xref: /openbmc/linux/drivers/md/bcache/btree.c (revision dc6a81c3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com>
4  *
5  * Uses a block device as cache for other block devices; optimized for SSDs.
6  * All allocation is done in buckets, which should match the erase block size
7  * of the device.
8  *
9  * Buckets containing cached data are kept on a heap sorted by priority;
10  * bucket priority is increased on cache hit, and periodically all the buckets
11  * on the heap have their priority scaled down. This currently is just used as
12  * an LRU but in the future should allow for more intelligent heuristics.
13  *
14  * Buckets have an 8 bit counter; freeing is accomplished by incrementing the
15  * counter. Garbage collection is used to remove stale pointers.
16  *
17  * Indexing is done via a btree; nodes are not necessarily fully sorted, rather
18  * as keys are inserted we only sort the pages that have not yet been written.
19  * When garbage collection is run, we resort the entire node.
20  *
21  * All configuration is done via sysfs; see Documentation/admin-guide/bcache.rst.
22  */
23 
24 #include "bcache.h"
25 #include "btree.h"
26 #include "debug.h"
27 #include "extents.h"
28 
29 #include <linux/slab.h>
30 #include <linux/bitops.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/prefetch.h>
34 #include <linux/random.h>
35 #include <linux/rcupdate.h>
36 #include <linux/sched/clock.h>
37 #include <linux/rculist.h>
38 #include <linux/delay.h>
39 #include <trace/events/bcache.h>
40 
41 /*
42  * Todo:
43  * register_bcache: Return errors out to userspace correctly
44  *
45  * Writeback: don't undirty key until after a cache flush
46  *
47  * Create an iterator for key pointers
48  *
49  * On btree write error, mark bucket such that it won't be freed from the cache
50  *
51  * Journalling:
52  *   Check for bad keys in replay
53  *   Propagate barriers
54  *   Refcount journal entries in journal_replay
55  *
56  * Garbage collection:
57  *   Finish incremental gc
58  *   Gc should free old UUIDs, data for invalid UUIDs
59  *
60  * Provide a way to list backing device UUIDs we have data cached for, and
61  * probably how long it's been since we've seen them, and a way to invalidate
62  * dirty data for devices that will never be attached again
63  *
64  * Keep 1 min/5 min/15 min statistics of how busy a block device has been, so
65  * that based on that and how much dirty data we have we can keep writeback
66  * from being starved
67  *
68  * Add a tracepoint or somesuch to watch for writeback starvation
69  *
70  * When btree depth > 1 and splitting an interior node, we have to make sure
71  * alloc_bucket() cannot fail. This should be true but is not completely
72  * obvious.
73  *
74  * Plugging?
75  *
76  * If data write is less than hard sector size of ssd, round up offset in open
77  * bucket to the next whole sector
78  *
79  * Superblock needs to be fleshed out for multiple cache devices
80  *
81  * Add a sysfs tunable for the number of writeback IOs in flight
82  *
83  * Add a sysfs tunable for the number of open data buckets
84  *
85  * IO tracking: Can we track when one process is doing io on behalf of another?
86  * IO tracking: Don't use just an average, weigh more recent stuff higher
87  *
88  * Test module load/unload
89  */
90 
91 #define MAX_NEED_GC		64
92 #define MAX_SAVE_PRIO		72
93 #define MAX_GC_TIMES		100
94 #define MIN_GC_NODES		100
95 #define GC_SLEEP_MS		100
96 
97 #define PTR_DIRTY_BIT		(((uint64_t) 1 << 36))
98 
99 #define PTR_HASH(c, k)							\
100 	(((k)->ptr[0] >> c->bucket_bits) | PTR_GEN(k, 0))
101 
102 #define insert_lock(s, b)	((b)->level <= (s)->lock)
103 
104 /*
105  * These macros are for recursing down the btree - they handle the details of
106  * locking and looking up nodes in the cache for you. They're best treated as
107  * mere syntax when reading code that uses them.
108  *
109  * op->lock determines whether we take a read or a write lock at a given depth.
110  * If you've got a read lock and find that you need a write lock (i.e. you're
111  * going to have to split), set op->lock and return -EINTR; btree_root() will
112  * call you again and you'll have the correct lock.
113  */
114 
115 /**
116  * btree - recurse down the btree on a specified key
117  * @fn:		function to call, which will be passed the child node
118  * @key:	key to recurse on
119  * @b:		parent btree node
120  * @op:		pointer to struct btree_op
121  */
122 #define btree(fn, key, b, op, ...)					\
123 ({									\
124 	int _r, l = (b)->level - 1;					\
125 	bool _w = l <= (op)->lock;					\
126 	struct btree *_child = bch_btree_node_get((b)->c, op, key, l,	\
127 						  _w, b);		\
128 	if (!IS_ERR(_child)) {						\
129 		_r = bch_btree_ ## fn(_child, op, ##__VA_ARGS__);	\
130 		rw_unlock(_w, _child);					\
131 	} else								\
132 		_r = PTR_ERR(_child);					\
133 	_r;								\
134 })
135 
136 /**
137  * btree_root - call a function on the root of the btree
