1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * bcache journalling code, for btree insertions 4 * 5 * Copyright 2012 Google, Inc. 6 */ 7 8 #include "bcache.h" 9 #include "btree.h" 10 #include "debug.h" 11 #include "extents.h" 12 13 #include <trace/events/bcache.h> 14 15 /* 16 * Journal replay/recovery: 17 * 18 * This code is all driven from run_cache_set(); we first read the journal 19 * entries, do some other stuff, then we mark all the keys in the journal 20 * entries (same as garbage collection would), then we replay them - reinserting 21 * them into the cache in precisely the same order as they appear in the 22 * journal. 23 * 24 * We only journal keys that go in leaf nodes, which simplifies things quite a 25 * bit. 26 */ 27 28 static void journal_read_endio(struct bio *bio) 29 { 30 struct closure *cl = bio->bi_private; 31 32 closure_put(cl); 33 } 34 35 static int journal_read_bucket(struct cache *ca, struct list_head *list, 36 unsigned int bucket_index) 37 { 38 struct journal_device *ja = &ca->journal; 39 struct bio *bio = &ja->bio; 40 41 struct journal_replay *i; 42 struct jset *j, *data = ca->set->journal.w[0].data; 43 struct closure cl; 44 unsigned int len, left, offset = 0; 45 int ret = 0; 46 sector_t bucket = bucket_to_sector(ca->set, ca->sb.d[bucket_index]); 47 48 closure_init_stack(&cl); 49 50 pr_debug("reading %u\n", bucket_index); 51 52 while (offset < ca->sb.bucket_size) { 53 reread: left = ca->sb.bucket_size - offset; 54 len = min_t(unsigned int, left, PAGE_SECTORS << JSET_BITS); 55 56 bio_reset(bio, ca->bdev, REQ_OP_READ); 57 bio->bi_iter.bi_sector = bucket + offset; 58 bio->bi_iter.bi_size = len << 9; 59 60 bio->bi_end_io = journal_read_endio; 61 bio->bi_private = &cl; 62 bch_bio_map(bio, data); 63 64 closure_bio_submit(ca->set, bio, &cl); 65 closure_sync(&cl); 66 67 /* This function could be simpler now since we no longer write 68 * journal entries that overlap bucket boundaries; this means 69 * the start of a bucket will always have a valid journal entry 70 * if it has any journal entries at all. 71 */ 72 73 j = data; 74 while (len) { 75 struct list_head *where; 76 size_t blocks, bytes = set_bytes(j); 77 78 if (j->magic != jset_magic(&ca->sb)) { 79 pr_debug("%u: bad magic\n", bucket_index); 80 return ret; 81 } 82 83 if (bytes > left << 9 || 84 bytes > PAGE_SIZE << JSET_BITS) { 85 pr_info("%u: too big, %zu bytes, offset %u\n", 86 bucket_index, bytes, offset); 87 return ret; 88 } 89 90 if (bytes > len << 9) 91 goto reread; 92 93 if (j->csum != csum_set(j)) { 94 pr_info("%u: bad csum, %zu bytes, offset %u\n", 95 bucket_index, bytes, offset); 96 return ret; 97 } 98 99 blocks = set_blocks(j, block_bytes(ca)); 100 101 /* 102 * Nodes in 'list' are in linear increasing order of 103 * i->j.seq, the node on head has the smallest (oldest) 104 * journal seq, the node on tail has the biggest 105 * (latest) journal seq. 106 */ 107 108 /* 109 * Check from the oldest jset for last_seq. If 110 * i->j.seq < j->last_seq, it means the oldest jset 111 * in list is expired and useless, remove it from 112 * this list. Otherwise, j is a candidate jset for 113 * further following checks. 