work, journal_discard_work); 629 queue_work(bch_journal_wq, &ja->discard_work); 630 } 631 } 632 633 static void journal_reclaim(struct cache_set *c) 634 { 635 struct bkey *k = &c->journal.key; 636 struct cache *ca; 637 uint64_t last_seq; 638 unsigned int iter, n = 0; 639 atomic_t p __maybe_unused; 640 641 atomic_long_inc(&c->reclaim); 642 643 while (!atomic_read(&fifo_front(&c->journal.pin))) 644 fifo_pop(&c->journal.pin, p); 645 646 last_seq = last_seq(&c->journal); 647 648 /* Update last_idx */ 649 650 for_each_cache(ca, c, iter) { 651 struct journal_device *ja = &ca->journal; 652 653 while (ja->last_idx != ja->cur_idx && 654 ja->seq[ja->last_idx] < last_seq) 655 ja->last_idx = (ja->last_idx + 1) % 656 ca->sb.njournal_buckets; 657 } 658 659 for_each_cache(ca, c, iter) 660 do_journal_discard(ca); 661 662 if (c->journal.blocks_free) 663 goto out; 664 665 /* 666 * Allocate: 667 * XXX: Sort by free journal space 668 */ 669 670 for_each_cache(ca, c, iter) { 671 struct journal_device *ja = &ca->journal; 672 unsigned int next = (ja->cur_idx + 1) % ca->sb.njournal_buckets; 673 674 /* No space available on this device */ 675 if (next == ja->discard_idx) 676 continue; 677 678 ja->cur_idx = next; 679 k->ptr[n++] = MAKE_PTR(0, 680 bucket_to_sector(c, ca->sb.d[ja->cur_idx]), 681 ca->sb.nr_this_dev); 682 atomic_long_inc(&c->reclaimed_journal_buckets); 683 } 684 685 if (n) { 686 bkey_init(k); 687 SET_KEY_PTRS(k, n); 688 c->journal.blocks_free = c->sb.bucket_size >> c->block_bits; 689 } 690 out: 691 if (!journal_full(&c->journal)) 692 __closure_wake_up(&c->journal.wait); 693 } 694 695 void bch_journal_next(struct journal *j) 696 { 697 atomic_t p = { 1 }; 698 699 j->cur = (j->cur == j->w) 700 ? &j->w[1] 701 : &j->w[0]; 702 703 /* 704 * The fifo_push() needs to happen at the same time as j->seq is 705 * incremented for last_seq() to be calculated correctly 706 */ 707 BUG_ON(!fifo_push(&j->pin, p)); 708 atomic_set(&fifo_back(&j->pin), 1); 709 710 j->cur->data->seq = ++j->seq; 711 j->cur->dirty = false; 712 j->cur->need_write = false; 713 j->cur->data->keys = 0; 714 715 if (fifo_full(&j->pin)) 716 pr_debug("journal_pin full (%zu)\n", fifo_used(&j->pin)); 717 } 718 719 static void journal_write_endio(struct bio *bio) 720 { 721 struct journal_write *w = bio->bi_private; 722 723 cache_set_err_on(bio->bi_status, w->c, "journal io error"); 724 closure_put(&w->c->journal.io); 725 } 726 727 static void journal_write(struct closure *cl); 728 729 static void journal_write_done(struct closure *cl) 730 { 731 struct journal *j = container_of(cl, struct journal, io); 732 struct journal_write *w = (j->cur == j->w) 733 ? &j->w[1] 734 : &j->w[0]; 735 736 __closure_wake_up(&w->wait); 737 continue_at_nobarrier(cl, journal_write, bch_journal_wq); 738 } 739 740 static void journal_write_unlock(struct closure *cl) 741 __releases(&c->journal.lock) 742 { 743 struct cache_set *c = container_of(cl, struct cache_set, journal.io); 744 745 c->journal.io_in_flight = 0; 746 spin_unlock(&c->journal.lock); 747 } 748 749 static void journal_write_unlocked(struct closure *cl) 750 __releases(c->journal.lock) 751 { 752 struct cache_set *c = container_of(cl, struct cache_set, journal.io); 753 struct cache *ca; 754 struct journal_write *w = c->journal.cur; 755 