138  * @fn:		function to call, which will be passed the child node
139  * @c:		cache set
140  * @op:		pointer to struct btree_op
141  */
142 #define btree_root(fn, c, op, ...)					\
143 ({									\
144 	int _r = -EINTR;						\
145 	do {								\
146 		struct btree *_b = (c)->root;				\
147 		bool _w = insert_lock(op, _b);				\
148 		rw_lock(_w, _b, _b->level);				\
149 		if (_b == (c)->root &&					\
150 		    _w == insert_lock(op, _b)) {			\
151 			_r = bch_btree_ ## fn(_b, op, ##__VA_ARGS__);	\
152 		}							\
153 		rw_unlock(_w, _b);					\
154 		bch_cannibalize_unlock(c);				\
155 		if (_r == -EINTR)					\
156 			schedule();					\
157 	} while (_r == -EINTR);						\
158 									\
159 	finish_wait(&(c)->btree_cache_wait, &(op)->wait);		\
160 	_r;								\
161 })
162 
163 static inline struct bset *write_block(struct btree *b)
164 {
165 	return ((void *) btree_bset_first(b)) + b->written * block_bytes(b->c);
166 }
167 
168 static void bch_btree_init_next(struct btree *b)
169 {
170 	/* If not a leaf node, always sort */
171 	if (b->level && b->keys.nsets)
172 		bch_btree_sort(&b->keys, &b->c->sort);
173 	else
174 		bch_btree_sort_lazy(&b->keys, &b->c->sort);
175 
176 	if (b->written < btree_blocks(b))
177 		bch_bset_init_next(&b->keys, write_block(b),
178 				   bset_magic(&b->c->sb));
179 
180 }
181 
182 /* Btree key manipulation */
183 
184 void bkey_put(struct cache_set *c, struct bkey *k)
185 {
186 	unsigned int i;
187 
188 	for (i = 0; i < KEY_PTRS(k); i++)
189 		if (ptr_available(c, k, i))
190 			atomic_dec_bug(&PTR_BUCKET(c, k, i)->pin);
191 }
192 
193 /* Btree IO */
194 
195 static uint64_t btree_csum_set(struct btree *b, struct bset *i)
196 {
197 	uint64_t crc = b->key.ptr[0];
198 	void *data = (void *) i + 8, *end = bset_bkey_last(i);
199 
200 	crc = bch_crc64_update(crc, data, end - data);
201 	return crc ^ 0xffffffffffffffffULL;
202 }
203 
204 void bch_btree_node_read_done(struct btree *b)
205 {
206 	const char *err = "bad btree header";
207 	struct bset *i = btree_bset_first(b);
208 	struct btree_iter *iter;
209 
210 	/*
211 	 * c->fill_iter can allocate an iterator with more memory space
212 	 * than static MAX_BSETS.
213 	 * See the comment arount cache_set->fill_iter.
214 	 */
215 	iter = mempool_alloc(&b->c->fill_iter, GFP_NOIO);
216 	iter->size = b->c->sb.bucket_size / b->c->sb.block_size;
217 	iter->used = 0;
218 
219 #ifdef CONFIG_BCACHE_DEBUG
220 	iter->b = &b->keys;
221 #endif
222 
223 	if (!i->seq)
224 		goto err;
225 
226 	for (;
227 	     b->written < btree_blocks(b) && i->seq == b->keys.set[0].data->seq;
228 	     i = write_block(b)) {
229 		err = "unsupported bset version";
230 		if (i->version > BCACHE_BSET_VERSION)
231 			goto err;
232 
233 		err = "bad btree header";
234 		if (b->written + set_blocks(i, block_bytes(b->c)) >
235 		    btree_blocks(b))
236 			goto err;
237 
238 		err = "bad magic";
239 		if (i->magic != bset_magic(&b->c->sb))
240 			goto err;
241 
242 		err = "bad checksum";
243 		switch (i->version) {
244 		case 0:
245 			if (i->csum != csum_set(i))
246 				goto err;
247 			break;
248 		case BCACHE_BSET_VERSION:
249 			if (i->csum != btree_csum_set(b, i))
250 				goto err;
251 			break;
252 		}
253 
254 		err = "empty set";
255 		if (i != b->keys.set[0].data && !i->keys)
256 			goto err;
257 
258 		bch_btree_iter_push(iter, i->start, bset_bkey_last(i));
259 
260 		b->written += set_blocks(i, block_bytes(b->c));
261 	}
262 
263 	err = "corrupted btree";
264 	for (i = write_block(b);
265 	     bset_sector_offset(&b->keys, i) < KEY_SIZE(&b->key);
266 	     i = ((void *) i) + block_bytes(b->c))
267 		if (i->seq == b->keys.set[0].data->seq)
268 			goto err;
269 
270 	bch_btree_sort_and_fix_extents(&b->keys, iter, &b->c->sort);
271 
272 	i = b->keys.set[0].data;
273 	err = "short btree key";
274 	if (b->keys.set[0].size &&
275 	    bkey_cmp(&b->key, &b->keys.set[0].end) < 0)
276 		goto err;
277 
278 	if (b->written < btree_blocks(b))
279 		bch_bset_init_next(&b->keys, write_block(b),
280 				   bset_magic(&b->c->sb));
281 out:
282 	mempool_free(iter, &b->c->fill_iter);
283 	return;
284 err:
285 	set_btree_node_io_error(b);
286 	bch_cache_set_error(b->c, "%s at bucket %zu, block %u, %u keys",
287 			    err, PTR_BUCKET_NR(b->c, &b->key, 0),
288 			    bset_block_offset(b, i), i->keys);
289 	goto out;
290 }
291 
292 static void btree_node_read_endio(struct bio *bio)
293 {
294 	struct closure *cl = bio->bi_private;
295 
296 	closure_put(cl);
297 }
298 
299 static void bch_btree_node_read(struct btree *b)
300 {
301 	uint64_t start_time = local_clock();
302 	struct closure cl;
303 	struct bio *bio;
304 
305 	trace_bcache_btree_read(b);
306 
307 	closure_init_stack(&cl);
308 
309 	bio = bch_bbio_alloc(b->c);
310 	bio->bi_iter.bi_size = KEY_SIZE(&b->key) << 9;
311 	bio->bi_end_io	= btree_node_read_endio;
312 	bio->bi_private	= &cl;
313 	bio->bi_opf = REQ_OP_READ | REQ_META;
314 
315 	bch_bio_map(bio, b->keys.set[0].data);
316 