114 */ 115 while (!list_empty(list)) { 116 i = list_first_entry(list, 117 struct journal_replay, list); 118 if (i->j.seq >= j->last_seq) 119 break; 120 list_del(&i->list); 121 kfree(i); 122 } 123 124 /* iterate list in reverse order (from latest jset) */ 125 list_for_each_entry_reverse(i, list, list) { 126 if (j->seq == i->j.seq) 127 goto next_set; 128 129 /* 130 * if j->seq is less than any i->j.last_seq 131 * in list, j is an expired and useless jset. 132 */ 133 if (j->seq < i->j.last_seq) 134 goto next_set; 135 136 /* 137 * 'where' points to first jset in list which 138 * is elder then j. 139 */ 140 if (j->seq > i->j.seq) { 141 where = &i->list; 142 goto add; 143 } 144 } 145 146 where = list; 147 add: 148 i = kmalloc(offsetof(struct journal_replay, j) + 149 bytes, GFP_KERNEL); 150 if (!i) 151 return -ENOMEM; 152 unsafe_memcpy(&i->j, j, bytes, 153 /* "bytes" was calculated by set_bytes() above */); 154 /* Add to the location after 'where' points to */ 155 list_add(&i->list, where); 156 ret = 1; 157 158 if (j->seq > ja->seq[bucket_index]) 159 ja->seq[bucket_index] = j->seq; 160 next_set: 161 offset += blocks * ca->sb.block_size; 162 len -= blocks * ca->sb.block_size; 163 j = ((void *) j) + blocks * block_bytes(ca); 164 } 165 } 166 167 return ret; 168 } 169 170 int bch_journal_read(struct cache_set *c, struct list_head *list) 171 { 172 #define read_bucket(b) \ 173 ({ \ 174 ret = journal_read_bucket(ca, list, b); \ 175 __set_bit(b, bitmap); \ 176 if (ret < 0) \ 177 return ret; \ 178 ret; \ 179 }) 180 181 struct cache *ca = c->cache; 182 int ret = 0; 183 struct journal_device *ja = &ca->journal; 184 DECLARE_BITMAP(bitmap, SB_JOURNAL_BUCKETS); 185 unsigned int i, l, r, m; 186 uint64_t seq; 187 188 bitmap_zero(bitmap, SB_JOURNAL_BUCKETS); 189 pr_debug("%u journal buckets\n", ca->sb.njournal_buckets); 190 191 /* 192 * Read journal buckets ordered by golden ratio hash to quickly 193 * find a sequence of buckets with valid journal entries 194 */ 195 for (i = 0; i < ca->sb.njournal_buckets; i++) { 196 /* 197 * We must try the index l with ZERO first for 198 * correctness due to the scenario that the journal 199 * bucket is circular buffer which might have wrapped 200 */ 201 l = (i * 2654435769U) % ca->sb.njournal_buckets; 202 203 if (test_bit(l, bitmap)) 204 break; 205 206 if (read_bucket(l)) 207 goto bsearch; 208 } 209 210 /* 211 * If that fails, check all the buckets we haven't checked 212 * already 213 */ 214 pr_debug("falling back to linear search\n"); 215 216 for_each_clear_bit(l, bitmap, ca->sb.njournal_buckets) 217 if (read_bucket(l)) 218 goto bsearch; 219 220 /* no journal entries on this device? */ 221 if (l == ca->sb.njournal_buckets) 222 goto out; 223 bsearch: 224 BUG_ON(list_empty(list)); 225 226 /* Binary search */ 227 m = l; 228 r = find_next_bit(bitmap, ca->sb.njournal_buckets, l + 1); 229 pr_debug("starting binary search, l %u r %u\n", l, r); 230 231 while (l + 1 < r) { 232 seq = list_entry(list->prev, struct journal_replay, 233 list)->j.seq; 234 235 m = (l + r) >> 1; 236 read_bucket(m); 237 238 if (seq != list_entry(list->prev, struct journal_replay, 239 list)->j.seq) 240 l = m; 241 else 242 r = m; 243 } 244 245 /* 246 * Read buckets in reverse order until we stop finding more 247 * journal entries 248 */ 249 pr_debug("finishing up: m %u njournal_buckets %u\n", 250 m, ca->sb.njournal_buckets); 251 l = m; 252 253 while (1) { 