1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * bcache journalling code, for btree insertions 4 * 5 * Copyright 2012 Google, Inc. 6 */ 7 8 #include "bcache.h" 9 #include "btree.h" 10 #include "debug.h" 11 #include "extents.h" 12 13 #include <trace/events/bcache.h> 14 15 /* 16 * Journal replay/recovery: 17 * 18 * This code is all driven from run_cache_set(); we first read the journal 19 * entries, do some other stuff, then we mark all the keys in the journal 20 * entries (same as garbage collection would), then we replay them - reinserting 21 * them into the cache in precisely the same order as they appear in the 22 * journal. 23 * 24 * We only journal keys that go in leaf nodes, which simplifies things quite a 25 * bit. 26 */ 27 28 static void journal_read_endio(struct bio *bio) 29 { 30 struct closure *cl = bio->bi_private; 31 32 closure_put(cl); 33 } 34 35 static int journal_read_bucket(struct cache *ca, struct list_head *list, 36 unsigned int bucket_index) 37 { 38 struct journal_device *ja = &ca->journal; 39 struct bio *bio = &ja->bio; 40 41 struct journal_replay *i; 42 struct jset *j, *data = ca->set->journal.w[0].data; 43 struct closure cl; 44 unsigned int len, left, offset = 0; 45 int ret = 0; 46 sector_t bucket = bucket_to_sector(ca->set, ca->sb.d[bucket_index]); 47 48 closure_init_stack(&cl); 49 50 pr_debug("reading %u\n", bucket_index); 51 52 while (offset < ca->sb.bucket_size) { 53 reread: left = ca->sb.bucket_size - offset; 54 len = min_t(unsigned int, left, PAGE_SECTORS << JSET_BITS); 55 56 bio_reset(bio); 57 bio->bi_iter.bi_sector = bucket + offset; 58 bio_set_dev(bio, ca->bdev); 59 bio->bi_iter.bi_size = len << 9; 60 61 bio->bi_end_io = journal_read_endio; 62 bio->bi_private = &cl; 63 bio_set_op_attrs(bio, REQ_OP_READ, 0); 64 bch_bio_map(bio, data); 65 66 closure_bio_submit(ca->set, bio, &cl); 67 closure_sync(&cl); 68 69 /* This function could be simpler now since we no longer write 70 * journal entries that overlap bucket boundaries; this means 71 * the start of a bucket will always have a valid journal entry 72 * if it has any journal entries at all. 73 */ 74 75 j = data; 76 while (len) { 77 struct list_head *where; 78 size_t blocks, bytes = set_bytes(j); 79 80 if (j->magic != jset_magic(&ca->sb)) { 81 pr_debug("%u: bad magic\n", bucket_index); 82 return ret; 83 } 84 85 if (bytes > left << 9 || 86 bytes > PAGE_SIZE << JSET_BITS) { 87 pr_info("%u: too big, %zu bytes, offset %u\n", 88 bucket_index, bytes, offset); 89 return ret; 90 } 91 92 if (bytes > len << 9) 93 goto reread; 94 95 if (j->csum != csum_set(j)) { 96 pr_info("%u: bad csum, %zu bytes, offset %u\n", 97 bucket_index, bytes, offset); 98 return ret; 99 } 100 101 blocks = set_blocks(j, block_bytes(ca->set)); 102 103 /* 104 * Nodes in 'list' are in linear increasing order of 105 * i->j.seq, the node on head has the smallest (oldest) 106 * journal seq, the node on tail has the biggest 107 * (latest) journal seq. 108 */ 109 110 /* 111 * Check from the oldest jset for last_seq. If 112 * i->j.seq < j->last_seq, it means the oldest jset 113 * in list is expired and useless, remove it from 114 * this list. Otherwise, j is a condidate jset for 115 * further following checks. 