xref: /openbmc/linux/drivers/md/bcache/btree.h (revision 6c870213d6f3a25981c10728f46294a3bed1703f)
1 #ifndef _BCACHE_BTREE_H
2 #define _BCACHE_BTREE_H
3 
4 /*
5  * THE BTREE:
6  *
7  * At a high level, bcache's btree is relatively standard b+ tree. All keys and
8  * pointers are in the leaves; interior nodes only have pointers to the child
9  * nodes.
10  *
11  * In the interior nodes, a struct bkey always points to a child btree node, and
12  * the key is the highest key in the child node - except that the highest key in
13  * an interior node is always MAX_KEY. The size field refers to the size on disk
14  * of the child node - this would allow us to have variable sized btree nodes
15  * (handy for keeping the depth of the btree 1 by expanding just the root).
16  *
17  * Btree nodes are themselves log structured, but this is hidden fairly
18  * thoroughly. Btree nodes on disk will in practice have extents that overlap
19  * (because they were written at different times), but in memory we never have
20  * overlapping extents - when we read in a btree node from disk, the first thing
21  * we do is resort all the sets of keys with a mergesort, and in the same pass
22  * we check for overlapping extents and adjust them appropriately.
23  *
24  * struct btree_op is a central interface to the btree code. It's used for
25  * specifying read vs. write locking, and the embedded closure is used for
26  * waiting on IO or reserve memory.
27  *
28  * BTREE CACHE:
29  *
30  * Btree nodes are cached in memory; traversing the btree might require reading
31  * in btree nodes which is handled mostly transparently.
32  *
33  * bch_btree_node_get() looks up a btree node in the cache and reads it in from
34  * disk if necessary. This function is almost never called directly though - the
35  * btree() macro is used to get a btree node, call some function on it, and
36  * unlock the node after the function returns.
37  *
38  * The root is special cased - it's taken out of the cache's lru (thus pinning
39  * it in memory), so we can find the root of the btree by just dereferencing a
40  * pointer instead of looking it up in the cache. This makes locking a bit
41  * tricky, since the root pointer is protected by the lock in the btree node it
42  * points to - the btree_root() macro handles this.
43  *
44  * In various places we must be able to allocate memory for multiple btree nodes
45  * in order to make forward progress. To do this we use the btree cache itself
46  * as a reserve; if __get_free_pages() fails, we'll find a node in the btree
47  * cache we can reuse. We can't allow more than one thread to be doing this at a
48  * time, so there's a lock, implemented by a pointer to the btree_op closure -
49  * this allows the btree_root() macro to implicitly release this lock.
50  *
51  * BTREE IO:
52  *
53  * Btree nodes never have to be explicitly read in; bch_btree_node_get() handles
54  * this.
55  *
56  * For writing, we have two btree_write structs embeddded in struct btree - one
57  * write in flight, and one being set up, and we toggle between them.
58  *
59  * Writing is done with a single function -  bch_btree_write() really serves two
60  * different purposes and should be broken up into two different functions. When
61  * passing now = false, it merely indicates that the node is now dirty - calling
62  * it ensures that the dirty keys will be written at some point in the future.
63  *
64  * When passing now = true, bch_btree_write() causes a write to happen
65  * "immediately" (if there was already a write in flight, it'll cause the write
66  * to happen as soon as the previous write completes). It returns immediately
67  * though - but it takes a refcount on the closure in struct btree_op you passed
68  * to it, so a closure_sync() later can be used to wait for the write to
69  * complete.
70  *
71  * This is handy because btree_split() and garbage collection can issue writes
72  * in parallel, reducing the amount of time they have to hold write locks.
73  *
74  * LOCKING:
75  *
76  * When traversing the btree, we may need write locks starting at some level -
77  * inserting a key into the btree will typically only require a write lock on
78  * the leaf node.
79  *
80  * This is specified with the lock field in struct btree_op; lock = 0 means we
81  * take write locks at level <= 0, i.e. only leaf nodes. bch_btree_node_get()
82  * checks this field and returns the node with the appropriate lock held.
83  *
84  * If, after traversing the btree, the insertion code discovers it has to split
85  * then it must restart from the root and take new locks - to do this it changes
86  * the lock field and returns -EINTR, which causes the btree_root() macro to
87  * loop.
