1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com> 4 * 5 * Uses a block device as cache for other block devices; optimized for SSDs. 6 * All allocation is done in buckets, which should match the erase block size 7 * of the device. 8 * 9 * Buckets containing cached data are kept on a heap sorted by priority; 10 * bucket priority is increased on cache hit, and periodically all the buckets 11 * on the heap have their priority scaled down. This currently is just used as 12 * an LRU but in the future should allow for more intelligent heuristics. 13 * 14 * Buckets have an 8 bit counter; freeing is accomplished by incrementing the 15 * counter. Garbage collection is used to remove stale pointers. 16 * 17 * Indexing is done via a btree; nodes are not necessarily fully sorted, rather 18 * as keys are inserted we only sort the pages that have not yet been written. 19 * When garbage collection is run, we resort the entire node. 20 * 21 * All configuration is done via sysfs; see Documentation/admin-guide/bcache.rst. 22 */ 23 24 #include "bcache.h" 25 #include "btree.h" 26 #include "debug.h" 27 #include "extents.h" 28 29 #include <linux/slab.h> 30 #include <linux/bitops.h> 31 #include <linux/hash.h> 32 #include <linux/kthread.h> 33 #include <linux/prefetch.h> 34 #include <linux/random.h> 35 #include <linux/rcupdate.h> 36 #include <linux/sched/clock.h> 37 #include <linux/rculist.h> 38 39 #include <trace/events/bcache.h> 40 41 /* 42 * Todo: 43 * register_bcache: Return errors out to userspace correctly 44 * 45 * Writeback: don't undirty key until after a cache flush 46 * 47 * Create an iterator for key pointers 48 * 49 * On btree write error, mark bucket such that it won't be freed from the cache 50 * 51 * Journalling: 52 * Check for bad keys in replay 53 * Propagate barriers 54 * Refcount journal entries in journal_replay 55 * 56 * Garbage collection: 57 * Finish incremental gc 58 * Gc should free old UUIDs, data for invalid UUIDs 59 * 60 * Provide a way to list backing device UUIDs we have data cached for, and 61 * probably how long it's been since we've seen them, and a way to invalidate 62 * dirty data for devices that will never be attached again 63 * 64 * Keep 1 min/5 min/15 min statistics of how busy a block device has been, so 65 * that based on that and how much dirty data we have we can keep writeback 66 * from being starved 67 * 68 * Add a tracepoint or somesuch to watch for writeback starvation 69 * 70 * When btree depth > 1 and splitting an interior node, we have to make sure 71 * alloc_bucket() cannot fail. This should be true but is not completely 72 * obvious. 73 * 74 * Plugging? 75 * 76 * If data write is less than hard sector size of ssd, round up offset in open 77 * bucket to the next whole sector 78 * 79 * Superblock needs to be fleshed out for multiple cache devices 80 * 81 * Add a sysfs tunable for the number of writeback IOs in flight 82 * 83 * Add a sysfs tunable for the number of open data buckets 84 * 85 * IO tracking: Can we track when one process is doing io on behalf of another? 86 * IO tracking: Don't use just an average, weigh more recent stuff higher 87 * 88 * Test module load/unload 89 */ 90 91 #define MAX_NEED_GC 64 92 #define MAX_SAVE_PRIO 72 93 #define MAX_GC_TIMES 100 94 #define MIN_GC_NODES 100 95 #define GC_SLEEP_MS 100 96 97 #define PTR_DIRTY_BIT (((uint64_t) 1 << 36)) 98 99 #define PTR_HASH(c, k) \ 100 (((k)->ptr[0] >> c->bucket_bits) | PTR_GEN(k, 0)) 101 102 #define insert_lock(s, b) ((b)->level <= (s)->lock) 103 104 /* 105 * These macros are for recursing down the btree - they handle the details of 106 * locking and looking up nodes in the cache for you. They're best treated as 107 * mere syntax when reading code that uses them. 108 * 109 * op->lock determines whether we take a read or a write lock at a given depth. 110 * If you've got a read lock and find that you need a write lock (i.e. you're 111 * going to have to split), set op->lock and return -EINTR; btree_root() will 112 * call you again and you'll have the correct lock. 113 */ 114 115 /** 116 * btree - recurse down the btree on a specified key 117 * @fn: function to call, which will be passed the child node 118 * @key: key to recurse on 119 * @b: parent btree node 120 * @op: pointer to struct btree_op 121 */ 122 #define btree(fn, key, b, op, ...) \ 123 ({ \ 124 int _r, l = (b)->level - 1; \ 125 bool _w = l <= (op)->lock; \ 126 struct btree *_child = bch_btree_node_get((b)->c, op, key, l, \ 127 _w, b); \ 128 if (!IS_ERR(_child)) { \ 129 _r = bch_btree_ ## fn(_child, op, ##__VA_ARGS__); \ 130 rw_unlock(_w, _child); \ 131 } else \ 132 _r = PTR_ERR(_child); \ 133 _r; \ 134 }) 135 136 /** 137 * btree_root - call a function on the root of the btree 138 * @fn: function to call, which will be passed the child node 139 * @c: cache set 140 * @op: pointer to struct btree_op 141 */ 142 #define btree_root(fn, c, op, ...) \ 143 ({ \ 144 int _r = -EINTR; \ 145 do { \ 146 struct btree *_b = (c)->root; \ 147 bool _w = insert_lock(op, _b); \ 148 rw_lock(_w, _b, _b->level); \ 149 if (_b == (c)->root && \ 150 _w == insert_lock(op, _b)) { \ 151 _r = bch_btree_ ## fn(_b, op, ##__VA_ARGS__); \ 152 } \ 153 rw_unlock(_w, _b); \ 154 bch_cannibalize_unlock(c); \ 155 if (_r == -EINTR) \ 156 schedule(); \ 157 } while (_r == -EINTR); \ 158 \ 159 finish_wait(&(c)->btree_cache_wait, &(op)->wait); \ 160 _r; \ 161 }) 162 163 static inline struct bset *write_block(struct btree *b) 164 { 165 return ((void *) btree_bset_first(b)) + b->written * block_bytes(b->c); 166 } 167 168 static void bch_btree_init_next(struct btree *b) 169 { 170 /* If not a leaf node, always sort */ 171 if (b->level && b->keys.nsets) 172 bch_btree_sort(&b->keys, &b->c->sort); 173 else 174 bch_btree_sort_lazy(&b->keys, &b->c->sort); 175 176 if (b->written < btree_blocks(b)) 177 bch_bset_init_next(&b->keys, write_block(b), 178 bset_magic(&b->c->sb)); 179 180 } 181 182 /* Btree key manipulation */ 183 184 void bkey_put(struct cache_set *c, struct bkey *k) 185 { 186 unsigned int i; 187 188 for (i = 0; i < KEY_PTRS(k); i++) 189 if (ptr_available(c, k, i)) 190 atomic_dec_bug(&PTR_BUCKET(c, k, i)->pin); 191 } 192 193 /* Btree IO */ 194 195 static uint64_t btree_csum_set(struct btree *b, struct bset *i) 196 { 197 uint64_t crc = b->key.ptr[0]; 198 void *data = (void *) i + 8, *end = bset_bkey_last(i); 199 200 crc = bch_crc64_update(crc, data, end - data); 201 return crc ^ 0xffffffffffffffffULL; 202 } 203 204 void bch_btree_node_read_done(struct btree *b) 205 { 206 const char *err = "bad btree header"; 207 struct bset *i = btree_bset_first(b); 208 struct btree_iter *iter; 209 210 iter = mempool_alloc(&b->c->fill_iter, GFP_NOIO); 211 iter->size = b->c->sb.bucket_size / b->c->sb.block_size; 212 iter->used = 0; 213 214 #ifdef CONFIG_BCACHE_DEBUG 215 iter->b = &b->keys; 216 #endif 217 218 if (!i->seq) 219 goto err; 220 221 for (; 222 b->written < btree_blocks(b) && i->seq == b->keys.set[0].data->seq; 223 i = write_block(b)) { 224 err = "unsupported bset version"; 225 if (i->version > BCACHE_BSET_VERSION) 226 goto err; 227 228 err = "bad btree header"; 229 if (b->written + set_blocks(i, block_bytes(b->c)) > 230 btree_blocks(b)) 231 goto err; 232 233 err = "bad magic"; 234 if (i->magic != bset_magic(&b->c->sb)) 235 goto err; 236 237 err = "bad checksum"; 238 switch (i->version) { 239 case 0: 240 if (i->csum != csum_set(i)) 241 goto err; 242 break; 243 case BCACHE_BSET_VERSION: 244 if (i->csum != btree_csum_set(b, i)) 245 goto err; 246 break; 247 } 248 249 err = "empty set"; 250 if (i != b->keys.set[0].data && !i->keys) 251 goto err; 252 253 bch_btree_iter_push(iter, i->start, bset_bkey_last(i)); 254 255 b->written += set_blocks(i, block_bytes(b->c)); 256 } 257 258 err = "corrupted btree"; 259 for (i = write_block(b); 260 bset_sector_offset(&b->keys, i) < KEY_SIZE(&b->key); 261 i = ((void *) i) + block_bytes(b->c)) 262 if (i->seq == b->keys.set[0].data->seq) 263 goto err; 264 265 bch_btree_sort_and_fix_extents(&b->keys, iter, &b->c->sort); 266 267 i = b->keys.set[0].data; 268 err = "short btree key"; 269 if (b->keys.set[0].size && 270 bkey_cmp(&b->key, &b->keys.set[0].end) < 0) 271 goto err; 272 273 if (b->written < btree_blocks(b)) 274 bch_bset_init_next(&b->keys, write_block(b), 275 bset_magic(&b->c->sb)); 276 out: 277 mempool_free(iter, &b->c->fill_iter); 278 return; 279 err: 280 set_btree_node_io_error(b); 281 bch_cache_set_error(b->c, "%s at bucket %zu, block %u, %u keys", 282 err, PTR_BUCKET_NR(b->c, &b->key, 