116 */ 117 while (!list_empty(list)) { 118 i = list_first_entry(list, 119 struct journal_replay, list); 120 if (i->j.seq >= j->last_seq) 121 break; 122 list_del(&i->list); 123 kfree(i); 124 } 125 126 /* iterate list in reverse order (from latest jset) */ 127 list_for_each_entry_reverse(i, list, list) { 128 if (j->seq == i->j.seq) 129 goto next_set; 130 131 /* 132 * if j->seq is less than any i->j.last_seq 133 * in list, j is an expired and useless jset. 134 */ 135 if (j->seq < i->j.last_seq) 136 goto next_set; 137 138 /* 139 * 'where' points to first jset in list which 140 * is elder then j. 141 */ 142 if (j->seq > i->j.seq) { 143 where = &i->list; 144 goto add; 145 } 146 } 147 148 where = list; 149 add: 150 i = kmalloc(offsetof(struct journal_replay, j) + 151 bytes, GFP_KERNEL); 152 if (!i) 153 return -ENOMEM; 154 memcpy(&i->j, j, bytes); 155 /* Add to the location after 'where' points to */ 156 list_add(&i->list, where); 157 ret = 1; 158 159 if (j->seq > ja->seq[bucket_index]) 160 ja->seq[bucket_index] = j->seq; 161 next_set: 162 offset += blocks * ca->sb.block_size; 163 len -= blocks * ca->sb.block_size; 164 j = ((void *) j) + blocks * block_bytes(ca); 165 } 166 } 167 168 return ret; 169 } 170 171 int bch_journal_read(struct cache_set *c, struct list_head *list) 172 { 173 #define read_bucket(b) \ 174 ({ \ 175 ret = journal_read_bucket(ca, list, b); \ 176 __set_bit(b, bitmap); \ 177 if (ret < 0) \ 178 return ret; \ 179 ret; \ 180 }) 181 182 struct cache *ca; 183 unsigned int iter; 184 int ret = 0; 185 186 for_each_cache(ca, c, iter) { 187 struct journal_device *ja = &ca->journal; 188 DECLARE_BITMAP(bitmap, SB_JOURNAL_BUCKETS); 189 unsigned int i, l, r, m; 190 uint64_t seq; 191 192 bitmap_zero(bitmap, SB_JOURNAL_BUCKETS); 193 pr_debug("%u journal buckets\n", ca->sb.njournal_buckets); 194 195 /* 196 * Read journal buckets ordered by golden ratio hash to quickly 197 * find a sequence of buckets with valid journal entries 198 */ 199 for (i = 0; i < ca->sb.njournal_buckets; i++) { 200 /* 201 * We must try the index l with ZERO first for 202 * correctness due to the scenario that the journal 203 * bucket is circular buffer which might have wrapped 204 */ 205 l = (i * 2654435769U) % ca->sb.njournal_buckets; 206 207 if (test_bit(l, bitmap)) 208 break; 209 210 if (read_bucket(l)) 211 goto bsearch; 212 } 213 214 /* 215 * If that fails, check all the buckets we haven't checked 216 * already 217 */ 218 pr_debug("falling back to linear search\n"); 219 220 for (l = find_first_zero_bit(bitmap, ca->sb.njournal_buckets); 221 l < ca->sb.njournal_buckets; 222 l = find_next_zero_bit(bitmap, ca->sb.njournal_buckets, 223 l + 1)) 224 if (read_bucket(l)) 225 goto bsearch; 226 227 /* no journal entries on this device? */ 228 if (l == ca->sb.njournal_buckets) 229 continue; 230 bsearch: 231 BUG_ON(list_empty(list)); 232 233 /* Binary search */ 234 m = l; 235 r = find_next_bit(bitmap, ca->sb.njournal_buckets, l + 1); 236 pr_debug("starting binary search, l %u r %u\n", l, r); 237 238 while (l + 1 < r) { 239 seq = list_entry(list->prev, struct journal_replay, 240 list)->j.seq; 241 242 m = (l + r) >> 1; 243 read_bucket(m); 244 245 if (seq != list_entry(list->prev, struct journal_replay, 246 list)->j.seq) 247 l = m; 248 else 249 r = m; 250 } 251 252 /* 253 * Read buckets in reverse order until we stop