254 if (!l--) 255 l = ca->sb.njournal_buckets - 1; 256 257 if (l == m) 258 break; 259 260 if (test_bit(l, bitmap)) 261 continue; 262 263 if (!read_bucket(l)) 264 break; 265 } 266 267 seq = 0; 268 269 for (i = 0; i < ca->sb.njournal_buckets; i++) 270 if (ja->seq[i] > seq) { 271 seq = ja->seq[i]; 272 /* 273 * When journal_reclaim() goes to allocate for 274 * the first time, it'll use the bucket after 275 * ja->cur_idx 276 */ 277 ja->cur_idx = i; 278 ja->last_idx = ja->discard_idx = (i + 1) % 279 ca->sb.njournal_buckets; 280 281 } 282 283 out: 284 if (!list_empty(list)) 285 c->journal.seq = list_entry(list->prev, 286 struct journal_replay, 287 list)->j.seq; 288 289 return 0; 290 #undef read_bucket 291 } 292 293 void bch_journal_mark(struct cache_set *c, struct list_head *list) 294 { 295 atomic_t p = { 0 }; 296 struct bkey *k; 297 struct journal_replay *i; 298 struct journal *j = &c->journal; 299 uint64_t last = j->seq; 300 301 /* 302 * journal.pin should never fill up - we never write a journal 303 * entry when it would fill up. But if for some reason it does, we 304 * iterate over the list in reverse order so that we can just skip that 305 * refcount instead of bugging. 306 */ 307 308 list_for_each_entry_reverse(i, list, list) { 309 BUG_ON(last < i->j.seq); 310 i->pin = NULL; 311 312 while (last-- != i->j.seq) 313 if (fifo_free(&j->pin) > 1) { 314 fifo_push_front(&j->pin, p); 315 atomic_set(&fifo_front(&j->pin), 0); 316 } 317 318 if (fifo_free(&j->pin) > 1) { 319 fifo_push_front(&j->pin, p); 320 i->pin = &fifo_front(&j->pin); 321 atomic_set(i->pin, 1); 322 } 323 324 for (k = i->j.start; 325 k < bset_bkey_last(&i->j); 326 k = bkey_next(k)) 327 if (!__bch_extent_invalid(c, k)) { 328 unsigned int j; 329 330 for (j = 0; j < KEY_PTRS(k); j++) 331 if (ptr_available(c, k, j)) 332 atomic_inc(&PTR_BUCKET(c, k, j)->pin); 333 334 bch_initial_mark_key(c, 0, k); 335 } 336 } 337 } 338 339 static bool is_discard_enabled(struct cache_set *s) 340 { 341 struct cache *ca = s->cache; 342 343 if (ca->discard) 344 return true; 345 346 return false; 347 } 348 349 int bch_journal_replay(struct cache_set *s, struct list_head *list) 350 { 351 int ret = 0, keys = 0, entries = 0; 352 struct bkey *k; 353 struct journal_replay *i = 354 list_entry(list->prev, struct journal_replay, list); 355 356 uint64_t start = i->j.last_seq, end = i->j.seq, n = start; 357 struct keylist keylist; 358 359 list_for_each_entry(i, list, list) { 360 BUG_ON(i->pin && atomic_read(i->pin) != 1); 361 362 if (n != i->j.seq) { 363 if (n == start && is_discard_enabled(s)) 364 pr_info("journal entries %llu-%llu may be discarded! (replaying %llu-%llu)\n", 365 n, i->j.seq - 1, start, end); 366 else { 367 pr_err("journal entries %llu-%llu missing! (replaying %llu-%llu)\n", 368 n, i->j.seq - 1, start, end); 369 ret = -EIO; 370 goto err; 371 } 372 } 373 374 for (k = i->j.start; 375 k < bset_bkey_last(&i->j); 376 k = bkey_next(k)) { 377 trace_bcache_journal_replay_key(k); 378 379 bch_keylist_init_single(&keylist, k); 380 381 ret = bch_btree_insert(s, &keylist, i->pin, NULL); 382 if (ret) 383 goto err; 384 385 BUG_ON(!bch_keylist_empty(&keylist)); 386 keys++; 387 388 cond_resched(); 389 } 390 391 if (i->pin) 392 atomic_dec(i->pin); 393 n = i->j.seq + 1; 394 entries++; 395 } 396 