1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com> 4 * 5 * Uses a block device as cache for other block devices; optimized for SSDs. 6 * All allocation is done in buckets, which should match the erase block size 7 * of the device. 8 * 9 * Buckets containing cached data are kept on a heap sorted by priority; 10 * bucket priority is increased on cache hit, and periodically all the buckets 11 * on the heap have their priority scaled down. This currently is just used as 12 * an LRU but in the future should allow for more intelligent heuristics. 13 * 14 * Buckets have an 8 bit counter; freeing is accomplished by incrementing the 15 * counter. Garbage collection is used to remove stale pointers. 16 * 17 * Indexing is done via a btree; nodes are not necessarily fully sorted, rather 18 * as keys are inserted we only sort the pages that have not yet been written. 19 * When garbage collection is run, we resort the entire node. 20 * 21 * All configuration is done via sysfs; see Documentation/admin-guide/bcache.rst. 22 */ 23 24 #include "bcache.h" 25 #include "btree.h" 26 #include "debug.h" 27 #include "extents.h" 28 29 #include <linux/slab.h> 30 #include <linux/bitops.h> 31 #include <linux/hash.h> 32 #include <linux/kthread.h> 33 #include <linux/prefetch.h> 34 #include <linux/random.h> 35 #include <linux/rcupdate.h> 36 #include <linux/sched/clock.h> 37 #include <linux/sched/signal.h> 38 #include <linux/rculist.h> 39 #include <linux/delay.h> 40 #include <trace/events/bcache.h> 41 42 /* 43 * Todo: 44 * register_bcache: Return errors out to userspace correctly 45 * 46 * Writeback: don't undirty key until after a cache flush 47 * 48 * Create an iterator for key pointers 49 * 50 * On btree write error, mark bucket such that it won't be freed from the cache 51 * 52 * Journalling: 53 * Check for bad keys in replay 54 * Propagate barriers 55 * Refcount journal entries in journal_replay 56 * 57 * Garbage collection: 58 * Finish incremental gc 59 * Gc should free old UUIDs, data for invalid UUIDs 60 * 61 * Provide a way to list backing device UUIDs we have data cached for, and 62 * probably how long it's been since we've seen them, and a way to invalidate 63 * dirty data for devices that will never be attached again 64 * 65 * Keep 1 min/5 min/15 min statistics of how busy a block device has been, so 66 * that based on that and how much dirty data we have we can keep writeback 67 * from being starved 68 * 69 * Add a tracepoint or somesuch to watch for writeback starvation 70 * 71 * When btree depth > 1 and splitting an interior node, we have to make sure 72 * alloc_bucket() cannot fail. This should be true but is not completely 73 * obvious. 74 * 75 * Plugging? 76 * 77 * If data write is less than hard sector size of ssd, round up offset in open 78 * bucket to the next whole sector 79 * 80 * Superblock needs to be fleshed out for multiple cache devices 81 * 82 * Add a sysfs tunable for the number of writeback IOs in flight 83 * 84 * Add a sysfs tunable for the number of open data buckets 85 * 86 * IO tracking: Can we track when one process is doing io on behalf of another? 87 * IO tracking: Don't use just an average, weigh more recent stuff higher 88 * 89 * Test module load/unload 90 */ 91 92 #define MAX_NEED_GC 64 93 #define MAX_SAVE_PRIO 72 94 #define MAX_GC_TIMES 100 95 #define MIN_GC_NODES 100 96 #define GC_SLEEP_MS 100 97 98 #define PTR_DIRTY_BIT (((uint64_t) 1 << 36)) 99 100 #define PTR_HASH(c, k) \ 101 (((k)->ptr[0] >> c->bucket_bits) | PTR_GEN(k, 0)) 102 103 #define insert_lock(s, b) ((b)->level <= (s)->lock) 104 105 /* 106 * These macros are for recursing down the btree - they handle the details of 107 * locking and looking up nodes in the cache for you. They're best treated as 108 * mere syntax when reading code that uses them. 109 * 110 * op->lock determines whether we take a read or a write lock at a given depth. 111 * If you've got a read lock and find that you need a write lock (i.e. you're 112 * going to have to split), set op->lock and return -EINTR; btree_root() will 113 * call you again and you'll have the correct lock. 114 */ 115 116 /** 117 * btree - recurse down the btree on a specified key 118 * @fn: function to call, which will be passed the child node 119 * @key: key to recurse on 120 * @b: parent btree node 121 * @op: pointer to struct btree_op 122 */ 123 #define btree(fn, key, b, op, ...) \ 124 ({ \ 125 int _r, l = (b)->level - 1; \ 126 bool _w = l <= (op)->lock; \ 127 struct btree *_child = bch_btree_node_get((b)->c, op, key, l, \ 128 _w, b); \ 129 if (!IS_ERR(_child)) { \ 130 _r = bch_btree_ ## fn(_child, op, ##__VA_ARGS__); \ 131 rw_unlock(_w, _child); \ 132 } else \ 133 _r = PTR_ERR(_child); \ 134 _r; \ 135 }) 136 137 /** 138 * btree_root - call a function on the root of the btree 139 * @fn: function to call, which will be passed the child node 140 * @c: cache set 141 * @op: pointer to struct btree_op 142 */ 143 #define btree_root(fn, c, op, ...) \ 144 ({ \ 145 int _r = -EINTR; \ 146 do { \ 147 struct btree *_b = (c)->root; \ 148 bool _w = insert_lock(op, _b); \ 149 rw_lock(_w, _b, _b->level); \ 150 if (_b == (c)->root && \ 151 _w == insert_lock(op, _b)) { \ 152 _r = bch_btree_ ## fn(_b, op, ##__VA_ARGS__); \ 153 } \ 154 rw_unlock(_w, _b); \ 155 bch_cannibalize_unlock(c); \ 156 if (_r == -EINTR) \ 157 schedule(); \ 158 } while (_r == -EINTR); \ 159 \ 160 finish_wait(&(c)->btree_cache_wait, &(op)->wait); \ 161 _r; \ 162 }) 163 164 static inline struct bset *write_block(struct btree *b) 165 { 166 return ((void *) btree_bset_first(b)) + b->written * block_bytes(b->c); 167 } 168 169 static void bch_btree_init_next(struct btree *b) 170 { 171 /* If not a leaf node, always sort */ 172 if (b->level && b->keys.nsets) 173 bch_btree_sort(&b->keys, &b->c->sort); 174 else 175 bch_btree_sort_lazy(&b->keys, &b->c->sort); 176 177 if (b->written < btree_blocks(b)) 178 bch_bset_init_next(&b->keys, write_block(b), 179 bset_magic(&b->c->sb)); 180 181 } 182 183 /* Btree key manipulation */ 184 185 void bkey_put(struct cache_set *c, struct bkey *k) 186 { 187 unsigned int i; 188 189 for (i = 0; i < KEY_PTRS(k); i++) 190 if (ptr_available(c, k, i)) 191 atomic_dec_bug(&PTR_BUCKET(c, k, i)->pin); 192 } 193 194 /* Btree IO */ 195 196 static uint64_t btree_csum_set(struct btree *b, struct bset *i) 197 { 198 uint64_t crc = b->key.ptr[0]; 199 void *data = (void *) i + 8, *end = bset_bkey_last(i); 200 201 crc = bch_crc64_update(crc, data, end - data); 202 return crc ^ 0xffffffffffffffffULL; 203 } 204 205 void bch_btree_node_read_done(struct btree *b) 206 { 207 const char *err = "bad btree header"; 208 struct bset *i = btree_bset_first(b); 209 struct btree_iter *iter; 210 211 /* 212 * c->fill_iter can allocate an iterator with more memory space 213 * than static MAX_BSETS. 214 * See the comment arount cache_set->fill_iter. 215 */ 216 iter = mempool_alloc(&b->c->fill_iter, GFP_NOIO); 217 iter->size = b->c->sb.bucket_size / b->c->sb.block_size; 218 iter->used = 0; 219 220 #ifdef CONFIG_BCACHE_DEBUG 221 iter->b = &b->keys; 222 #endif 223 224 if (!i->seq) 225 goto err; 226 227 for (; 228 b->written < btree_blocks(b) && i->seq == b->keys.set[0].data->seq; 229 i = write_block(b)) { 230 err = "unsupported bset version"; 231 if (i->version > BCACHE_BSET_VERSION) 232 goto err; 233 234 err = "bad btree header"; 235 if (b->written + set_blocks(i, block_bytes(b->c)) > 236 btree_blocks(b)) 237 goto err; 238 239 err = "bad magic"; 240 if (i->magic != bset_magic(&b->c->sb)) 241 goto err; 242 243 err = "bad checksum"; 244 switch (i->version) { 245 case 0: 246 if (i->csum != csum_set(i)) 247 goto err; 248 break; 249 case BCACHE_BSET_VERSION: 250 if (i->csum != btree_csum_set(b, i)) 251 goto err; 252 break; 253 } 254 255 err = "empty set"; 256 if (i != b->keys.set[0].data && !i->keys) 257 goto err; 258 259 bch_btree_iter_push(iter, i->start, bset_bkey_last(i)); 260 261 b->written += set_blocks(i, block_bytes(b->c)); 262 } 263 264 err = "corrupted btree"; 265 for (i = write_block(b); 266 bset_sector_offset(&b->keys, i) < KEY_SIZE(&b->key); 267 i = ((void *) i) + block_bytes(b->c)) 268 if (i->seq == b->keys.set[0].data->seq) 269 goto err; 270 271 bch_btree_sort_and_fix_extents(&b->keys, iter, &b->c->sort); 272 273 i = b->keys.set[0].data; 274 err = "short btree key"; 275 if (b->keys.set[0].size && 276 bkey_cmp(&b->key, &b->keys.set[0].end) < 0) 277 goto err; 278 279 if (b->written < btree_blocks(b)) 280 bch_bset_init_next(&b->keys, write_block(b), 281 bset_magic(&b->c->sb)); 282 out: 283 mempool_free(iter, &b->c->fill_iter); 284 return; 285 err: 286 set_btree_node_io_error(b); 287 bch_cache_set_error(b->c, "%s at bucket %zu, block %u, %u keys", 288 err, PTR_BUCKET_NR(b->c, &b->key, 0), 289 bset_block_offset(b, i), i->keys); 290 goto out; 291 } 292 293 static