xref: /openbmc/linux/drivers/md/bcache/btree.h (revision fadbafc1)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _BCACHE_BTREE_H
3 #define _BCACHE_BTREE_H
4 
5 /*
6  * THE BTREE:
7  *
8  * At a high level, bcache's btree is relatively standard b+ tree. All keys and
9  * pointers are in the leaves; interior nodes only have pointers to the child
10  * nodes.
11  *
12  * In the interior nodes, a struct bkey always points to a child btree node, and
13  * the key is the highest key in the child node - except that the highest key in
14  * an interior node is always MAX_KEY. The size field refers to the size on disk
15  * of the child node - this would allow us to have variable sized btree nodes
16  * (handy for keeping the depth of the btree 1 by expanding just the root).
17  *
18  * Btree nodes are themselves log structured, but this is hidden fairly
19  * thoroughly. Btree nodes on disk will in practice have extents that overlap
20  * (because they were written at different times), but in memory we never have
21  * overlapping extents - when we read in a btree node from disk, the first thing
22  * we do is resort all the sets of keys with a mergesort, and in the same pass
23  * we check for overlapping extents and adjust them appropriately.
24  *
25  * struct btree_op is a central interface to the btree code. It's used for
26  * specifying read vs. write locking, and the embedded closure is used for
27  * waiting on IO or reserve memory.
28  *
29  * BTREE CACHE:
30  *
31  * Btree nodes are cached in memory; traversing the btree might require reading
32  * in btree nodes which is handled mostly transparently.
33  *
34  * bch_btree_node_get() looks up a btree node in the cache and reads it in from
35  * disk if necessary. This function is almost never called directly though - the
36  * btree() macro is used to get a btree node, call some function on it, and
37  * unlock the node after the function returns.
38  *
39  * The root is special cased - it's taken out of the cache's lru (thus pinning
40  * it in memory), so we can find the root of the btree by just dereferencing a
41  * pointer instead of looking it up in the cache. This makes locking a bit
42  * tricky, since the root pointer is protected by the lock in the btree node it
43  * points to - the btree_root() macro handles this.
44  *
45  * In various places we must be able to allocate memory for multiple btree nodes
46  * in order to make forward progress. To do this we use the btree cache itself
47  * as a reserve; if __get_free_pages() fails, we'll find a node in the btree
48  * cache we can reuse. We can't allow more than one thread to be doing this at a
49  * time, so there's a lock, implemented by a pointer to the btree_op closure -
50  * this allows the btree_root() macro to implicitly release this lock.
51  *
52  * BTREE IO:
53  *
54  * Btree nodes never have to be explicitly read in; bch_btree_node_get() handles
55  * this.
56  *
57  * For writing, we have two btree_write structs embeddded in struct btree - one
58  * write in flight, and one being set up, and we toggle between them.
59  *
60  * Writing is done with a single function -  bch_btree_write() really serves two
61  * different purposes and should be broken up into two different functions. When
62  * passing now = false, it merely indicates that the node is now dirty - calling
63  * it ensures that the dirty keys will be written at some point in the future.
64  *
65  * When passing now = true, bch_btree_write() causes a write to happen
66  * "immediately" (if there was already a write in flight, it'll cause the write
67  * to happen as soon as the previous write completes). It returns immediately
68  * though - but it takes a refcount on the closure in struct btree_op you passed
69  * to it, so a closure_sync() later can be used to wait for the write to
70  * complete.
71  *
72  * This is handy because btree_split() and garbage collection can issue writes
73  * in parallel, reducing the amount of time they have to hold write locks.
74  *
75  * LOCKING:
76  *
77  * When traversing the btree, we may need write locks starting at some level -
78  * inserting a key into the btree will typically only require a write lock on
79  * the leaf node.
80  *
81  * This is specified with the lock field in struct btree_op; lock = 0 means we
82  * take write locks at level <= 0, i.e. only leaf nodes. bch_btree_node_get()
83  * checks this field and returns the node with the appropriate lock held.
84  *
85  * If, after traversing the btree, the insertion code discovers it has to split
86  * then it must restart from the root and take new locks - to do this it changes
87  * the lock field and returns -EINTR, which causes the btree_root() macro to
88  * loop.