struct bkey *k = &c->journal.key; 756 unsigned int i, sectors = set_blocks(w->data, block_bytes(c)) * 757 c->sb.block_size; 758 759 struct bio *bio; 760 struct bio_list list; 761 762 bio_list_init(&list); 763 764 if (!w->need_write) { 765 closure_return_with_destructor(cl, journal_write_unlock); 766 return; 767 } else if (journal_full(&c->journal)) { 768 journal_reclaim(c); 769 spin_unlock(&c->journal.lock); 770 771 btree_flush_write(c); 772 continue_at(cl, journal_write, bch_journal_wq); 773 return; 774 } 775 776 c->journal.blocks_free -= set_blocks(w->data, block_bytes(c)); 777 778 w->data->btree_level = c->root->level; 779 780 bkey_copy(&w->data->btree_root, &c->root->key); 781 bkey_copy(&w->data->uuid_bucket, &c->uuid_bucket); 782 783 for_each_cache(ca, c, i) 784 w->data->prio_bucket[ca->sb.nr_this_dev] = ca->prio_buckets[0]; 785 786 w->data->magic = jset_magic(&c->sb); 787 w->data->version = BCACHE_JSET_VERSION; 788 w->data->last_seq = last_seq(&c->journal); 789 w->data->csum = csum_set(w->data); 790 791 for (i = 0; i < KEY_PTRS(k); i++) { 792 ca = PTR_CACHE(c, k, i); 793 bio = &ca->journal.bio; 794 795 atomic_long_add(sectors, &ca->meta_sectors_written); 796 797 bio_reset(bio); 798 bio->bi_iter.bi_sector = PTR_OFFSET(k, i); 799 bio_set_dev(bio, ca->bdev); 800 bio->bi_iter.bi_size = sectors << 9; 801 802 bio->bi_end_io = journal_write_endio; 803 bio->bi_private = w; 804 bio_set_op_attrs(bio, REQ_OP_WRITE, 805 REQ_SYNC|REQ_META|REQ_PREFLUSH|REQ_FUA); 806 bch_bio_map(bio, w->data); 807 808 trace_bcache_journal_write(bio, w->data->keys); 809 bio_list_add(&list, bio); 810 811 SET_PTR_OFFSET(k, i, PTR_OFFSET(k, i) + sectors); 812 813 ca->journal.seq[ca->journal.cur_idx] = w->data->seq; 814 } 815 816 /* If KEY_PTRS(k) == 0, this jset gets lost in air */ 817 BUG_ON(i == 0); 818 819 atomic_dec_bug(&fifo_back(&c->journal.pin)); 820 bch_journal_next(&c->journal); 821 journal_reclaim(c); 822 823 spin_unlock(&c->journal.lock); 824 825 while ((bio = bio_list_pop(&list))) 826 closure_bio_submit(c, bio, cl); 827 828 continue_at(cl, journal_write_done, NULL); 829 } 830 831 static void journal_write(struct closure *cl) 832 { 833 struct cache_set *c = container_of(cl, struct cache_set, journal.io); 834 835 spin_lock(&c->journal.lock); 836 journal_write_unlocked(cl); 837 } 838 839 static void journal_try_write(struct cache_set *c) 840 __releases(c->journal.lock) 841 { 842 struct closure *cl = &c->journal.io; 843 struct journal_write *w = c->journal.cur; 844 845 w->need_write = true; 846 847 if (!c->journal.io_in_flight) { 848 c->journal.io_in_flight = 1; 849 closure_call(cl, journal_write_unlocked, NULL, &c->cl); 850 } else { 851 spin_unlock(&c->journal.lock); 852 } 853 } 854 855 static struct journal_write *journal_wait_for_write(struct cache_set *c, 856 unsigned int nkeys) 857 __acquires(&c->journal.lock) 858 { 859 size_t sectors; 860 struct closure cl; 861 bool wait = false; 862 863 closure_init_stack(&cl); 864 865 spin_lock(&c->journal.lock); 866 867 while (1) { 868 struct journal_write *w = c->journal.cur; 869 870 sectors = __set_blocks(w->data, w->data->keys + nkeys, 871 block_bytes(c)) * c->sb.block_size; 872 873 if (sectors <= min_t(size_t, 874 c->journal.blocks_free * c->sb.block_size, 875 PAGE_SECTORS << JSET_BITS)) 876 return w; 877 878 if (wait) 879 closure_wait(&c->journal.wait, &cl); 880 881 if (!journal_full(&c->journal)) { 882 if (wait) 883 trace_bcache_journal_entry_full(c); 884 885 /* 886 * XXX: If we were inserting so many keys that they 887 * won't fit in an _empty_ journal write, we'll 888 * deadlock. For now, handle this in 889 * bch_keylist_realloc() - but something to think about. 