317 	bch_submit_bbio(bio, b->c, &b->key, 0);
318 	closure_sync(&cl);
319 
320 	if (bio->bi_status)
321 		set_btree_node_io_error(b);
322 
323 	bch_bbio_free(bio, b->c);
324 
325 	if (btree_node_io_error(b))
326 		goto err;
327 
328 	bch_btree_node_read_done(b);
329 	bch_time_stats_update(&b->c->btree_read_time, start_time);
330 
331 	return;
332 err:
333 	bch_cache_set_error(b->c, "io error reading bucket %zu",
334 			    PTR_BUCKET_NR(b->c, &b->key, 0));
335 }
336 
337 static void btree_complete_write(struct btree *b, struct btree_write *w)
338 {
339 	if (w->prio_blocked &&
340 	    !atomic_sub_return(w->prio_blocked, &b->c->prio_blocked))
341 		wake_up_allocators(b->c);
342 
343 	if (w->journal) {
344 		atomic_dec_bug(w->journal);
345 		__closure_wake_up(&b->c->journal.wait);
346 	}
347 
348 	w->prio_blocked	= 0;
349 	w->journal	= NULL;
350 }
351 
352 static void btree_node_write_unlock(struct closure *cl)
353 {
354 	struct btree *b = container_of(cl, struct btree, io);
355 
356 	up(&b->io_mutex);
357 }
358 
359 static void __btree_node_write_done(struct closure *cl)
360 {
361 	struct btree *b = container_of(cl, struct btree, io);
362 	struct btree_write *w = btree_prev_write(b);
363 
364 	bch_bbio_free(b->bio, b->c);
365 	b->bio = NULL;
366 	btree_complete_write(b, w);
367 
368 	if (btree_node_dirty(b))
369 		schedule_delayed_work(&b->work, 30 * HZ);
370 
371 	closure_return_with_destructor(cl, btree_node_write_unlock);
372 }
373 
374 static void btree_node_write_done(struct closure *cl)
375 {
376 	struct btree *b = container_of(cl, struct btree, io);
377 
378 	bio_free_pages(b->bio);
379 	__btree_node_write_done(cl);
380 }
381 
382 static void btree_node_write_endio(struct bio *bio)
383 {
384 	struct closure *cl = bio->bi_private;
385 	struct btree *b = container_of(cl, struct btree, io);
386 
387 	if (bio->bi_status)
388 		set_btree_node_io_error(b);
389 
390 	bch_bbio_count_io_errors(b->c, bio, bio->bi_status, "writing btree");
391 	closure_put(cl);
392 }
393 
394 static void do_btree_node_write(struct btree *b)
395 {
396 	struct closure *cl = &b->io;
397 	struct bset *i = btree_bset_last(b);
398 	BKEY_PADDED(key) k;
399 
400 	i->version	= BCACHE_BSET_VERSION;
401 	i->csum		= btree_csum_set(b, i);
402 
403 	BUG_ON(b->bio);
404 	b->bio = bch_bbio_alloc(b->c);
405 
406 	b->bio->bi_end_io	= btree_node_write_endio;
407 	b->bio->bi_private	= cl;
408 	b->bio->bi_iter.bi_size	= roundup(set_bytes(i), block_bytes(b->c));
409 	b->bio->bi_opf		= REQ_OP_WRITE | REQ_META | REQ_FUA;
410 	bch_bio_map(b->bio, i);
411 
412 	/*
413 	 * If we're appending to a leaf node, we don't technically need FUA -
414 	 * this write just needs to be persisted before the next journal write,
415 	 * which will be marked FLUSH|FUA.
416 	 *
417 	 * Similarly if we're writing a new btree root - the pointer is going to
418 	 * be in the next journal entry.
419 	 *
420 	 * But if we're writing a new btree node (that isn't a root) or
421 	 * appending to a non leaf btree node, we need either FUA or a flush
422 	 * when we write the parent with the new pointer. FUA is cheaper than a
423 	 * flush, and writes appending to leaf nodes aren't blocking anything so
424 	 * just make all btree node writes FUA to keep things sane.
425 	 */
426 
427 	bkey_copy(&k.key, &b->key);
428 	SET_PTR_OFFSET(&k.key, 0, PTR_OFFSET(&k.key, 0) +
429 		       bset_sector_offset(&b->keys, i));
430 
431 	if (!bch_bio_alloc_pages(b->bio, __GFP_NOWARN|GFP_NOWAIT)) {
432 		struct bio_vec *bv;
433 		void *addr = (void *) ((unsigned long) i & ~(PAGE_SIZE - 1));
434 		struct bvec_iter_all iter_all;
435 
436 		bio_for_each_segment_all(bv, b->bio, iter_all) {
437 			memcpy(page_address(bv->bv_page), addr, PAGE_SIZE);
438 			addr += PAGE_SIZE;
439 		}
440 
441 		bch_submit_bbio(b->bio, b->c, &k.key, 0);
442 
443 		continue_at(cl, btree_node_write_done, NULL);
444 	} else {
445 		/*
446 		 * No problem for multipage bvec since the bio is
447 		 * just allocated
448 		 */
449 		b->bio->bi_vcnt = 0;
450 		bch_bio_map(b->bio, i);
451 
452 		bch_submit_bbio(b->bio, b->c, &k.key, 0);
453 
454 		closure_sync(cl);
455 		continue_at_nobarrier(cl, __btree_node_write_done, NULL);
456 	}
457 }
458 
459 void __bch_btree_node_write(struct btree *b, struct closure *parent)
460 {
461 	struct bset *i = btree_bset_last(b);
462 
463 	lockdep_assert_held(&b->write_lock);
464 
465 	trace_bcache_btree_write(b);
466 
467 	BUG_ON(current->bio_list);
468 	BUG_ON(b->written >= btree_blocks(b));
469 	BUG_ON(b->written && !i->keys);
470 	BUG_ON(btree_bset_first(b)->seq != i->seq);
471 	bch_check_keys(&b->keys, "writing");
472 
473 	cancel_delayed_work(&b->work);
474 
475 	/* If caller isn't waiting for write, parent refcount is cache set */
476 	down(&b->io_mutex);
477 	closure_init(&b->io, parent ?: &b->c->cl);
478 
479 	clear_bit(BTREE_NODE_dirty,	 &b->flags);
480 	change_bit(BTREE_NODE_write_idx, &b->flags);
481 
482 	do_btree_node_write(b);
483 
484 	atomic_long_add(set_blocks(i, block_bytes(b->c)) * b->c->sb.block_size,
