xref: /openbmc/linux/drivers/md/bcache/btree.h (revision feac1a70)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _BCACHE_BTREE_H
3 #define _BCACHE_BTREE_H
4 
5 /*
6  * THE BTREE:
7  *
8  * At a high level, bcache's btree is relatively standard b+ tree. All keys and
9  * pointers are in the leaves; interior nodes only have pointers to the child
10  * nodes.
11  *
12  * In the interior nodes, a struct bkey always points to a child btree node, and
13  * the key is the highest key in the child node - except that the highest key in
14  * an interior node is always MAX_KEY. The size field refers to the size on disk
15  * of the child node - this would allow us to have variable sized btree nodes
16  * (handy for keeping the depth of the btree 1 by expanding just the root).
17  *
18  * Btree nodes are themselves log structured, but this is hidden fairly
19  * thoroughly. Btree nodes on disk will in practice have extents that overlap
20  * (because they were written at different times), but in memory we never have
21  * overlapping extents - when we read in a btree node from disk, the first thing
22  * we do is resort all the sets of keys with a mergesort, and in the same pass
23  * we check for overlapping extents and adjust them appropriately.
24  *
25  * struct btree_op is a central interface to the btree code. It's used for
26  * specifying read vs. write locking, and the embedded closure is used for
27  * waiting on IO or reserve memory.
28  *
29  * BTREE CACHE:
30  *
31  * Btree nodes are cached in memory; traversing the btree might require reading
32  * in btree nodes which is handled mostly transparently.
33  *
34  * bch_btree_node_get() looks up a btree node in the cache and reads it in from
35  * disk if necessary. This function is almost never called directly though - the
36  * btree() macro is used to get a btree node, call some function on it, and
37  * unlock the node after the function returns.
38  *
39  * The root is special cased - it's taken out of the cache's lru (thus pinning
40  * it in memory), so we can find the root of the btree by just dereferencing a
41  * pointer instead of looking it up in the cache. This makes locking a bit
42  * tricky, since the root pointer is protected by the lock in the btree node it
43  * points to - the btree_root() macro handles this.
44  *
45  * In various places we must be able to allocate memory for multiple btree nodes
46  * in order to make forward progress. To do this we use the btree cache itself
47  * as a reserve; if __get_free_pages() fails, we'll find a node in the btree
48  * cache we can reuse. We can't allow more than one thread to be doing this at a
49  * time, so there's a lock, implemented by a pointer to the btree_op closure -
50  * this allows the btree_root() macro to implicitly release this lock.
51  *
52  * BTREE IO:
53  *
54  * Btree nodes never have to be explicitly read in; bch_btree_node_get() handles
55  * this.
56  *
57  * For writing, we have two btree_write structs embeddded in struct btree - one
58  * write in flight, and one being set up, and we toggle between them.
59  *
60  * Writing is done with a single function -  bch_btree_write() really serves two
61  * different purposes and should be broken up into two different functions. When
62  * passing now = false, it merely indicates that the node is now dirty - calling
63  * it ensures that the dirty keys will be written at some point in the future.
64  *
65  * When passing now = true, bch_btree_write() causes a write to happen
66  * "immediately" (if there was already a write in flight, it'll cause the write
67  * to happen as soon as the previous write completes). It returns immediately
68  * though - but it takes a refcount on the closure in struct btree_op you passed
69  * to it, so a closure_sync() later can be used to wait for the write to
70  * complete.
71  *
72  * This is handy because btree_split() and garbage collection can issue writes
73  * in parallel, reducing the amount of time they have to hold write locks.
74  *
75  * LOCKING:
76  *
77  * When traversing the btree, we may need write locks starting at some level -
78  * inserting a key into the btree will typically only require a write lock on
79  * the leaf node.
80  *
81  * This is specified with the lock field in struct btree_op; lock = 0 means we
82  * take write locks at level <= 0, i.e. only leaf nodes. bch_btree_node_get()
83  * checks this field and returns the node with the appropriate lock held.
84  *
85  * If, after traversing the btree, the insertion code discovers it has to split
86  * then it must restart from the root and take new locks - to do this it changes
87  * the lock field and returns -EINTR, which causes the btree_root() macro to
88  * loop.