0), 283 bset_block_offset(b, i), i->keys); 284 goto out; 285 } 286 287 static void btree_node_read_endio(struct bio *bio) 288 { 289 struct closure *cl = bio->bi_private; 290 291 closure_put(cl); 292 } 293 294 static void bch_btree_node_read(struct btree *b) 295 { 296 uint64_t start_time = local_clock(); 297 struct closure cl; 298 struct bio *bio; 299 300 trace_bcache_btree_read(b); 301 302 closure_init_stack(&cl); 303 304 bio = bch_bbio_alloc(b->c); 305 bio->bi_iter.bi_size = KEY_SIZE(&b->key) << 9; 306 bio->bi_end_io = btree_node_read_endio; 307 bio->bi_private = &cl; 308 bio->bi_opf = REQ_OP_READ | REQ_META; 309 310 bch_bio_map(bio, b->keys.set[0].data); 311 312 bch_submit_bbio(bio, b->c, &b->key, 0); 313 closure_sync(&cl); 314 315 if (bio->bi_status) 316 set_btree_node_io_error(b); 317 318 bch_bbio_free(bio, b->c); 319 320 if (btree_node_io_error(b)) 321 goto err; 322 323 bch_btree_node_read_done(b); 324 bch_time_stats_update(&b->c->btree_read_time, start_time); 325 326 return; 327 err: 328 bch_cache_set_error(b->c, "io error reading bucket %zu", 329 PTR_BUCKET_NR(b->c, &b->key, 0)); 330 } 331 332 static void btree_complete_write(struct btree *b, struct btree_write *w) 333 { 334 if (w->prio_blocked && 335 !atomic_sub_return(w->prio_blocked, &b->c->prio_blocked)) 336 wake_up_allocators(b->c); 337 338 if (w->journal) { 339 atomic_dec_bug(w->journal); 340 __closure_wake_up(&b->c->journal.wait); 341 } 342 343 w->prio_blocked = 0; 344 w->journal = NULL; 345 } 346 347 static void btree_node_write_unlock(struct closure *cl) 348 { 349 struct btree *b = container_of(cl, struct btree, io); 350 351 up(&b->io_mutex); 352 } 353 354 static void __btree_node_write_done(struct closure *cl) 355 { 356 struct btree *b = container_of(cl, struct btree, io); 357 struct btree_write *w = btree_prev_write(b); 358 359 bch_bbio_free(b->bio, b->c); 360 b->bio = NULL; 361 btree_complete_write(b, w); 362 363 if (btree_node_dirty(b)) 364 schedule_delayed_work(&b->work, 30 * HZ); 365 366 closure_return_with_destructor(cl, btree_node_write_unlock); 367 } 368 369 static void btree_node_write_done(struct closure *cl) 370 { 371 struct btree *b = container_of(cl, struct btree, io); 372 373 bio_free_pages(b->bio); 374 __btree_node_write_done(cl); 375 } 376 377 static void btree_node_write_endio(struct bio *bio) 378 { 379 struct closure *cl = bio->bi_private; 380 struct btree *b = container_of(cl, struct btree, io); 381 382 if (bio->bi_status) 383 set_btree_node_io_error(b); 384 385 bch_bbio_count_io_errors(b->c, bio, bio->bi_status, "writing btree"); 386 closure_put(cl); 387 } 388 389 static void do_btree_node_write(struct btree *b) 390 { 391 struct closure *cl = &b->io; 392 struct bset *i = btree_bset_last(b); 393 BKEY_PADDED(key) k; 394 395 i->version = BCACHE_BSET_VERSION; 396 i->csum = btree_csum_set(b, i); 397 398 BUG_ON(b->bio); 399 b->bio = bch_bbio_alloc(b->c); 400 401 b->bio->bi_end_io = btree_node_write_endio; 402 b->bio->bi_private = cl; 403 b->bio->bi_iter.bi_size = roundup(set_bytes(i), block_bytes(b->c)); 404 b->bio->bi_opf = REQ_OP_WRITE | REQ_META | REQ_FUA; 405 bch_bio_map(b->bio, i); 406 407 /* 408 * If we're appending to a leaf node, we don't technically need FUA - 409 * this write just needs to be persisted before the next journal write, 410 * which will be marked FLUSH|FUA. 411 * 412 * Similarly if we're writing a new btree root - the pointer is going to 413 * be in the next journal entry. 414 * 415 * But if we're writing a new btree node (that isn't a root) or 416 * appending to a non leaf btree node, we need either FUA or a flush 417 * when we write the parent with the new pointer. FUA is cheaper than a 418 * flush, and writes appending to leaf nodes aren't blocking anything so 419 * just make all btree node writes FUA to keep things sane. 420 */ 421 422 bkey_copy(&k.key, &b->key); 423 SET_PTR_OFFSET(&k.key, 0, PTR_OFFSET(&k.key, 0) + 424 bset_sector_offset(&b->keys, i)); 425 426 if (!bch_bio_alloc_pages(b->bio, __GFP_NOWARN|GFP_NOWAIT)) { 427 int j; 428 struct bio_vec *bv; 429 void *base = (void *) ((unsigned long) i & ~(PAGE_SIZE - 1)); 430 431 bio_for_each_segment_all(bv, b->bio, j) 432 memcpy(page_address(bv->bv_page), 433 base + j * PAGE_SIZE, PAGE_SIZE); 434 435 bch_submit_bbio(b->bio, b->c, &k.key, 0); 436 437 continue_at(cl, btree_node_write_done, NULL); 438 } else { 439 /* 440 * No problem for multipage bvec since the bio is 441 * just allocated 442 */ 443 b->bio->bi_vcnt = 0; 444 bch_bio_map(b->bio, i); 445 446 bch_submit_bbio(b->bio, b->c, &k.key, 0); 447 448 closure_sync(cl); 449 continue_at_nobarrier(cl, __btree_node_write_done, NULL); 450 } 451 } 452 453 void __bch_btree_node_write(struct btree *b, struct closure *parent) 454 { 455 struct bset *i = btree_bset_last(b); 456 457 lockdep_assert_held(&b->write_lock); 458 459 trace_bcache_btree_write(b); 460 461 BUG_ON(current->bio_list); 462 BUG_ON(b->written >= btree_blocks(b)); 463 BUG_ON(b->written && !i->keys); 464 BUG_ON(btree_bset_first(b)->seq != i->seq); 465 bch_check_keys(&b->keys, "writing"); 466 467 cancel_delayed_work(&b->work); 468 469 /* If caller isn't waiting for write, parent refcount is cache set */ 470 down(&b->io_mutex); 471 closure_init(&b->io, parent ?: &b->c->cl); 472 473 clear_bit(BTREE_NODE_dirty, &b->flags); 474 change_bit(BTREE_NODE_write_idx, &b->flags); 475 476 do_btree_node_write(b); 477 478 atomic_long_add(set_blocks(i, block_bytes(b->c)) * b->c->sb.block_size, 479 &PTR_CACHE(b->c, &b->key, 0)->btree_sectors_written); 480 481 b->written += set_blocks(i, block_bytes(b->c)); 482 } 483 484 void bch_btree_node_write(struct btree *b, struct closure *parent) 485 { 486 unsigned int nsets = b->keys.nsets; 487 488 lockdep_assert_held(&b->lock); 489 490 __bch_btree_node_write(b, parent); 491 492 /* 493 * do verify if there was more than one set initially (i.e. we did a 494 * sort) and we sorted down to a single set: 495 */ 496 if (nsets && !b->keys.nsets) 497 bch_btree_verify(b); 498 499 bch_btree_init_next(b); 500 } 501 502 static void bch_btree_node_write_sync(struct btree *b) 503 { 504 struct closure cl; 505 506 closure_init_stack(&cl); 507 508 mutex_lock(&b->write_lock); 509 bch_btree_node_write(b, &cl); 510 mutex_unlock(&b->write_lock); 511 512 closure_sync(&cl); 513 } 514 515 static void btree_node_write_work(struct work_struct *w) 516 { 517 struct btree *b = container_of(to_delayed_work(w), struct btree, work); 518 519 mutex_lock(&b->write_lock); 520 if (btree_node_dirty(b)) 521 __bch_btree_node_write(b, NULL); 522 mutex_unlock(&b->write_lock); 523 } 524 525 static void bch_btree_leaf_dirty(struct btree *b, atomic_t *journal_ref) 526 { 527 struct bset *i = btree_bset_last(b); 528 struct btree_write *w = btree_current_write(b); 529 530 lockdep_assert_held(&b->write_lock); 531 532 BUG_ON(!b->written); 533 BUG_ON(!i->keys); 534 535 if (!btree_node_dirty(b)) 536 schedule_delayed_work(&b->work, 30 * HZ); 537 538 set_btree_node_dirty(b); 539 540 if (journal_ref) { 541 if (w->journal && 542 journal_pin_cmp(b->c, w->journal, journal_ref)) { 543 atomic_dec_bug(w->journal); 544 w->journal = NULL; 545 } 546 547 if (!w->journal) { 548 w->journal = journal_ref; 549 atomic_inc(w->journal); 550 } 551 } 552 553 /* Force write if set is too big */ 554 if (set_bytes(i) > PAGE_SIZE - 48 && 555 !current->bio_list) 556 bch_btree_node_write(b, NULL); 557 } 558 559 /* 560 * Btree in memory cache - allocation/freeing 561 * mca -> memory cache 562 */ 563 564 #define mca_reserve(c) (((c->root && c->root->level) \ 565 ? c->root->level : 1) * 8 + 16) 566 #define mca_can_free(c) \ 567 max_t(int, 0, c->btree_cache_used - mca_reserve(c)) 568 569 static void mca_data_free(struct btree *b) 570 { 571 BUG_ON(b->io_mutex.count != 1); 572 573 bch_btree_keys_free(&b->keys); 574 575 b->c->btree_cache_used--; 576 list_move(&b->list, &b->c->btree_cache_freed); 577 } 578 579 static void mca_bucket_free(struct btree *b) 580 { 581 BUG_ON(btree_node_dirty(b)); 582 583 b->key.ptr[0] = 0; 584 hlist_del_init_rcu(&b->hash); 585 list_move(&b->list, &b->c->btree_cache_freeable); 586 } 587 588 static unsigned int btree_order(struct bkey *k) 589 { 590 return ilog2(KEY_SIZE(k) / PAGE_SECTORS ?: 1); 591 } 592 593 static void mca_data_alloc(struct btree *b, struct bkey *k, gfp_t gfp) 594 { 595 if (!bch_btree_keys_alloc(&b->keys, 596 max_t(unsigned int, 597 ilog2(b->c->btree_pages), 598 btree_order(k)), 599 gfp)) { 600 b->c->btree_cache_used++; 601 list_move(&b->list, &b->c->btree_cache); 