485 			&PTR_CACHE(b->c, &b->key, 0)->btree_sectors_written);
486 
487 	b->written += set_blocks(i, block_bytes(b->c));
488 }
489 
490 void bch_btree_node_write(struct btree *b, struct closure *parent)
491 {
492 	unsigned int nsets = b->keys.nsets;
493 
494 	lockdep_assert_held(&b->lock);
495 
496 	__bch_btree_node_write(b, parent);
497 
498 	/*
499 	 * do verify if there was more than one set initially (i.e. we did a
500 	 * sort) and we sorted down to a single set:
501 	 */
502 	if (nsets && !b->keys.nsets)
503 		bch_btree_verify(b);
504 
505 	bch_btree_init_next(b);
506 }
507 
508 static void bch_btree_node_write_sync(struct btree *b)
509 {
510 	struct closure cl;
511 
512 	closure_init_stack(&cl);
513 
514 	mutex_lock(&b->write_lock);
515 	bch_btree_node_write(b, &cl);
516 	mutex_unlock(&b->write_lock);
517 
518 	closure_sync(&cl);
519 }
520 
521 static void btree_node_write_work(struct work_struct *w)
522 {
523 	struct btree *b = container_of(to_delayed_work(w), struct btree, work);
524 
525 	mutex_lock(&b->write_lock);
526 	if (btree_node_dirty(b))
527 		__bch_btree_node_write(b, NULL);
528 	mutex_unlock(&b->write_lock);
529 }
530 
531 static void bch_btree_leaf_dirty(struct btree *b, atomic_t *journal_ref)
532 {
533 	struct bset *i = btree_bset_last(b);
534 	struct btree_write *w = btree_current_write(b);
535 
536 	lockdep_assert_held(&b->write_lock);
537 
538 	BUG_ON(!b->written);
539 	BUG_ON(!i->keys);
540 
541 	if (!btree_node_dirty(b))
542 		schedule_delayed_work(&b->work, 30 * HZ);
543 
544 	set_btree_node_dirty(b);
545 
546 	/*
547 	 * w->journal is always the oldest journal pin of all bkeys
548 	 * in the leaf node, to make sure the oldest jset seq won't
549 	 * be increased before this btree node is flushed.
550 	 */
551 	if (journal_ref) {
552 		if (w->journal &&
553 		    journal_pin_cmp(b->c, w->journal, journal_ref)) {
554 			atomic_dec_bug(w->journal);
555 			w->journal = NULL;
556 		}
557 
558 		if (!w->journal) {
559 			w->journal = journal_ref;
560 			atomic_inc(w->journal);
561 		}
562 	}
563 
564 	/* Force write if set is too big */
565 	if (set_bytes(i) > PAGE_SIZE - 48 &&
566 	    !current->bio_list)
567 		bch_btree_node_write(b, NULL);
568 }
569 
570 /*
571  * Btree in memory cache - allocation/freeing
572  * mca -> memory cache
573  */
574 
575 #define mca_reserve(c)	(((c->root && c->root->level)		\
576 			  ? c->root->level : 1) * 8 + 16)
577 #define mca_can_free(c)						\
578 	max_t(int, 0, c->btree_cache_used - mca_reserve(c))
579 
580 static void mca_data_free(struct btree *b)
581 {
582 	BUG_ON(b->io_mutex.count != 1);
583 
584 	bch_btree_keys_free(&b->keys);
585 
586 	b->c->btree_cache_used--;
587 	list_move(&b->list, &b->c->btree_cache_freed);
588 }
589 
590 static void mca_bucket_free(struct btree *b)
591 {
592 	BUG_ON(btree_node_dirty(b));
593 
594 	b->key.ptr[0] = 0;
595 	hlist_del_init_rcu(&b->hash);
596 	list_move(&b->list, &b->c->btree_cache_freeable);
597 }
598 
599 static unsigned int btree_order(struct bkey *k)
600 {
601 	return ilog2(KEY_SIZE(k) / PAGE_SECTORS ?: 1);
602 }
603 
604 static void mca_data_alloc(struct btree *b, struct bkey *k, gfp_t gfp)
605 {
606 	if (!bch_btree_keys_alloc(&b->keys,
607 				  max_t(unsigned int,
608 					ilog2(b->c->btree_pages),
609 					btree_order(k)),
610 				  gfp)) {
611 		b->c->btree_cache_used++;
612 		list_move(&b->list, &b->c->btree_cache);
613 	} else {
614 		list_move(&b->list, &b->c->btree_cache_freed);
615 	}
616 }
617 
618 static struct btree *mca_bucket_alloc(struct cache_set *c,
619 				      struct bkey *k, gfp_t gfp)
620 {
621 	/*
622 	 * kzalloc() is necessary here for initialization,
623 	 * see code comments in bch_btree_keys_init().
624 	 */
625 	struct btree *b = kzalloc(sizeof(struct btree), gfp);
626 
627 	if (!b)
628 		return NULL;
629 
630 	init_rwsem(&b->lock);
631 	lockdep_set_novalidate_class(&b->lock);
632 	mutex_init(&b->write_lock);
633 	lockdep_set_novalidate_class(&b->write_lock);
634 	INIT_LIST_HEAD(&b->list);
635 	INIT_DELAYED_WORK(&b->work, btree_node_write_work);
636 	b->c = c;
637 	sema_init(&b->io_mutex, 1);
638 
639 	mca_data_alloc(b, k, gfp);
640 	return b;
641 }
642 
643 static int mca_reap(struct btree *b, unsigned int min_order, bool flush)
644 {
645 	struct closure cl;
646 
647 	closure_init_stack(&cl);
648 	lockdep_assert_held(&b->c->bucket_lock);
649 
650 	if (!down_write_trylock(&b->lock))
651 		return -ENOMEM;
652 
653 	BUG_ON(btree_node_dirty(b) && !b->keys.set[0].data);
654 
655 	if (b->keys.page_order < min_order)
656 		goto out_unlock;
657 
658 	if (!flush) {
659 		if (btree_node_dirty(b))
660 			goto out_unlock;
661 
662 		if (down_trylock(&b->io_mutex))
663 			goto out_unlock;
664 		up(&b->io_mutex);
665 	}
666 
667 retry:
668 	/*
669 	 * BTREE_NODE_dirty might be cleared in btree_flush_btree() by
670 	 * __bch_btree_node_write(). To avoid an extra flush, acquire
671 	 * b->write_lock before checking BTREE_NODE_dirty bit.