finding more 254 * journal entries 255 */ 256 pr_debug("finishing up: m %u njournal_buckets %u\n", 257 m, ca->sb.njournal_buckets); 258 l = m; 259 260 while (1) { 261 if (!l--) 262 l = ca->sb.njournal_buckets - 1; 263 264 if (l == m) 265 break; 266 267 if (test_bit(l, bitmap)) 268 continue; 269 270 if (!read_bucket(l)) 271 break; 272 } 273 274 seq = 0; 275 276 for (i = 0; i < ca->sb.njournal_buckets; i++) 277 if (ja->seq[i] > seq) { 278 seq = ja->seq[i]; 279 /* 280 * When journal_reclaim() goes to allocate for 281 * the first time, it'll use the bucket after 282 * ja->cur_idx 283 */ 284 ja->cur_idx = i; 285 ja->last_idx = ja->discard_idx = (i + 1) % 286 ca->sb.njournal_buckets; 287 288 } 289 } 290 291 if (!list_empty(list)) 292 c->journal.seq = list_entry(list->prev, 293 struct journal_replay, 294 list)->j.seq; 295 296 return 0; 297 #undef read_bucket 298 } 299 300 void bch_journal_mark(struct cache_set *c, struct list_head *list) 301 { 302 atomic_t p = { 0 }; 303 struct bkey *k; 304 struct journal_replay *i; 305 struct journal *j = &c->journal; 306 uint64_t last = j->seq; 307 308 /* 309 * journal.pin should never fill up - we never write a journal 310 * entry when it would fill up. But if for some reason it does, we 311 * iterate over the list in reverse order so that we can just skip that 312 * refcount instead of bugging. 313 */ 314 315 list_for_each_entry_reverse(i, list, list) { 316 BUG_ON(last < i->j.seq); 317 i->pin = NULL; 318 319 while (last-- != i->j.seq) 320 if (fifo_free(&j->pin) > 1) { 321 fifo_push_front(&j->pin, p); 322 atomic_set(&fifo_front(&j->pin), 0); 323 } 324 325 if (fifo_free(&j->pin) > 1) { 326 fifo_push_front(&j->pin, p); 327 i->pin = &fifo_front(&j->pin); 328 atomic_set(i->pin, 1); 329 } 330 331 for (k = i->j.start; 332 k < bset_bkey_last(&i->j); 333 k = bkey_next(k)) 334 if (!__bch_extent_invalid(c, k)) { 335 unsigned int j; 336 337 for (j = 0; j < KEY_PTRS(k); j++) 338 if (ptr_available(c, k, j)) 339 atomic_inc(&PTR_BUCKET(c, k, j)->pin); 340 341 bch_initial_mark_key(c, 0, k); 342 } 343 } 344 } 345 346 static bool is_discard_enabled(struct cache_set *s) 347 { 348 struct cache *ca; 349 unsigned int i; 350 351 for_each_cache(ca, s, i) 352 if (ca->discard) 353 return true; 354 355 return false; 356 } 357 358 int bch_journal_replay(struct cache_set *s, struct list_head *list) 359 { 360 int ret = 0, keys = 0, entries = 0; 361 struct bkey *k; 362 struct journal_replay *i = 363 list_entry(list->prev, struct journal_replay, list); 364 365 uint64_t start = i->j.last_seq, end = i->j.seq, n = start; 366 struct keylist keylist; 367 368 list_for_each_entry(i, list, list) { 369 BUG_ON(i->pin && atomic_read(i->pin) != 1); 370 371 if (n != i->j.seq) { 372 if (n == start && is_discard_enabled(s)) 373 pr_info("journal entries %llu-%llu may be discarded! (replaying %llu-%llu)\n", 374 n, i->j.seq - 1, start, end); 375 else { 376 pr_err("journal entries %llu-%llu missing! (replaying %llu-%llu)\n", 377 n, i->j.seq - 1, start, end); 378 ret = -EIO; 379 goto err; 380 } 381 } 382 383 for (k = i->j.start; 384 k < bset_bkey_last(&i->j); 385 k = bkey_next(k)) { 386 trace_bcache_journal_replay_key(k); 387 388 bch_keylist_init_single(&keylist, k); 389 390 ret = bch_btree_insert(s, &keylist, i->pin, NULL); 391 