397 pr_info("journal replay done, %i keys in %i entries, seq %llu\n", 398 keys, entries, end); 399 err: 400 while (!list_empty(list)) { 401 i = list_first_entry(list, struct journal_replay, list); 402 list_del(&i->list); 403 kfree(i); 404 } 405 406 return ret; 407 } 408 409 void bch_journal_space_reserve(struct journal *j) 410 { 411 j->do_reserve = true; 412 } 413 414 /* Journalling */ 415 416 static void btree_flush_write(struct cache_set *c) 417 { 418 struct btree *b, *t, *btree_nodes[BTREE_FLUSH_NR]; 419 unsigned int i, nr; 420 int ref_nr; 421 atomic_t *fifo_front_p, *now_fifo_front_p; 422 size_t mask; 423 424 if (c->journal.btree_flushing) 425 return; 426 427 spin_lock(&c->journal.flush_write_lock); 428 if (c->journal.btree_flushing) { 429 spin_unlock(&c->journal.flush_write_lock); 430 return; 431 } 432 c->journal.btree_flushing = true; 433 spin_unlock(&c->journal.flush_write_lock); 434 435 /* get the oldest journal entry and check its refcount */ 436 spin_lock(&c->journal.lock); 437 fifo_front_p = &fifo_front(&c->journal.pin); 438 ref_nr = atomic_read(fifo_front_p); 439 if (ref_nr <= 0) { 440 /* 441 * do nothing if no btree node references 442 * the oldest journal entry 443 */ 444 spin_unlock(&c->journal.lock); 445 goto out; 446 } 447 spin_unlock(&c->journal.lock); 448 449 mask = c->journal.pin.mask; 450 nr = 0; 451 atomic_long_inc(&c->flush_write); 452 memset(btree_nodes, 0, sizeof(btree_nodes)); 453 454 mutex_lock(&c->bucket_lock); 455 list_for_each_entry_safe_reverse(b, t, &c->btree_cache, list) { 456 /* 457 * It is safe to get now_fifo_front_p without holding 458 * c->journal.lock here, because we don't need to know 459 * the exactly accurate value, just check whether the 460 * front pointer of c->journal.pin is changed. 461 */ 462 now_fifo_front_p = &fifo_front(&c->journal.pin); 463 /* 464 * If the oldest journal entry is reclaimed and front 465 * pointer of c->journal.pin changes, it is unnecessary 466 * to scan c->btree_cache anymore, just quit the loop and 467 * flush out what we have already. 468 */ 469 if (now_fifo_front_p != fifo_front_p) 470 break; 471 /* 472 * quit this loop if all matching btree nodes are 473 * scanned and record in btree_nodes[] already. 474 */ 475 ref_nr = atomic_read(fifo_front_p); 476 if (nr >= ref_nr) 477 break; 478 479 if (btree_node_journal_flush(b)) 480 pr_err("BUG: flush_write bit should not be set here!\n"); 481 482 mutex_lock(&b->write_lock); 483 484 if (!btree_node_dirty(b)) { 485 mutex_unlock(&b->write_lock); 486 continue; 487 } 488 489 if (!btree_current_write(b)->journal) { 490 mutex_unlock(&b->write_lock); 491 continue; 492 } 493 494 /* 495 * Only select the btree node which exactly references 496 * the oldest journal entry. 497 * 498 * If the journal entry pointed by fifo_front_p is 499 * reclaimed in parallel, don't worry: 500 * - the list_for_each_xxx loop will quit when checking 501 * next now_fifo_front_p. 502 * - If there are matched nodes recorded in btree_nodes[], 503 * they are clean now (this is why and how the oldest 504 * journal entry can be reclaimed). These selected nodes 505 * will be ignored and skipped in the following for-loop. 506 */ 507 if (((btree_current_write(b)->journal - fifo_front_p) & 508 mask) != 0) { 509 mutex_unlock(&b->write_lock); 510 continue; 511 } 512 513 set_btree_node_journal_flush(b); 514 515 mutex_unlock(&b->write_lock); 516 517 btree_nodes[nr++] = b; 518 /* 519 * To avoid holding c->bucket_lock too long time, 520 * only scan for BTREE_FLUSH_NR matched btree nodes 521 * at most. If there are more btree nodes reference 522 * the oldest journal entry, try to flush them next 523 * time when btree_flush_write() is called. 