void btree_node_read_endio(struct bio *bio) 294 { 295 struct closure *cl = bio->bi_private; 296 297 closure_put(cl); 298 } 299 300 static void bch_btree_node_read(struct btree *b) 301 { 302 uint64_t start_time = local_clock(); 303 struct closure cl; 304 struct bio *bio; 305 306 trace_bcache_btree_read(b); 307 308 closure_init_stack(&cl); 309 310 bio = bch_bbio_alloc(b->c); 311 bio->bi_iter.bi_size = KEY_SIZE(&b->key) << 9; 312 bio->bi_end_io = btree_node_read_endio; 313 bio->bi_private = &cl; 314 bio->bi_opf = REQ_OP_READ | REQ_META; 315 316 bch_bio_map(bio, b->keys.set[0].data); 317 318 bch_submit_bbio(bio, b->c, &b->key, 0); 319 closure_sync(&cl); 320 321 if (bio->bi_status) 322 set_btree_node_io_error(b); 323 324 bch_bbio_free(bio, b->c); 325 326 if (btree_node_io_error(b)) 327 goto err; 328 329 bch_btree_node_read_done(b); 330 bch_time_stats_update(&b->c->btree_read_time, start_time); 331 332 return; 333 err: 334 bch_cache_set_error(b->c, "io error reading bucket %zu", 335 PTR_BUCKET_NR(b->c, &b->key, 0)); 336 } 337 338 static void btree_complete_write(struct btree *b, struct btree_write *w) 339 { 340 if (w->prio_blocked && 341 !atomic_sub_return(w->prio_blocked, &b->c->prio_blocked)) 342 wake_up_allocators(b->c); 343 344 if (w->journal) { 345 atomic_dec_bug(w->journal); 346 __closure_wake_up(&b->c->journal.wait); 347 } 348 349 w->prio_blocked = 0; 350 w->journal = NULL; 351 } 352 353 static void btree_node_write_unlock(struct closure *cl) 354 { 355 struct btree *b = container_of(cl, struct btree, io); 356 357 up(&b->io_mutex); 358 } 359 360 static void __btree_node_write_done(struct closure *cl) 361 { 362 struct btree *b = container_of(cl, struct btree, io); 363 struct btree_write *w = btree_prev_write(b); 364 365 bch_bbio_free(b->bio, b->c); 366 b->bio = NULL; 367 btree_complete_write(b, w); 368 369 if (btree_node_dirty(b)) 370 schedule_delayed_work(&b->work, 30 * HZ); 371 372 closure_return_with_destructor(cl, btree_node_write_unlock); 373 } 374 375 static void btree_node_write_done(struct closure *cl) 376 { 377 struct btree *b = container_of(cl, struct btree, io); 378 379 bio_free_pages(b->bio); 380 __btree_node_write_done(cl); 381 } 382 383 static void btree_node_write_endio(struct bio *bio) 384 { 385 struct closure *cl = bio->bi_private; 386 struct btree *b = container_of(cl, struct btree, io); 387 388 if (bio->bi_status) 389 set_btree_node_io_error(b); 390 391 bch_bbio_count_io_errors(b->c, bio, bio->bi_status, "writing btree"); 392 closure_put(cl); 393 } 394 395 static void do_btree_node_write(struct btree *b) 396 { 397 struct closure *cl = &b->io; 398 struct bset *i = btree_bset_last(b); 399 BKEY_PADDED(key) k; 400 401 i->version = BCACHE_BSET_VERSION; 402 i->csum = btree_csum_set(b, i); 403 404 BUG_ON(b->bio); 405 b->bio = bch_bbio_alloc(b->c); 406 407 b->bio->bi_end_io = btree_node_write_endio; 408 b->bio->bi_private = cl; 409 b->bio->bi_iter.bi_size = roundup(set_bytes(i), block_bytes(b->c)); 410 b->bio->bi_opf = REQ_OP_WRITE | REQ_META | REQ_FUA; 411 bch_bio_map(b->bio, i); 412 413 /* 414 * If we're appending to a leaf node, we don't technically need FUA - 415 * this write just needs to be persisted before the next journal write, 416 * which will be marked FLUSH|FUA. 417 * 418 * Similarly if we're writing a new btree root - the pointer is going to 419 * be in the next journal entry. 420 * 421 * But if we're writing a new btree node (that isn't a root) or 422 * appending to a non leaf btree node, we need either FUA or a flush 423 * when we write the parent with the new pointer. FUA is cheaper than a 424 * flush, and writes appending to leaf nodes aren't blocking anything so 425 * just make all btree node writes FUA to keep things sane. 426 */ 427 428 bkey_copy(&k.key, &b->key); 429 SET_PTR_OFFSET(&k.key, 0, PTR_OFFSET(&k.key, 0) + 430 bset_sector_offset(&b->keys, i)); 431 432 if (!bch_bio_alloc_pages(b->bio, __GFP_NOWARN|GFP_NOWAIT)) { 433 struct bio_vec *bv; 434 void *addr = (void *) ((unsigned long) i & ~(PAGE_SIZE - 1)); 435 struct bvec_iter_all iter_all; 436 437 bio_for_each_segment_all(bv, b->bio, iter_all) { 438 memcpy(page_address(bv->bv_page), addr, PAGE_SIZE); 439 addr += PAGE_SIZE; 440 } 441 442 bch_submit_bbio(b->bio, b->c, &k.key, 0); 443 444 continue_at(cl, btree_node_write_done, NULL); 445 } else { 446 /* 447 * No problem for multipage bvec since the bio is 448 * just allocated 449 */ 450 b->bio->bi_vcnt = 0; 451 bch_bio_map(b->bio, i); 452 453 bch_submit_bbio(b->bio, b->c, &k.key, 0); 454 455 closure_sync(cl); 456 continue_at_nobarrier(cl, __btree_node_write_done, NULL); 457 } 458 } 459 460 void __bch_btree_node_write(struct btree *b, struct closure *parent) 461 { 462 struct bset *i = btree_bset_last(b); 463 464 lockdep_assert_held(&b->write_lock); 465 466 trace_bcache_btree_write(b); 467 468 BUG_ON(current->bio_list); 469 BUG_ON(b->written >= btree_blocks(b)); 470 BUG_ON(b->written && !i->keys); 471 BUG_ON(btree_bset_first(b)->seq != i->seq); 472 bch_check_keys(&b->keys, "writing"); 473 474 cancel_delayed_work(&b->work); 475 476 /* If caller isn't waiting for write, parent refcount is cache set */ 477 down(&b->io_mutex); 478 closure_init(&b->io, parent ?: &b->c->cl); 479 480 clear_bit(BTREE_NODE_dirty, &b->flags); 481 change_bit(BTREE_NODE_write_idx, &b->flags); 482 483 do_btree_node_write(b); 484 485 atomic_long_add(set_blocks(i, block_bytes(b->c)) * b->c->sb.block_size, 486 &PTR_CACHE(b->c, &b->key, 0)->btree_sectors_written); 487 488 b->written += set_blocks(i, block_bytes(b->c)); 489 } 490 491 void bch_btree_node_write(struct btree *b, struct closure *parent) 492 { 493 unsigned int nsets = b->keys.nsets; 494 495 lockdep_assert_held(&b->lock); 496 497 __bch_btree_node_write(b, parent); 498 499 /* 500 * do verify if there was more than one set initially (i.e. we did a 501 * sort) and we sorted down to a single set: 502 */ 503 if (nsets && !b->keys.nsets) 504 bch_btree_verify(b); 505 506 bch_btree_init_next(b); 507 } 508 509 static void bch_btree_node_write_sync(struct btree *b) 510 { 511 struct closure cl; 512 513 closure_init_stack(&cl); 514 515 mutex_lock(&b->write_lock); 516 bch_btree_node_write(b, &cl); 517 mutex_unlock(&b->write_lock); 518 519 closure_sync(&cl); 520 } 521 522 static void btree_node_write_work(struct work_struct *w) 523 { 524 struct btree *b = container_of(to_delayed_work(w), struct btree, work); 525 526 mutex_lock(&b->write_lock); 527 if (btree_node_dirty(b)) 528 __bch_btree_node_write(b, NULL); 529 mutex_unlock(&b->write_lock); 530 } 531 532 static void bch_btree_leaf_dirty(struct btree *b, atomic_t *journal_ref) 533 { 534 struct bset *i = btree_bset_last(b); 535 struct btree_write *w = btree_current_write(b); 536 537 lockdep_assert_held(&b->write_lock); 538 539 BUG_ON(!b->written); 540 BUG_ON(!i->keys); 541 542 if (!btree_node_dirty(b)) 543 schedule_delayed_work(&b->work, 30 * HZ); 544 545 set_btree_node_dirty(b); 546 547 /* 548 * w->journal is always the oldest journal pin of all bkeys 549 * in the leaf node, to make sure the oldest jset seq won't 550 * be increased before this btree node is flushed. 551 */ 552 if (journal_ref) { 553 if (w->journal && 554 journal_pin_cmp(b->c, w->journal, journal_ref)) { 555 atomic_dec_bug(w->journal); 556 w->journal = NULL; 557 } 558 559 if (!w->journal) { 560 w->journal = journal_ref; 561 atomic_inc(w->journal); 562 } 563 } 564 565 /* Force write if set is too big */ 566 if (set_bytes(i) > PAGE_SIZE - 48 && 567 !current->bio_list) 568 bch_btree_node_write(b, NULL); 569 } 570 571 /* 572 * Btree in memory cache - allocation/freeing 573 * mca -> memory cache 574 */ 575 576 #define mca_reserve(c) (((c->root && c->root->level) \ 577 ? c->root->level : 1) * 8 + 16) 578 #define mca_can_free(c) \ 579 max_t(int, 0, c->btree_cache_used - mca_reserve(c)) 580 581 static void mca_data_free(struct btree *b) 582 { 583 BUG_ON(b->io_mutex.count != 1); 584 585 bch_btree_keys_free(&b->keys); 586 587 b->c->btree_cache_used--; 588 list_move(&b->list, &b->c->btree_cache_freed); 589 } 590 591 static void mca_bucket_free(struct btree *b) 592 { 593 BUG_ON(btree_node_dirty(b)); 594 595 b->key.ptr[0] = 0; 596 hlist_del_init_rcu(&b->hash); 597 list_move(&b->list, &b->c->btree_cache_freeable); 598 } 599 600 static unsigned int btree_order(struct bkey *k) 601 { 602 return ilog2(KEY_SIZE(k) / PAGE_SECTORS ?: 1); 603 } 604 605 static void mca_data_alloc(struct btree *b, struct bkey *k, gfp_t gfp) 606 { 607 if (!bch_btree_keys_alloc(&b->keys, 608 max_t(unsigned int, 609 ilog2(b->c->btree_pages), 610 btree_order(k)), 611 gfp)) { 612 b->c->btree_cache_used++; 613 list_move(&b->list, &b->c->btree_cache); 614 } else { 615 list_move(&b->list, &b->c->btree_cache_freed); 616 } 617 } 618 619 static struct btree *mca_bucket_alloc(struct cache_set *c, 620 struct bkey *k, gfp_t gfp) 621 { 622 /* 623 * kzalloc() is necessary here for initialization, 624 * see code comments in bch_btree_keys_init(). 