672 	 */
673 	mutex_lock(&b->write_lock);
674 	/*
675 	 * If this btree node is selected in btree_flush_write() by journal
676 	 * code, delay and retry until the node is flushed by journal code
677 	 * and BTREE_NODE_journal_flush bit cleared by btree_flush_write().
678 	 */
679 	if (btree_node_journal_flush(b)) {
680 		pr_debug("bnode %p is flushing by journal, retry", b);
681 		mutex_unlock(&b->write_lock);
682 		udelay(1);
683 		goto retry;
684 	}
685 
686 	if (btree_node_dirty(b))
687 		__bch_btree_node_write(b, &cl);
688 	mutex_unlock(&b->write_lock);
689 
690 	closure_sync(&cl);
691 
692 	/* wait for any in flight btree write */
693 	down(&b->io_mutex);
694 	up(&b->io_mutex);
695 
696 	return 0;
697 out_unlock:
698 	rw_unlock(true, b);
699 	return -ENOMEM;
700 }
701 
702 static unsigned long bch_mca_scan(struct shrinker *shrink,
703 				  struct shrink_control *sc)
704 {
705 	struct cache_set *c = container_of(shrink, struct cache_set, shrink);
706 	struct btree *b, *t;
707 	unsigned long i, nr = sc->nr_to_scan;
708 	unsigned long freed = 0;
709 	unsigned int btree_cache_used;
710 
711 	if (c->shrinker_disabled)
712 		return SHRINK_STOP;
713 
714 	if (c->btree_cache_alloc_lock)
715 		return SHRINK_STOP;
716 
717 	/* Return -1 if we can't do anything right now */
718 	if (sc->gfp_mask & __GFP_IO)
719 		mutex_lock(&c->bucket_lock);
720 	else if (!mutex_trylock(&c->bucket_lock))
721 		return -1;
722 
723 	/*
724 	 * It's _really_ critical that we don't free too many btree nodes - we
725 	 * have to always leave ourselves a reserve. The reserve is how we
726 	 * guarantee that allocating memory for a new btree node can always
727 	 * succeed, so that inserting keys into the btree can always succeed and
728 	 * IO can always make forward progress:
729 	 */
730 	nr /= c->btree_pages;
731 	if (nr == 0)
732 		nr = 1;
733 	nr = min_t(unsigned long, nr, mca_can_free(c));
734 
735 	i = 0;
736 	btree_cache_used = c->btree_cache_used;
737 	list_for_each_entry_safe_reverse(b, t, &c->btree_cache_freeable, list) {
738 		if (nr <= 0)
739 			goto out;
740 
741 		if (!mca_reap(b, 0, false)) {
742 			mca_data_free(b);
743 			rw_unlock(true, b);
744 			freed++;
745 		}
746 		nr--;
747 		i++;
748 	}
749 
750 	list_for_each_entry_safe_reverse(b, t, &c->btree_cache, list) {
751 		if (nr <= 0 || i >= btree_cache_used)
752 			goto out;
753 
754 		if (!mca_reap(b, 0, false)) {
755 			mca_bucket_free(b);
756 			mca_data_free(b);
757 			rw_unlock(true, b);
758 			freed++;
759 		}
760 
761 		nr--;
762 		i++;
763 	}
764 out:
765 	mutex_unlock(&c->bucket_lock);
766 	return freed * c->btree_pages;
767 }
768 
769 static unsigned long bch_mca_count(struct shrinker *shrink,
770 				   struct shrink_control *sc)
771 {
772 	struct cache_set *c = container_of(shrink, struct cache_set, shrink);
773 
774 	if (c->shrinker_disabled)
775 		return 0;
776 
777 	if (c->btree_cache_alloc_lock)
778 		return 0;
779 
780 	return mca_can_free(c) * c->btree_pages;
781 }
782 
783 void bch_btree_cache_free(struct cache_set *c)
784 {
785 	struct btree *b;
786 	struct closure cl;
787 
788 	closure_init_stack(&cl);
789 
790 	if (c->shrink.list.next)
791 		unregister_shrinker(&c->shrink);
792 
793 	mutex_lock(&c->bucket_lock);
794 
795 #ifdef CONFIG_BCACHE_DEBUG
796 	if (c->verify_data)
797 		list_move(&c->verify_data->list, &c->btree_cache);
798 
799 	free_pages((unsigned long) c->verify_ondisk, ilog2(bucket_pages(c)));
800 #endif
801 
802 	list_splice(&c->btree_cache_freeable,
803 		    &c->btree_cache);
804 
805 	while (!list_empty(&c->btree_cache)) {
806 		b = list_first_entry(&c->btree_cache, struct btree, list);
807 
808 		/*
809 		 * This function is called by cache_set_free(), no I/O
810 		 * request on cache now, it is unnecessary to acquire
811 		 * b->write_lock before clearing BTREE_NODE_dirty anymore.