89  *
90  * Handling cache misses require a different mechanism for upgrading to a write
91  * lock. We do cache lookups with only a read lock held, but if we get a cache
92  * miss and we wish to insert this data into the cache, we have to insert a
93  * placeholder key to detect races - otherwise, we could race with a write and
94  * overwrite the data that was just written to the cache with stale data from
95  * the backing device.
96  *
97  * For this we use a sequence number that write locks and unlocks increment - to
98  * insert the check key it unlocks the btree node and then takes a write lock,
99  * and fails if the sequence number doesn't match.
100  */
101 
102 #include "bset.h"
103 #include "debug.h"
104 
105 struct btree_write {
106 	atomic_t		*journal;
107 
108 	/* If btree_split() frees a btree node, it writes a new pointer to that
109 	 * btree node indicating it was freed; it takes a refcount on
110 	 * c->prio_blocked because we can't write the gens until the new
111 	 * pointer is on disk. This allows btree_write_endio() to release the
112 	 * refcount that btree_split() took.
113 	 */
114 	int			prio_blocked;
115 };
116 
117 struct btree {
118 	/* Hottest entries first */
119 	struct hlist_node	hash;
120 
121 	/* Key/pointer for this btree node */
122 	BKEY_PADDED(key);
123 
124 	unsigned long		seq;
125 	struct rw_semaphore	lock;
126 	struct cache_set	*c;
127 	struct btree		*parent;
128 
129 	struct mutex		write_lock;
130 
131 	unsigned long		flags;
132 	uint16_t		written;	/* would be nice to kill */
133 	uint8_t			level;
134 
135 	struct btree_keys	keys;
136 
137 	/* For outstanding btree writes, used as a lock - protects write_idx */
138 	struct closure		io;
139 	struct semaphore	io_mutex;
140 
141 	struct list_head	list;
142 	struct delayed_work	work;
143 
144 	struct btree_write	writes[2];
145 	struct bio		*bio;
146 };
147 
148 #define BTREE_FLAG(flag)						\
149 static inline bool btree_node_ ## flag(struct btree *b)			\
150 {	return test_bit(BTREE_NODE_ ## flag, &b->flags); }		\
151 									\
152 static inline void set_btree_node_ ## flag(struct btree *b)		\
153 {	set_bit(BTREE_NODE_ ## flag, &b->flags); }
154 
155 enum btree_flags {
156 	BTREE_NODE_io_error,
157 	BTREE_NODE_dirty,
158 	BTREE_NODE_write_idx,
159 	BTREE_NODE_journal_flush,
160 };
161 
162 BTREE_FLAG(io_error);
163 BTREE_FLAG(dirty);
164 BTREE_FLAG(write_idx);
165 BTREE_FLAG(journal_flush);
166 
167 static inline struct btree_write *btree_current_write(struct btree *b)
168 {
169 	return b->writes + btree_node_write_idx(b);
170 }
171 
172 static inline struct btree_write *btree_prev_write(struct btree *b)
173 {
174 	return b->writes + (btree_node_write_idx(b) ^ 1);
175 }
176 
177 static inline struct bset *btree_bset_first(struct btree *b)
178 {
179 	return b->keys.set->data;
180 }
181 
182 static inline struct bset *btree_bset_last(struct btree *b)
183 {
184 	return bset_tree_last(&b->keys)->data;
185 }
186 
187 static inline unsigned int bset_block_offset(struct btree *b, struct bset *i)
188 {
189 	return bset_sector_offset(&b->keys, i) >> b->c->block_bits;
190 }
191 
192 static inline void set_gc_sectors(struct cache_set *c)
193 {
194 	atomic_set(&c->sectors_to_gc, c->sb.bucket_size * c->nbuckets / 16);
195 }
196 
197 void bkey_put(struct cache_set *c, struct bkey *k);
198 
199 /* Looping macros */
200 
201 #define for_each_cached_btree(b, c, iter)				\
202 	for (iter = 0;							\
203 	     iter < ARRAY_SIZE((c)->bucket_hash);			\
204 	     iter++)							\
205 		hlist_for_each_entry_rcu((b), (c)->bucket_hash + iter, hash)
206 
207 /* Recursing down the btree */
208 
209 struct btree_op {