625 */ 626 struct btree *b = kzalloc(sizeof(struct btree), gfp); 627 628 if (!b) 629 return NULL; 630 631 init_rwsem(&b->lock); 632 lockdep_set_novalidate_class(&b->lock); 633 mutex_init(&b->write_lock); 634 lockdep_set_novalidate_class(&b->write_lock); 635 INIT_LIST_HEAD(&b->list); 636 INIT_DELAYED_WORK(&b->work, btree_node_write_work); 637 b->c = c; 638 sema_init(&b->io_mutex, 1); 639 640 mca_data_alloc(b, k, gfp); 641 return b; 642 } 643 644 static int mca_reap(struct btree *b, unsigned int min_order, bool flush) 645 { 646 struct closure cl; 647 648 closure_init_stack(&cl); 649 lockdep_assert_held(&b->c->bucket_lock); 650 651 if (!down_write_trylock(&b->lock)) 652 return -ENOMEM; 653 654 BUG_ON(btree_node_dirty(b) && !b->keys.set[0].data); 655 656 if (b->keys.page_order < min_order) 657 goto out_unlock; 658 659 if (!flush) { 660 if (btree_node_dirty(b)) 661 goto out_unlock; 662 663 if (down_trylock(&b->io_mutex)) 664 goto out_unlock; 665 up(&b->io_mutex); 666 } 667 668 retry: 669 /* 670 * BTREE_NODE_dirty might be cleared in btree_flush_btree() by 671 * __bch_btree_node_write(). To avoid an extra flush, acquire 672 * b->write_lock before checking BTREE_NODE_dirty bit. 673 */ 674 mutex_lock(&b->write_lock); 675 /* 676 * If this btree node is selected in btree_flush_write() by journal 677 * code, delay and retry until the node is flushed by journal code 678 * and BTREE_NODE_journal_flush bit cleared by btree_flush_write(). 679 */ 680 if (btree_node_journal_flush(b)) { 681 pr_debug("bnode %p is flushing by journal, retry", b); 682 mutex_unlock(&b->write_lock); 683 udelay(1); 684 goto retry; 685 } 686 687 if (btree_node_dirty(b)) 688 __bch_btree_node_write(b, &cl); 689 mutex_unlock(&b->write_lock); 690 691 closure_sync(&cl); 692 693 /* wait for any in flight btree write */ 694 down(&b->io_mutex); 695 up(&b->io_mutex); 696 697 return 0; 698 out_unlock: 699 rw_unlock(true, b); 700 return -ENOMEM; 701 } 702 703 static unsigned long bch_mca_scan(struct shrinker *shrink, 704 struct shrink_control *sc) 705 { 706 struct cache_set *c = container_of(shrink, struct cache_set, shrink); 707 struct btree *b, *t; 708 unsigned long i, nr = sc->nr_to_scan; 709 unsigned long freed = 0; 710 unsigned int btree_cache_used; 711 712 if (c->shrinker_disabled) 713 return SHRINK_STOP; 714 715 if (c->btree_cache_alloc_lock) 716 return SHRINK_STOP; 717 718 /* Return -1 if we can't do anything right now */ 719 if (sc->gfp_mask & __GFP_IO) 720 mutex_lock(&c->bucket_lock); 721 else if (!mutex_trylock(&c->bucket_lock)) 722 return -1; 723 724 /* 725 * It's _really_ critical that we don't free too many btree nodes - we 726 * have to always leave ourselves a reserve. The reserve is how we 727 * guarantee that allocating memory for a new btree node can always 728 * succeed, so that inserting keys into the btree can always succeed and 729 * IO can always make forward progress: 730 */ 731 nr /= c->btree_pages; 732 if (nr == 0) 733 nr = 1; 734 nr = min_t(unsigned long, nr, mca_can_free(c)); 735 736 i = 0; 737 btree_cache_used = c->btree_cache_used; 738 list_for_each_entry_safe_reverse(b, t, &c->btree_cache_freeable, list) { 739 if (nr <= 0) 740 goto out; 741 742 if (!mca_reap(b, 0, false)) { 743 mca_data_free(b); 744 rw_unlock(true, b); 745 freed++; 746 } 747 nr--; 748 i++; 749 } 750 751 list_for_each_entry_safe_reverse(b, t, &c->btree_cache, list) { 752 if (nr <= 0 || i >= btree_cache_used) 753 goto out; 754 755 if (!mca_reap(b, 0, false)) { 756 mca_bucket_free(b); 757 mca_data_free(b); 758 rw_unlock(true, b); 759 freed++; 760 } 761 762 nr--; 763 i++; 764 } 765 out: 766 mutex_unlock(&c->bucket_lock); 767 return freed * c->btree_pages; 768 } 769 770 static unsigned long bch_mca_count(struct shrinker *shrink, 771 struct shrink_control *sc) 772 { 773 struct cache_set *c = container_of(shrink, struct cache_set, shrink); 774 775 if (c->shrinker_disabled) 776 return 0; 777 778 if (c->btree_cache_alloc_lock) 779 return 0; 780 781 return mca_can_free(c) * c->btree_pages; 782 } 783 784 void bch_btree_cache_free(struct cache_set *c) 785 { 786 struct btree *b; 787 struct closure cl; 788 789 closure_init_stack(&cl); 790 791 if (c->shrink.list.next) 792 unregister_shrinker(&c->shrink); 793 794 mutex_lock(&c->bucket_lock); 795 796 #ifdef CONFIG_BCACHE_DEBUG 797 if (c->verify_data) 798 list_move(&c->verify_data->list, &c->btree_cache); 799 800 free_pages((unsigned long) c->verify_ondisk, ilog2(bucket_pages(c))); 801 #endif 802 803 list_splice(&c->btree_cache_freeable, 804 &c->btree_cache); 805 806 while (!list_empty(&c->btree_cache)) { 807 b = list_first_entry(&c->btree_cache, struct btree, list); 808 809 /* 810 * This function is called by cache_set_free(), no I/O 811 * request on cache now, it is unnecessary to acquire 812 * b->write_lock before clearing BTREE_NODE_dirty anymore. 813 */ 814 if (btree_node_dirty(b)) { 815 btree_complete_write(b, btree_current_write(b)); 816 clear_bit(BTREE_NODE_dirty, &b->flags); 817 } 818 mca_data_free(b); 819 } 820 821 while (!list_empty(&c->btree_cache_freed)) { 822 b = list_first_entry(&c->btree_cache_freed, 823 struct btree, list); 824 list_del(&b->list); 825 cancel_delayed_work_sync(&b->work); 826 kfree(b); 827 } 828 829 mutex_unlock(&c->bucket_lock); 830 } 831 832 int bch_btree_cache_alloc(struct cache_set *c) 833 { 834 unsigned int i; 835 836 for (i = 0; i < mca_reserve(c); i++) 837 if (!mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL)) 838 return -ENOMEM; 839 840 list_splice_init(&c->btree_cache, 841 &c->btree_cache_freeable); 842 843 #ifdef CONFIG_BCACHE_DEBUG 844 mutex_init(&c->verify_lock); 845 846 c->verify_ondisk = (void *) 847 __get_free_pages(GFP_KERNEL, ilog2(bucket_pages(c))); 848 849 c->verify_data = mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL); 850 851 if (c->verify_data && 852 c->verify_data->keys.set->data) 853 list_del_init(&c->verify_data->list); 854 else 855 c->verify_data = NULL; 856 #endif 857 858 c->shrink.count_objects = bch_mca_count; 859 c->shrink.scan_objects = bch_mca_scan; 860 c->shrink.seeks = 4; 861 c->shrink.batch = c->btree_pages * 2; 862 863 if (register_shrinker(&c->shrink)) 864 pr_warn("bcache: %s: could not register shrinker", 865 __func__); 866 867 return 0; 868 } 869 870 /* Btree in memory cache - hash table */ 871 872 static struct hlist_head *mca_hash(struct cache_set *c, struct bkey *k) 873 { 874 return &c->bucket_hash[hash_32(PTR_HASH(c, k), BUCKET_HASH_BITS)]; 875 } 876 877 static struct btree *mca_find(struct cache_set *c, struct bkey *k) 878 { 879 struct btree *b; 880 881 rcu_read_lock(); 882 hlist_for_each_entry_rcu(b, mca_hash(c, k), hash) 883 if (PTR_HASH(c, &b->key) == PTR_HASH(c, k)) 884 goto out; 885 b = NULL; 886 out: 887 rcu_read_unlock(); 888 return b; 889 } 890 891 static int mca_cannibalize_lock(struct cache_set *c, struct btree_op *op) 892 { 893 spin_lock(&c->btree_cannibalize_lock); 894 if (likely(c->btree_cache_alloc_lock == NULL)) { 895 c->btree_cache_alloc_lock = current; 896 } else if (c->btree_cache_alloc_lock != current) { 897 if (op) 898 prepare_to_wait(&c->btree_cache_wait, &op->wait, 899 TASK_UNINTERRUPTIBLE); 900 spin_unlock(&c->btree_cannibalize_lock); 901 return -EINTR; 902 } 903 spin_unlock(&c->btree_cannibalize_lock); 904 905 return 0; 906 } 907 908 static struct btree *mca_cannibalize(struct cache_set *c, struct btree_op *op, 909 struct bkey *k) 910 { 911 struct btree *b; 912 913 trace_bcache_btree_cache_cannibalize(c); 914 915 if (mca_cannibalize_lock(c, op)) 916 return ERR_PTR(-EINTR); 917 918 list_for_each_entry_reverse(b, &c->btree_cache, list) 919 if (!mca_reap(b, btree_order(k), false)) 920 return b; 921 922 list_for_each_entry_reverse(b, &c->btree_cache, list) 923 if (!mca_reap(b, btree_order(k), true)) 924 return b; 925 926 WARN(1, "btree cache cannibalize failed\n"); 927 return ERR_PTR(-ENOMEM); 928 } 929 930 /* 931 * We can only have one thread cannibalizing other cached btree nodes at a time, 932 * or we'll deadlock. We use an open coded mutex to ensure that, which a 933 * cannibalize_bucket() will take. This means every time we unlock the root of 934 * the btree, we need to release this lock if we have it held. 935 */ 936 static void bch_cannibalize_unlock(struct cache_set *c) 937 { 938 spin_lock(&c->btree_cannibalize_lock); 939 if (c->btree_cache_alloc_lock == current) { 940 c->btree_cache_alloc_lock = NULL; 941 wake_up(&c->btree_cache_wait); 942 } 943 spin_unlock(&c->btree_cannibalize_lock); 944 } 945 946 static struct btree *mca_alloc(struct cache_set *c, struct btree_op *op, 947 struct bkey *k, int level) 948 { 949 struct btree *b; 950 951 BUG_ON(current->bio_list); 952 953 lockdep_assert_held(&c->bucket_lock); 