602 } else { 603 list_move(&b->list, &b->c->btree_cache_freed); 604 } 605 } 606 607 static struct btree *mca_bucket_alloc(struct cache_set *c, 608 struct bkey *k, gfp_t gfp) 609 { 610 struct btree *b = kzalloc(sizeof(struct btree), gfp); 611 612 if (!b) 613 return NULL; 614 615 init_rwsem(&b->lock); 616 lockdep_set_novalidate_class(&b->lock); 617 mutex_init(&b->write_lock); 618 lockdep_set_novalidate_class(&b->write_lock); 619 INIT_LIST_HEAD(&b->list); 620 INIT_DELAYED_WORK(&b->work, btree_node_write_work); 621 b->c = c; 622 sema_init(&b->io_mutex, 1); 623 624 mca_data_alloc(b, k, gfp); 625 return b; 626 } 627 628 static int mca_reap(struct btree *b, unsigned int min_order, bool flush) 629 { 630 struct closure cl; 631 632 closure_init_stack(&cl); 633 lockdep_assert_held(&b->c->bucket_lock); 634 635 if (!down_write_trylock(&b->lock)) 636 return -ENOMEM; 637 638 BUG_ON(btree_node_dirty(b) && !b->keys.set[0].data); 639 640 if (b->keys.page_order < min_order) 641 goto out_unlock; 642 643 if (!flush) { 644 if (btree_node_dirty(b)) 645 goto out_unlock; 646 647 if (down_trylock(&b->io_mutex)) 648 goto out_unlock; 649 up(&b->io_mutex); 650 } 651 652 mutex_lock(&b->write_lock); 653 if (btree_node_dirty(b)) 654 __bch_btree_node_write(b, &cl); 655 mutex_unlock(&b->write_lock); 656 657 closure_sync(&cl); 658 659 /* wait for any in flight btree write */ 660 down(&b->io_mutex); 661 up(&b->io_mutex); 662 663 return 0; 664 out_unlock: 665 rw_unlock(true, b); 666 return -ENOMEM; 667 } 668 669 static unsigned long bch_mca_scan(struct shrinker *shrink, 670 struct shrink_control *sc) 671 { 672 struct cache_set *c = container_of(shrink, struct cache_set, shrink); 673 struct btree *b, *t; 674 unsigned long i, nr = sc->nr_to_scan; 675 unsigned long freed = 0; 676 unsigned int btree_cache_used; 677 678 if (c->shrinker_disabled) 679 return SHRINK_STOP; 680 681 if (c->btree_cache_alloc_lock) 682 return SHRINK_STOP; 683 684 /* Return -1 if we can't do anything right now */ 685 if (sc->gfp_mask & __GFP_IO) 686 mutex_lock(&c->bucket_lock); 687 else if (!mutex_trylock(&c->bucket_lock)) 688 return -1; 689 690 /* 691 * It's _really_ critical that we don't free too many btree nodes - we 692 * have to always leave ourselves a reserve. The reserve is how we 693 * guarantee that allocating memory for a new btree node can always 694 * succeed, so that inserting keys into the btree can always succeed and 695 * IO can always make forward progress: 696 */ 697 nr /= c->btree_pages; 698 nr = min_t(unsigned long, nr, mca_can_free(c)); 699 700 i = 0; 701 btree_cache_used = c->btree_cache_used; 702 list_for_each_entry_safe(b, t, &c->btree_cache_freeable, list) { 703 if (nr <= 0) 704 goto out; 705 706 if (++i > 3 && 707 !mca_reap(b, 0, false)) { 708 mca_data_free(b); 709 rw_unlock(true, b); 710 freed++; 711 } 712 nr--; 713 } 714 715 for (; (nr--) && i < btree_cache_used; i++) { 716 if (list_empty(&c->btree_cache)) 717 goto out; 718 719 b = list_first_entry(&c->btree_cache, struct btree, list); 720 list_rotate_left(&c->btree_cache); 721 722 if (!b->accessed && 723 !mca_reap(b, 0, false)) { 724 mca_bucket_free(b); 725 mca_data_free(b); 726 rw_unlock(true, b); 727 freed++; 728 } else 729 b->accessed = 0; 730 } 731 out: 732 mutex_unlock(&c->bucket_lock); 733 return freed * c->btree_pages; 734 } 735 736 static unsigned long bch_mca_count(struct shrinker *shrink, 737 struct shrink_control *sc) 738 { 739 struct cache_set *c = container_of(shrink, struct cache_set, shrink); 740 741 if (c->shrinker_disabled) 742 return 0; 743 744 if (c->btree_cache_alloc_lock) 745 return 0; 746 747 return mca_can_free(c) * c->btree_pages; 748 } 749 750 void bch_btree_cache_free(struct cache_set *c) 751 { 752 struct btree *b; 753 struct closure cl; 754 755 closure_init_stack(&cl); 756 757 if (c->shrink.list.next) 758 unregister_shrinker(&c->shrink); 759 760 mutex_lock(&c->bucket_lock); 761 762 #ifdef CONFIG_BCACHE_DEBUG 763 if (c->verify_data) 764 list_move(&c->verify_data->list, &c->btree_cache); 765 766 free_pages((unsigned long) c->verify_ondisk, ilog2(bucket_pages(c))); 767 #endif 768 769 list_splice(&c->btree_cache_freeable, 770 &c->btree_cache); 771 772 while (!list_empty(&c->btree_cache)) { 773 b = list_first_entry(&c->btree_cache, struct btree, list); 774 775 if (btree_node_dirty(b)) 776 btree_complete_write(b, btree_current_write(b)); 777 clear_bit(BTREE_NODE_dirty, &b->flags); 778 779 mca_data_free(b); 780 } 781 782 while (!list_empty(&c->btree_cache_freed)) { 783 b = list_first_entry(&c->btree_cache_freed, 784 struct btree, list); 785 list_del(&b->list); 786 cancel_delayed_work_sync(&b->work); 787 kfree(b); 788 } 789 790 mutex_unlock(&c->bucket_lock); 791 } 792 793 int bch_btree_cache_alloc(struct cache_set *c) 794 { 795 unsigned int i; 796 797 for (i = 0; i < mca_reserve(c); i++) 798 if (!mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL)) 799 return -ENOMEM; 800 801 list_splice_init(&c->btree_cache, 802 &c->btree_cache_freeable); 803 804 #ifdef CONFIG_BCACHE_DEBUG 805 mutex_init(&c->verify_lock); 806 807 c->verify_ondisk = (void *) 808 __get_free_pages(GFP_KERNEL, ilog2(bucket_pages(c))); 809 810 c->verify_data = mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL); 811 812 if (c->verify_data && 813 c->verify_data->keys.set->data) 814 list_del_init(&c->verify_data->list); 815 else 816 c->verify_data = NULL; 817 #endif 818 819 c->shrink.count_objects = bch_mca_count; 820 c->shrink.scan_objects = bch_mca_scan; 821 c->shrink.seeks = 4; 822 c->shrink.batch = c->btree_pages * 2; 823 824 if (register_shrinker(&c->shrink)) 825 pr_warn("bcache: %s: could not register shrinker", 826 __func__); 827 828 return 0; 829 } 830 831 /* Btree in memory cache - hash table */ 832 833 static struct hlist_head *mca_hash(struct cache_set *c, struct bkey *k) 834 { 835 return &c->bucket_hash[hash_32(PTR_HASH(c, k), BUCKET_HASH_BITS)]; 836 } 837 838 static struct btree *mca_find(struct cache_set *c, struct bkey *k) 839 { 840 struct btree *b; 841 842 rcu_read_lock(); 843 hlist_for_each_entry_rcu(b, mca_hash(c, k), hash) 844 if (PTR_HASH(c, &b->key) == PTR_HASH(c, k)) 845 goto out; 846 b = NULL; 847 out: 848 rcu_read_unlock(); 849 return b; 850 } 851 852 static int mca_cannibalize_lock(struct cache_set *c, struct btree_op *op) 853 { 854 struct task_struct *old; 855 856 old = cmpxchg(&c->btree_cache_alloc_lock, NULL, current); 857 if (old && old != current) { 858 if (op) 859 prepare_to_wait(&c->btree_cache_wait, &op->wait, 860 TASK_UNINTERRUPTIBLE); 861 return -EINTR; 862 } 863 864 return 0; 865 } 866 867 static struct btree *mca_cannibalize(struct cache_set *c, struct btree_op *op, 868 struct bkey *k) 869 { 870 struct btree *b; 871 872 trace_bcache_btree_cache_cannibalize(c); 873 874 if (mca_cannibalize_lock(c, op)) 875 return ERR_PTR(-EINTR); 876 877 list_for_each_entry_reverse(b, &c->btree_cache, list) 878 if (!mca_reap(b, btree_order(k), false)) 879 return b; 880 881 list_for_each_entry_reverse(b, &c->btree_cache, list) 882 if (!mca_reap(b, btree_order(k), true)) 883 return b; 884 885 WARN(1, "btree cache cannibalize failed\n"); 886 return ERR_PTR(-ENOMEM); 887 } 888 889 /* 890 * We can only have one thread cannibalizing other cached btree nodes at a time, 891 * or we'll deadlock. We use an open coded mutex to ensure that, which a 892 * cannibalize_bucket() will take. This means every time we unlock the root of 893 * the btree, we need to release this lock if we have it held. 894 */ 895 static void bch_cannibalize_unlock(struct cache_set *c) 896 { 897 if (c->btree_cache_alloc_lock == current) { 898 c->btree_cache_alloc_lock = NULL; 899 wake_up(&c->btree_cache_wait); 900 } 901 } 902 903 static struct btree *mca_alloc(struct cache_set *c, struct btree_op *op, 904 struct bkey *k, int level) 905 { 906 struct btree *b; 907 908 BUG_ON(current->bio_list); 909 910 lockdep_assert_held(&c->bucket_lock); 911 912 if (mca_find(c, k)) 913 return NULL; 914 915 /* btree_free() doesn't free memory; it sticks the node on the end of 916 * the list. Check if there's any freed nodes there: 917 */ 918 list_for_each_entry(b, &c->btree_cache_freeable, list) 919 if (!mca_reap(b, btree_order(k), false)) 920 goto out; 921 922 /* We never free struct btree itself, just the memory that holds the on 923 * disk node. Check the freed list before allocating a new one: 924 */ 925 list_for_each_entry(b, &c->btree_cache_freed, list) 926 if (!mca_reap(b, 0, false)) { 927 mca_data_alloc(b, k, __GFP_NOWARN|GFP_NOIO); 928 if (!b->keys.set[0].data) 929 goto err; 930 else 931 goto out; 932 } 933 934 b = mca_bucket_alloc(c, k, __GFP_NOWARN|GFP_NOIO); 935 if (!b) 936 goto err; 937 938 BUG_ON(!down_write_trylock(&b->lock)); 939 if (!b->keys.set->data) 940 goto err; 941 out: 942 BUG_ON(b->io_mutex.count != 1); 943 944 bkey_copy(&b->key, k); 945 list_move(&b->list, &c->btree_cache); 946 hlist_del_init_rcu(&b->hash); 947 hlist_add_head_rcu(&b->hash, mca_hash(c, k)); 948 949 lock_set_subclass(&b->lock.dep_map, level + 1, _THIS_IP_); 950 b->parent = (void *) ~0UL; 951 b->flags = 0; 952 b->written = 0; 953 b->level = level; 954 955 if (!b->level) 956 bch_btree_keys_init(&b->keys, &bch_extent_keys_ops, 957 &b->c->expensive_debug_checks); 958 else 959 bch_btree_keys_init(&b->keys, &bch_btree_keys_ops, 960 &b->c->expensive_debug_checks); 961 962 return b; 963 err: 964 if (b) 965 rw_unlock(true, b); 966 967 b = mca_cannibalize(c, op, k); 968 if (!IS_ERR(b)) 969 goto out; 970 971 return b; 972 } 973 974 /* 975 * bch_btree_node_get - find a btree node in the cache and lock it, reading it 976 * in from disk if necessary. 