524 */ 525 if (nr == BTREE_FLUSH_NR) 526 break; 527 } 528 mutex_unlock(&c->bucket_lock); 529 530 for (i = 0; i < nr; i++) { 531 b = btree_nodes[i]; 532 if (!b) { 533 pr_err("BUG: btree_nodes[%d] is NULL\n", i); 534 continue; 535 } 536 537 /* safe to check without holding b->write_lock */ 538 if (!btree_node_journal_flush(b)) { 539 pr_err("BUG: bnode %p: journal_flush bit cleaned\n", b); 540 continue; 541 } 542 543 mutex_lock(&b->write_lock); 544 if (!btree_current_write(b)->journal) { 545 clear_bit(BTREE_NODE_journal_flush, &b->flags); 546 mutex_unlock(&b->write_lock); 547 pr_debug("bnode %p: written by others\n", b); 548 continue; 549 } 550 551 if (!btree_node_dirty(b)) { 552 clear_bit(BTREE_NODE_journal_flush, &b->flags); 553 mutex_unlock(&b->write_lock); 554 pr_debug("bnode %p: dirty bit cleaned by others\n", b); 555 continue; 556 } 557 558 __bch_btree_node_write(b, NULL); 559 clear_bit(BTREE_NODE_journal_flush, &b->flags); 560 mutex_unlock(&b->write_lock); 561 } 562 563 out: 564 spin_lock(&c->journal.flush_write_lock); 565 c->journal.btree_flushing = false; 566 spin_unlock(&c->journal.flush_write_lock); 567 } 568 569 #define last_seq(j) ((j)->seq - fifo_used(&(j)->pin) + 1) 570 571 static void journal_discard_endio(struct bio *bio) 572 { 573 struct journal_device *ja = 574 container_of(bio, struct journal_device, discard_bio); 575 struct cache *ca = container_of(ja, struct cache, journal); 576 577 atomic_set(&ja->discard_in_flight, DISCARD_DONE); 578 579 closure_wake_up(&ca->set->journal.wait); 580 closure_put(&ca->set->cl); 581 } 582 583 static void journal_discard_work(struct work_struct *work) 584 { 585 struct journal_device *ja = 586 container_of(work, struct journal_device, discard_work); 587 588 submit_bio(&ja->discard_bio); 589 } 590 591 static void do_journal_discard(struct cache *ca) 592 { 593 struct journal_device *ja = &ca->journal; 594 struct bio *bio = &ja->discard_bio; 595 596 if (!ca->discard) { 597 ja->discard_idx = ja->last_idx; 598 return; 599 } 600 601 switch (atomic_read(&ja->discard_in_flight)) { 602 case DISCARD_IN_FLIGHT: 603 return; 604 605 case DISCARD_DONE: 606 ja->discard_idx = (ja->discard_idx + 1) % 607 ca->sb.njournal_buckets; 608 609 atomic_set(&ja->discard_in_flight, DISCARD_READY); 610 fallthrough; 611 612 case DISCARD_READY: 613 if (ja->discard_idx == ja->last_idx) 614 return; 615 616 atomic_set(&ja->discard_in_flight, DISCARD_IN_FLIGHT); 617 618 bio_init(bio, ca->bdev, bio->bi_inline_vecs, 1, REQ_OP_DISCARD); 619 bio->bi_iter.bi_sector = bucket_to_sector(ca->set, 620 ca->sb.d[ja->discard_idx]); 621 bio->bi_iter.bi_size = bucket_bytes(ca); 622 bio->bi_end_io = journal_discard_endio; 623 624 closure_get(&ca->set->cl); 625 INIT_WORK(&ja->discard_work, journal_discard_work); 626 queue_work(bch_journal_wq, &ja->discard_work); 627 } 628 } 629 630 static unsigned int free_journal_buckets(struct