954 955 if (mca_find(c, k)) 956 return NULL; 957 958 /* btree_free() doesn't free memory; it sticks the node on the end of 959 * the list. Check if there's any freed nodes there: 960 */ 961 list_for_each_entry(b, &c->btree_cache_freeable, list) 962 if (!mca_reap(b, btree_order(k), false)) 963 goto out; 964 965 /* We never free struct btree itself, just the memory that holds the on 966 * disk node. Check the freed list before allocating a new one: 967 */ 968 list_for_each_entry(b, &c->btree_cache_freed, list) 969 if (!mca_reap(b, 0, false)) { 970 mca_data_alloc(b, k, __GFP_NOWARN|GFP_NOIO); 971 if (!b->keys.set[0].data) 972 goto err; 973 else 974 goto out; 975 } 976 977 b = mca_bucket_alloc(c, k, __GFP_NOWARN|GFP_NOIO); 978 if (!b) 979 goto err; 980 981 BUG_ON(!down_write_trylock(&b->lock)); 982 if (!b->keys.set->data) 983 goto err; 984 out: 985 BUG_ON(b->io_mutex.count != 1); 986 987 bkey_copy(&b->key, k); 988 list_move(&b->list, &c->btree_cache); 989 hlist_del_init_rcu(&b->hash); 990 hlist_add_head_rcu(&b->hash, mca_hash(c, k)); 991 992 lock_set_subclass(&b->lock.dep_map, level + 1, _THIS_IP_); 993 b->parent = (void *) ~0UL; 994 b->flags = 0; 995 b->written = 0; 996 b->level = level; 997 998 if (!b->level) 999 bch_btree_keys_init(&b->keys, &bch_extent_keys_ops, 1000 &b->c->expensive_debug_checks); 1001 else 1002 bch_btree_keys_init(&b->keys, &bch_btree_keys_ops, 1003 &b->c->expensive_debug_checks); 1004 1005 return b; 1006 err: 1007 if (b) 1008 rw_unlock(true, b); 1009 1010 b = mca_cannibalize(c, op, k); 1011 if (!IS_ERR(b)) 1012 goto out; 1013 1014 return b; 1015 } 1016 1017 /* 1018 * bch_btree_node_get - find a btree node in the cache and lock it, reading it 1019 * in from disk if necessary. 1020 * 1021 * If IO is necessary and running under generic_make_request, returns -EAGAIN. 1022 * 1023 * The btree node will have either a read or a write lock held, depending on 1024 * level and op->lock. 1025 */ 1026 struct btree *bch_btree_node_get(struct cache_set *c, struct btree_op *op, 1027 struct bkey *k, int level, bool write, 1028 struct btree *parent) 1029 { 1030 int i = 0; 1031 struct btree *b; 1032 1033 BUG_ON(level < 0); 1034 retry: 1035 b = mca_find(c, k); 1036 1037 if (!b) { 1038 if (current->bio_list) 1039 return ERR_PTR(-EAGAIN); 1040 1041 mutex_lock(&c->bucket_lock); 1042 b = mca_alloc(c, op, k, level); 1043 mutex_unlock(&c->bucket_lock); 1044 1045 if (!b) 1046 goto retry; 1047 if (IS_ERR(b)) 1048 return b; 1049 1050 bch_btree_node_read(b); 1051 1052 if (!write) 1053 downgrade_write(&b->lock); 1054 } else { 1055 rw_lock(write, b, level); 1056 if (PTR_HASH(c, &b->key) != PTR_HASH(c, k)) { 1057 rw_unlock(write, b); 1058 goto retry; 1059 } 1060 BUG_ON(b->level != level); 1061 } 1062 1063 if (btree_node_io_error(b)) { 1064 rw_unlock(write, b); 1065 return ERR_PTR(-EIO); 1066 } 1067 1068 BUG_ON(!b->written); 1069 1070 b->parent = parent; 1071 1072 for (; i <= b->keys.nsets && b->keys.set[i].size; i++) { 1073 prefetch(b->keys.set[i].tree); 1074 prefetch(b->keys.set[i].data); 1075 } 1076 1077 for (; i <= b->keys.nsets; i++) 1078 prefetch(b->keys.set[i].data); 1079 1080 return b; 1081 } 1082 1083 static void btree_node_prefetch(struct btree *parent, struct bkey *k) 1084 { 1085 struct btree *b; 1086 1087 mutex_lock(&parent->c->bucket_lock); 1088 b = mca_alloc(parent->c, NULL, k, parent->level - 1); 1089 mutex_unlock(&parent->c->bucket_lock); 1090 1091 if (!IS_ERR_OR_NULL(b)) { 1092 b->parent = parent; 1093 bch_btree_node_read(b); 1094 rw_unlock(true, b); 1095 } 1096 } 1097 1098 /* Btree alloc */ 1099 1100 static void btree_node_free(struct btree *b) 1101 { 1102 trace_bcache_btree_node_free(b); 1103 1104 BUG_ON(b == b->c->root); 1105 1106 retry: 1107 mutex_lock(&b->write_lock); 1108 /* 1109 * If the btree node is selected and flushing in btree_flush_write(), 1110 * delay and retry until the BTREE_NODE_journal_flush bit cleared, 1111 * then it is safe to free the btree node here. Otherwise this btree 1112 * node will be in race condition. 1113 */ 1114 if (btree_node_journal_flush(b)) { 1115 mutex_unlock(&b->write_lock); 1116 pr_debug("bnode %p journal_flush set, retry", b); 1117 udelay(1); 1118 goto retry; 1119 } 1120 1121 if (btree_node_dirty(b)) { 1122 btree_complete_write(b, btree_current_write(b)); 1123 clear_bit(BTREE_NODE_dirty, &b->flags); 1124 } 1125 1126 mutex_unlock(&b->write_lock); 1127 1128 cancel_delayed_work(&b->work); 1129 1130 mutex_lock(&b->c->bucket_lock); 1131 bch_bucket_free(b->c, &b->key); 1132 mca_bucket_free(b); 1133 mutex_unlock(&b->c->bucket_lock); 1134 } 1135 1136 struct btree *__bch_btree_node_alloc(struct cache_set *c, struct btree_op *op, 1137 int level, bool wait, 1138 struct btree *parent) 1139 { 1140 BKEY_PADDED(key) k; 1141 struct btree *b = ERR_PTR(-EAGAIN); 1142 1143 mutex_lock(&c->bucket_lock); 1144 retry: 1145 if (__bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, 1, wait)) 1146 goto err; 1147 1148 bkey_put(c, &k.key); 1149 SET_KEY_SIZE(&k.key, c->btree_pages * PAGE_SECTORS); 1150 1151 b = mca_alloc(c, op, &k.key, level); 1152 if (IS_ERR(b)) 1153 goto err_free; 1154 1155 if (!b) { 1156 cache_bug(c, 1157 "Tried to allocate bucket that was in btree cache"); 1158 goto retry; 1159 } 1160 1161 b->parent = parent; 1162 bch_bset_init_next(&b->keys, b->keys.set->data, bset_magic(&b->c->sb)); 1163 1164 mutex_unlock(&c->bucket_lock); 1165 1166 trace_bcache_btree_node_alloc(b); 1167 return b; 1168 err_free: 1169 bch_bucket_free(c, &k.key); 1170 err: 1171 mutex_unlock(&c->bucket_lock); 1172 1173 trace_bcache_btree_node_alloc_fail(c); 1174 return b; 1175 } 1176 1177 static struct btree *bch_btree_node_alloc(struct cache_set *c, 1178 struct btree_op *op, int level, 1179 struct btree *parent) 1180 { 1181 return __bch_btree_node_alloc(c, op, level, op != NULL, parent); 1182 } 1183 1184 static struct btree *btree_node_alloc_replacement(struct btree *b, 1185 struct btree_op *op) 1186 { 1187 struct btree *n = bch_btree_node_alloc(b->c, op, b->level, b->parent); 1188 1189 if (!IS_ERR_OR_NULL(n)) { 1190 mutex_lock(&n->write_lock); 1191 bch_btree_sort_into(&b->keys, &n->keys, &b->c->sort); 1192 bkey_copy_key(&n->key, &b->key); 1193 mutex_unlock(&n->write_lock); 1194 } 1195 1196 return n; 1197 } 1198 1199 static void make_btree_freeing_key(struct btree *b, struct bkey *k) 1200 { 1201 unsigned int i; 1202 1203 mutex_lock(&b->c->bucket_lock); 1204 1205 atomic_inc(&b->c->prio_blocked); 1206 1207 bkey_copy(k, &b->key); 1208 bkey_copy_key(k, &ZERO_KEY); 1209 1210 for (i = 0; i < KEY_PTRS(k); i++) 1211 SET_PTR_GEN(k, i, 1212 bch_inc_gen(PTR_CACHE(b->c, &b->key, i), 1213 PTR_BUCKET(b->c, &b->key, i))); 1214 1215 mutex_unlock(&b->c->bucket_lock); 1216 } 1217 1218 static int btree_check_reserve(struct btree *b, struct btree_op *op) 1219 { 1220 struct cache_set *c = b->c; 1221 struct cache *ca; 1222 unsigned int i, reserve = (c->root->level - b->level) * 2 + 1; 1223 1224 mutex_lock(&c->bucket_lock); 1225 1226 for_each_cache(ca, c, i) 1227 if (fifo_used(&ca->free[RESERVE_BTREE]) < reserve) { 1228 if (op) 1229 prepare_to_wait(&c->btree_cache_wait, &op->wait, 1230 TASK_UNINTERRUPTIBLE); 1231 mutex_unlock(&c->bucket_lock); 1232 return -EINTR; 1233 } 1234 1235 mutex_unlock(&c->bucket_lock); 1236 1237 return mca_cannibalize_lock(b->c, op); 1238 } 1239 1240 /* Garbage collection */ 1241 1242 static uint8_t __bch_btree_mark_key(struct cache_set *c, int level, 1243 struct bkey *k) 1244 { 1245 uint8_t stale = 0; 1246 unsigned int i; 1247 struct bucket *g; 1248 1249 /* 1250 * ptr_invalid() can't return true for the keys that mark btree nodes as 1251 * freed, but since ptr_bad() returns true we'll never actually use them 1252 * for anything and thus we don't want mark their pointers here 1253 */ 1254 if (!bkey_cmp(k, &ZERO_KEY)) 1255 return stale; 1256 1257 for (i = 0; i < KEY_PTRS(k); i++) { 1258 if (!ptr_available(c, k, i)) 1259 continue; 1260 1261 g = PTR_BUCKET(c, k, i); 1262 1263 if (gen_after(g->last_gc, PTR_GEN(k, i))) 1264 g->last_gc = PTR_GEN(k, i); 1265 1266 if (ptr_stale(c, k, i)) { 1267 stale = max(stale, ptr_stale(c, k, i)); 1268 continue; 1269 } 1270 1271 cache_bug_on(GC_MARK(g) && 1272 (GC_MARK(g) == GC_MARK_METADATA) != (level != 0), 1273 c, "inconsistent ptrs: mark = %llu, level = %i", 1274 GC_MARK(g), level); 1275 1276 if (level) 1277 SET_GC_MARK(g, GC_MARK_METADATA); 1278 else if (KEY_DIRTY(k)) 1279 SET_GC_MARK(g, GC_MARK_DIRTY); 1280 else if (!GC_MARK(g)) 1281 SET_GC_MARK(g, GC_MARK_RECLAIMABLE); 1282 1283 /* guard against overflow */ 1284 SET_GC_SECTORS_USED(g, min_t(unsigned int, 1285 GC_SECTORS_USED(g) + KEY_SIZE(k), 1286 MAX_GC_SECTORS_USED)); 1287 1288 BUG_ON(!GC_SECTORS_USED(g)); 1289 } 1290 1291 return stale; 1292 } 1293 1294 #define btree_mark_key(b, k) __bch_btree_mark_key(b->c, b->level, k) 