89  *
90  * Handling cache misses require a different mechanism for upgrading to a write
91  * lock. We do cache lookups with only a read lock held, but if we get a cache
92  * miss and we wish to insert this data into the cache, we have to insert a
93  * placeholder key to detect races - otherwise, we could race with a write and
94  * overwrite the data that was just written to the cache with stale data from
95  * the backing device.
96  *
97  * For this we use a sequence number that write locks and unlocks increment - to
98  * insert the check key it unlocks the btree node and then takes a write lock,
99  * and fails if the sequence number doesn't match.
100  */
101 
102 #include "bset.h"
103 #include "debug.h"
104 
105 struct btree_write {
106 	atomic_t		*journal;
107 
108 	/* If btree_split() frees a btree node, it writes a new pointer to that
109 	 * btree node indicating it was freed; it takes a refcount on
110 	 * c->prio_blocked because we can't write the gens until the new
111 	 * pointer is on disk. This allows btree_write_endio() to release the
112 	 * refcount that btree_split() took.
113 	 */
114 	int			prio_blocked;
115 };
116 
117 struct btree {
118 	/* Hottest entries first */
119 	struct hlist_node	hash;
120 
121 	/* Key/pointer for this btree node */
122 	BKEY_PADDED(key);
123 
124 	unsigned long		seq;
125 	struct rw_semaphore	lock;
126 	struct cache_set	*c;
127 	struct btree		*parent;
128 
129 	struct mutex		write_lock;
130 
131 	unsigned long		flags;
132 	uint16_t		written;	/* would be nice to kill */
133 	uint8_t			level;
134 
135 	struct btree_keys	keys;
136 
137 	/* For outstanding btree writes, used as a lock - protects write_idx */
138 	struct closure		io;
139 	struct semaphore	io_mutex;
140 
141 	struct list_head	list;
142 	struct delayed_work	work;
143 
144 	struct btree_write	writes[2];
145 	struct bio		*bio;
146 };
147 
148 
149 
150 
151 #define BTREE_FLAG(flag)						\
152 static inline bool btree_node_ ## flag(struct btree *b)			\
153 {	return test_bit(BTREE_NODE_ ## flag, &b->flags); }		\
154 									\
155 static inline void set_btree_node_ ## flag(struct btree *b)		\
156 {	set_bit(BTREE_NODE_ ## flag, &b->flags); }
157 
158 enum btree_flags {
159 	BTREE_NODE_io_error,
160 	BTREE_NODE_dirty,
161 	BTREE_NODE_write_idx,
162 	BTREE_NODE_journal_flush,
163 };
164 
165 BTREE_FLAG(io_error);
166 BTREE_FLAG(dirty);
167 BTREE_FLAG(write_idx);
168 BTREE_FLAG(journal_flush);
169 
170 static inline struct btree_write *btree_current_write(struct btree *b)
171 {
172 	return b->writes + btree_node_write_idx(b);
173 }
174 
175 static inline struct btree_write *btree_prev_write(struct btree *b)
176 {
177 	return b->writes + (btree_node_write_idx(b) ^ 1);
178 }
179 
180 static inline struct bset *btree_bset_first(struct btree *b)
181 {
182 	return b->keys.set->data;
183 }
184 
185 static inline struct bset *btree_bset_last(struct btree *b)
186 {
187 	return bset_tree_last(&b->keys)->data;
188 }
189 
190 static inline unsigned int bset_block_offset(struct btree *b, struct bset *i)
191 {
192 	return bset_sector_offset(&b->keys, i) >> b->c->block_bits;
193 }
194 
195 static inline void set_gc_sectors(struct cache_set *c)
196 {
197 	atomic_set(&c->sectors_to_gc, c->cache->sb.bucket_size * c->nbuckets / 16);
198 }
199 
200 void bkey_put(struct cache_set *c, struct bkey *k);
201 
202 /* Looping macros */
203 
204 #define for_each_cached_btree(b, c, iter)				\
205 	for (iter = 0;							\
206 	     iter < ARRAY_SIZE((c)->bucket_hash);			\
207 	     iter++)							\
208 		hlist_for_each_entry_rcu((b), (c)->bucket_hash + iter, hash)
209 
210 /* Recursing down the btree */
211 
212 struct btree_op {
213 	/* for waiting on btree reserve in btree_split() */