cache_set *c) 631 { 632 struct journal *j = &c->journal; 633 struct cache *ca = c->cache; 634 struct journal_device *ja = &c->cache->journal; 635 unsigned int n; 636 637 /* In case njournal_buckets is not power of 2 */ 638 if (ja->cur_idx >= ja->discard_idx) 639 n = ca->sb.njournal_buckets + ja->discard_idx - ja->cur_idx; 640 else 641 n = ja->discard_idx - ja->cur_idx; 642 643 if (n > (1 + j->do_reserve)) 644 return n - (1 + j->do_reserve); 645 646 return 0; 647 } 648 649 static void journal_reclaim(struct cache_set *c) 650 { 651 struct bkey *k = &c->journal.key; 652 struct cache *ca = c->cache; 653 uint64_t last_seq; 654 struct journal_device *ja = &ca->journal; 655 atomic_t p __maybe_unused; 656 657 atomic_long_inc(&c->reclaim); 658 659 while (!atomic_read(&fifo_front(&c->journal.pin))) 660 fifo_pop(&c->journal.pin, p); 661 662 last_seq = last_seq(&c->journal); 663 664 /* Update last_idx */ 665 666 while (ja->last_idx != ja->cur_idx && 667 ja->seq[ja->last_idx] < last_seq) 668 ja->last_idx = (ja->last_idx + 1) % 669 ca->sb.njournal_buckets; 670 671 do_journal_discard(ca); 672 673 if (c->journal.blocks_free) 674 goto out; 675 676 if (!free_journal_buckets(c)) 677 goto out; 678 679 ja->cur_idx = (ja->cur_idx + 1) % ca->sb.njournal_buckets; 680 k->ptr[0] = MAKE_PTR(0, 681 bucket_to_sector(c, ca->sb.d[ja->cur_idx]), 682 ca->sb.nr_this_dev); 683 atomic_long_inc(&c->reclaimed_journal_buckets); 684 685 bkey_init(k); 686 SET_KEY_PTRS(k, 1); 687 c->journal.blocks_free = ca->sb.bucket_size >> c->block_bits; 688 689 out: 690 if (!journal_full(&c->journal)) 691 __closure_wake_up(&c->journal.wait); 692 } 693 694 void bch_journal_next(struct journal *j) 695 { 696 atomic_t p = { 1 }; 697 698 j->cur = (j->cur == j->w) 699 ? &j->w[1] 700 : &j->w[0]; 701 702 /* 703 * The fifo_push() needs to happen at the same time as j->seq is 704 * incremented for last_seq() to be calculated correctly 705 */ 706 BUG_ON(!fifo_push(&j->pin, p)); 707 atomic_set(&fifo_back(&j->pin), 1); 708 709 j->cur->data->seq = ++j->seq; 710 j->cur->dirty = false; 711 j->cur->need_write = false; 712 j->cur->data->keys = 0; 713 714 if (fifo_full(&j->pin)) 715 pr_debug("journal_pin full (%zu)\n", fifo_used(&j->pin)); 716 } 717 718 static void journal_write_endio(struct bio *bio) 719 { 720 struct journal_write *w = bio->bi_private; 721 722 cache_set_err_on(bio->bi_status, w->c, "journal io error"); 723 closure_put(&w->c->journal.io); 724 } 725 726 static void journal_write(struct closure *cl); 727 728 static void journal_write_done(struct closure *cl) 729 { 730 struct journal *j = container_of(cl, struct journal, io); 731 struct journal_write *w = (j->cur == j->w) 732 ? &j->w[1] 733 : &j->w[0]; 734 735 __closure_wake_up(&w->wait); 736 continue_at_nobarrier(cl, journal_write, bch_journal_wq); 737 } 738 739 static void journal_write_unlock(struct closure *cl) 740 __releases(&c->journal.lock) 741 { 742 struct cache_set *c = container_of(cl, struct cache_set, journal.io); 743 744 c->journal.io_in_flight = 0; 745 spin_unlock(&c->journal.lock); 746 } 747 748 static void journal_write_unlocked(struct closure *cl) 749 __releases(c->journal.lock) 750 { 751 struct cache_set *c = container_of(cl, struct cache_set, journal.io); 752 struct cache *ca = c->cache; 