1295 1296 void bch_initial_mark_key(struct cache_set *c, int level, struct bkey *k) 1297 { 1298 unsigned int i; 1299 1300 for (i = 0; i < KEY_PTRS(k); i++) 1301 if (ptr_available(c, k, i) && 1302 !ptr_stale(c, k, i)) { 1303 struct bucket *b = PTR_BUCKET(c, k, i); 1304 1305 b->gen = PTR_GEN(k, i); 1306 1307 if (level && bkey_cmp(k, &ZERO_KEY)) 1308 b->prio = BTREE_PRIO; 1309 else if (!level && b->prio == BTREE_PRIO) 1310 b->prio = INITIAL_PRIO; 1311 } 1312 1313 __bch_btree_mark_key(c, level, k); 1314 } 1315 1316 void bch_update_bucket_in_use(struct cache_set *c, struct gc_stat *stats) 1317 { 1318 stats->in_use = (c->nbuckets - c->avail_nbuckets) * 100 / c->nbuckets; 1319 } 1320 1321 static bool btree_gc_mark_node(struct btree *b, struct gc_stat *gc) 1322 { 1323 uint8_t stale = 0; 1324 unsigned int keys = 0, good_keys = 0; 1325 struct bkey *k; 1326 struct btree_iter iter; 1327 struct bset_tree *t; 1328 1329 gc->nodes++; 1330 1331 for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid) { 1332 stale = max(stale, btree_mark_key(b, k)); 1333 keys++; 1334 1335 if (bch_ptr_bad(&b->keys, k)) 1336 continue; 1337 1338 gc->key_bytes += bkey_u64s(k); 1339 gc->nkeys++; 1340 good_keys++; 1341 1342 gc->data += KEY_SIZE(k); 1343 } 1344 1345 for (t = b->keys.set; t <= &b->keys.set[b->keys.nsets]; t++) 1346 btree_bug_on(t->size && 1347 bset_written(&b->keys, t) && 1348 bkey_cmp(&b->key, &t->end) < 0, 1349 b, "found short btree key in gc"); 1350 1351 if (b->c->gc_always_rewrite) 1352 return true; 1353 1354 if (stale > 10) 1355 return true; 1356 1357 if ((keys - good_keys) * 2 > keys) 1358 return true; 1359 1360 return false; 1361 } 1362 1363 #define GC_MERGE_NODES 4U 1364 1365 struct gc_merge_info { 1366 struct btree *b; 1367 unsigned int keys; 1368 }; 1369 1370 static int bch_btree_insert_node(struct btree *b, struct btree_op *op, 1371 struct keylist *insert_keys, 1372 atomic_t *journal_ref, 1373 struct bkey *replace_key); 1374 1375 static int btree_gc_coalesce(struct btree *b, struct btree_op *op, 1376 struct gc_stat *gc, struct gc_merge_info *r) 1377 { 1378 unsigned int i, nodes = 0, keys = 0, blocks; 1379 struct btree *new_nodes[GC_MERGE_NODES]; 1380 struct keylist keylist; 1381 struct closure cl; 1382 struct bkey *k; 1383 1384 bch_keylist_init(&keylist); 1385 1386 if (btree_check_reserve(b, NULL)) 1387 return 0; 1388 1389 memset(new_nodes, 0, sizeof(new_nodes)); 1390 closure_init_stack(&cl); 1391 1392 while (nodes < GC_MERGE_NODES && !IS_ERR_OR_NULL(r[nodes].b)) 1393 keys += r[nodes++].keys; 1394 1395 blocks = btree_default_blocks(b->c) * 2 / 3; 1396 1397 if (nodes < 2 || 1398 __set_blocks(b->keys.set[0].data, keys, 1399 block_bytes(b->c)) > blocks * (nodes - 1)) 1400 return 0; 1401 1402 for (i = 0; i < nodes; i++) { 1403 new_nodes[i] = btree_node_alloc_replacement(r[i].b, NULL); 1404 if (IS_ERR_OR_NULL(new_nodes[i])) 1405 goto out_nocoalesce; 1406 } 1407 1408 /* 1409 * We have to check the reserve here, after we've allocated our new 1410 * nodes, to make sure the insert below will succeed - we also check 1411 * before as an optimization to potentially avoid a bunch of expensive 1412 * allocs/sorts 1413 */ 1414 if (btree_check_reserve(b, NULL)) 1415 goto out_nocoalesce; 1416 1417 for (i = 0; i < nodes; i++) 1418 mutex_lock(&new_nodes[i]->write_lock); 1419 1420 for (i = nodes - 1; i > 0; --i) { 1421 struct bset *n1 = btree_bset_first(new_nodes[i]); 1422 struct bset *n2 = btree_bset_first(new_nodes[i - 1]); 1423 struct bkey *k, *last = NULL; 1424 1425 keys = 0; 1426 1427 if (i > 1) { 1428 for (k = n2->start; 1429 k < bset_bkey_last(n2); 1430 k = bkey_next(k)) { 1431 if (__set_blocks(n1, n1->keys + keys + 1432 bkey_u64s(k), 1433 block_bytes(b->c)) > blocks) 1434 break; 1435 1436 last = k; 1437 keys += bkey_u64s(k); 1438 } 1439 } else { 1440 /* 1441 * Last node we're not getting rid of - we're getting 1442 * rid of the node at r[0]. Have to try and fit all of 1443 * the remaining keys into this node; we can't ensure 1444 * they will always fit due to rounding and variable 1445 * length keys (shouldn't be possible in practice, 1446 * though) 1447 */ 1448 if (__set_blocks(n1, n1->keys + n2->keys, 1449 block_bytes(b->c)) > 1450 btree_blocks(new_nodes[i])) 1451 goto out_nocoalesce; 1452 1453 keys = n2->keys; 1454 /* Take the key of the node we're getting rid of */ 1455 last = &r->b->key; 1456 } 1457 1458 BUG_ON(__set_blocks(n1, n1->keys + keys, block_bytes(b->c)) > 1459 btree_blocks(new_nodes[i])); 1460 1461 if (last) 1462 bkey_copy_key(&new_nodes[i]->key, last); 1463 1464 memcpy(bset_bkey_last(n1), 1465 n2->start, 1466 (void *) bset_bkey_idx(n2, keys) - (void *) n2->start); 1467 1468 n1->keys += keys; 1469 r[i].keys = n1->keys; 1470 1471 memmove(n2->start, 1472 bset_bkey_idx(n2, keys), 1473 (void *) bset_bkey_last(n2) - 1474 (void *) bset_bkey_idx(n2, keys)); 1475 1476 n2->keys -= keys; 1477 1478 if (__bch_keylist_realloc(&keylist, 1479 bkey_u64s(&new_nodes[i]->key))) 1480 goto out_nocoalesce; 1481 1482 bch_btree_node_write(new_nodes[i], &cl); 1483 bch_keylist_add(&keylist, &new_nodes[i]->key); 1484 } 1485 1486 for (i = 0; i < nodes; i++) 1487 mutex_unlock(&new_nodes[i]->write_lock); 1488 1489 closure_sync(&cl); 1490 1491 /* We emptied out this node */ 1492 BUG_ON(btree_bset_first(new_nodes[0])->keys); 1493 btree_node_free(new_nodes[0]); 1494 rw_unlock(true, new_nodes[0]); 1495 new_nodes[0] = NULL; 1496 1497 for (i = 0; i < nodes; i++) { 1498 if (__bch_keylist_realloc(&keylist, bkey_u64s(&r[i].b->key))) 1499 goto out_nocoalesce; 1500 1501 make_btree_freeing_key(r[i].b, keylist.top); 1502 bch_keylist_push(&keylist); 1503 } 1504 1505 bch_btree_insert_node(b, op, &keylist, NULL, NULL); 1506 BUG_ON(!bch_keylist_empty(&keylist)); 1507 1508 for (i = 0; i < nodes; i++) { 1509 btree_node_free(r[i].b); 1510 rw_unlock(true, r[i].b); 1511 1512 r[i].b = new_nodes[i]; 1513 } 1514 1515 memmove(r, r + 1, sizeof(r[0]) * (nodes - 1)); 1516 r[nodes - 1].b = ERR_PTR(-EINTR); 1517 1518 trace_bcache_btree_gc_coalesce(nodes); 1519 gc->nodes--; 1520 1521 bch_keylist_free(&keylist); 1522 1523 /* Invalidated our iterator */ 1524 return -EINTR; 1525 1526 out_nocoalesce: 1527 closure_sync(&cl); 1528 1529 while ((k = bch_keylist_pop(&keylist))) 1530 if (!bkey_cmp(k, &ZERO_KEY)) 1531 atomic_dec(&b->c->prio_blocked); 1532 bch_keylist_free(&keylist); 1533 1534 for (i = 0; i < nodes; i++) 1535 if (!IS_ERR_OR_NULL(new_nodes[i])) { 1536 btree_node_free(new_nodes[i]); 1537 rw_unlock(true, new_nodes[i]); 1538 } 1539 return 0; 1540 } 1541 1542 static int btree_gc_rewrite_node(struct btree *b, struct btree_op *op, 1543 struct btree *replace) 1544 { 1545 struct keylist keys; 1546 struct btree *n; 1547 1548 if (btree_check_reserve(b, NULL)) 1549 return 0; 1550 1551 n = btree_node_alloc_replacement(replace, NULL); 1552 1553 /* recheck reserve after allocating replacement node */ 1554 if (btree_check_reserve(b, NULL)) { 1555 btree_node_free(n); 1556 rw_unlock(true, n); 1557 return 0; 1558 } 1559 1560 bch_btree_node_write_sync(n); 1561 1562 bch_keylist_init(&keys); 1563 bch_keylist_add(&keys, &n->key); 1564 1565 make_btree_freeing_key(replace, keys.top); 1566 bch_keylist_push(&keys); 1567 1568 bch_btree_insert_node(b, op, &keys, NULL, NULL); 1569 BUG_ON(!bch_keylist_empty(&keys)); 1570 1571 btree_node_free(replace); 1572 rw_unlock(true, n); 1573 1574 /* Invalidated our iterator */ 1575 return -EINTR; 1576 } 1577 1578 static unsigned int btree_gc_count_keys(struct btree *b) 1579 { 1580 struct bkey *k; 1581 struct btree_iter iter; 1582 unsigned int ret = 0; 1583 1584 for_each_key_filter(&b->keys, k, &iter, bch_ptr_bad) 1585 ret += bkey_u64s(k); 1586 1587 return ret; 1588 } 1589 1590 static size_t btree_gc_min_nodes(struct cache_set *c) 1591 { 1592 size_t min_nodes; 1593 1594 /* 1595 * Since incremental GC would stop 100ms when front 1596 * side I/O comes, so when there are many btree nodes, 1597 * if GC only processes constant (100) nodes each time, 1598 * GC would last a long time, and the front side I/Os 1599 * would run out of the buckets (since no new bucket 1600 * can be allocated during GC), and be blocked again. 