if (ret) 392 goto err; 393 394 BUG_ON(!bch_keylist_empty(&keylist)); 395 keys++; 396 397 cond_resched(); 398 } 399 400 if (i->pin) 401 atomic_dec(i->pin); 402 n = i->j.seq + 1; 403 entries++; 404 } 405 406 pr_info("journal replay done, %i keys in %i entries, seq %llu\n", 407 keys, entries, end); 408 err: 409 while (!list_empty(list)) { 410 i = list_first_entry(list, struct journal_replay, list); 411 list_del(&i->list); 412 kfree(i); 413 } 414 415 return ret; 416 } 417 418 /* Journalling */ 419 420 static void btree_flush_write(struct cache_set *c) 421 { 422 struct btree *b, *t, *btree_nodes[BTREE_FLUSH_NR]; 423 unsigned int i, nr; 424 int ref_nr; 425 atomic_t *fifo_front_p, *now_fifo_front_p; 426 size_t mask; 427 428 if (c->journal.btree_flushing) 429 return; 430 431 spin_lock(&c->journal.flush_write_lock); 432 if (c->journal.btree_flushing) { 433 spin_unlock(&c->journal.flush_write_lock); 434 return; 435 } 436 c->journal.btree_flushing = true; 437 spin_unlock(&c->journal.flush_write_lock); 438 439 /* get the oldest journal entry and check its refcount */ 440 spin_lock(&c->journal.lock); 441 fifo_front_p = &fifo_front(&c->journal.pin); 442 ref_nr = atomic_read(fifo_front_p); 443 if (ref_nr <= 0) { 444 /* 445 * do nothing if no btree node references 446 * the oldest journal entry 447 */ 448 spin_unlock(&c->journal.lock); 449 goto out; 450 } 451 spin_unlock(&c->journal.lock); 452 453 mask = c->journal.pin.mask; 454 nr = 0; 455 atomic_long_inc(&c->flush_write); 456 memset(btree_nodes, 0, sizeof(btree_nodes)); 457 458 mutex_lock(&c->bucket_lock); 459 list_for_each_entry_safe_reverse(b, t, &c->btree_cache, list) { 460 /* 461 * It is safe to get now_fifo_front_p without holding 462 * c->journal.lock here, because we don't need to know 463 * the exactly accurate value, just check whether the 464 * front pointer of c->journal.pin is changed. 465 */ 466 now_fifo_front_p = &fifo_front(&c->journal.pin); 467 /* 468 * If the oldest journal entry is reclaimed and front 469 * pointer of c->journal.pin changes, it is unnecessary 470 * to scan c->btree_cache anymore, just quit the loop and 471 * flush out what we have already. 472 */ 473 if (now_fifo_front_p != fifo_front_p) 474 break; 475 /* 476 * quit this loop if all matching btree nodes are 477 * scanned and record in btree_nodes[] already. 478 */ 479 ref_nr = atomic_read(fifo_front_p); 480 if (nr >= ref_nr) 481 break; 482 483 if (btree_node_journal_flush(b)) 484 pr_err("BUG: flush_write bit should not be set here!\n"); 485 486 mutex_lock(&b->write_lock); 487 488 if (!btree_node_dirty(b)) { 489 mutex_unlock(&b->write_lock); 490 continue; 491 } 492 493 if (!btree_current_write(b)->journal) { 494 mutex_unlock(&b->write_lock); 495 continue; 496 } 497 498 /* 499 * Only select the btree node which exactly references 500 * the oldest journal entry. 