753 struct journal_write *w = c->journal.cur; 754 struct bkey *k = &c->journal.key; 755 unsigned int i, sectors = set_blocks(w->data, block_bytes(ca)) * 756 ca->sb.block_size; 757 758 struct bio *bio; 759 struct bio_list list; 760 761 bio_list_init(&list); 762 763 if (!w->need_write) { 764 closure_return_with_destructor(cl, journal_write_unlock); 765 return; 766 } else if (journal_full(&c->journal)) { 767 journal_reclaim(c); 768 spin_unlock(&c->journal.lock); 769 770 btree_flush_write(c); 771 continue_at(cl, journal_write, bch_journal_wq); 772 return; 773 } 774 775 c->journal.blocks_free -= set_blocks(w->data, block_bytes(ca)); 776 777 w->data->btree_level = c->root->level; 778 779 bkey_copy(&w->data->btree_root, &c->root->key); 780 bkey_copy(&w->data->uuid_bucket, &c->uuid_bucket); 781 782 w->data->prio_bucket[ca->sb.nr_this_dev] = ca->prio_buckets[0]; 783 w->data->magic = jset_magic(&ca->sb); 784 w->data->version = BCACHE_JSET_VERSION; 785 w->data->last_seq = last_seq(&c->journal); 786 w->data->csum = csum_set(w->data); 787 788 for (i = 0; i < KEY_PTRS(k); i++) { 789 ca = c->cache; 790 bio = &ca->journal.bio; 791 792 atomic_long_add(sectors, &ca->meta_sectors_written); 793 794 bio_reset(bio, ca->bdev, REQ_OP_WRITE | 795 REQ_SYNC | REQ_META | REQ_PREFLUSH | REQ_FUA); 796 bio->bi_iter.bi_sector = PTR_OFFSET(k, i); 797 bio->bi_iter.bi_size = sectors << 9; 798 799 bio->bi_end_io = journal_write_endio; 800 bio->bi_private = w; 801 bch_bio_map(bio, w->data); 802 803 trace_bcache_journal_write(bio, w->data->keys); 804 bio_list_add(&list, bio); 805 806 SET_PTR_OFFSET(k, i, PTR_OFFSET(k, i) + sectors); 807 808 ca->journal.seq[ca->journal.cur_idx] = w->data->seq; 809 } 810 811 /* If KEY_PTRS(k) == 0, this jset gets lost in air */ 812 BUG_ON(i == 0); 813 814 atomic_dec_bug(&fifo_back(&c->journal.pin)); 815 bch_journal_next(&c->journal); 816 journal_reclaim(c); 817 818 spin_unlock(&c->journal.lock); 819 820 while ((bio = bio_list_pop(&list))) 821 closure_bio_submit(c, bio, cl); 822 823 continue_at(cl, journal_write_done, NULL); 824 } 825 826 static void journal_write(struct closure *cl) 827 { 828 struct cache_set *c = container_of(cl, struct cache_set, journal.io); 829 830 spin_lock(&c->journal.lock); 831 journal_write_unlocked(cl); 832 } 833 834 static void journal_try_write(struct cache_set *c) 835 __releases(c->journal.lock) 836 { 837 struct closure *cl = &c->journal.io; 838 struct journal_write *w = c->journal.cur; 839 840 w->need_write = true; 841 842 if (!c->journal.io_in_flight) { 843 c->journal.io_in_flight = 1; 844 closure_call(cl, journal_write_unlocked, NULL, &c->cl); 845 } else { 846 spin_unlock(&c->journal.lock); 847 } 848 } 849 850 static struct journal_write *journal_wait_for_write(struct cache_set *c, 851 unsigned int nkeys) 852 __acquires(&c->journal.lock) 853 { 854 size_t sectors; 855 struct closure cl; 856 bool wait = false; 857 struct cache *ca = c->cache; 858 859 closure_init_stack(&cl); 860 861 spin_lock(&c->journal.lock); 862 863 while (1) { 864 struct journal_write *w = c->journal.cur; 865 866 sectors = __set_blocks(w->data, w->data->keys + nkeys, 867 block_bytes(ca)) * ca->sb.block_size; 868 869 if (sectors <= min_t(size_t, 870 c->journal.blocks_free * ca->sb.block_size, 871 PAGE_SECTORS << JSET_BITS)) 872 return w; 873 874 if (wait) 875 closure_wait(&c->journal.wait, &cl); 876 877 if (!journal_full(&c->journal)) { 878 if (wait) 879 trace_bcache_journal_entry_full(c); 880 881 /* 882 * XXX: If we were inserting so many keys that they 883 * won't fit in an _empty_ journal write, we'll 884 * deadlock. For now, handle this in 885 * bch_keylist_realloc() - but something to think about. 