88  *
89  * Handling cache misses require a different mechanism for upgrading to a write
90  * lock. We do cache lookups with only a read lock held, but if we get a cache
91  * miss and we wish to insert this data into the cache, we have to insert a
92  * placeholder key to detect races - otherwise, we could race with a write and
93  * overwrite the data that was just written to the cache with stale data from
94  * the backing device.
95  *
96  * For this we use a sequence number that write locks and unlocks increment - to
97  * insert the check key it unlocks the btree node and then takes a write lock,
98  * and fails if the sequence number doesn't match.
99  */
100 
101 #include "bset.h"
102 #include "debug.h"
103 
104 struct btree_write {
105 	atomic_t		*journal;
106 
107 	/* If btree_split() frees a btree node, it writes a new pointer to that
108 	 * btree node indicating it was freed; it takes a refcount on
109 	 * c->prio_blocked because we can't write the gens until the new
110 	 * pointer is on disk. This allows btree_write_endio() to release the
111 	 * refcount that btree_split() took.
112 	 */
113 	int			prio_blocked;
114 };
115 
116 struct btree {
117 	/* Hottest entries first */
118 	struct hlist_node	hash;
119 
120 	/* Key/pointer for this btree node */
121 	BKEY_PADDED(key);
122 
123 	/* Single bit - set when accessed, cleared by shrinker */
124 	unsigned long		accessed;
125 	unsigned long		seq;
126 	struct rw_semaphore	lock;
127 	struct cache_set	*c;
128 	struct btree		*parent;
129 
130 	struct mutex		write_lock;
131 
132 	unsigned long		flags;
133 	uint16_t		written;	/* would be nice to kill */
134 	uint8_t			level;
135 
136 	struct btree_keys	keys;
137 
138 	/* For outstanding btree writes, used as a lock - protects write_idx */
139 	struct closure		io;
140 	struct semaphore	io_mutex;
141 
142 	struct list_head	list;
143 	struct delayed_work	work;
144 
145 	struct btree_write	writes[2];
146 	struct bio		*bio;
147 };
148 
149 #define BTREE_FLAG(flag)						\
150 static inline bool btree_node_ ## flag(struct btree *b)			\
151 {	return test_bit(BTREE_NODE_ ## flag, &b->flags); }		\
152 									\
153 static inline void set_btree_node_ ## flag(struct btree *b)		\
154 {	set_bit(BTREE_NODE_ ## flag, &b->flags); }			\
155 
156 enum btree_flags {
157 	BTREE_NODE_io_error,
158 	BTREE_NODE_dirty,
159 	BTREE_NODE_write_idx,
160 };
161 
162 BTREE_FLAG(io_error);
163 BTREE_FLAG(dirty);
164 BTREE_FLAG(write_idx);
165 
166 static inline struct btree_write *btree_current_write(struct btree *b)
167 {
168 	return b->writes + btree_node_write_idx(b);
169 }
170 
171 static inline struct btree_write *btree_prev_write(struct btree *b)
172 {
173 	return b->writes + (btree_node_write_idx(b) ^ 1);
174 }
175 
176 static inline struct bset *btree_bset_first(struct btree *b)
177 {
178 	return b->keys.set->data;
179 }
180 
181 static inline struct bset *btree_bset_last(struct btree *b)
182 {
183 	return bset_tree_last(&b->keys)->data;
184 }
185 
186 static inline unsigned bset_block_offset(struct btree *b, struct bset *i)
187 {
188 	return bset_sector_offset(&b->keys, i) >> b->c->block_bits;
189 }
190 
191 static inline void set_gc_sectors(struct cache_set *c)
192 {
193 	atomic_set(&c->sectors_to_gc, c->sb.bucket_size * c->nbuckets / 16);
194 }
195 
196 void bkey_put(struct cache_set *c, struct bkey *k);
197 
198 /* Looping macros */
199 
200 #define for_each_cached_btree(b, c, iter)				\
201 	for (iter = 0;							\
202 	     iter < ARRAY_SIZE((c)->bucket_hash);			\
203 	     iter++)							\