977 * 978 * If IO is necessary and running under generic_make_request, returns -EAGAIN. 979 * 980 * The btree node will have either a read or a write lock held, depending on 981 * level and op->lock. 982 */ 983 struct btree *bch_btree_node_get(struct cache_set *c, struct btree_op *op, 984 struct bkey *k, int level, bool write, 985 struct btree *parent) 986 { 987 int i = 0; 988 struct btree *b; 989 990 BUG_ON(level < 0); 991 retry: 992 b = mca_find(c, k); 993 994 if (!b) { 995 if (current->bio_list) 996 return ERR_PTR(-EAGAIN); 997 998 mutex_lock(&c->bucket_lock); 999 b = mca_alloc(c, op, k, level); 1000 mutex_unlock(&c->bucket_lock); 1001 1002 if (!b) 1003 goto retry; 1004 if (IS_ERR(b)) 1005 return b; 1006 1007 bch_btree_node_read(b); 1008 1009 if (!write) 1010 downgrade_write(&b->lock); 1011 } else { 1012 rw_lock(write, b, level); 1013 if (PTR_HASH(c, &b->key) != PTR_HASH(c, k)) { 1014 rw_unlock(write, b); 1015 goto retry; 1016 } 1017 BUG_ON(b->level != level); 1018 } 1019 1020 if (btree_node_io_error(b)) { 1021 rw_unlock(write, b); 1022 return ERR_PTR(-EIO); 1023 } 1024 1025 BUG_ON(!b->written); 1026 1027 b->parent = parent; 1028 b->accessed = 1; 1029 1030 for (; i <= b->keys.nsets && b->keys.set[i].size; i++) { 1031 prefetch(b->keys.set[i].tree); 1032 prefetch(b->keys.set[i].data); 1033 } 1034 1035 for (; i <= b->keys.nsets; i++) 1036 prefetch(b->keys.set[i].data); 1037 1038 return b; 1039 } 1040 1041 static void btree_node_prefetch(struct btree *parent, struct bkey *k) 1042 { 1043 struct btree *b; 1044 1045 mutex_lock(&parent->c->bucket_lock); 1046 b = mca_alloc(parent->c, NULL, k, parent->level - 1); 1047 mutex_unlock(&parent->c->bucket_lock); 1048 1049 if (!IS_ERR_OR_NULL(b)) { 1050 b->parent = parent; 1051 bch_btree_node_read(b); 1052 rw_unlock(true, b); 1053 } 1054 } 1055 1056 /* Btree alloc */ 1057 1058 static void btree_node_free(struct btree *b) 1059 { 1060 trace_bcache_btree_node_free(b); 1061 1062 BUG_ON(b == b->c->root); 1063 1064 mutex_lock(&b->write_lock); 1065 1066 if (btree_node_dirty(b)) 1067 btree_complete_write(b, btree_current_write(b)); 1068 clear_bit(BTREE_NODE_dirty, &b->flags); 1069 1070 mutex_unlock(&b->write_lock); 1071 1072 cancel_delayed_work(&b->work); 1073 1074 mutex_lock(&b->c->bucket_lock); 1075 bch_bucket_free(b->c, &b->key); 1076 mca_bucket_free(b); 1077 mutex_unlock(&b->c->bucket_lock); 1078 } 1079 1080 struct btree *__bch_btree_node_alloc(struct cache_set *c, struct btree_op *op, 1081 int level, bool wait, 1082 struct btree *parent) 1083 { 1084 BKEY_PADDED(key) k; 1085 struct btree *b = ERR_PTR(-EAGAIN); 1086 1087 mutex_lock(&c->bucket_lock); 1088 retry: 1089 if (__bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, 1, wait)) 1090 goto err; 1091 1092 bkey_put(c, &k.key); 1093 SET_KEY_SIZE(&k.key, c->btree_pages * PAGE_SECTORS); 1094 1095 b = mca_alloc(c, op, &k.key, level); 1096 if (IS_ERR(b)) 1097 goto err_free; 1098 1099 if (!b) { 1100 cache_bug(c, 1101 "Tried to allocate bucket that was in btree cache"); 1102 goto retry; 1103 } 1104 1105 b->accessed = 1; 1106 b->parent = parent; 1107 bch_bset_init_next(&b->keys, b->keys.set->data, bset_magic(&b->c->sb)); 1108 1109 mutex_unlock(&c->bucket_lock); 1110 1111 trace_bcache_btree_node_alloc(b); 1112 return b; 1113 err_free: 1114 bch_bucket_free(c, &k.key); 1115 err: 1116 mutex_unlock(&c->bucket_lock); 1117 1118 trace_bcache_btree_node_alloc_fail(c); 1119 return b; 1120 } 1121 1122 static struct btree *bch_btree_node_alloc(struct cache_set *c, 1123 struct btree_op *op, int level, 1124 struct btree *parent) 1125 { 1126 return __bch_btree_node_alloc(c, op, level, op != NULL, parent); 1127 } 1128 1129 static struct btree *btree_node_alloc_replacement(struct btree *b, 1130 struct btree_op *op) 1131 { 1132 struct btree *n = bch_btree_node_alloc(b->c, op, b->level, b->parent); 1133 1134 if (!IS_ERR_OR_NULL(n)) { 1135 mutex_lock(&n->write_lock); 1136 bch_btree_sort_into(&b->keys, &n->keys, &b->c->sort); 1137 bkey_copy_key(&n->key, &b->key); 1138 mutex_unlock(&n->write_lock); 1139 } 1140 1141 return n; 1142 } 1143 1144 static void make_btree_freeing_key(struct btree *b, struct bkey *k) 1145 { 1146 unsigned int i; 1147 1148 mutex_lock(&b->c->bucket_lock); 1149 1150 atomic_inc(&b->c->prio_blocked); 1151 1152 bkey_copy(k, &b->key); 1153 bkey_copy_key(k, &ZERO_KEY); 1154 1155 for (i = 0; i < KEY_PTRS(k); i++) 1156 SET_PTR_GEN(k, i, 1157 bch_inc_gen(PTR_CACHE(b->c, &b->key, i), 1158 PTR_BUCKET(b->c, &b->key, i))); 1159 1160 mutex_unlock(&b->c->bucket_lock); 1161 } 1162 1163 static int btree_check_reserve(struct btree *b, struct btree_op *op) 1164 { 1165 struct cache_set *c = b->c; 1166 struct cache *ca; 1167 unsigned int i, reserve = (c->root->level - b->level) * 2 + 1; 1168 1169 mutex_lock(&c->bucket_lock); 1170 1171 for_each_cache(ca, c, i) 1172 if (fifo_used(&ca->free[RESERVE_BTREE]) < reserve) { 1173 if (op) 1174 prepare_to_wait(&c->btree_cache_wait, &op->wait, 1175 TASK_UNINTERRUPTIBLE); 1176 mutex_unlock(&c->bucket_lock); 1177 return -EINTR; 1178 } 1179 1180 mutex_unlock(&c->bucket_lock); 1181 1182 return mca_cannibalize_lock(b->c, op); 1183 } 1184 1185 /* Garbage collection */ 1186 1187 static uint8_t __bch_btree_mark_key(struct cache_set *c, int level, 1188 struct bkey *k) 1189 { 1190 uint8_t stale = 0; 1191 unsigned int i; 1192 struct bucket *g; 1193 1194 /* 1195 * ptr_invalid() can't return true for the keys that mark btree nodes as 1196 * freed, but since ptr_bad() returns true we'll never actually use them 1197 * for anything and thus we don't want mark their pointers here 1198 */ 1199 if (!bkey_cmp(k, &ZERO_KEY)) 1200 return stale; 1201 1202 for (i = 0; i < KEY_PTRS(k); i++) { 1203 if (!ptr_available(c, k, i)) 1204 continue; 1205 1206 g = PTR_BUCKET(c, k, i); 1207 1208 if (gen_after(g->last_gc, PTR_GEN(k, i))) 1209 g->last_gc = PTR_GEN(k, i); 1210 1211 if (ptr_stale(c, k, i)) { 1212 stale = max(stale, ptr_stale(c, k, i)); 1213 continue; 1214 } 1215 1216 cache_bug_on(GC_MARK(g) && 1217 (GC_MARK(g) == GC_MARK_METADATA) != (level != 0), 1218 c, "inconsistent ptrs: mark = %llu, level = %i", 1219 GC_MARK(g), level); 1220 1221 if (level) 1222 SET_GC_MARK(g, GC_MARK_METADATA); 1223 else if (KEY_DIRTY(k)) 1224 SET_GC_MARK(g, GC_MARK_DIRTY); 1225 else if (!GC_MARK(g)) 1226 SET_GC_MARK(g, GC_MARK_RECLAIMABLE); 1227 1228 /* guard against overflow */ 1229 SET_GC_SECTORS_USED(g, min_t(unsigned int, 1230 GC_SECTORS_USED(g) + KEY_SIZE(k), 1231 MAX_GC_SECTORS_USED)); 1232 1233 BUG_ON(!GC_SECTORS_USED(g)); 1234 } 1235 1236 return stale; 1237 } 1238 1239 #define btree_mark_key(b, k) __bch_btree_mark_key(b->c, b->level, k) 1240 1241 void bch_initial_mark_key(struct cache_set *c, int level, struct bkey *k) 1242 { 1243 unsigned int i; 1244 1245 for (i = 0; i < KEY_PTRS(k); i++) 1246 if (ptr_available(c, k, i) && 1247 !ptr_stale(c, k, i)) { 1248 struct bucket *b = PTR_BUCKET(c, k, i); 1249 1250 b->gen = PTR_GEN(k, i); 1251 1252 if (level && bkey_cmp(k, &ZERO_KEY)) 1253 b->prio = BTREE_PRIO; 1254 else if (!level && b->prio == BTREE_PRIO) 1255 b->prio = INITIAL_PRIO; 1256 } 1257 1258 __bch_btree_mark_key(c, level, k); 1259 } 1260 1261 void bch_update_bucket_in_use(struct cache_set *c, struct gc_stat *stats) 1262 { 1263 stats->in_use = (c->nbuckets - c->avail_nbuckets) * 100 / c->nbuckets; 1264 } 1265 1266 static bool btree_gc_mark_node(struct btree *b, struct gc_stat *gc) 1267 { 1268 uint8_t stale = 0; 1269 unsigned int keys = 0, good_keys = 0; 1270 struct bkey *k; 1271 struct btree_iter iter; 1272 struct bset_tree *t; 1273 1274 gc->nodes++; 1275 1276 for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid) { 1277 stale = max(stale, btree_mark_key(b, k)); 1278 keys++; 1279 1280 if (bch_ptr_bad(&b->keys, k)) 1281 continue; 1282 1283 gc->key_bytes += bkey_u64s(k); 1284 gc->nkeys++; 1285 good_keys++; 1286 1287 gc->data += KEY_SIZE(k); 1288 } 1289 1290 for (t = b->keys.set; t <= &b->keys.set[b->keys.nsets]; t++) 1291 btree_bug_on(t->size && 1292 bset_written(&b->keys, t) && 1293 bkey_cmp(&b->key, &t->end) < 0, 1294 b, "found short btree key in gc"); 1295 1296 if (b->c->gc_always_rewrite) 1297 return true; 1298 1299 if (stale > 10) 1300 return true; 1301 1302 if ((keys - good_keys) * 2 > keys) 1303 return true; 1304 1305 return false; 1306 } 1307 1308 #define GC_MERGE_NODES 4U 1309 1310 struct gc_merge_info { 1311 struct btree *b; 1312 unsigned int keys; 1313 }; 1314 1315 static int bch_btree_insert_node(struct btree *b, struct btree_op *op, 1316 struct keylist *insert_keys, 1317 atomic_t *journal_ref, 1318 struct bkey *replace_key); 1319 1320 static int btree_gc_coalesce(struct btree *b, struct btree_op *op, 1321 struct gc_stat *gc, struct gc_merge_info *r) 1322 { 1323 unsigned int i, nodes = 0, keys = 0, blocks; 1324 struct btree *new_nodes[GC_MERGE_NODES]; 1325 struct keylist keylist; 1326 struct closure cl; 1327 struct bkey *k; 1328 1329 bch_keylist_init(&keylist); 1330 1331 if (btree_check_reserve(b, NULL)) 1332 return 0; 1333 1334 memset(new_nodes, 0, sizeof(new_nodes)); 1335 closure_init_stack(&cl); 1336 1337 while (nodes < GC_MERGE_NODES && !IS_ERR_OR_NULL(r[nodes].b)) 1338 keys += r[nodes++].keys; 1339 1340 blocks = btree_default_blocks(b->c) * 2 / 3; 1341 1342 if (nodes < 2 || 1343 __set_blocks(b->keys.set[0].data, keys, 1344 block_bytes(b->c)) > blocks * (nodes - 1)) 1345 return 0; 1346 1347 for (i = 0; i < nodes; i++) { 1348 new_nodes[i] = btree_node_alloc_replacement(r[i].b, NULL); 1349 if (IS_ERR_OR_NULL(new_nodes[i])) 1350 goto out_nocoalesce; 1351 } 1352 1353 /* 1354 * We have to check the reserve here, after we've allocated our new 1355 * nodes, to make sure the insert below will succeed - we also check 1356 * before as an optimization to potentially avoid a bunch of expensive 1357 * allocs/sorts 1358 */ 1359 if (btree_check_reserve(b, NULL)) 1360 goto out_nocoalesce; 1361 1362 for (i = 0; i < nodes; i++) 1363 mutex_lock(&new_nodes[i]->write_lock); 1364 1365 for (i = nodes - 1; i > 0; --i) { 1366 struct bset *n1 = btree_bset_first(new_nodes[i]); 1367 struct bset *n2 = btree_bset_first(new_nodes[i - 1]); 1368 struct bkey *k, *last = NULL; 1369 1370 keys = 0; 1371 1372 if (i > 1) { 1373 for (k = n2->start; 1374 k < bset_bkey_last(n2); 1375 k = bkey_next(k)) { 1376 if (__set_blocks(n1, n1->keys + keys + 1377 bkey_u64s(k), 1378 block_bytes(b->c)) > blocks) 1379 break; 1380 1381 last = k; 1382 keys += bkey_u64s(k); 1383 } 1384 } else { 1385 /* 1386 * Last node we're not getting rid of - we're getting 1387 * rid of the node at r[0]. Have to try and fit all of 1388 * the remaining keys into this node; we can't ensure 1389 * they will always fit due to rounding and variable 1390 * length keys (shouldn't be possible in practice, 1391 * though) 1392 */ 1393 if (__set_blocks(n1, n1->keys + n2->keys, 1394 block_bytes(b->c)) > 1395 btree_blocks(new_nodes[i])) 1396 goto out_nocoalesce; 1397 1398 keys = n2->keys; 1399 /* Take the key of the node we're getting rid of */ 1400 last = &r->b->key; 1401 } 1402 1403 BUG_ON(__set_blocks(n1, n1->keys + keys, block_bytes(b->c)) > 1404 btree_blocks(new_nodes[i])); 1405 1406 if (last) 1407 bkey_copy_key(&new_nodes[i]->key, last); 1408 1409 memcpy(bset_bkey_last(n1), 1410 n2->start, 1411 (void *) bset_bkey_idx(n2, keys) - (void *) n2->start); 1412 1413 n1->keys += keys; 1414 r[i].keys = n1->keys; 1415 1416 memmove(n2->start, 1417 bset_bkey_idx(n2, keys), 1418 (void *) bset_bkey_last(n2) - 1419 (void *) bset_bkey_idx(n2, keys)); 1420 1421 n2->keys -= keys; 1422 1423 if (__bch_keylist_realloc(&keylist, 1424 bkey_u64s(&new_nodes[i]->key))) 1425 goto out_nocoalesce; 1426 1427 bch_btree_node_write(new_nodes[i], &cl); 1428 bch_keylist_add(&keylist, &new_nodes[i]->key); 1429 } 1430 1431 for (i = 0; i < nodes; i++) 1432 mutex_unlock(&new_nodes[i]->write_lock); 1433 1434 closure_sync(&cl); 1435 1436 /* We emptied out this node */ 1437 BUG_ON(btree_bset_first(new_nodes[0])->keys); 1438 btree_node_free(new_nodes[0]); 1439 rw_unlock(true, new_nodes[0]); 1440 new_nodes[0] = NULL; 1441 1442 for (i = 0; i < nodes; i++) { 1443 if (__bch_keylist_realloc(&keylist, bkey_u64s(&r[i].b->key))) 1444 goto out_nocoalesce; 1445 1446 make_btree_freeing_key(r[i].b, keylist.top); 1447 bch_keylist_push(&keylist); 1448 } 1449 1450 bch_btree_insert_node(b, op, &keylist, NULL, NULL); 1451 BUG_ON(!bch_keylist_empty(&keylist)); 1452 1453 for (i = 0; i < nodes; i++) { 1454 btree_node_free(r[i].b); 1455 rw_unlock(true, r[i].b); 1456 1457 r[i].b = new_nodes[i]; 1458 } 1459 1460 memmove(r, r + 1, sizeof(r[0]) * (nodes - 1)); 1461 r[nodes - 1].b = ERR_PTR(-EINTR); 1462 1463 trace_bcache_btree_gc_coalesce(nodes); 1464 gc->nodes--; 1465 1466 bch_keylist_free(&keylist); 1467 1468 /* Invalidated our iterator */ 1469 return -EINTR; 1470 1471 out_nocoalesce: 1472 closure_sync(&cl); 1473 bch_keylist_free(&keylist); 1474 1475 while ((k = bch_keylist_pop(&keylist))) 1476 if (!bkey_cmp(k, &ZERO_KEY)) 1477 atomic_dec(&b->c->prio_blocked); 1478 1479 for (i = 0; i < nodes; i++) 1480 if (!IS_ERR_OR_NULL(new_nodes[i])) { 1481 btree_node_free(new_nodes[i]); 1482 rw_unlock(true, new_nodes[i]); 1483 } 1484 return 0; 1485 } 1486 1487 static int btree_gc_rewrite_node(struct btree *b, struct btree_op *op, 1488 struct btree *replace) 1489 { 1490 struct keylist keys; 1491 struct btree *n; 1492 1493 if (btree_check_reserve(b, NULL)) 1494 return 0; 1495 1496 n = btree_node_alloc_replacement(replace, NULL); 1497 1498 /* recheck reserve after allocating replacement node */ 1499 if (btree_check_reserve(b, NULL)) { 1500 btree_node_free(n); 1501 rw_unlock(true, n); 1502 return 0; 1503 } 1504 1505 bch_btree_node_write_sync(n); 1506 1507 bch_keylist_init(&keys); 1508 bch_keylist_add(&keys, &n->key); 1509 1510 make_btree_freeing_key(replace, keys.top); 1511 bch_keylist_push(&keys); 1512 1513 bch_btree_insert_node(b, op, &keys, NULL, NULL); 1514 BUG_ON(!bch_keylist_empty(&keys)); 1515 1516 btree_node_free(replace); 1517 rw_unlock(true, n); 1518 1519 /* Invalidated our iterator */ 1520 return -EINTR; 1521 } 1522 1523 static unsigned int btree_gc_count_keys(struct btree *b) 1524 { 1525 struct bkey *k; 1526 struct btree_iter iter; 1527 unsigned int ret = 0; 1528 1529 for_each_key_filter(&b->keys, k, &iter, bch_ptr_bad) 1530 ret += bkey_u64s(k); 1531 1532 return ret; 1533 } 1534 1535 static size_t btree_gc_min_nodes(struct cache_set *c) 1536 { 1537 size_t min_nodes; 1538 1539 /* 1540 * Since incremental GC would stop 100ms when front 1541 * side I/O comes, so when there are many btree nodes, 1542 * if GC only processes constant (100) nodes each time, 1543 * GC would last a long time, and the front side I/Os 1544 * would run out of the buckets (since no new bucket 1545 * can be allocated during GC), and be blocked again. 