886 */ 887 BUG_ON(!w->data->keys); 888 889 journal_try_write(c); /* unlocks */ 890 } else { 891 if (wait) 892 trace_bcache_journal_full(c); 893 894 journal_reclaim(c); 895 spin_unlock(&c->journal.lock); 896 897 btree_flush_write(c); 898 } 899 900 closure_sync(&cl); 901 spin_lock(&c->journal.lock); 902 wait = true; 903 } 904 } 905 906 static void journal_write_work(struct work_struct *work) 907 { 908 struct cache_set *c = container_of(to_delayed_work(work), 909 struct cache_set, 910 journal.work); 911 spin_lock(&c->journal.lock); 912 if (c->journal.cur->dirty) 913 journal_try_write(c); 914 else 915 spin_unlock(&c->journal.lock); 916 } 917 918 /* 919 * Entry point to the journalling code - bio_insert() and btree_invalidate() 920 * pass bch_journal() a list of keys to be journalled, and then 921 * bch_journal() hands those same keys off to btree_insert_async() 922 */ 923 924 atomic_t *bch_journal(struct cache_set *c, 925 struct keylist *keys, 926 struct closure *parent) 927 { 928 struct journal_write *w; 929 atomic_t *ret; 930 931 /* No journaling if CACHE_SET_IO_DISABLE set already */ 932 if (unlikely(test_bit(CACHE_SET_IO_DISABLE, &c->flags))) 933 return NULL; 934 935 if (!CACHE_SYNC(&c->cache->sb)) 936 return NULL; 937 938 w = journal_wait_for_write(c, bch_keylist_nkeys(keys)); 939 940 memcpy(bset_bkey_last(w->data), keys->keys, bch_keylist_bytes(keys)); 941 w->data->keys += bch_keylist_nkeys(keys); 942 943 ret = &fifo_back(&c->journal.pin); 944 atomic_inc(ret); 945 946 if (parent) { 947 closure_wait(&w->wait, parent); 948 journal_try_write(c); 949 } else if (!w->dirty) { 950 w->dirty = true; 951 queue_delayed_work(bch_flush_wq, &c->journal.work, 952 msecs_to_jiffies(c->journal_delay_ms)); 953 spin_unlock(&c->journal.lock); 954 } else { 955 spin_unlock(&c->journal.lock); 956 } 957 958 959 return ret; 960 } 961 962 void bch_journal_meta(struct cache_set *c, struct closure *cl) 963 { 964 struct keylist keys; 965 atomic_t *ref; 966 967 bch_keylist_init(&keys); 968 969 ref = bch_journal(c, &keys, cl); 970 if (ref) 971 atomic_dec_bug(ref); 972 } 973 974 void bch_journal_free(struct cache_set *c) 975 { 976 free_pages((unsigned long) c->journal.w[1].data, JSET_BITS); 977 free_pages((unsigned long) c->journal.w[0].data, JSET_BITS); 978 free_fifo(&c->journal.pin); 979 } 980 981 int bch_journal_alloc(struct cache_set *c) 982 { 983 struct journal *j = &c->journal; 984 985 spin_lock_init(&j->lock); 986 spin_lock_init(&j->flush_write_lock); 987 INIT_DELAYED_WORK(&j->work, journal_write_work); 988 989 c->journal_delay_ms = 100; 990 991 j->w[0].c = c; 992 j->w[1].c = c; 993 994 if (!(init_fifo(&j->pin, JOURNAL_PIN, GFP_KERNEL)) || 995 !(j->w[0].data = (void *) __get_free_pages(GFP_KERNEL|__GFP_COMP, JSET_BITS)) || 996 !(j->w[1].data = (void *) __get_free_pages(GFP_KERNEL|__GFP_COMP, JSET_BITS))) 997 return -ENOMEM; 998 999 return 0; 1000 } 1001