890 */ 891 BUG_ON(!w->data->keys); 892 893 journal_try_write(c); /* unlocks */ 894 } else { 895 if (wait) 896 trace_bcache_journal_full(c); 897 898 journal_reclaim(c); 899 spin_unlock(&c->journal.lock); 900 901 btree_flush_write(c); 902 } 903 904 closure_sync(&cl); 905 spin_lock(&c->journal.lock); 906 wait = true; 907 } 908 } 909 910 static void journal_write_work(struct work_struct *work) 911 { 912 struct cache_set *c = container_of(to_delayed_work(work), 913 struct cache_set, 914 journal.work); 915 spin_lock(&c->journal.lock); 916 if (c->journal.cur->dirty) 917 journal_try_write(c); 918 else 919 spin_unlock(&c->journal.lock); 920 } 921 922 /* 923 * Entry point to the journalling code - bio_insert() and btree_invalidate() 924 * pass bch_journal() a list of keys to be journalled, and then 925 * bch_journal() hands those same keys off to btree_insert_async() 926 */ 927 928 atomic_t *bch_journal(struct cache_set *c, 929 struct keylist *keys, 930 struct closure *parent) 931 { 932 struct journal_write *w; 933 atomic_t *ret; 934 935 /* No journaling if CACHE_SET_IO_DISABLE set already */ 936 if (unlikely(test_bit(CACHE_SET_IO_DISABLE, &c->flags))) 937 return NULL; 938 939 if (!CACHE_SYNC(&c->sb)) 940 return NULL; 941 942 w = journal_wait_for_write(c, bch_keylist_nkeys(keys)); 943 944 memcpy(bset_bkey_last(w->data), keys->keys, bch_keylist_bytes(keys)); 945 w->data->keys += bch_keylist_nkeys(keys); 946 947 ret = &fifo_back(&c->journal.pin); 948 atomic_inc(ret); 949 950 if (parent) { 951 closure_wait(&w->wait, parent); 952 journal_try_write(c); 953 } else if (!w->dirty) { 954 w->dirty = true; 955 schedule_delayed_work(&c->journal.work, 956 msecs_to_jiffies(c->journal_delay_ms)); 957 spin_unlock(&c->journal.lock); 958 } else { 959 spin_unlock(&c->journal.lock); 960 } 961 962 963 return ret; 964 } 965 966 void bch_journal_meta(struct cache_set *c, struct closure *cl) 967 { 968 struct keylist keys; 969 atomic_t *ref; 970 971 bch_keylist_init(&keys); 972 973 ref = bch_journal(c, &keys, cl); 974 if (ref) 975 atomic_dec_bug(ref); 976 } 977 978 void bch_journal_free(struct cache_set *c) 979 { 980 free_pages((unsigned long) c->journal.w[1].data, JSET_BITS); 981 free_pages((unsigned long) c->journal.w[0].data, JSET_BITS); 982 free_fifo(&c->journal.pin); 983 } 984 985 int bch_journal_alloc(struct cache_set *c) 986 { 987 struct journal *j = &c->journal; 988 989 spin_lock_init(&j->lock); 990 spin_lock_init(&j->flush_write_lock); 991 INIT_DELAYED_WORK(&j->work, journal_write_work); 992 993 c->journal_delay_ms = 100; 994 995 j->w[0].c = c; 996 j->w[1].c = c; 997 998 if (!(init_fifo(&j->pin, JOURNAL_PIN, GFP_KERNEL)) || 999 !(j->w[0].data = (void *) __get_free_pages(GFP_KERNEL|__GFP_COMP, JSET_BITS)) || 1000 !(j->w[1].data = (void *) __get_free_pages(GFP_KERNEL|__GFP_COMP, JSET_BITS))) 1001 return -ENOMEM; 1002 1003 return 0; 1004 } 1005