1546 * So GC should not process constant nodes, but varied 1547 * nodes according to the number of btree nodes, which 1548 * realized by dividing GC into constant(100) times, 1549 * so when there are many btree nodes, GC can process 1550 * more nodes each time, otherwise, GC will process less 1551 * nodes each time (but no less than MIN_GC_NODES) 1552 */ 1553 min_nodes = c->gc_stats.nodes / MAX_GC_TIMES; 1554 if (min_nodes < MIN_GC_NODES) 1555 min_nodes = MIN_GC_NODES; 1556 1557 return min_nodes; 1558 } 1559 1560 1561 static int btree_gc_recurse(struct btree *b, struct btree_op *op, 1562 struct closure *writes, struct gc_stat *gc) 1563 { 1564 int ret = 0; 1565 bool should_rewrite; 1566 struct bkey *k; 1567 struct btree_iter iter; 1568 struct gc_merge_info r[GC_MERGE_NODES]; 1569 struct gc_merge_info *i, *last = r + ARRAY_SIZE(r) - 1; 1570 1571 bch_btree_iter_init(&b->keys, &iter, &b->c->gc_done); 1572 1573 for (i = r; i < r + ARRAY_SIZE(r); i++) 1574 i->b = ERR_PTR(-EINTR); 1575 1576 while (1) { 1577 k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad); 1578 if (k) { 1579 r->b = bch_btree_node_get(b->c, op, k, b->level - 1, 1580 true, b); 1581 if (IS_ERR(r->b)) { 1582 ret = PTR_ERR(r->b); 1583 break; 1584 } 1585 1586 r->keys = btree_gc_count_keys(r->b); 1587 1588 ret = btree_gc_coalesce(b, op, gc, r); 1589 if (ret) 1590 break; 1591 } 1592 1593 if (!last->b) 1594 break; 1595 1596 if (!IS_ERR(last->b)) { 1597 should_rewrite = btree_gc_mark_node(last->b, gc); 1598 if (should_rewrite) { 1599 ret = btree_gc_rewrite_node(b, op, last->b); 1600 if (ret) 1601 break; 1602 } 1603 1604 if (last->b->level) { 1605 ret = btree_gc_recurse(last->b, op, writes, gc); 1606 if (ret) 1607 break; 1608 } 1609 1610 bkey_copy_key(&b->c->gc_done, &last->b->key); 1611 1612 /* 1613 * Must flush leaf nodes before gc ends, since replace 1614 * operations aren't journalled 1615 */ 1616 mutex_lock(&last->b->write_lock); 1617 if (btree_node_dirty(last->b)) 1618 bch_btree_node_write(last->b, writes); 1619 mutex_unlock(&last->b->write_lock); 1620 rw_unlock(true, last->b); 1621 } 1622 1623 memmove(r + 1, r, sizeof(r[0]) * (GC_MERGE_NODES - 1)); 1624 r->b = NULL; 1625 1626 if (atomic_read(&b->c->search_inflight) && 1627 gc->nodes >= gc->nodes_pre + btree_gc_min_nodes(b->c)) { 1628 gc->nodes_pre = gc->nodes; 1629 ret = -EAGAIN; 1630 break; 1631 } 1632 1633 if (need_resched()) { 1634 ret = -EAGAIN; 1635 break; 1636 } 1637 } 1638 1639 for (i = r; i < r + ARRAY_SIZE(r); i++) 1640 if (!IS_ERR_OR_NULL(i->b)) { 1641 mutex_lock(&i->b->write_lock); 1642 if (btree_node_dirty(i->b)) 1643 bch_btree_node_write(i->b, writes); 1644 mutex_unlock(&i->b->write_lock); 1645 rw_unlock(true, i->b); 1646 } 1647 1648 return ret; 1649 } 1650 1651 static int bch_btree_gc_root(struct btree *b, struct btree_op *op, 1652 struct closure *writes, struct gc_stat *gc) 1653 { 1654 struct btree *n = NULL; 1655 int ret = 0; 1656 bool should_rewrite; 1657 1658 should_rewrite = btree_gc_mark_node(b, gc); 1659 if (should_rewrite) { 1660 n = btree_node_alloc_replacement(b, NULL); 1661 1662 if (!IS_ERR_OR_NULL(n)) { 1663 bch_btree_node_write_sync(n); 1664 1665 bch_btree_set_root(n); 1666 btree_node_free(b); 1667 rw_unlock(true, n); 1668 1669 return -EINTR; 1670 } 1671 } 1672 1673 __bch_btree_mark_key(b->c, b->level + 1, &b->key); 1674 1675 if (b->level) { 1676 ret = btree_gc_recurse(b, op, writes, gc); 1677 if (ret) 1678 return ret; 1679 } 1680 1681 bkey_copy_key(&b->c->gc_done, &b->key); 1682 1683 return ret; 1684 } 1685 1686 static void btree_gc_start(struct cache_set *c) 1687 { 1688 struct cache *ca; 1689 struct bucket *b; 1690 unsigned int i; 1691 1692 if (!c->gc_mark_valid) 1693 return; 1694 1695 mutex_lock(&c->bucket_lock); 1696 1697 c->gc_mark_valid = 0; 1698 c->gc_done = ZERO_KEY; 1699 1700 for_each_cache(ca, c, i) 1701 for_each_bucket(b, ca) { 1702 b->last_gc = b->gen; 1703 if (!atomic_read(&b->pin)) { 1704 SET_GC_MARK(b, 0); 1705 SET_GC_SECTORS_USED(b, 0); 1706 } 1707 } 1708 1709 mutex_unlock(&c->bucket_lock); 1710 } 1711 1712 static void bch_btree_gc_finish(struct cache_set *c) 1713 { 1714 struct bucket *b; 1715 struct cache *ca; 1716 unsigned int i; 1717 1718 mutex_lock(&c->bucket_lock); 1719 1720 set_gc_sectors(c); 1721 c->gc_mark_valid = 1; 1722 c->need_gc = 0; 1723 1724 for (i = 0; i < KEY_PTRS(&c->uuid_bucket); i++) 1725 SET_GC_MARK(PTR_BUCKET(c, &c->uuid_bucket, i), 1726 GC_MARK_METADATA); 1727 1728 /* don't reclaim buckets to which writeback keys point */ 1729 rcu_read_lock(); 1730 for (i = 0; i < c->devices_max_used; i++) { 1731 struct bcache_device *d = c->devices[i]; 1732 struct cached_dev *dc; 1733 struct keybuf_key *w, *n; 1734 unsigned int j; 1735 1736 if (!d || UUID_FLASH_ONLY(&c->uuids[i])) 1737 continue; 1738 dc = container_of(d, struct cached_dev, disk); 1739 1740 spin_lock(&dc->writeback_keys.lock); 1741 rbtree_postorder_for_each_entry_safe(w, n, 1742 &dc->writeback_keys.keys, node) 1743 for (j = 0; j < KEY_PTRS(&w->key); j++) 1744 SET_GC_MARK(PTR_BUCKET(c, &w->key, j), 1745 GC_MARK_DIRTY); 1746 spin_unlock(&dc->writeback_keys.lock); 1747 } 1748 rcu_read_unlock(); 1749 1750 c->avail_nbuckets = 0; 1751 for_each_cache(ca, c, i) { 1752 uint64_t *i; 1753 1754 ca->invalidate_needs_gc = 0; 1755 1756 for (i = ca->sb.d; i < ca->sb.d + ca->sb.keys; i++) 1757 SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA); 1758 1759 for (i = ca->prio_buckets; 1760 i < ca->prio_buckets + prio_buckets(ca) * 2; i++) 1761 SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA); 1762 1763 for_each_bucket(b, ca) { 1764 c->need_gc = max(c->need_gc, bucket_gc_gen(b)); 1765 1766 if (atomic_read(&b->pin)) 1767 continue; 1768 1769 BUG_ON(!GC_MARK(b) && GC_SECTORS_USED(b)); 1770 1771 if (!GC_MARK(b) || GC_MARK(b) == GC_MARK_RECLAIMABLE) 1772 c->avail_nbuckets++; 1773 } 1774 } 1775 1776 mutex_unlock(&c->bucket_lock); 1777 } 1778 1779 static void bch_btree_gc(struct cache_set *c) 1780 { 1781 int ret; 1782 struct gc_stat stats; 1783 struct closure writes; 1784 struct btree_op op; 1785 uint64_t start_time = local_clock(); 1786 1787 trace_bcache_gc_start(c); 1788 1789 memset(&stats, 0, sizeof(struct gc_stat)); 1790 closure_init_stack(&writes); 1791 bch_btree_op_init(&op, SHRT_MAX); 1792 1793 btree_gc_start(c); 1794 1795 /* if CACHE_SET_IO_DISABLE set, gc thread should stop too */ 1796 do { 1797 ret = btree_root(gc_root, c, &op, &writes, &stats); 1798 closure_sync(&writes); 1799 cond_resched(); 1800 1801 if (ret == -EAGAIN) 1802 schedule_timeout_interruptible(msecs_to_jiffies 1803 (GC_SLEEP_MS)); 1804 else if (ret) 1805 pr_warn("gc failed!"); 1806 } while (ret && !test_bit(CACHE_SET_IO_DISABLE, &c->flags)); 1807 1808 bch_btree_gc_finish(c); 1809 wake_up_allocators(c); 1810 1811 bch_time_stats_update(&c->btree_gc_time, start_time); 1812 1813 stats.key_bytes *= sizeof(uint64_t); 1814 stats.data <<= 9; 1815 bch_update_bucket_in_use(c, &stats); 1816 memcpy(&c->gc_stats, &stats, sizeof(struct gc_stat)); 1817 1818 trace_bcache_gc_end(c); 1819 1820 bch_moving_gc(c); 1821 } 1822 1823 static bool gc_should_run(struct cache_set *c) 1824 { 1825 struct cache *ca; 1826 unsigned int i; 1827 1828 for_each_cache(ca, c, i) 1829 if (ca->invalidate_needs_gc) 1830 return true; 1831 1832 if (atomic_read(&c->sectors_to_gc) < 0) 1833 return true; 1834 1835 return false; 1836 } 1837 1838 static int bch_gc_thread(void *arg) 1839 { 1840 struct cache_set *c = arg; 1841 1842 while (1) { 1843 wait_event_interruptible(c->gc_wait, 1844 kthread_should_stop() || 1845 test_bit(CACHE_SET_IO_DISABLE, &c->flags) || 1846 gc_should_run(c)); 1847 1848 if (kthread_should_stop() || 1849 test_bit(CACHE_SET_IO_DISABLE, &c->flags)) 1850 break; 1851 1852 set_gc_sectors(c); 1853 bch_btree_gc(c); 1854 } 1855 1856 wait_for_kthread_stop(); 1857 return 0; 1858 } 1859 1860 int bch_gc_thread_start(struct cache_set *c) 1861 { 1862 c->gc_thread = kthread_run(bch_gc_thread, c, "bcache_gc"); 1863 return PTR_ERR_OR_ZERO(c->gc_thread); 1864 } 1865 1866 /* Initial partial gc */ 1867 1868 static int bch_btree_check_recurse(struct btree *b, struct btree_op *op) 1869 { 1870 int ret = 0; 1871 struct bkey *k, *p = NULL; 1872 struct btree_iter iter; 1873 1874 for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid) 1875 bch_initial_mark_key(b->c, b->level, k); 1876 1877 bch_initial_mark_key(b->c, b->level + 1, &b->key); 1878 1879 if (b->level) { 1880 bch_btree_iter_init(&b->keys, &iter, NULL); 1881 1882 do { 1883 k = bch_btree_iter_next_filter(&iter, &b->keys, 1884 bch_ptr_bad); 1885 if (k) { 1886 btree_node_prefetch(b, k); 1887 /* 1888 * initiallize c->gc_stats.nodes 1889 * for incremental GC 1890 */ 1891 b->c->gc_stats.nodes++; 1892 } 1893 1894 if (p) 1895 ret = btree(check_recurse, p, b, op); 1896 1897 p = k; 1898 } while (p && !ret); 1899 } 1900 1901 return ret; 1902 } 1903 1904 int bch_btree_check(struct cache_set *c) 1905 { 1906 struct btree_op op; 1907 1908 bch_btree_op_init(&op, SHRT_MAX); 1909 1910 return btree_root(check_recurse, c, &op); 1911 } 1912 1913 void bch_initial_gc_finish(struct cache_set *c) 1914 { 1915 struct cache *ca; 1916 struct bucket *b; 1917 unsigned int i; 1918 1919 bch_btree_gc_finish(c); 1920 1921 mutex_lock(&c->bucket_lock); 1922 1923 /* 1924 * We need to put some unused buckets directly on the prio freelist in 1925 * order to get the allocator thread started - it needs freed buckets in 1926 * order to rewrite the prios and gens, and it needs to rewrite prios 1927 * and gens in order to free buckets. 