204 		hlist_for_each_entry_rcu((b), (c)->bucket_hash + iter, hash)
205 
206 /* Recursing down the btree */
207 
208 struct btree_op {
209 	/* for waiting on btree reserve in btree_split() */
210 	wait_queue_t		wait;
211 
212 	/* Btree level at which we start taking write locks */
213 	short			lock;
214 
215 	unsigned		insert_collision:1;
216 };
217 
218 static inline void bch_btree_op_init(struct btree_op *op, int write_lock_level)
219 {
220 	memset(op, 0, sizeof(struct btree_op));
221 	init_wait(&op->wait);
222 	op->lock = write_lock_level;
223 }
224 
225 static inline void rw_lock(bool w, struct btree *b, int level)
226 {
227 	w ? down_write_nested(&b->lock, level + 1)
228 	  : down_read_nested(&b->lock, level + 1);
229 	if (w)
230 		b->seq++;
231 }
232 
233 static inline void rw_unlock(bool w, struct btree *b)
234 {
235 	if (w)
236 		b->seq++;
237 	(w ? up_write : up_read)(&b->lock);
238 }
239 
240 void bch_btree_node_read_done(struct btree *);
241 void __bch_btree_node_write(struct btree *, struct closure *);
242 void bch_btree_node_write(struct btree *, struct closure *);
243 
244 void bch_btree_set_root(struct btree *);
245 struct btree *bch_btree_node_alloc(struct cache_set *, struct btree_op *, int);
246 struct btree *bch_btree_node_get(struct cache_set *, struct btree_op *,
247 				 struct bkey *, int, bool);
248 
249 int bch_btree_insert_check_key(struct btree *, struct btree_op *,
250 			       struct bkey *);
251 int bch_btree_insert(struct cache_set *, struct keylist *,
252 		     atomic_t *, struct bkey *);
253 
254 int bch_gc_thread_start(struct cache_set *);
255 void bch_initial_gc_finish(struct cache_set *);
256 void bch_moving_gc(struct cache_set *);
257 int bch_btree_check(struct cache_set *);
258 void bch_initial_mark_key(struct cache_set *, int, struct bkey *);
259 
260 static inline void wake_up_gc(struct cache_set *c)
261 {
262 	if (c->gc_thread)
263 		wake_up_process(c->gc_thread);
264 }
265 
266 #define MAP_DONE	0
267 #define MAP_CONTINUE	1
268 
269 #define MAP_ALL_NODES	0
270 #define MAP_LEAF_NODES	1
271 
272 #define MAP_END_KEY	1
273 
274 typedef int (btree_map_nodes_fn)(struct btree_op *, struct btree *);
275 int __bch_btree_map_nodes(struct btree_op *, struct cache_set *,
276 			  struct bkey *, btree_map_nodes_fn *, int);
277 
278 static inline int bch_btree_map_nodes(struct btree_op *op, struct cache_set *c,
279 				      struct bkey *from, btree_map_nodes_fn *fn)
280 {
281 	return __bch_btree_map_nodes(op, c, from, fn, MAP_ALL_NODES);
282 }
283 
284 static inline int bch_btree_map_leaf_nodes(struct btree_op *op,
285 					   struct cache_set *c,
286 					   struct bkey *from,
287 					   btree_map_nodes_fn *fn)
288 {
289 	return __bch_btree_map_nodes(op, c, from, fn, MAP_LEAF_NODES);
290 }
291 
292 typedef int (btree_map_keys_fn)(struct btree_op *, struct btree *,
293 				struct bkey *);
294 int bch_btree_map_keys(struct btree_op *, struct cache_set *,
295 		       struct bkey *, btree_map_keys_fn *, int);
296 
297 typedef bool (keybuf_pred_fn)(struct keybuf *, struct bkey *);
298 
299 void bch_keybuf_init(struct keybuf *);
300 void bch_refill_keybuf(struct cache_set *, struct keybuf *,
301 		       struct bkey *, keybuf_pred_fn *);
302 bool bch_keybuf_check_overlapping(struct keybuf *, struct bkey *,
303 				  struct bkey *);
304 void bch_keybuf_del(struct keybuf *, struct keybuf_key *);
305 struct keybuf_key *bch_keybuf_next(struct keybuf *);
306 struct keybuf_key *bch_keybuf_next_rescan(struct cache_set *, struct keybuf *,
307 					  struct bkey *, keybuf_pred_fn *);
308 
309 #endif
310