1601 * So GC should not process constant nodes, but varied 1602 * nodes according to the number of btree nodes, which 1603 * realized by dividing GC into constant(100) times, 1604 * so when there are many btree nodes, GC can process 1605 * more nodes each time, otherwise, GC will process less 1606 * nodes each time (but no less than MIN_GC_NODES) 1607 */ 1608 min_nodes = c->gc_stats.nodes / MAX_GC_TIMES; 1609 if (min_nodes < MIN_GC_NODES) 1610 min_nodes = MIN_GC_NODES; 1611 1612 return min_nodes; 1613 } 1614 1615 1616 static int btree_gc_recurse(struct btree *b, struct btree_op *op, 1617 struct closure *writes, struct gc_stat *gc) 1618 { 1619 int ret = 0; 1620 bool should_rewrite; 1621 struct bkey *k; 1622 struct btree_iter iter; 1623 struct gc_merge_info r[GC_MERGE_NODES]; 1624 struct gc_merge_info *i, *last = r + ARRAY_SIZE(r) - 1; 1625 1626 bch_btree_iter_init(&b->keys, &iter, &b->c->gc_done); 1627 1628 for (i = r; i < r + ARRAY_SIZE(r); i++) 1629 i->b = ERR_PTR(-EINTR); 1630 1631 while (1) { 1632 k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad); 1633 if (k) { 1634 r->b = bch_btree_node_get(b->c, op, k, b->level - 1, 1635 true, b); 1636 if (IS_ERR(r->b)) { 1637 ret = PTR_ERR(r->b); 1638 break; 1639 } 1640 1641 r->keys = btree_gc_count_keys(r->b); 1642 1643 ret = btree_gc_coalesce(b, op, gc, r); 1644 if (ret) 1645 break; 1646 } 1647 1648 if (!last->b) 1649 break; 1650 1651 if (!IS_ERR(last->b)) { 1652 should_rewrite = btree_gc_mark_node(last->b, gc); 1653 if (should_rewrite) { 1654 ret = btree_gc_rewrite_node(b, op, last->b); 1655 if (ret) 1656 break; 1657 } 1658 1659 if (last->b->level) { 1660 ret = btree_gc_recurse(last->b, op, writes, gc); 1661 if (ret) 1662 break; 1663 } 1664 1665 bkey_copy_key(&b->c->gc_done, &last->b->key); 1666 1667 /* 1668 * Must flush leaf nodes before gc ends, since replace 1669 * operations aren't journalled 1670 */ 1671 mutex_lock(&last->b->write_lock); 1672 if (btree_node_dirty(last->b)) 1673 bch_btree_node_write(last->b, writes); 1674 mutex_unlock(&last->b->write_lock); 1675 rw_unlock(true, last->b); 1676 } 1677 1678 memmove(r + 1, r, sizeof(r[0]) * (GC_MERGE_NODES - 1)); 1679 r->b = NULL; 1680 1681 if (atomic_read(&b->c->search_inflight) && 1682 gc->nodes >= gc->nodes_pre + btree_gc_min_nodes(b->c)) { 1683 gc->nodes_pre = gc->nodes; 1684 ret = -EAGAIN; 1685 break; 1686 } 1687 1688 if (need_resched()) { 1689 ret = -EAGAIN; 1690 break; 1691 } 1692 } 1693 1694 for (i = r; i < r + ARRAY_SIZE(r); i++) 1695 if (!IS_ERR_OR_NULL(i->b)) { 1696 mutex_lock(&i->b->write_lock); 1697 if (btree_node_dirty(i->b)) 1698 bch_btree_node_write(i->b, writes); 1699 mutex_unlock(&i->b->write_lock); 1700 rw_unlock(true, i->b); 1701 } 1702 1703 return ret; 1704 } 1705 1706 static int bch_btree_gc_root(struct btree *b, struct btree_op *op, 1707 struct closure *writes, struct gc_stat *gc) 1708 { 1709 struct btree *n = NULL; 1710 int ret = 0; 1711 bool should_rewrite; 1712 1713 should_rewrite = btree_gc_mark_node(b, gc); 1714 if (should_rewrite) { 1715 n = btree_node_alloc_replacement(b, NULL); 1716 1717 if (!IS_ERR_OR_NULL(n)) { 1718 bch_btree_node_write_sync(n); 1719 1720 bch_btree_set_root(n); 1721 btree_node_free(b); 1722 rw_unlock(true, n); 1723 1724 return -EINTR; 1725 } 1726 } 1727 1728 __bch_btree_mark_key(b->c, b->level + 1, &b->key); 1729 1730 if (b->level) { 1731 ret = btree_gc_recurse(b, op, writes, gc); 1732 if (ret) 1733 return ret; 1734 } 1735 1736 bkey_copy_key(&b->c->gc_done, &b->key); 1737 1738 return ret; 1739 } 1740 1741 static void btree_gc_start(struct cache_set *c) 1742 { 1743 struct cache *ca; 1744 struct bucket *b; 1745 unsigned int i; 1746 1747 if (!c->gc_mark_valid) 1748 return; 1749 1750 mutex_lock(&c->bucket_lock); 1751 1752 c->gc_mark_valid = 0; 1753 c->gc_done = ZERO_KEY; 1754 1755 for_each_cache(ca, c, i) 1756 for_each_bucket(b, ca) { 1757 b->last_gc = b->gen; 1758 if (!atomic_read(&b->pin)) { 1759 SET_GC_MARK(b, 0); 1760 SET_GC_SECTORS_USED(b, 0); 1761 } 1762 } 1763 1764 mutex_unlock(&c->bucket_lock); 1765 } 1766 1767 static void bch_btree_gc_finish(struct cache_set *c) 1768 { 1769 struct bucket *b; 1770 struct cache *ca; 1771 unsigned int i; 1772 1773 mutex_lock(&c->bucket_lock); 1774 1775 set_gc_sectors(c); 1776 c->gc_mark_valid = 1; 1777 c->need_gc = 0; 1778 1779 for (i = 0; i < KEY_PTRS(&c->uuid_bucket); i++) 1780 SET_GC_MARK(PTR_BUCKET(c, &c->uuid_bucket, i), 1781 GC_MARK_METADATA); 1782 1783 /* don't reclaim buckets to which writeback keys point */ 1784 rcu_read_lock(); 1785 for (i = 0; i < c->devices_max_used; i++) { 1786 struct bcache_device *d = c->devices[i]; 1787 struct cached_dev *dc; 1788 struct keybuf_key *w, *n; 1789 unsigned int j; 1790 1791 if (!d || UUID_FLASH_ONLY(&c->uuids[i])) 1792 continue; 1793 dc = container_of(d, struct cached_dev, disk); 1794 1795 spin_lock(&dc->writeback_keys.lock); 1796 rbtree_postorder_for_each_entry_safe(w, n, 1797 &dc->writeback_keys.keys, node) 1798 for (j = 0; j < KEY_PTRS(&w->key); j++) 1799 SET_GC_MARK(PTR_BUCKET(c, &w->key, j), 1800 GC_MARK_DIRTY); 1801 spin_unlock(&dc->writeback_keys.lock); 1802 } 1803 rcu_read_unlock(); 1804 1805 c->avail_nbuckets = 0; 1806 for_each_cache(ca, c, i) { 1807 uint64_t *i; 1808 1809 ca->invalidate_needs_gc = 0; 1810 1811 for (i = ca->sb.d; i < ca->sb.d + ca->sb.keys; i++) 1812 SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA); 1813 1814 for (i = ca->prio_buckets; 1815 i < ca->prio_buckets + prio_buckets(ca) * 2; i++) 1816 SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA); 1817 1818 for_each_bucket(b, ca) { 1819 c->need_gc = max(c->need_gc, bucket_gc_gen(b)); 1820 1821 if (atomic_read(&b->pin)) 1822 continue; 1823 1824 BUG_ON(!GC_MARK(b) && GC_SECTORS_USED(b)); 1825 1826 if (!GC_MARK(b) || GC_MARK(b) == GC_MARK_RECLAIMABLE) 1827 c->avail_nbuckets++; 1828 } 1829 } 1830 1831 mutex_unlock(&c->bucket_lock); 1832 } 1833 1834 static void bch_btree_gc(struct cache_set *c) 1835 { 1836 int ret; 1837 struct gc_stat stats; 1838 struct closure writes; 1839 struct btree_op op; 1840 uint64_t start_time = local_clock(); 1841 1842 trace_bcache_gc_start(c); 1843 1844 memset(&stats, 0, sizeof(struct gc_stat)); 1845 closure_init_stack(&writes); 1846 bch_btree_op_init(&op, SHRT_MAX); 1847 1848 btree_gc_start(c); 1849 1850 /* if CACHE_SET_IO_DISABLE set, gc thread should stop too */ 1851 do { 1852 ret = btree_root(gc_root, c, &op, &writes, &stats); 1853 closure_sync(&writes); 1854 cond_resched(); 1855 1856 if (ret == -EAGAIN) 1857 schedule_timeout_interruptible(msecs_to_jiffies 1858 (GC_SLEEP_MS)); 1859 else if (ret) 1860 pr_warn("gc failed!"); 1861 } while (ret && !test_bit(CACHE_SET_IO_DISABLE, &c->flags)); 1862 1863 bch_btree_gc_finish(c); 1864 wake_up_allocators(c); 1865 1866 bch_time_stats_update(&c->btree_gc_time, start_time); 1867 1868 stats.key_bytes *= sizeof(uint64_t); 1869 stats.data <<= 9; 1870 bch_update_bucket_in_use(c, &stats); 1871 memcpy(&c->gc_stats, &stats, sizeof(struct gc_stat)); 1872 1873 trace_bcache_gc_end(c); 1874 1875 bch_moving_gc(c); 1876 } 1877 1878 static bool gc_should_run(struct cache_set *c) 1879 { 1880 struct cache *ca; 1881 unsigned int i; 1882 1883 for_each_cache(ca, c, i) 1884 if (ca->invalidate_needs_gc) 1885 return true; 1886 1887 if (atomic_read(&c->sectors_to_gc) < 0) 1888 return true; 1889 1890 return false; 1891 } 1892 1893 static int bch_gc_thread(void *arg) 1894 { 1895 struct cache_set *c = arg; 1896 1897 while (1) { 1898 wait_event_interruptible(c->gc_wait, 1899 kthread_should_stop() || 1900 test_bit(CACHE_SET_IO_DISABLE, &c->flags) || 1901 gc_should_run(c)); 1902 1903 if (kthread_should_stop() || 1904 test_bit(CACHE_SET_IO_DISABLE, &c->flags)) 1905 break; 1906 1907 set_gc_sectors(c); 1908 bch_btree_gc(c); 1909 } 1910 1911 wait_for_kthread_stop(); 1912 return 0; 1913 } 1914 1915 int bch_gc_thread_start(struct cache_set *c) 1916 { 1917 /* 1918 * In case previous btree check operation occupies too many 1919 * system memory for bcache btree node cache, and the 1920 * registering process is selected by OOM killer. Here just 1921 * ignore the SIGKILL sent by OOM killer if there is, to 1922 * avoid kthread_run() being failed by pending signals. The 1923 * bcache registering process will exit after the registration 1924 * done. 1925 */ 1926 if (signal_pending(current)) 1927 flush_signals(current); 1928 1929 c->gc_thread = kthread_run(bch_gc_thread, c, "bcache_gc"); 1930 return PTR_ERR_OR_ZERO(c->gc_thread); 1931 } 1932 1933 /* Initial partial gc */ 1934 1935 static int bch_btree_check_recurse(struct btree *b, struct btree_op *op) 1936 { 1937 int ret = 0; 1938 struct bkey *k, *p = NULL; 1939 struct btree_iter iter; 1940 1941 for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid) 1942 bch_initial_mark_key(b->c, b->level, k); 1943 1944 bch_initial_mark_key(b->c, b->level + 1, &b->key); 1945 1946 if (b->level) { 1947 bch_btree_iter_init(&b->keys, &iter, NULL); 1948 1949 do { 1950 k = bch_btree_iter_next_filter(&iter, &b->keys, 1951 bch_ptr_bad); 1952 if (k) { 1953 btree_node_prefetch(b, k); 1954 /* 1955 * initiallize c->gc_stats.nodes 1956 * for incremental GC 1957 */ 1958 b->c->gc_stats.nodes++; 1959 } 1960 1961 if (p) 1962 ret = btree(check_recurse, p, b, op); 1963 1964 p = k; 1965 } while (p && !ret); 1966 } 1967 1968 return ret; 1969 } 1970 1971 int bch_btree_check(struct cache_set *c) 1972 { 1973 struct btree_op op; 1974 1975 bch_btree_op_init(&op, SHRT_MAX); 1976 1977 return btree_root(check_recurse, c, &op); 1978 } 1979 1980 void bch_initial_gc_finish(struct cache_set *c) 1981 { 1982 struct cache *ca; 1983 struct bucket *b; 1984 unsigned int i; 1985 1986 bch_btree_gc_finish(c); 1987 1988 mutex_lock(&c->bucket_lock); 1989 1990 /* 1991 * We need to put some unused buckets directly on the prio freelist in 1992 * order to get the allocator thread started - it needs freed buckets in 1993 * order to rewrite the prios and gens, and it needs to rewrite prios 1994 * and gens in order to free buckets. 