1928 * 1929 * This is only safe for buckets that have no live data in them, which 1930 * there should always be some of. 1931 */ 1932 for_each_cache(ca, c, i) { 1933 for_each_bucket(b, ca) { 1934 if (fifo_full(&ca->free[RESERVE_PRIO]) && 1935 fifo_full(&ca->free[RESERVE_BTREE])) 1936 break; 1937 1938 if (bch_can_invalidate_bucket(ca, b) && 1939 !GC_MARK(b)) { 1940 __bch_invalidate_one_bucket(ca, b); 1941 if (!fifo_push(&ca->free[RESERVE_PRIO], 1942 b - ca->buckets)) 1943 fifo_push(&ca->free[RESERVE_BTREE], 1944 b - ca->buckets); 1945 } 1946 } 1947 } 1948 1949 mutex_unlock(&c->bucket_lock); 1950 } 1951 1952 /* Btree insertion */ 1953 1954 static bool btree_insert_key(struct btree *b, struct bkey *k, 1955 struct bkey *replace_key) 1956 { 1957 unsigned int status; 1958 1959 BUG_ON(bkey_cmp(k, &b->key) > 0); 1960 1961 status = bch_btree_insert_key(&b->keys, k, replace_key); 1962 if (status != BTREE_INSERT_STATUS_NO_INSERT) { 1963 bch_check_keys(&b->keys, "%u for %s", status, 1964 replace_key ? "replace" : "insert"); 1965 1966 trace_bcache_btree_insert_key(b, k, replace_key != NULL, 1967 status); 1968 return true; 1969 } else 1970 return false; 1971 } 1972 1973 static size_t insert_u64s_remaining(struct btree *b) 1974 { 1975 long ret = bch_btree_keys_u64s_remaining(&b->keys); 1976 1977 /* 1978 * Might land in the middle of an existing extent and have to split it 1979 */ 1980 if (b->keys.ops->is_extents) 1981 ret -= KEY_MAX_U64S; 1982 1983 return max(ret, 0L); 1984 } 1985 1986 static bool bch_btree_insert_keys(struct btree *b, struct btree_op *op, 1987 struct keylist *insert_keys, 1988 struct bkey *replace_key) 1989 { 1990 bool ret = false; 1991 int oldsize = bch_count_data(&b->keys); 1992 1993 while (!bch_keylist_empty(insert_keys)) { 1994 struct bkey *k = insert_keys->keys; 1995 1996 if (bkey_u64s(k) > insert_u64s_remaining(b)) 1997 break; 1998 1999 if (bkey_cmp(k, &b->key) <= 0) { 2000 if (!b->level) 2001 bkey_put(b->c, k); 2002 2003 ret |= btree_insert_key(b, k, replace_key); 2004 bch_keylist_pop_front(insert_keys); 2005 } else if (bkey_cmp(&START_KEY(k), &b->key) < 0) { 2006 BKEY_PADDED(key) temp; 2007 bkey_copy(&temp.key, insert_keys->keys); 2008 2009 bch_cut_back(&b->key, &temp.key); 2010 bch_cut_front(&b->key, insert_keys->keys); 2011 2012 ret |= btree_insert_key(b, &temp.key, replace_key); 2013 break; 2014 } else { 2015 break; 2016 } 2017 } 2018 2019 if (!ret) 2020 op->insert_collision = true; 2021 2022 BUG_ON(!bch_keylist_empty(insert_keys) && b->level); 2023 2024 BUG_ON(bch_count_data(&b->keys) < oldsize); 2025 return ret; 2026 } 2027 2028 static int btree_split(struct btree *b, struct btree_op *op, 2029 struct keylist *insert_keys, 2030 struct bkey *replace_key) 2031 { 2032 bool split; 2033 struct btree *n1, *n2 = NULL, *n3 = NULL; 2034 uint64_t start_time = local_clock(); 2035 struct closure cl; 2036 struct keylist parent_keys; 2037 2038 closure_init_stack(&cl); 2039 bch_keylist_init(&parent_keys); 2040 2041 if (btree_check_reserve(b, op)) { 2042 if (!b->level) 2043 return -EINTR; 2044 else 2045 WARN(1, "insufficient reserve for split\n"); 2046 } 2047 2048 n1 = btree_node_alloc_replacement(b, op); 2049 if (IS_ERR(n1)) 2050 goto err; 2051 2052 split = set_blocks(btree_bset_first(n1), 2053 block_bytes(n1->c)) > (btree_blocks(b) * 4) / 5; 2054 2055 if (split) { 2056 unsigned int keys = 0; 2057 2058 trace_bcache_btree_node_split(b, btree_bset_first(n1)->keys); 2059 2060 n2 = bch_btree_node_alloc(b->c, op, b->level, b->parent); 2061 if (IS_ERR(n2)) 2062 goto err_free1; 2063 2064 if (!b->parent) { 2065 n3 = bch_btree_node_alloc(b->c, op, b->level + 1, NULL); 2066 if (IS_ERR(n3)) 2067 goto err_free2; 2068 } 2069 2070 mutex_lock(&n1->write_lock); 2071 mutex_lock(&n2->write_lock); 2072 2073 bch_btree_insert_keys(n1, op, insert_keys, replace_key); 2074 2075 /* 2076 * Has to be a linear search because we don't have an auxiliary 2077 * search tree yet 2078 */ 2079 2080 while (keys < (btree_bset_first(n1)->keys * 3) / 5) 2081 keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1), 2082 keys)); 2083 2084 bkey_copy_key(&n1->key, 2085 bset_bkey_idx(btree_bset_first(n1), keys)); 2086 keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1), keys)); 2087 2088 btree_bset_first(n2)->keys = btree_bset_first(n1)->keys - keys; 2089 btree_bset_first(n1)->keys = keys; 2090 2091 memcpy(btree_bset_first(n2)->start, 2092 bset_bkey_last(btree_bset_first(n1)), 2093 btree_bset_first(n2)->keys * sizeof(uint64_t)); 2094 2095 bkey_copy_key(&n2->key, &b->key); 2096 2097 bch_keylist_add(&parent_keys, &n2->key); 2098 bch_btree_node_write(n2, &cl); 2099 mutex_unlock(&n2->write_lock); 2100 rw_unlock(true, n2); 2101 } else { 2102 trace_bcache_btree_node_compact(b, btree_bset_first(n1)->keys); 2103 2104 mutex_lock(&n1->write_lock); 2105 bch_btree_insert_keys(n1, op, insert_keys, replace_key); 2106 } 2107 2108 bch_keylist_add(&parent_keys, &n1->key); 2109 bch_btree_node_write(n1, &cl); 2110 mutex_unlock(&n1->write_lock); 2111 2112 if (n3) { 2113 /* Depth increases, make a new root */ 2114 mutex_lock(&n3->write_lock); 2115 bkey_copy_key(&n3->key, &MAX_KEY); 2116 bch_btree_insert_keys(n3, op, &parent_keys, NULL); 2117 bch_btree_node_write(n3, &cl); 2118 mutex_unlock(&n3->write_lock); 2119 2120 closure_sync(&cl); 2121 bch_btree_set_root(n3); 2122 rw_unlock(true, n3); 2123 } else if (!b->parent) { 2124 /* Root filled up but didn't need to be split */ 2125 closure_sync(&cl); 2126 bch_btree_set_root(n1); 2127 } else { 2128 /* Split a non root node */ 2129 closure_sync(&cl); 2130 make_btree_freeing_key(b, parent_keys.top); 2131 bch_keylist_push(&parent_keys); 2132 2133 bch_btree_insert_node(b->parent, op, &parent_keys, NULL, NULL); 2134 BUG_ON(!bch_keylist_empty(&parent_keys)); 2135 } 2136 2137 btree_node_free(b); 2138 rw_unlock(true, n1); 2139 2140 bch_time_stats_update(&b->c->btree_split_time, start_time); 2141 2142 return 0; 2143 err_free2: 2144 bkey_put(b->c, &n2->key); 2145 btree_node_free(n2); 2146 rw_unlock(true, n2); 2147 err_free1: 2148 bkey_put(b->c, &n1->key); 2149 btree_node_free(n1); 2150 rw_unlock(true, n1); 2151 err: 2152 WARN(1, "bcache: btree split failed (level %u)", b->level); 2153 2154 if (n3 == ERR_PTR(-EAGAIN) || 2155 n2 == ERR_PTR(-EAGAIN) || 2156 n1 == ERR_PTR(-EAGAIN)) 2157 return -EAGAIN; 2158 2159 return -ENOMEM; 2160 } 2161 2162 static int bch_btree_insert_node(struct btree *b, struct btree_op *op, 2163 struct keylist *insert_keys, 2164 atomic_t *journal_ref, 2165 struct bkey *replace_key) 2166 { 2167 struct closure cl; 2168 2169 BUG_ON(b->level && replace_key); 2170 2171 closure_init_stack(&cl); 2172 2173 mutex_lock(&b->write_lock); 2174 2175 if (write_block(b) != btree_bset_last(b) && 2176 b->keys.last_set_unwritten) 2177 bch_btree_init_next(b); /* just wrote a set */ 2178 2179 if (bch_keylist_nkeys(insert_keys) > insert_u64s_remaining(b)) { 2180 mutex_unlock(&b->write_lock); 2181 goto split; 2182 } 2183 2184 BUG_ON(write_block(b) != btree_bset_last(b)); 2185 2186 if (bch_btree_insert_keys(b, op, insert_keys, replace_key)) { 2187 if (!b->level) 2188 bch_btree_leaf_dirty(b, journal_ref); 2189 else 2190 bch_btree_node_write(b, &cl); 2191 } 2192 2193 mutex_unlock(&b->write_lock); 2194 2195 /* wait for btree node write if necessary, after unlock */ 2196 closure_sync(&cl); 2197 2198 return 0; 2199 split: 2200 if (current->bio_list) { 2201 op->lock = b->c->root->level + 1; 2202 return -EAGAIN; 2203 } else if (op->lock <= b->c->root->level) { 2204 op->lock = b->c->root->level + 1; 2205 return -EINTR; 2206 } else { 2207 /* Invalidated all iterators */ 2208 int ret = btree_split(b, op, insert_keys, replace_key); 2209 2210 if (bch_keylist_empty(insert_keys)) 2211 return 0; 2212 else if (!ret) 2213 return -EINTR; 2214 return ret; 2215 } 2216 } 2217 2218 int bch_btree_insert_check_key(struct btree *b, struct btree_op *op, 2219 struct bkey *check_key) 2220 { 2221 int ret = -EINTR; 2222 uint64_t btree_ptr = b->key.ptr[0]; 2223 unsigned long seq = b->seq; 2224 struct keylist insert; 2225 bool upgrade = op->lock == -1; 2226 2227 bch_keylist_init(&insert); 2228 2229 if (upgrade) { 2230 rw_unlock(false, b); 2231 rw_lock(true, b, b->level); 2232 2233 if (b->key.ptr[0] != btree_ptr || 2234 b->seq != seq + 1) { 2235 op->lock = b->level; 2236 goto out; 2237 } 2238 } 2239 2240 SET_KEY_PTRS(check_key, 1); 2241 get_random_bytes(&check_key->ptr[0], sizeof(uint64_t)); 2242 2243 SET_PTR_DEV(check_key, 0, PTR_CHECK_DEV); 2244 2245 bch_keylist_add(&insert, check_key); 2246 2247 ret = bch_btree_insert_node(b, op, &insert, NULL, NULL); 2248 2249 BUG_ON(!ret && !bch_keylist_empty(&insert)); 