214 	wait_queue_entry_t		wait;
215 
216 	/* Btree level at which we start taking write locks */
217 	short			lock;
218 
219 	unsigned int		insert_collision:1;
220 };
221 
222 struct btree_check_state;
223 struct btree_check_info {
224 	struct btree_check_state	*state;
225 	struct task_struct		*thread;
226 	int				result;
227 };
228 
229 #define BCH_BTR_CHKTHREAD_MAX	12
230 struct btree_check_state {
231 	struct cache_set		*c;
232 	int				total_threads;
233 	int				key_idx;
234 	spinlock_t			idx_lock;
235 	atomic_t			started;
236 	atomic_t			enough;
237 	wait_queue_head_t		wait;
238 	struct btree_check_info		infos[BCH_BTR_CHKTHREAD_MAX];
239 };
240 
241 static inline void bch_btree_op_init(struct btree_op *op, int write_lock_level)
242 {
243 	memset(op, 0, sizeof(struct btree_op));
244 	init_wait(&op->wait);
245 	op->lock = write_lock_level;
246 }
247 
248 static inline void rw_lock(bool w, struct btree *b, int level)
249 {
250 	w ? down_write_nested(&b->lock, level + 1)
251 	  : down_read_nested(&b->lock, level + 1);
252 	if (w)
253 		b->seq++;
254 }
255 
256 static inline void rw_unlock(bool w, struct btree *b)
257 {
258 	if (w)
259 		b->seq++;
260 	(w ? up_write : up_read)(&b->lock);
261 }
262 
263 void bch_btree_node_read_done(struct btree *b);
264 void __bch_btree_node_write(struct btree *b, struct closure *parent);
265 void bch_btree_node_write(struct btree *b, struct closure *parent);
266 
267 void bch_btree_set_root(struct btree *b);
268 struct btree *__bch_btree_node_alloc(struct cache_set *c, struct btree_op *op,
269 				     int level, bool wait,
270 				     struct btree *parent);
271 struct btree *bch_btree_node_get(struct cache_set *c, struct btree_op *op,
272 				 struct bkey *k, int level, bool write,
273 				 struct btree *parent);
274 
275 int bch_btree_insert_check_key(struct btree *b, struct btree_op *op,
276 			       struct bkey *check_key);
277 int bch_btree_insert(struct cache_set *c, struct keylist *keys,
278 		     atomic_t *journal_ref, struct bkey *replace_key);
279 
280 int bch_gc_thread_start(struct cache_set *c);
281 void bch_initial_gc_finish(struct cache_set *c);
282 void bch_moving_gc(struct cache_set *c);
283 int bch_btree_check(struct cache_set *c);
284 void bch_initial_mark_key(struct cache_set *c, int level, struct bkey *k);
285 
286 static inline void wake_up_gc(struct cache_set *c)
287 {
288 	wake_up(&c->gc_wait);
289 }
290 
291 static inline void force_wake_up_gc(struct cache_set *c)
292 {
293 	/*
294 	 * Garbage collection thread only works when sectors_to_gc < 0,
295 	 * calling wake_up_gc() won't start gc thread if sectors_to_gc is
296 	 * not a nagetive value.
297 	 * Therefore sectors_to_gc is set to -1 here, before waking up
298 	 * gc thread by calling wake_up_gc(). Then gc_should_run() will
299 	 * give a chance to permit gc thread to run. "Give a chance" means
300 	 * before going into gc_should_run(), there is still possibility
301 	 * that c->sectors_to_gc being set to other positive value. So
302 	 * this routine won't 100% make sure gc thread will be woken up
303 	 * to run.
304 	 */
305 	atomic_set(&c->sectors_to_gc, -1);
306 	wake_up_gc(c);
307 }
308 
309 /*
310  * These macros are for recursing down the btree - they handle the details of
311  * locking and looking up nodes in the cache for you. They're best treated as
312  * mere syntax when reading code that uses them.
313  *
314  * op->lock determines whether we take a read or a write lock at a given depth.
315  * If you've got a read lock and find that you need a write lock (i.e. you're
316  * going to have to split), set op->lock and return -EINTR; btree_root() will
317  * call you again and you'll have the correct lock.