1995 * 1996 * This is only safe for buckets that have no live data in them, which 1997 * there should always be some of. 1998 */ 1999 for_each_cache(ca, c, i) { 2000 for_each_bucket(b, ca) { 2001 if (fifo_full(&ca->free[RESERVE_PRIO]) && 2002 fifo_full(&ca->free[RESERVE_BTREE])) 2003 break; 2004 2005 if (bch_can_invalidate_bucket(ca, b) && 2006 !GC_MARK(b)) { 2007 __bch_invalidate_one_bucket(ca, b); 2008 if (!fifo_push(&ca->free[RESERVE_PRIO], 2009 b - ca->buckets)) 2010 fifo_push(&ca->free[RESERVE_BTREE], 2011 b - ca->buckets); 2012 } 2013 } 2014 } 2015 2016 mutex_unlock(&c->bucket_lock); 2017 } 2018 2019 /* Btree insertion */ 2020 2021 static bool btree_insert_key(struct btree *b, struct bkey *k, 2022 struct bkey *replace_key) 2023 { 2024 unsigned int status; 2025 2026 BUG_ON(bkey_cmp(k, &b->key) > 0); 2027 2028 status = bch_btree_insert_key(&b->keys, k, replace_key); 2029 if (status != BTREE_INSERT_STATUS_NO_INSERT) { 2030 bch_check_keys(&b->keys, "%u for %s", status, 2031 replace_key ? "replace" : "insert"); 2032 2033 trace_bcache_btree_insert_key(b, k, replace_key != NULL, 2034 status); 2035 return true; 2036 } else 2037 return false; 2038 } 2039 2040 static size_t insert_u64s_remaining(struct btree *b) 2041 { 2042 long ret = bch_btree_keys_u64s_remaining(&b->keys); 2043 2044 /* 2045 * Might land in the middle of an existing extent and have to split it 2046 */ 2047 if (b->keys.ops->is_extents) 2048 ret -= KEY_MAX_U64S; 2049 2050 return max(ret, 0L); 2051 } 2052 2053 static bool bch_btree_insert_keys(struct btree *b, struct btree_op *op, 2054 struct keylist *insert_keys, 2055 struct bkey *replace_key) 2056 { 2057 bool ret = false; 2058 int oldsize = bch_count_data(&b->keys); 2059 2060 while (!bch_keylist_empty(insert_keys)) { 2061 struct bkey *k = insert_keys->keys; 2062 2063 if (bkey_u64s(k) > insert_u64s_remaining(b)) 2064 break; 2065 2066 if (bkey_cmp(k, &b->key) <= 0) { 2067 if (!b->level) 2068 bkey_put(b->c, k); 2069 2070 ret |= btree_insert_key(b, k, replace_key); 2071 bch_keylist_pop_front(insert_keys); 2072 } else if (bkey_cmp(&START_KEY(k), &b->key) < 0) { 2073 BKEY_PADDED(key) temp; 2074 bkey_copy(&temp.key, insert_keys->keys); 2075 2076 bch_cut_back(&b->key, &temp.key); 2077 bch_cut_front(&b->key, insert_keys->keys); 2078 2079 ret |= btree_insert_key(b, &temp.key, replace_key); 2080 break; 2081 } else { 2082 break; 2083 } 2084 } 2085 2086 if (!ret) 2087 op->insert_collision = true; 2088 2089 BUG_ON(!bch_keylist_empty(insert_keys) && b->level); 2090 2091 BUG_ON(bch_count_data(&b->keys) < oldsize); 2092 return ret; 2093 } 2094 2095 static int btree_split(struct btree *b, struct btree_op *op, 2096 struct keylist *insert_keys, 2097 struct bkey *replace_key) 2098 { 2099 bool split; 2100 struct btree *n1, *n2 = NULL, *n3 = NULL; 2101 uint64_t start_time = local_clock(); 2102 struct closure cl; 2103 struct keylist parent_keys; 2104 2105 closure_init_stack(&cl); 2106 bch_keylist_init(&parent_keys); 2107 2108 if (btree_check_reserve(b, op)) { 2109 if (!b->level) 2110 return -EINTR; 2111 else 2112 WARN(1, "insufficient reserve for split\n"); 2113 } 2114 2115 n1 = btree_node_alloc_replacement(b, op); 2116 if (IS_ERR(n1)) 2117 goto err; 2118 2119 split = set_blocks(btree_bset_first(n1), 2120 block_bytes(n1->c)) > (btree_blocks(b) * 4) / 5; 2121 2122 if (split) { 2123 unsigned int keys = 0; 2124 2125 trace_bcache_btree_node_split(b, btree_bset_first(n1)->keys); 2126 2127 n2 = bch_btree_node_alloc(b->c, op, b->level, b->parent); 2128 if (IS_ERR(n2)) 2129 goto err_free1; 2130 2131 if (!b->parent) { 2132 n3 = bch_btree_node_alloc(b->c, op, b->level + 1, NULL); 2133 if (IS_ERR(n3)) 2134 goto err_free2; 2135 } 2136 2137 mutex_lock(&n1->write_lock); 2138 mutex_lock(&n2->write_lock); 2139 2140 bch_btree_insert_keys(n1, op, insert_keys, replace_key); 2141 2142 /* 2143 * Has to be a linear search because we don't have an auxiliary 2144 * search tree yet 2145 */ 2146 2147 while (keys < (btree_bset_first(n1)->keys * 3) / 5) 2148 keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1), 2149 keys)); 2150 2151 bkey_copy_key(&n1->key, 2152 bset_bkey_idx(btree_bset_first(n1), keys)); 2153 keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1), keys)); 2154 2155 btree_bset_first(n2)->keys = btree_bset_first(n1)->keys - keys; 2156 btree_bset_first(n1)->keys = keys; 2157 2158 memcpy(btree_bset_first(n2)->start, 2159 bset_bkey_last(btree_bset_first(n1)), 2160 btree_bset_first(n2)->keys * sizeof(uint64_t)); 2161 2162 bkey_copy_key(&n2->key, &b->key); 2163 2164 bch_keylist_add(&parent_keys, &n2->key); 2165 bch_btree_node_write(n2, &cl); 2166 mutex_unlock(&n2->write_lock); 2167 rw_unlock(true, n2); 2168 } else { 2169 trace_bcache_btree_node_compact(b, btree_bset_first(n1)->keys); 2170 2171 mutex_lock(&n1->write_lock); 2172 bch_btree_insert_keys(n1, op, insert_keys, replace_key); 2173 } 2174 2175 bch_keylist_add(&parent_keys, &n1->key); 2176 bch_btree_node_write(n1, &cl); 2177 mutex_unlock(&n1->write_lock); 2178 2179 if (n3) { 2180 /* Depth increases, make a new root */ 2181 mutex_lock(&n3->write_lock); 2182 bkey_copy_key(&n3->key, &MAX_KEY); 2183 bch_btree_insert_keys(n3, op, &parent_keys, NULL); 2184 bch_btree_node_write(n3, &cl); 2185 mutex_unlock(&n3->write_lock); 2186 2187 closure_sync(&cl); 2188 bch_btree_set_root(n3); 2189 rw_unlock(true, n3); 2190 } else if (!b->parent) { 2191 /* Root filled up but didn't need to be split */ 2192 closure_sync(&cl); 2193 bch_btree_set_root(n1); 2194 } else { 2195 /* Split a non root node */ 2196 closure_sync(&cl); 2197 make_btree_freeing_key(b, parent_keys.top); 2198 bch_keylist_push(&parent_keys); 2199 2200 bch_btree_insert_node(b->parent, op, &parent_keys, NULL, NULL); 2201 BUG_ON(!bch_keylist_empty(&parent_keys)); 2202 } 2203 2204 btree_node_free(b); 2205 rw_unlock(true, n1); 2206 2207 bch_time_stats_update(&b->c->btree_split_time, start_time); 2208 2209 return 0; 2210 err_free2: 2211 bkey_put(b->c, &n2->key); 2212 btree_node_free(n2); 2213 rw_unlock(true, n2); 2214 err_free1: 2215 bkey_put(b->c, &n1->key); 2216 btree_node_free(n1); 2217 rw_unlock(true, n1); 2218 err: 2219 WARN(1, "bcache: btree split failed (level %u)", b->level); 2220 2221 if (n3 == ERR_PTR(-EAGAIN) || 2222 n2 == ERR_PTR(-EAGAIN) || 2223 n1 == ERR_PTR(-EAGAIN)) 2224 return -EAGAIN; 2225 2226 return -ENOMEM; 2227 } 2228 2229 static int bch_btree_insert_node(struct btree *b, struct btree_op *op, 2230 struct keylist *insert_keys, 2231 atomic_t *journal_ref, 2232 struct bkey *replace_key) 2233 { 2234 struct closure cl; 2235 2236 BUG_ON(b->level && replace_key); 2237 2238 closure_init_stack(&cl); 2239 2240 mutex_lock(&b->write_lock); 2241 2242 if (write_block(b) != btree_bset_last(b) && 2243 b->keys.last_set_unwritten) 2244 bch_btree_init_next(b); /* just wrote a set */ 2245 2246 if (bch_keylist_nkeys(insert_keys) > insert_u64s_remaining(b)) { 2247 mutex_unlock(&b->write_lock); 2248 goto split; 2249 } 2250 2251 BUG_ON(write_block(b) != btree_bset_last(b)); 2252 2253 if (bch_btree_insert_keys(b, op, insert_keys, replace_key)) { 2254 if (!b->level) 2255 bch_btree_leaf_dirty(b, journal_ref); 2256 else 2257 bch_btree_node_write(b, &cl); 2258 } 2259 2260 mutex_unlock(&b->write_lock); 2261 2262 /* wait for btree node write if necessary, after unlock */ 2263 closure_sync(&cl); 2264 2265 return 0; 2266 split: 2267 if (current->bio_list) { 2268 op->lock = b->c->root->level + 1; 2269 return -EAGAIN; 2270 } else if (op->lock <= b->c->root->level) { 2271 op->lock = b->c->root->level + 1; 2272 return -EINTR; 2273 } else { 2274 /* Invalidated all iterators */ 2275 int ret = btree_split(b, op, insert_keys, replace_key); 2276 2277 if (bch_keylist_empty(insert_keys)) 2278 return 0; 2279 else if (!ret) 2280 return -EINTR; 2281 return ret; 2282 } 2283 } 2284 2285 int bch_btree_insert_check_key(struct btree *b, struct btree_op *op, 2286 struct bkey *check_key) 2287 { 2288 int ret = -EINTR; 2289 uint64_t btree_ptr = b->key.ptr[0]; 2290 unsigned long seq = b->seq; 2291 struct keylist insert; 2292 bool upgrade = op->lock == -1; 2293 2294 bch_keylist_init(&insert); 2295 2296 if (upgrade) { 2297 rw_unlock(false, b); 2298 rw_lock(true, b, b->level); 2299 2300 if (b->key.ptr[0] != btree_ptr || 2301 b->seq != seq + 1) { 2302 op->lock = b->level; 2303 goto out; 2304 } 2305 } 2306 