2250 out: 2251 if (upgrade) 2252 downgrade_write(&b->lock); 2253 return ret; 2254 } 2255 2256 struct btree_insert_op { 2257 struct btree_op op; 2258 struct keylist *keys; 2259 atomic_t *journal_ref; 2260 struct bkey *replace_key; 2261 }; 2262 2263 static int btree_insert_fn(struct btree_op *b_op, struct btree *b) 2264 { 2265 struct btree_insert_op *op = container_of(b_op, 2266 struct btree_insert_op, op); 2267 2268 int ret = bch_btree_insert_node(b, &op->op, op->keys, 2269 op->journal_ref, op->replace_key); 2270 if (ret && !bch_keylist_empty(op->keys)) 2271 return ret; 2272 else 2273 return MAP_DONE; 2274 } 2275 2276 int bch_btree_insert(struct cache_set *c, struct keylist *keys, 2277 atomic_t *journal_ref, struct bkey *replace_key) 2278 { 2279 struct btree_insert_op op; 2280 int ret = 0; 2281 2282 BUG_ON(current->bio_list); 2283 BUG_ON(bch_keylist_empty(keys)); 2284 2285 bch_btree_op_init(&op.op, 0); 2286 op.keys = keys; 2287 op.journal_ref = journal_ref; 2288 op.replace_key = replace_key; 2289 2290 while (!ret && !bch_keylist_empty(keys)) { 2291 op.op.lock = 0; 2292 ret = bch_btree_map_leaf_nodes(&op.op, c, 2293 &START_KEY(keys->keys), 2294 btree_insert_fn); 2295 } 2296 2297 if (ret) { 2298 struct bkey *k; 2299 2300 pr_err("error %i", ret); 2301 2302 while ((k = bch_keylist_pop(keys))) 2303 bkey_put(c, k); 2304 } else if (op.op.insert_collision) 2305 ret = -ESRCH; 2306 2307 return ret; 2308 } 2309 2310 void bch_btree_set_root(struct btree *b) 2311 { 2312 unsigned int i; 2313 struct closure cl; 2314 2315 closure_init_stack(&cl); 2316 2317 trace_bcache_btree_set_root(b); 2318 2319 BUG_ON(!b->written); 2320 2321 for (i = 0; i < KEY_PTRS(&b->key); i++) 2322 BUG_ON(PTR_BUCKET(b->c, &b->key, i)->prio != BTREE_PRIO); 2323 2324 mutex_lock(&b->c->bucket_lock); 2325 list_del_init(&b->list); 2326 mutex_unlock(&b->c->bucket_lock); 2327 2328 b->c->root = b; 2329 2330 bch_journal_meta(b->c, &cl); 2331 closure_sync(&cl); 2332 } 2333 2334 /* Map across nodes or keys */ 2335 2336 static int bch_btree_map_nodes_recurse(struct btree *b, struct btree_op *op, 2337 struct bkey *from, 2338 btree_map_nodes_fn *fn, int flags) 2339 { 2340 int ret = MAP_CONTINUE; 2341 2342 if (b->level) { 2343 struct bkey *k; 2344 struct btree_iter iter; 2345 2346 bch_btree_iter_init(&b->keys, &iter, from); 2347 2348 while ((k = bch_btree_iter_next_filter(&iter, &b->keys, 2349 bch_ptr_bad))) { 2350 ret = btree(map_nodes_recurse, k, b, 2351 op, from, fn, flags); 2352 from = NULL; 2353 2354 if (ret != MAP_CONTINUE) 2355 return ret; 2356 } 2357 } 2358 2359 if (!b->level || flags == MAP_ALL_NODES) 2360 ret = fn(op, b); 2361 2362 return ret; 2363 } 2364 2365 int __bch_btree_map_nodes(struct btree_op *op, struct cache_set *c, 2366 struct bkey *from, btree_map_nodes_fn *fn, int flags) 2367 { 2368 return btree_root(map_nodes_recurse, c, op, from, fn, flags); 2369 } 2370 2371 static int bch_btree_map_keys_recurse(struct btree *b, struct btree_op *op, 2372 struct bkey *from, btree_map_keys_fn *fn, 2373 int flags) 2374 { 2375 int ret = MAP_CONTINUE; 2376 struct bkey *k; 2377 struct btree_iter iter; 2378 2379 bch_btree_iter_init(&b->keys, &iter, from); 2380 2381 while ((k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad))) { 2382 ret = !b->level 2383 ? fn(op, b, k) 2384 : btree(map_keys_recurse, k, b, op, from, fn, flags); 2385 from = NULL; 2386 2387 if (ret != MAP_CONTINUE) 2388 return ret; 2389 } 2390 2391 if (!b->level && (flags & MAP_END_KEY)) 2392 ret = fn(op, b, &KEY(KEY_INODE(&b->key), 2393 KEY_OFFSET(&b->key), 0)); 2394 2395 return ret; 2396 } 2397 2398 int bch_btree_map_keys(struct btree_op *op, struct cache_set *c, 2399 struct bkey *from, btree_map_keys_fn *fn, int flags) 2400 { 2401 return btree_root(map_keys_recurse, c, op, from, fn, flags); 2402 } 2403 2404 /* Keybuf code */ 2405 2406 static inline int keybuf_cmp(struct keybuf_key *l, struct keybuf_key *r) 2407 { 2408 /* Overlapping keys compare equal */ 2409 if (bkey_cmp(&l->key, &START_KEY(&r->key)) <= 0) 2410 return -1; 2411 if (bkey_cmp(&START_KEY(&l->key), &r->key) >= 0) 2412 return 1; 2413 return 0; 2414 } 2415 2416 static inline int keybuf_nonoverlapping_cmp(struct keybuf_key *l, 2417 struct keybuf_key *r) 2418 { 2419 return clamp_t(int64_t, bkey_cmp(&l->key, &r->key), -1, 1); 2420 } 2421 2422 struct refill { 2423 struct btree_op op; 2424 unsigned int nr_found; 2425 struct keybuf *buf; 2426 struct bkey *end; 2427 keybuf_pred_fn *pred; 2428 }; 2429 2430 static int refill_keybuf_fn(struct btree_op *op, struct btree *b, 2431 struct bkey *k) 2432 { 2433 struct refill *refill = container_of(op, struct refill, op); 2434 struct keybuf *buf = refill->buf; 2435 int ret = MAP_CONTINUE; 2436 2437 if (bkey_cmp(k, refill->end) >= 0) { 2438 ret = MAP_DONE; 2439 goto out; 2440 } 2441 2442 if (!KEY_SIZE(k)) /* end key */ 2443 goto out; 2444 2445 if (refill->pred(buf, k)) { 2446 struct keybuf_key *w; 2447 2448 spin_lock(&buf->lock); 2449 2450 w = array_alloc(&buf->freelist); 2451 if (!w) { 2452 spin_unlock(&buf->lock); 2453 return MAP_DONE; 2454 } 2455 2456 w->private = NULL; 2457 bkey_copy(&w->key, k); 2458 2459 if (RB_INSERT(&buf->keys, w, node, keybuf_cmp)) 2460 array_free(&buf->freelist, w); 2461 else 2462 refill->nr_found++; 2463 2464 if (array_freelist_empty(&buf->freelist)) 2465 ret = MAP_DONE; 2466 2467 spin_unlock(&buf->lock); 2468 } 2469 out: 2470 buf->last_scanned = *k; 2471 return ret; 2472 } 2473 2474 void bch_refill_keybuf(struct cache_set *c, struct keybuf *buf, 2475 struct bkey *end, keybuf_pred_fn *pred) 2476 { 2477 struct bkey start = buf->last_scanned; 2478 struct refill refill; 2479 2480 cond_resched(); 2481 2482 bch_btree_op_init(&refill.op, -1); 2483 refill.nr_found = 0; 2484 refill.buf = buf; 2485 refill.end = end; 2486 refill.pred = pred; 2487 2488 bch_btree_map_keys(&refill.op, c, &buf->last_scanned, 2489 refill_keybuf_fn, MAP_END_KEY); 2490 2491 trace_bcache_keyscan(refill.nr_found, 2492 KEY_INODE(&start), KEY_OFFSET(&start), 2493 KEY_INODE(&buf->last_scanned), 2494 KEY_OFFSET(&buf->last_scanned)); 2495 2496 spin_lock(&buf->lock); 2497 2498 if (!RB_EMPTY_ROOT(&buf->keys)) { 2499 struct keybuf_key *w; 2500 2501 w = RB_FIRST(&buf->keys, struct keybuf_key, node); 2502 buf->start = START_KEY(&w->key); 2503 2504 w = RB_LAST(&buf->keys, struct keybuf_key, node); 2505 buf->end = w->key; 2506 } else { 2507 buf->start = MAX_KEY; 2508 buf->end = MAX_KEY; 2509 } 2510 2511 spin_unlock(&buf->lock); 2512 } 2513 2514 static void __bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w) 2515 { 2516 rb_erase(&w->node, &buf->keys); 2517 array_free(&buf->freelist, w); 2518 } 2519 2520 void bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w) 2521 { 2522 spin_lock(&buf->lock); 2523 __bch_keybuf_del(buf, w); 2524 spin_unlock(&buf->lock); 2525 } 2526 2527 bool bch_keybuf_check_overlapping(struct keybuf *buf, struct bkey *start, 2528 struct bkey *end) 2529 { 2530 bool ret = false; 2531 struct keybuf_key *p, *w, s; 2532 2533 s.key = *start; 2534 2535 if (bkey_cmp(end, &buf->start) <= 0 || 2536 bkey_cmp(start, &buf->end) >= 0) 2537 return false; 2538 2539 spin_lock(&buf->lock); 2540 w = RB_GREATER(&buf->keys, s, node, keybuf_nonoverlapping_cmp); 2541 2542 while (w && bkey_cmp(&START_KEY(&w->key), end) < 0) { 2543 p = w; 2544 w = RB_NEXT(w, node); 2545 2546 if (p->private) 2547 ret = true; 2548 else 2549 __bch_keybuf_del(buf, p); 2550 } 2551 2552 spin_unlock(&buf->lock); 2553 return ret; 2554 } 2555 2556 struct keybuf_key *bch_keybuf_next(struct keybuf *buf) 2557 { 2558 struct keybuf_key *w; 2559 2560 spin_lock(&buf->lock); 2561 2562 w = RB_FIRST(&buf->keys, struct keybuf_key, node); 2563 2564 while (w && w->private) 2565 w = RB_NEXT(w, node); 2566 2567 if (w) 2568 w->private = ERR_PTR(-EINTR); 2569 2570 spin_unlock(&buf->lock); 2571 return w; 2572 } 2573 2574 struct keybuf_key *bch_keybuf_next_rescan(struct cache_set *c, 2575 struct keybuf *buf, 2576 struct bkey *end, 2577 keybuf_pred_fn *pred) 2578 { 2579 struct keybuf_key *ret; 2580 2581 while (1) { 2582 ret = bch_keybuf_next(buf); 2583 if (ret) 2584 break; 2585 2586 if (bkey_cmp(&buf->last_scanned, end) >= 0) { 2587 pr_debug("scan finished"); 2588 break; 2589 } 2590 2591 bch_refill_keybuf(c, buf, end, pred); 2592 } 2593 2594 return ret; 2595 } 2596 2597 void bch_keybuf_init(struct keybuf *buf) 2598 { 2599 buf->last_scanned = MAX_KEY; 2600 buf->keys = RB_ROOT; 2601 2602 spin_lock_init(&buf->lock); 2603 array_allocator_init(&buf->freelist); 2604 } 2605