210 	/* for waiting on btree reserve in btree_split() */
211 	wait_queue_entry_t		wait;
212 
213 	/* Btree level at which we start taking write locks */
214 	short			lock;
215 
216 	unsigned int		insert_collision:1;
217 };
218 
219 static inline void bch_btree_op_init(struct btree_op *op, int write_lock_level)
220 {
221 	memset(op, 0, sizeof(struct btree_op));
222 	init_wait(&op->wait);
223 	op->lock = write_lock_level;
224 }
225 
226 static inline void rw_lock(bool w, struct btree *b, int level)
227 {
228 	w ? down_write_nested(&b->lock, level + 1)
229 	  : down_read_nested(&b->lock, level + 1);
230 	if (w)
231 		b->seq++;
232 }
233 
234 static inline void rw_unlock(bool w, struct btree *b)
235 {
236 	if (w)
237 		b->seq++;
238 	(w ? up_write : up_read)(&b->lock);
239 }
240 
241 void bch_btree_node_read_done(struct btree *b);
242 void __bch_btree_node_write(struct btree *b, struct closure *parent);
243 void bch_btree_node_write(struct btree *b, struct closure *parent);
244 
245 void bch_btree_set_root(struct btree *b);
246 struct btree *__bch_btree_node_alloc(struct cache_set *c, struct btree_op *op,
247 				     int level, bool wait,
248 				     struct btree *parent);
249 struct btree *bch_btree_node_get(struct cache_set *c, struct btree_op *op,
250 				 struct bkey *k, int level, bool write,
251 				 struct btree *parent);
252 
253 int bch_btree_insert_check_key(struct btree *b, struct btree_op *op,
254 			       struct bkey *check_key);
255 int bch_btree_insert(struct cache_set *c, struct keylist *keys,
256 		     atomic_t *journal_ref, struct bkey *replace_key);
257 
258 int bch_gc_thread_start(struct cache_set *c);
259 void bch_initial_gc_finish(struct cache_set *c);
260 void bch_moving_gc(struct cache_set *c);
261 int bch_btree_check(struct cache_set *c);
262 void bch_initial_mark_key(struct cache_set *c, int level, struct bkey *k);
263 typedef int (btree_map_keys_fn)(struct btree_op *op, struct btree *b,
264 				struct bkey *k);
265 int bch_btree_map_keys_recurse(struct btree *b, struct btree_op *op,
266 			       struct bkey *from, btree_map_keys_fn *fn,
267 			       int flags);
268 int bch_btree_map_keys(struct btree_op *op, struct cache_set *c,
269 		       struct bkey *from, btree_map_keys_fn *fn, int flags);
270 
271 static inline void wake_up_gc(struct cache_set *c)
272 {
273 	wake_up(&c->gc_wait);
274 }
275 
276 static inline void force_wake_up_gc(struct cache_set *c)
277 {
278 	/*
279 	 * Garbage collection thread only works when sectors_to_gc < 0,
280 	 * calling wake_up_gc() won't start gc thread if sectors_to_gc is
281 	 * not a nagetive value.
282 	 * Therefore sectors_to_gc is set to -1 here, before waking up
283 	 * gc thread by calling wake_up_gc(). Then gc_should_run() will
284 	 * give a chance to permit gc thread to run. "Give a chance" means
285 	 * before going into gc_should_run(), there is still possibility
286 	 * that c->sectors_to_gc being set to other positive value. So
287 	 * this routine won't 100% make sure gc thread will be woken up
288 	 * to run.
289 	 */
290 	atomic_set(&c->sectors_to_gc, -1);
291 	wake_up_gc(c);
292 }
293 
294 /*
295  * These macros are for recursing down the btree - they handle the details of
296  * locking and looking up nodes in the cache for you. They're best treated as
297  * mere syntax when reading code that uses them.
298  *
299  * op->lock determines whether we take a read or a write lock at a given depth.
300  * If you've got a read lock and find that you need a write lock (i.e. you're
301  * going to have to split), set op->lock and return -EINTR; btree_root() will
302  * call you again and you'll have the correct lock.