318  */
319 
320 /**
321  * btree - recurse down the btree on a specified key
322  * @fn:		function to call, which will be passed the child node
323  * @key:	key to recurse on
324  * @b:		parent btree node
325  * @op:		pointer to struct btree_op
326  */
327 #define bcache_btree(fn, key, b, op, ...)				\
328 ({									\
329 	int _r, l = (b)->level - 1;					\
330 	bool _w = l <= (op)->lock;					\
331 	struct btree *_child = bch_btree_node_get((b)->c, op, key, l,	\
332 						  _w, b);		\
333 	if (!IS_ERR(_child)) {						\
334 		_r = bch_btree_ ## fn(_child, op, ##__VA_ARGS__);	\
335 		rw_unlock(_w, _child);					\
336 	} else								\
337 		_r = PTR_ERR(_child);					\
338 	_r;								\
339 })
340 
341 /**
342  * btree_root - call a function on the root of the btree
343  * @fn:		function to call, which will be passed the child node
344  * @c:		cache set
345  * @op:		pointer to struct btree_op
346  */
347 #define bcache_btree_root(fn, c, op, ...)				\
348 ({									\
349 	int _r = -EINTR;						\
350 	do {								\
351 		struct btree *_b = (c)->root;				\
352 		bool _w = insert_lock(op, _b);				\
353 		rw_lock(_w, _b, _b->level);				\
354 		if (_b == (c)->root &&					\
355 		    _w == insert_lock(op, _b)) {			\
356 			_r = bch_btree_ ## fn(_b, op, ##__VA_ARGS__);	\
357 		}							\
358 		rw_unlock(_w, _b);					\
359 		bch_cannibalize_unlock(c);                              \
360 		if (_r == -EINTR)                                       \
361 			schedule();                                     \
362 	} while (_r == -EINTR);                                         \
363 									\
364 	finish_wait(&(c)->btree_cache_wait, &(op)->wait);               \
365 	_r;                                                             \
366 })
367 
368 #define MAP_DONE	0
369 #define MAP_CONTINUE	1
370 
371 #define MAP_ALL_NODES	0
372 #define MAP_LEAF_NODES	1
373 
374 #define MAP_END_KEY	1
375 
376 typedef int (btree_map_nodes_fn)(struct btree_op *b_op, struct btree *b);
377 int __bch_btree_map_nodes(struct btree_op *op, struct cache_set *c,
378 			  struct bkey *from, btree_map_nodes_fn *fn, int flags);
379 
380 static inline int bch_btree_map_nodes(struct btree_op *op, struct cache_set *c,
381 				      struct bkey *from, btree_map_nodes_fn *fn)
382 {
383 	return __bch_btree_map_nodes(op, c, from, fn, MAP_ALL_NODES);
384 }
385 
386 static inline int bch_btree_map_leaf_nodes(struct btree_op *op,
387 					   struct cache_set *c,
388 					   struct bkey *from,
389 					   btree_map_nodes_fn *fn)
390 {
391 	return __bch_btree_map_nodes(op, c, from, fn, MAP_LEAF_NODES);
392 }
393 
394 typedef int (btree_map_keys_fn)(struct btree_op *op, struct btree *b,
395 				struct bkey *k);
396 int bch_btree_map_keys(struct btree_op *op, struct cache_set *c,
397 		       struct bkey *from, btree_map_keys_fn *fn, int flags);
398 int bch_btree_map_keys_recurse(struct btree *b, struct btree_op *op,
399 			       struct bkey *from, btree_map_keys_fn *fn,
400 			       int flags);
401 
402 typedef bool (keybuf_pred_fn)(struct keybuf *buf, struct bkey *k);
403 
404 void bch_keybuf_init(struct keybuf *buf);
405 void bch_refill_keybuf(struct cache_set *c, struct keybuf *buf,
406 		       struct bkey *end, keybuf_pred_fn *pred);
407 bool bch_keybuf_check_overlapping(struct keybuf *buf, struct bkey *start,
408 				  struct bkey *end);
409 void bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w);
410 struct keybuf_key *bch_keybuf_next(struct keybuf *buf);
411 struct keybuf_key *bch_keybuf_next_rescan(struct cache_set *c,
412 					  struct keybuf *buf,
413 					  struct bkey *end,
414 					  keybuf_pred_fn *pred);
415 void bch_update_bucket_in_use(struct cache_set *c, struct gc_stat *stats);
416 #endif
417