501 * 502 * If the journal entry pointed by fifo_front_p is 503 * reclaimed in parallel, don't worry: 504 * - the list_for_each_xxx loop will quit when checking 505 * next now_fifo_front_p. 506 * - If there are matched nodes recorded in btree_nodes[], 507 * they are clean now (this is why and how the oldest 508 * journal entry can be reclaimed). These selected nodes 509 * will be ignored and skipped in the folowing for-loop. 510 */ 511 if (((btree_current_write(b)->journal - fifo_front_p) & 512 mask) != 0) { 513 mutex_unlock(&b->write_lock); 514 continue; 515 } 516 517 set_btree_node_journal_flush(b); 518 519 mutex_unlock(&b->write_lock); 520 521 btree_nodes[nr++] = b; 522 /* 523 * To avoid holding c->bucket_lock too long time, 524 * only scan for BTREE_FLUSH_NR matched btree nodes 525 * at most. If there are more btree nodes reference 526 * the oldest journal entry, try to flush them next 527 * time when btree_flush_write() is called. 528 */ 529 if (nr == BTREE_FLUSH_NR) 530 break; 531 } 532 mutex_unlock(&c->bucket_lock); 533 534 for (i = 0; i < nr; i++) { 535 b = btree_nodes[i]; 536 if (!b) { 537 pr_err("BUG: btree_nodes[%d] is NULL\n", i); 538 continue; 539 } 540 541 /* safe to check without holding b->write_lock */ 542 if (!btree_node_journal_flush(b)) { 543 pr_err("BUG: bnode %p: journal_flush bit cleaned\n", b); 544 continue; 545 } 546 547 mutex_lock(&b->write_lock); 548 if (!btree_current_write(b)->journal) { 549 clear_bit(BTREE_NODE_journal_flush, &b->flags); 550 mutex_unlock(&b->write_lock); 551 pr_debug("bnode %p: written by others\n", b); 552 continue; 553 } 554 555 if (!btree_node_dirty(b)) { 556 clear_bit(BTREE_NODE_journal_flush, &b->flags); 557 mutex_unlock(&b->write_lock); 558 pr_debug("bnode %p: dirty bit cleaned by others\n", b); 559 continue; 560 } 561 562 __bch_btree_node_write(b, NULL); 563 clear_bit(BTREE_NODE_journal_flush, &b->flags); 564 mutex_unlock(&b->write_lock); 565 } 566 567 out: 568 spin_lock(&c->journal.flush_write_lock); 569 c->journal.btree_flushing = false; 570 spin_unlock(&c->journal.flush_write_lock); 571 } 572 573 #define last_seq(j) ((j)->seq - fifo_used(&(j)->pin) + 1) 574 575 static void journal_discard_endio(struct bio *bio) 576 { 577 struct journal_device *ja = 578 container_of(bio, struct journal_device, discard_bio); 579 struct cache *ca = container_of(ja, struct cache, journal); 580 581 atomic_set(&ja->discard_in_flight, DISCARD_DONE); 582 583 closure_wake_up(&ca->set->journal.wait); 584 closure_put(&ca->set->cl); 585 } 586 587 static void journal_discard_work(struct work_struct *work) 588 { 589 struct journal_device *ja = 590 container_of(work, struct journal_device, discard_work); 591 592 submit_bio(&ja->discard_bio); 593 } 594 595 static void do_journal_discard(struct cache *ca) 596 { 597 struct journal_device *ja = &ca->journal; 598 struct bio *bio = &ja->discard_bio; 599 600 if (!ca->discard) { 601 ja->discard_idx = ja->last_idx; 602 return; 603 } 604 605 switch (atomic_read(&ja->discard_in_flight)) { 606 case DISCARD_IN_FLIGHT: 607 return; 608 609 case DISCARD_DONE: 610 ja->discard_idx = (ja->discard_idx + 1) % 611 ca->sb.njournal_buckets; 612 613 atomic_set(&ja->discard_in_flight, DISCARD_READY); 614 /* fallthrough */ 615 616 case DISCARD_READY: 617 if (ja->discard_idx == ja->last_idx) 618 return; 619 620 atomic_set(&ja->discard_in_flight, DISCARD_IN_FLIGHT); 621 622 bio_init(bio, bio->bi_inline_vecs, 1); 623 bio_set_op_attrs(bio, REQ_OP_DISCARD, 0); 624 bio->bi_iter.bi_sector = bucket_to_sector(ca->set, 625 ca->sb.d[ja->discard_idx]); 626 bio_set_dev(bio, ca->bdev); 627 bio->bi_iter.bi_size = bucket_bytes(ca); 628 bio->bi_end_io = journal_discard_endio; 629 630 closure_get(&ca->set->cl); 