303  */
304 
305 /**
306  * btree - recurse down the btree on a specified key
307  * @fn:		function to call, which will be passed the child node
308  * @key:	key to recurse on
309  * @b:		parent btree node
310  * @op:		pointer to struct btree_op
311  */
312 #define bcache_btree(fn, key, b, op, ...)				\
313 ({									\
314 	int _r, l = (b)->level - 1;					\
315 	bool _w = l <= (op)->lock;					\
316 	struct btree *_child = bch_btree_node_get((b)->c, op, key, l,	\
317 						  _w, b);		\
318 	if (!IS_ERR(_child)) {						\
319 		_r = bch_btree_ ## fn(_child, op, ##__VA_ARGS__);	\
320 		rw_unlock(_w, _child);					\
321 	} else								\
322 		_r = PTR_ERR(_child);					\
323 	_r;								\
324 })
325 
326 /**
327  * btree_root - call a function on the root of the btree
328  * @fn:		function to call, which will be passed the child node
329  * @c:		cache set
330  * @op:		pointer to struct btree_op
331  */
332 #define bcache_btree_root(fn, c, op, ...)				\
333 ({									\
334 	int _r = -EINTR;						\
335 	do {								\
336 		struct btree *_b = (c)->root;				\
337 		bool _w = insert_lock(op, _b);				\
338 		rw_lock(_w, _b, _b->level);				\
339 		if (_b == (c)->root &&					\
340 		    _w == insert_lock(op, _b)) {			\
341 			_r = bch_btree_ ## fn(_b, op, ##__VA_ARGS__);	\
342 		}							\
343 		rw_unlock(_w, _b);					\
344 		bch_cannibalize_unlock(c);                              \
345 		if (_r == -EINTR)                                       \
346 			schedule();                                     \
347 	} while (_r == -EINTR);                                         \
348 									\
349 	finish_wait(&(c)->btree_cache_wait, &(op)->wait);               \
350 	_r;                                                             \
351 })
352 
353 #define MAP_DONE	0
354 #define MAP_CONTINUE	1
355 
356 #define MAP_ALL_NODES	0
357 #define MAP_LEAF_NODES	1
358 
359 #define MAP_END_KEY	1
360 
361 typedef int (btree_map_nodes_fn)(struct btree_op *b_op, struct btree *b);
362 int __bch_btree_map_nodes(struct btree_op *op, struct cache_set *c,
363 			  struct bkey *from, btree_map_nodes_fn *fn, int flags);
364 
365 static inline int bch_btree_map_nodes(struct btree_op *op, struct cache_set *c,
366 				      struct bkey *from, btree_map_nodes_fn *fn)
367 {
368 	return __bch_btree_map_nodes(op, c, from, fn, MAP_ALL_NODES);
369 }
370 
371 static inline int bch_btree_map_leaf_nodes(struct btree_op *op,
372 					   struct cache_set *c,
373 					   struct bkey *from,
374 					   btree_map_nodes_fn *fn)
375 {
376 	return __bch_btree_map_nodes(op, c, from, fn, MAP_LEAF_NODES);
377 }
378 
379 typedef int (btree_map_keys_fn)(struct btree_op *op, struct btree *b,
380 				struct bkey *k);
381 int bch_btree_map_keys(struct btree_op *op, struct cache_set *c,
382 		       struct bkey *from, btree_map_keys_fn *fn, int flags);
383 
384 typedef bool (keybuf_pred_fn)(struct keybuf *buf, struct bkey *k);
385 
386 void bch_keybuf_init(struct keybuf *buf);
387 void bch_refill_keybuf(struct cache_set *c, struct keybuf *buf,
388 		       struct bkey *end, keybuf_pred_fn *pred);
389 bool bch_keybuf_check_overlapping(struct keybuf *buf, struct bkey *start,
390 				  struct bkey *end);
391 void bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w);
392 struct keybuf_key *bch_keybuf_next(struct keybuf *buf);
393 struct keybuf_key *bch_keybuf_next_rescan(struct cache_set *c,
394 					  struct keybuf *buf,
395 					  struct bkey *end,
396 					  keybuf_pred_fn *pred);
397 void bch_update_bucket_in_use(struct cache_set *c, struct gc_stat *stats);
398 #endif
399