812 		 */
813 		if (btree_node_dirty(b)) {
814 			btree_complete_write(b, btree_current_write(b));
815 			clear_bit(BTREE_NODE_dirty, &b->flags);
816 		}
817 		mca_data_free(b);
818 	}
819 
820 	while (!list_empty(&c->btree_cache_freed)) {
821 		b = list_first_entry(&c->btree_cache_freed,
822 				     struct btree, list);
823 		list_del(&b->list);
824 		cancel_delayed_work_sync(&b->work);
825 		kfree(b);
826 	}
827 
828 	mutex_unlock(&c->bucket_lock);
829 }
830 
831 int bch_btree_cache_alloc(struct cache_set *c)
832 {
833 	unsigned int i;
834 
835 	for (i = 0; i < mca_reserve(c); i++)
836 		if (!mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL))
837 			return -ENOMEM;
838 
839 	list_splice_init(&c->btree_cache,
840 			 &c->btree_cache_freeable);
841 
842 #ifdef CONFIG_BCACHE_DEBUG
843 	mutex_init(&c->verify_lock);
844 
845 	c->verify_ondisk = (void *)
846 		__get_free_pages(GFP_KERNEL, ilog2(bucket_pages(c)));
847 
848 	c->verify_data = mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL);
849 
850 	if (c->verify_data &&
851 	    c->verify_data->keys.set->data)
852 		list_del_init(&c->verify_data->list);
853 	else
854 		c->verify_data = NULL;
855 #endif
856 
857 	c->shrink.count_objects = bch_mca_count;
858 	c->shrink.scan_objects = bch_mca_scan;
859 	c->shrink.seeks = 4;
860 	c->shrink.batch = c->btree_pages * 2;
861 
862 	if (register_shrinker(&c->shrink))
863 		pr_warn("bcache: %s: could not register shrinker",
864 				__func__);
865 
866 	return 0;
867 }
868 
869 /* Btree in memory cache - hash table */
870 
871 static struct hlist_head *mca_hash(struct cache_set *c, struct bkey *k)
872 {
873 	return &c->bucket_hash[hash_32(PTR_HASH(c, k), BUCKET_HASH_BITS)];
874 }
875 
876 static struct btree *mca_find(struct cache_set *c, struct bkey *k)
877 {
878 	struct btree *b;
879 
880 	rcu_read_lock();
881 	hlist_for_each_entry_rcu(b, mca_hash(c, k), hash)
882 		if (PTR_HASH(c, &b->key) == PTR_HASH(c, k))
883 			goto out;
884 	b = NULL;
885 out:
886 	rcu_read_unlock();
887 	return b;
888 }
889 
890 static int mca_cannibalize_lock(struct cache_set *c, struct btree_op *op)
891 {
892 	spin_lock(&c->btree_cannibalize_lock);
893 	if (likely(c->btree_cache_alloc_lock == NULL)) {
894 		c->btree_cache_alloc_lock = current;
895 	} else if (c->btree_cache_alloc_lock != current) {
896 		if (op)
897 			prepare_to_wait(&c->btree_cache_wait, &op->wait,
898 					TASK_UNINTERRUPTIBLE);
899 		spin_unlock(&c->btree_cannibalize_lock);
900 		return -EINTR;
901 	}
902 	spin_unlock(&c->btree_cannibalize_lock);
903 
904 	return 0;
905 }
906 
907 static struct btree *mca_cannibalize(struct cache_set *c, struct btree_op *op,
908 				     struct bkey *k)
909 {
910 	struct btree *b;
911 
912 	trace_bcache_btree_cache_cannibalize(c);
913 
914 	if (mca_cannibalize_lock(c, op))
915 		return ERR_PTR(-EINTR);
916 
917 	list_for_each_entry_reverse(b, &c->btree_cache, list)
918 		if (!mca_reap(b, btree_order(k), false))
919 			return b;
920 
921 	list_for_each_entry_reverse(b, &c->btree_cache, list)
922 		if (!mca_reap(b, btree_order(k), true))
923 			return b;
924 
925 	WARN(1, "btree cache cannibalize failed\n");
926 	return ERR_PTR(-ENOMEM);
927 }
928 
929 /*
930  * We can only have one thread cannibalizing other cached btree nodes at a time,
931  * or we'll deadlock. We use an open coded mutex to ensure that, which a
932  * cannibalize_bucket() will take. This means every time we unlock the root of
933  * the btree, we need to release this lock if we have it held.
934  */
935 static void bch_cannibalize_unlock(struct cache_set *c)
936 {
937 	spin_lock(&c->btree_cannibalize_lock);
938 	if (c->btree_cache_alloc_lock == current) {
939 		c->btree_cache_alloc_lock = NULL;
940 		wake_up(&c->btree_cache_wait);
941 	}
942 	spin_unlock(&c->btree_cannibalize_lock);
943 }
944 
945 static struct btree *mca_alloc(struct cache_set *c, struct btree_op *op,
946 			       struct bkey *k, int level)
947 {
948 	struct btree *b;
949 
950 	BUG_ON(current->bio_list);
951 
952 	lockdep_assert_held(&c->bucket_lock);
953 
954 	if (mca_find(c, k))
955 		return NULL;
956 
957 	/* btree_free() doesn't free memory; it sticks the node on the end of
958 	 * the list. Check if there's any freed nodes there:
959 	 */
960 	list_for_each_entry(b, &c->btree_cache_freeable, list)
961 		if (!mca_reap(b, btree_order(k), false))
962 			goto out;
963 
964 	/* We never free struct btree itself, just the memory that holds the on
965 	 * disk node. Check the freed list before allocating a new one:
966 	 */
967 	list_for_each_entry(b, &c->btree_cache_freed, list)
968 		if (!mca_reap(b, 0, false)) {
969 			mca_data_alloc(b, k, __GFP_NOWARN|GFP_NOIO);
970 			if (!b->keys.set[0].data)
971 				goto err;
972 			else
973 				goto out;
974 		}
975 
976 	b = mca_bucket_alloc(c, k, __GFP_NOWARN|GFP_NOIO);
977 	if (!b)
978 		goto err;
979 
980 	BUG_ON(!down_write_trylock(&b->lock));
981 	if (!b->keys.set->data)
982 		goto err;
983 out:
984 	BUG_ON(b->io_mutex.count != 1);
985 
986 	bkey_copy(&b->key, k);
987 	list_move(&b->list, &c->btree_cache);
988 	hlist_del_init_rcu(&b->hash);
989 	hlist_add_head_rcu(&b->hash, mca_hash(c, k));
990 
991 	lock_set_subclass(&b->lock.dep_map, level + 1, _THIS_IP_);
992 	b->parent	= (void *) ~0UL;
993 	b->flags	= 0;
994 	b->written	= 0;
995 	b->level	= level;
996 
997 	if (!b->level)
998 		bch_btree_keys_init(&b->keys, &bch_extent_keys_ops,
999 				    &b->c->expensive_debug_checks);
1000 	else
1001 		bch_btree_keys_init(&b->keys, &bch_btree_keys_ops,
1002 				    &b->c->expensive_debug_checks);
1003 
1004 	return b;
1005 err:
1006 	if (b)
1007 		rw_unlock(true, b);
1008 
1009 	b = mca_cannibalize(c, op, k);
1010 	if (!IS_ERR(b))
1011 		goto out;
1012 
1013 	return b;
1014 }
1015 
1016 /*
1017  * bch_btree_node_get - find a btree node in the cache and lock it, reading it
1018  * in from disk if necessary.