631 INIT_WORK(&ja->discard_work, journal_discard_work); 632 queue_work(bch_journal_wq, &ja->discard_work); 633 } 634 } 635 636 static void journal_reclaim(struct cache_set *c) 637 { 638 struct bkey *k = &c->journal.key; 639 struct cache *ca; 640 uint64_t last_seq; 641 unsigned int iter, n = 0; 642 atomic_t p __maybe_unused; 643 644 atomic_long_inc(&c->reclaim); 645 646 while (!atomic_read(&fifo_front(&c->journal.pin))) 647 fifo_pop(&c->journal.pin, p); 648 649 last_seq = last_seq(&c->journal); 650 651 /* Update last_idx */ 652 653 for_each_cache(ca, c, iter) { 654 struct journal_device *ja = &ca->journal; 655 656 while (ja->last_idx != ja->cur_idx && 657 ja->seq[ja->last_idx] < last_seq) 658 ja->last_idx = (ja->last_idx + 1) % 659 ca->sb.njournal_buckets; 660 } 661 662 for_each_cache(ca, c, iter) 663 do_journal_discard(ca); 664 665 if (c->journal.blocks_free) 666 goto out; 667 668 /* 669 * Allocate: 670 * XXX: Sort by free journal space 671 */ 672 673 for_each_cache(ca, c, iter) { 674 struct journal_device *ja = &ca->journal; 675 unsigned int next = (ja->cur_idx + 1) % ca->sb.njournal_buckets; 676 677 /* No space available on this device */ 678 if (next == ja->discard_idx) 679 continue; 680 681 ja->cur_idx = next; 682 k->ptr[n++] = MAKE_PTR(0, 683 bucket_to_sector(c, ca->sb.d[ja->cur_idx]), 684 ca->sb.nr_this_dev); 685 atomic_long_inc(&c->reclaimed_journal_buckets); 686 } 687 688 if (n) { 689 bkey_init(k); 690 SET_KEY_PTRS(k, n); 691 c->journal.blocks_free = c->sb.bucket_size >> c->block_bits; 692 } 693 out: 694 if (!journal_full(&c->journal)) 695 __closure_wake_up(&c->journal.wait); 696 } 697 698 void bch_journal_next(struct journal *j) 699 { 700 atomic_t p = { 1 }; 701 702 j->cur = (j->cur == j->w) 703 ? &j->w[1] 704 : &j->w[0]; 705 706 /* 707 * The fifo_push() needs to happen at the same time as j->seq is 708 * incremented for last_seq() to be calculated correctly 709 */ 710 BUG_ON(!fifo_push(&j->pin, p)); 711 atomic_set(&fifo_back(&j->pin), 1); 712 713 j->cur->data->seq = ++j->seq; 714 j->cur->dirty = false; 715 j->cur->need_write = false; 716 j->cur->data->keys = 0; 717 718 if (fifo_full(&j->pin)) 719 pr_debug("journal_pin full (%zu)\n", fifo_used(&j->pin)); 720 } 721 722 static void journal_write_endio(struct bio *bio) 723 { 724 struct journal_write *w = bio->bi_private; 725 726 cache_set_err_on(bio->bi_status, w->c, "journal io error"); 727 closure_put(&w->c->journal.io); 728 } 729 730 static void journal_write(struct closure *cl); 731 732 static void journal_write_done(struct closure *cl) 733 { 734 struct journal *j = container_of(cl, struct journal, io); 735 struct journal_write *w = (j->cur == j->w) 736 ? &j->w[1] 737 : &j->w[0]; 738 739 __closure_wake_up(&w->wait); 740 continue_at_nobarrier(cl, journal_write, bch_journal_wq); 741 } 742 743 static void journal_write_unlock(struct closure *cl) 744 __releases(&c->journal.lock) 745 { 746 struct cache_set *c = container_of(cl, struct cache_set, journal.io); 747 748 c->journal.io_in_flight = 0; 749 spin_unlock(&c->journal.lock); 750 } 751 752 static void journal_write_unlocked(struct closure *cl) 753 __releases(c->journal.lock) 754 { 755 struct cache_set *c = container_of(cl, struct cache_set, journal.io); 756 struct cache *ca; 757 struct journal_write *w = c->journal.cur; 758 struct bkey *k = &c->journal.key; 759 unsigned int i, sectors = set_blocks(w->data, block_bytes(c)) * 760 c->sb.block_size; 761 762 struct bio *bio; 763 struct bio_list list; 764 765 bio_list_init(&list); 766 767 if (!w->need_write) { 768 closure_return_with_destructor(cl, journal_write_unlock); 769 return; 770 } else if (journal_full(&c->journal)) { 771 journal_reclaim(c); 772 spin_unlock(&c->journal.lock); 773 774 btree_flush_write(c); 775 continue_at(cl, journal_write, bch_journal_wq); 776 return; 777 } 778 779 c->journal.blocks_free -= set_blocks(w->data, block_bytes(c)); 780 781 w->data->btree_level = c->root->level; 782 783 bkey_copy(&w->data->btree_root, &c->root->key); 784 bkey_copy(&w->data->uuid_bucket, &c->uuid_bucket); 785 786 for_each_cache(ca, c, i) 787 w->data->prio_bucket[ca->sb.nr_this_dev] = ca->prio_buckets[0]; 788 789 w->data->magic = jset_magic(&c->sb); 790 w->data->version = BCACHE_JSET_VERSION; 791 w->data->last_seq = last_seq(&c->journal); 792 w->data->csum = csum_set(w->data); 793 794 for (i = 0; i < KEY_PTRS(k); i++) { 795 ca = PTR_CACHE(c, k, i); 796 bio = &ca->journal.bio; 797 798 atomic_long_add(sectors, &ca->meta_sectors_written); 799 800 bio_reset(bio); 801 bio->bi_iter.bi_sector = PTR_OFFSET(k, i); 802 bio_set_dev(bio, ca->bdev); 803 bio->bi_iter.bi_size = sectors << 9; 804 805 bio->bi_end_io = journal_write_endio; 806 bio->bi_private = w; 807 bio_set_op_attrs(bio, REQ_OP_WRITE, 808 REQ_SYNC|REQ_META|REQ_PREFLUSH|REQ_FUA); 809 bch_bio_map(bio, w->data); 810 811 trace_bcache_journal_write(bio, w->data->keys); 812 bio_list_add(&list, bio); 813 814 SET_PTR_OFFSET(k, i, PTR_OFFSET(k, i) + sectors); 815 816 ca->journal.seq[ca->journal.cur_idx] = w->data->seq; 817 } 818 819 /* If KEY_PTRS(k) == 0, this jset gets lost in air */ 820 BUG_ON(i == 0); 821 822 atomic_dec_bug(&fifo_back(&c->journal.pin)); 823 bch_journal_next(&c->journal); 824 journal_reclaim(c); 825 826 spin_unlock(&c->journal.lock); 827 828 while ((bio = bio_list_pop(&list))) 829 closure_bio_submit(c, bio, cl); 830 831 continue_at(cl, journal_write_done, NULL); 832 } 833 834 static void journal_write(struct closure *cl) 835 { 836 struct cache_set *c = container_of(cl, struct cache_set, journal.io); 837 838 spin_lock(&c->journal.lock); 839 journal_write_unlocked(cl); 840 } 841 842 static void journal_try_write(struct cache_set *c) 843 __releases(c->journal.lock) 844 { 845 struct closure *cl = &c->journal.io; 846 struct journal_write *w = c->journal.cur; 847 848 w->need_write = true; 849 850 if (!c->journal.io_in_flight) { 851 c->journal.io_in_flight = 1; 852 closure_call(cl, journal_write_unlocked, NULL, &c->cl); 853 } else { 854 spin_unlock(&c->journal.lock); 855 } 856 } 857 858 static struct journal_write *journal_wait_for_write(struct cache_set *c, 859 unsigned int nkeys) 860 __acquires(&c->journal.lock) 861 { 862 size_t sectors; 863 struct closure cl; 864 bool wait = false; 865 866 closure_init_stack(&cl); 867 868 spin_lock(&c->journal.lock); 869 870 while (1) { 871 struct journal_write *w = c->journal.cur; 872 873 sectors = __set_blocks(w->data, w->data->keys + nkeys, 874 block_bytes(c)) * c->sb.block_size; 875 876 if (sectors <= min_t(size_t, 877 c->journal.blocks_free * c->sb.block_size, 878 PAGE_SECTORS << JSET_BITS)) 879 return w; 880 881 if (wait) 882 closure_wait(&c->journal.wait, &cl); 883 884 if (!journal_full(&c->journal)) { 885 if (wait) 886 trace_bcache_journal_entry_full(c); 887 888 /* 889 * XXX: If we were inserting so many keys that they 890 * won't fit in an _empty_ journal write, we'll 891 * deadlock. For now, handle this in 892 * bch_keylist_realloc() - but something to think about. 