2307 SET_KEY_PTRS(check_key, 1); 2308 get_random_bytes(&check_key->ptr[0], sizeof(uint64_t)); 2309 2310 SET_PTR_DEV(check_key, 0, PTR_CHECK_DEV); 2311 2312 bch_keylist_add(&insert, check_key); 2313 2314 ret = bch_btree_insert_node(b, op, &insert, NULL, NULL); 2315 2316 BUG_ON(!ret && !bch_keylist_empty(&insert)); 2317 out: 2318 if (upgrade) 2319 downgrade_write(&b->lock); 2320 return ret; 2321 } 2322 2323 struct btree_insert_op { 2324 struct btree_op op; 2325 struct keylist *keys; 2326 atomic_t *journal_ref; 2327 struct bkey *replace_key; 2328 }; 2329 2330 static int btree_insert_fn(struct btree_op *b_op, struct btree *b) 2331 { 2332 struct btree_insert_op *op = container_of(b_op, 2333 struct btree_insert_op, op); 2334 2335 int ret = bch_btree_insert_node(b, &op->op, op->keys, 2336 op->journal_ref, op->replace_key); 2337 if (ret && !bch_keylist_empty(op->keys)) 2338 return ret; 2339 else 2340 return MAP_DONE; 2341 } 2342 2343 int bch_btree_insert(struct cache_set *c, struct keylist *keys, 2344 atomic_t *journal_ref, struct bkey *replace_key) 2345 { 2346 struct btree_insert_op op; 2347 int ret = 0; 2348 2349 BUG_ON(current->bio_list); 2350 BUG_ON(bch_keylist_empty(keys)); 2351 2352 bch_btree_op_init(&op.op, 0); 2353 op.keys = keys; 2354 op.journal_ref = journal_ref; 2355 op.replace_key = replace_key; 2356 2357 while (!ret && !bch_keylist_empty(keys)) { 2358 op.op.lock = 0; 2359 ret = bch_btree_map_leaf_nodes(&op.op, c, 2360 &START_KEY(keys->keys), 2361 btree_insert_fn); 2362 } 2363 2364 if (ret) { 2365 struct bkey *k; 2366 2367 pr_err("error %i", ret); 2368 2369 while ((k = bch_keylist_pop(keys))) 2370 bkey_put(c, k); 2371 } else if (op.op.insert_collision) 2372 ret = -ESRCH; 2373 2374 return ret; 2375 } 2376 2377 void bch_btree_set_root(struct btree *b) 2378 { 2379 unsigned int i; 2380 struct closure cl; 2381 2382 closure_init_stack(&cl); 2383 2384 trace_bcache_btree_set_root(b); 2385 2386 BUG_ON(!b->written); 2387 2388 for (i = 0; i < KEY_PTRS(&b->key); i++) 2389 BUG_ON(PTR_BUCKET(b->c, &b->key, i)->prio != BTREE_PRIO); 2390 2391 mutex_lock(&b->c->bucket_lock); 2392 list_del_init(&b->list); 2393 mutex_unlock(&b->c->bucket_lock); 2394 2395 b->c->root = b; 2396 2397 bch_journal_meta(b->c, &cl); 2398 closure_sync(&cl); 2399 } 2400 2401 /* Map across nodes or keys */ 2402 2403 static int bch_btree_map_nodes_recurse(struct btree *b, struct btree_op *op, 2404 struct bkey *from, 2405 btree_map_nodes_fn *fn, int flags) 2406 { 2407 int ret = MAP_CONTINUE; 2408 2409 if (b->level) { 2410 struct bkey *k; 2411 struct btree_iter iter; 2412 2413 bch_btree_iter_init(&b->keys, &iter, from); 2414 2415 while ((k = bch_btree_iter_next_filter(&iter, &b->keys, 2416 bch_ptr_bad))) { 2417 ret = btree(map_nodes_recurse, k, b, 2418 op, from, fn, flags); 2419 from = NULL; 2420 2421 if (ret != MAP_CONTINUE) 2422 return ret; 2423 } 2424 } 2425 2426 if (!b->level || flags == MAP_ALL_NODES) 2427 ret = fn(op, b); 2428 2429 return ret; 2430 } 2431 2432 int __bch_btree_map_nodes(struct btree_op *op, struct cache_set *c, 2433 struct bkey *from, btree_map_nodes_fn *fn, int flags) 2434 { 2435 return btree_root(map_nodes_recurse, c, op, from, fn, flags); 2436 } 2437 2438 static int bch_btree_map_keys_recurse(struct btree *b, struct btree_op *op, 2439 struct bkey *from, btree_map_keys_fn *fn, 2440 int flags) 2441 { 2442 int ret = MAP_CONTINUE; 2443 struct bkey *k; 2444 struct btree_iter iter; 2445 2446 bch_btree_iter_init(&b->keys, &iter, from); 2447 2448 while ((k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad))) { 2449 ret = !b->level 2450 ? fn(op, b, k) 2451 : btree(map_keys_recurse, k, b, op, from, fn, flags); 2452 from = NULL; 2453 2454 if (ret != MAP_CONTINUE) 2455 return ret; 2456 } 2457 2458 if (!b->level && (flags & MAP_END_KEY)) 2459 ret = fn(op, b, &KEY(KEY_INODE(&b->key), 2460 KEY_OFFSET(&b->key), 0)); 2461 2462 return ret; 2463 } 2464 2465 int bch_btree_map_keys(struct btree_op *op, struct cache_set *c, 2466 struct bkey *from, btree_map_keys_fn *fn, int flags) 2467 { 2468 return btree_root(map_keys_recurse, c, op, from, fn, flags); 2469 } 2470 2471 /* Keybuf code */ 2472 2473 static inline int keybuf_cmp(struct keybuf_key *l, struct keybuf_key *r) 2474 { 2475 /* Overlapping keys compare equal */ 2476 if (bkey_cmp(&l->key, &START_KEY(&r->key)) <= 0) 2477 return -1; 2478 if (bkey_cmp(&START_KEY(&l->key), &r->key) >= 0) 2479 return 1; 2480 return 0; 2481 } 2482 2483 static inline int keybuf_nonoverlapping_cmp(struct keybuf_key *l, 2484 struct keybuf_key *r) 2485 { 2486 return clamp_t(int64_t, bkey_cmp(&l->key, &r->key), -1, 1); 2487 } 2488 2489 struct refill { 2490 struct btree_op op; 2491 unsigned int nr_found; 2492 struct keybuf *buf; 2493 struct bkey *end; 2494 keybuf_pred_fn *pred; 2495 }; 2496 2497 static int refill_keybuf_fn(struct btree_op *op, struct btree *b, 2498 struct bkey *k) 2499 { 2500 struct refill *refill = container_of(op, struct refill, op); 2501 struct keybuf *buf = refill->buf; 2502 int ret = MAP_CONTINUE; 2503 2504 if (bkey_cmp(k, refill->end) > 0) { 2505 ret = MAP_DONE; 2506 goto out; 2507 } 2508 2509 if (!KEY_SIZE(k)) /* end key */ 2510 goto out; 2511 2512 if (refill->pred(buf, k)) { 2513 struct keybuf_key *w; 2514 2515 spin_lock(&buf->lock); 2516 2517 w = array_alloc(&buf->freelist); 2518 if (!w) { 2519 spin_unlock(&buf->lock); 2520 return MAP_DONE; 2521 } 2522 2523 w->private = NULL; 2524 bkey_copy(&w->key, k); 2525 2526 if (RB_INSERT(&buf->keys, w, node, keybuf_cmp)) 2527 array_free(&buf->freelist, w); 2528 else 2529 refill->nr_found++; 2530 2531 if (array_freelist_empty(&buf->freelist)) 2532 ret = MAP_DONE; 2533 2534 spin_unlock(&buf->lock); 2535 } 2536 out: 2537 buf->last_scanned = *k; 2538 return ret; 2539 } 2540 2541 void bch_refill_keybuf(struct cache_set *c, struct keybuf *buf, 2542 struct bkey *end, keybuf_pred_fn *pred) 2543 { 2544 struct bkey start = buf->last_scanned; 2545 struct refill refill; 2546 2547 cond_resched(); 2548 2549 bch_btree_op_init(&refill.op, -1); 2550 refill.nr_found = 0; 2551 refill.buf = buf; 2552 refill.end = end; 2553 refill.pred = pred; 2554 2555 bch_btree_map_keys(&refill.op, c, &buf->last_scanned, 2556 refill_keybuf_fn, MAP_END_KEY); 2557 2558 trace_bcache_keyscan(refill.nr_found, 2559 KEY_INODE(&start), KEY_OFFSET(&start), 2560 KEY_INODE(&buf->last_scanned), 2561 KEY_OFFSET(&buf->last_scanned)); 2562 2563 spin_lock(&buf->lock); 2564 2565 if (!RB_EMPTY_ROOT(&buf->keys)) { 2566 struct keybuf_key *w; 2567 2568 w = RB_FIRST(&buf->keys, struct keybuf_key, node); 2569 buf->start = START_KEY(&w->key); 2570 2571 w = RB_LAST(&buf->keys, struct keybuf_key, node); 2572 buf->end = w->key; 2573 } else { 2574 buf->start = MAX_KEY; 2575 buf->end = MAX_KEY; 2576 } 2577 2578 spin_unlock(&buf->lock); 2579 } 2580 2581 static void __bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w) 2582 { 2583 rb_erase(&w->node, &buf->keys); 2584 array_free(&buf->freelist, w); 2585 } 2586 2587 void bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w) 2588 { 2589 spin_lock(&buf->lock); 2590 __bch_keybuf_del(buf, w); 2591 spin_unlock(&buf->lock); 2592 } 2593 2594 bool bch_keybuf_check_overlapping(struct keybuf *buf, struct bkey *start, 2595 struct bkey *end) 2596 { 2597 bool ret = false; 2598 struct keybuf_key *p, *w, s; 2599 2600 s.key = *start; 2601 2602 if (bkey_cmp(end, &buf->start) <= 0 || 2603 bkey_cmp(start, &buf->end) >= 0) 2604 return false; 2605 2606 spin_lock(&buf->lock); 2607 w = RB_GREATER(&buf->keys, s, node, keybuf_nonoverlapping_cmp); 2608 2609 while (w && bkey_cmp(&START_KEY(&w->key), end) < 0) { 2610 p = w; 2611 w = RB_NEXT(w, node); 2612 2613 if (p->private) 2614 ret = true; 2615 else 2616 __bch_keybuf_del(buf, p); 2617 } 2618 2619 spin_unlock(&buf->lock); 2620 return ret; 2621 } 2622 2623 struct keybuf_key *bch_keybuf_next(struct keybuf *buf) 2624 { 2625 struct keybuf_key *w; 2626 2627 spin_lock(&buf->lock); 2628 2629 w = RB_FIRST(&buf->keys, struct keybuf_key, node); 2630 2631 while (w && w->private) 2632 w = RB_NEXT(w, node); 2633 2634 if (w) 2635 w->private = ERR_PTR(-EINTR); 2636 2637 spin_unlock(&buf->lock); 2638 return w; 2639 } 2640 2641 struct keybuf_key *bch_keybuf_next_rescan(struct cache_set *c, 2642 struct keybuf *buf, 2643 struct bkey *end, 2644 keybuf_pred_fn *pred) 2645 { 2646 struct keybuf_key *ret; 2647 2648 while (1) { 2649 ret = bch_keybuf_next(buf); 2650 if (ret) 2651 break; 2652 2653 if (bkey_cmp(&buf->last_scanned, end) >= 0) { 2654 pr_debug("scan finished"); 2655 break; 2656 } 2657 2658 bch_refill_keybuf(c, buf, end, pred); 2659 } 2660 2661 return ret; 2662 } 2663 2664 void bch_keybuf_init(struct keybuf *buf) 2665 { 2666 buf->last_scanned = MAX_KEY; 2667 buf->keys = RB_ROOT; 2668 2669 spin_lock_init(&buf->lock); 2670 array_allocator_init(&buf->freelist); 2671 } 2672