1019  *
1020  * If IO is necessary and running under generic_make_request, returns -EAGAIN.
1021  *
1022  * The btree node will have either a read or a write lock held, depending on
1023  * level and op->lock.
1024  */
1025 struct btree *bch_btree_node_get(struct cache_set *c, struct btree_op *op,
1026 				 struct bkey *k, int level, bool write,
1027 				 struct btree *parent)
1028 {
1029 	int i = 0;
1030 	struct btree *b;
1031 
1032 	BUG_ON(level < 0);
1033 retry:
1034 	b = mca_find(c, k);
1035 
1036 	if (!b) {
1037 		if (current->bio_list)
1038 			return ERR_PTR(-EAGAIN);
1039 
1040 		mutex_lock(&c->bucket_lock);
1041 		b = mca_alloc(c, op, k, level);
1042 		mutex_unlock(&c->bucket_lock);
1043 
1044 		if (!b)
1045 			goto retry;
1046 		if (IS_ERR(b))
1047 			return b;
1048 
1049 		bch_btree_node_read(b);
1050 
1051 		if (!write)
1052 			downgrade_write(&b->lock);
1053 	} else {
1054 		rw_lock(write, b, level);
1055 		if (PTR_HASH(c, &b->key) != PTR_HASH(c, k)) {
1056 			rw_unlock(write, b);
1057 			goto retry;
1058 		}
1059 		BUG_ON(b->level != level);
1060 	}
1061 
1062 	if (btree_node_io_error(b)) {
1063 		rw_unlock(write, b);
1064 		return ERR_PTR(-EIO);
1065 	}
1066 
1067 	BUG_ON(!b->written);
1068 
1069 	b->parent = parent;
1070 
1071 	for (; i <= b->keys.nsets && b->keys.set[i].size; i++) {
1072 		prefetch(b->keys.set[i].tree);
1073 		prefetch(b->keys.set[i].data);
1074 	}
1075 
1076 	for (; i <= b->keys.nsets; i++)
1077 		prefetch(b->keys.set[i].data);
1078 
1079 	return b;
1080 }
1081 
1082 static void btree_node_prefetch(struct btree *parent, struct bkey *k)
1083 {
1084 	struct btree *b;
1085 
1086 	mutex_lock(&parent->c->bucket_lock);
1087 	b = mca_alloc(parent->c, NULL, k, parent->level - 1);
1088 	mutex_unlock(&parent->c->bucket_lock);
1089 
1090 	if (!IS_ERR_OR_NULL(b)) {
1091 		b->parent = parent;
1092 		bch_btree_node_read(b);
1093 		rw_unlock(true, b);
1094 	}
1095 }
1096 
1097 /* Btree alloc */
1098 
1099 static void btree_node_free(struct btree *b)
1100 {
1101 	trace_bcache_btree_node_free(b);
1102 
1103 	BUG_ON(b == b->c->root);
1104 
1105 retry:
1106 	mutex_lock(&b->write_lock);
1107 	/*
1108 	 * If the btree node is selected and flushing in btree_flush_write(),
1109 	 * delay and retry until the BTREE_NODE_journal_flush bit cleared,
1110 	 * then it is safe to free the btree node here. Otherwise this btree
1111 	 * node will be in race condition.
1112 	 */
1113 	if (btree_node_journal_flush(b)) {
1114 		mutex_unlock(&b->write_lock);
1115 		pr_debug("bnode %p journal_flush set, retry", b);
1116 		udelay(1);
1117 		goto retry;
1118 	}
1119 
1120 	if (btree_node_dirty(b)) {
1121 		btree_complete_write(b, btree_current_write(b));
1122 		clear_bit(BTREE_NODE_dirty, &b->flags);
1123 	}
1124 
1125 	mutex_unlock(&b->write_lock);
1126 
1127 	cancel_delayed_work(&b->work);
1128 
1129 	mutex_lock(&b->c->bucket_lock);
1130 	bch_bucket_free(b->c, &b->key);
1131 	mca_bucket_free(b);
1132 	mutex_unlock(&b->c->bucket_lock);
1133 }
1134 
1135 struct btree *__bch_btree_node_alloc(struct cache_set *c, struct btree_op *op,
1136 				     int level, bool wait,
1137 				     struct btree *parent)
1138 {
1139 	BKEY_PADDED(key) k;
1140 	struct btree *b = ERR_PTR(-EAGAIN);
1141 
1142 	mutex_lock(&c->bucket_lock);
1143 retry:
1144 	if (__bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, 1, wait))
1145 		goto err;
1146 
1147 	bkey_put(c, &k.key);
1148 	SET_KEY_SIZE(&k.key, c->btree_pages * PAGE_SECTORS);
1149 
1150 	b = mca_alloc(c, op, &k.key, level);
1151 	if (IS_ERR(b))
1152 		goto err_free;
1153 
1154 	if (!b) {
1155 		cache_bug(c,
1156 			"Tried to allocate bucket that was in btree cache");
1157 		goto retry;
1158 	}
1159 
1160 	b->parent = parent;
1161 	bch_bset_init_next(&b->keys, b->keys.set->data, bset_magic(&b->c->sb));
1162 
1163 	mutex_unlock(&c->bucket_lock);
1164 
1165 	trace_bcache_btree_node_alloc(b);
1166 	return b;
1167 err_free:
1168 	bch_bucket_free(c, &k.key);
1169 err:
1170 	mutex_unlock(&c->bucket_lock);
1171 
1172 	trace_bcache_btree_node_alloc_fail(c);
1173 	return b;
1174 }
1175 