893 */ 894 BUG_ON(!w->data->keys); 895 896 journal_try_write(c); /* unlocks */ 897 } else { 898 if (wait) 899 trace_bcache_journal_full(c); 900 901 journal_reclaim(c); 902 spin_unlock(&c->journal.lock); 903 904 btree_flush_write(c); 905 } 906 907 closure_sync(&cl); 908 spin_lock(&c->journal.lock); 909 wait = true; 910 } 911 } 912 913 static void journal_write_work(struct work_struct *work) 914 { 915 struct cache_set *c = container_of(to_delayed_work(work), 916 struct cache_set, 917 journal.work); 918 spin_lock(&c->journal.lock); 919 if (c->journal.cur->dirty) 920 journal_try_write(c); 921 else 922 spin_unlock(&c->journal.lock); 923 } 924 925 /* 926 * Entry point to the journalling code - bio_insert() and btree_invalidate() 927 * pass bch_journal() a list of keys to be journalled, and then 928 * bch_journal() hands those same keys off to btree_insert_async() 929 */ 930 931 atomic_t *bch_journal(struct cache_set *c, 932 struct keylist *keys, 933 struct closure *parent) 934 { 935 struct journal_write *w; 936 atomic_t *ret; 937 938 /* No journaling if CACHE_SET_IO_DISABLE set already */ 939 if (unlikely(test_bit(CACHE_SET_IO_DISABLE, &c->flags))) 940 return NULL; 941 942 if (!CACHE_SYNC(&c->sb)) 943 return NULL; 944 945 w = journal_wait_for_write(c, bch_keylist_nkeys(keys)); 946 947 memcpy(bset_bkey_last(w->data), keys->keys, bch_keylist_bytes(keys)); 948 w->data->keys += bch_keylist_nkeys(keys); 949 950 ret = &fifo_back(&c->journal.pin); 951 atomic_inc(ret); 952 953 if (parent) { 954 closure_wait(&w->wait, parent); 955 journal_try_write(c); 956 } else if (!w->dirty) { 957 w->dirty = true; 958 schedule_delayed_work(&c->journal.work, 959 msecs_to_jiffies(c->journal_delay_ms)); 960 spin_unlock(&c->journal.lock); 961 } else { 962 spin_unlock(&c->journal.lock); 963 } 964 965 966 return ret; 967 } 968 969 void bch_journal_meta(struct cache_set *c, struct closure *cl) 970 { 971 struct keylist keys; 972 atomic_t *ref; 973 974 bch_keylist_init(&keys); 975 976 ref = bch_journal(c, &keys, cl); 977 if (ref) 978 atomic_dec_bug(ref); 979 } 980 981 void bch_journal_free(struct cache_set *c) 982 { 983 free_pages((unsigned long) c->journal.w[1].data, JSET_BITS); 984 free_pages((unsigned long) c->journal.w[0].data, JSET_BITS); 985 free_fifo(&c->journal.pin); 986 } 987 988 int bch_journal_alloc(struct cache_set *c) 989 { 990 struct journal *j = &c->journal; 991 992 spin_lock_init(&j->lock); 993 spin_lock_init(&j->flush_write_lock); 994 INIT_DELAYED_WORK(&j->work, journal_write_work); 995 996 c->journal_delay_ms = 100; 997 998 j->w[0].c = c; 999 j->w[1].c = c; 1000 1001 if (!(init_fifo(&j->pin, JOURNAL_PIN, GFP_KERNEL)) || 1002 !(j->w[0].data = (void *) __get_free_pages(GFP_KERNEL, JSET_BITS)) || 1003 !(j->w[1].data = (void *) __get_free_pages(GFP_KERNEL, JSET_BITS))) 1004 return -ENOMEM; 1005 1006 return 0; 1007 } 1008