1176 static struct btree *bch_btree_node_alloc(struct cache_set *c,
1177 					  struct btree_op *op, int level,
1178 					  struct btree *parent)
1179 {
1180 	return __bch_btree_node_alloc(c, op, level, op != NULL, parent);
1181 }
1182 
1183 static struct btree *btree_node_alloc_replacement(struct btree *b,
1184 						  struct btree_op *op)
1185 {
1186 	struct btree *n = bch_btree_node_alloc(b->c, op, b->level, b->parent);
1187 
1188 	if (!IS_ERR_OR_NULL(n)) {
1189 		mutex_lock(&n->write_lock);
1190 		bch_btree_sort_into(&b->keys, &n->keys, &b->c->sort);
1191 		bkey_copy_key(&n->key, &b->key);
1192 		mutex_unlock(&n->write_lock);
1193 	}
1194 
1195 	return n;
1196 }
1197 
1198 static void make_btree_freeing_key(struct btree *b, struct bkey *k)
1199 {
1200 	unsigned int i;
1201 
1202 	mutex_lock(&b->c->bucket_lock);
1203 
1204 	atomic_inc(&b->c->prio_blocked);
1205 
1206 	bkey_copy(k, &b->key);
1207 	bkey_copy_key(k, &ZERO_KEY);
1208 
1209 	for (i = 0; i < KEY_PTRS(k); i++)
1210 		SET_PTR_GEN(k, i,
1211 			    bch_inc_gen(PTR_CACHE(b->c, &b->key, i),
1212 					PTR_BUCKET(b->c, &b->key, i)));
1213 
1214 	mutex_unlock(&b->c->bucket_lock);
1215 }
1216 
1217 static int btree_check_reserve(struct btree *b, struct btree_op *op)
1218 {
1219 	struct cache_set *c = b->c;
1220 	struct cache *ca;
1221 	unsigned int i, reserve = (c->root->level - b->level) * 2 + 1;
1222 
1223 	mutex_lock(&c->bucket_lock);
1224 
1225 	for_each_cache(ca, c, i)
1226 		if (fifo_used(&ca->free[RESERVE_BTREE]) < reserve) {
1227 			if (op)
1228 				prepare_to_wait(&c->btree_cache_wait, &op->wait,
1229 						TASK_UNINTERRUPTIBLE);
1230 			mutex_unlock(&c->bucket_lock);
1231 			return -EINTR;
1232 		}
1233 
1234 	mutex_unlock(&c->bucket_lock);
1235 
1236 	return mca_cannibalize_lock(b->c, op);
1237 }
1238 
1239 /* Garbage collection */
1240 
1241 static uint8_t __bch_btree_mark_key(struct cache_set *c, int level,
1242 				    struct bkey *k)
1243 {
1244 	uint8_t stale = 0;
1245 	unsigned int i;
1246 	struct bucket *g;
1247 
1248 	/*
1249 	 * ptr_invalid() can't return true for the keys that mark btree nodes as
1250 	 * freed, but since ptr_bad() returns true we'll never actually use them
1251 	 * for anything and thus we don't want mark their pointers here
1252 	 */
1253 	if (!bkey_cmp(k, &ZERO_KEY))
1254 		return stale;
1255 
1256 	for (i = 0; i < KEY_PTRS(k); i++) {
1257 		if (!ptr_available(c, k, i))
1258 			continue;
1259 
1260 		g = PTR_BUCKET(c, k, i);
1261 
1262 		if (gen_after(g->last_gc, PTR_GEN(k, i)))
1263 			g->last_gc = PTR_GEN(k, i);
1264 
1265 		if (ptr_stale(c, k, i)) {
1266 			stale = max(stale, ptr_stale(c, k, i));
1267 			continue;
1268 		}
1269 
1270 		cache_bug_on(GC_MARK(g) &&
1271 			     (GC_MARK(g) == GC_MARK_METADATA) != (level != 0),
1272 			     c, "inconsistent ptrs: mark = %llu, level = %i",
1273 			     GC_MARK(g), level);
1274 
1275 		if (level)
1276 			SET_GC_MARK(g, GC_MARK_METADATA);
1277 		else if (KEY_DIRTY(k))
1278 			SET_GC_MARK(g, GC_MARK_DIRTY);
1279 		else if (!GC_MARK(g))
1280 			SET_GC_MARK(g, GC_MARK_RECLAIMABLE);
1281 
1282 		/* guard against overflow */
1283 		SET_GC_SECTORS_USED(g, min_t(unsigned int,
1284 					     GC_SECTORS_USED(g) + KEY_SIZE(k),
1285 					     MAX_GC_SECTORS_USED));
1286 
1287 		BUG_ON(!GC_SECTORS_USED(g));
1288 	}
1289 
1290 	return stale;
1291 }
1292 
1293 #define btree_mark_key(b, k)	__bch_btree_mark_key(b->c, b->level, k)
1294 
1295 void bch_initial_mark_key(struct cache_set *c, int level, struct bkey *k)
1296 {
1297 	unsigned int i;
1298 
1299 	for (i = 0; i < KEY_PTRS(k); i++)
1300 		if (ptr_available(c, k, i) &&
1301 		    !ptr_stale(c, k, i)) {
1302 			struct bucket *b = PTR_BUCKET(c, k, i);
1303 
1304 			b->gen = PTR_GEN(k, i);
1305 
1306 			if (level && bkey_cmp(k, &ZERO_KEY))
1307 				b->prio = BTREE_PRIO;
1308 			else if (!level && b->prio == BTREE_PRIO)
1309 				b->prio = INITIAL_PRIO;
1310 		}
1311 
1312 	__bch_btree_mark_key(c, level, k);
1313 }
1314 
1315 void bch_update_bucket_in_use(struct cache_set *c, struct gc_stat *stats)
1316 {
1317 	stats->in_use = (c->nbuckets - c->avail_nbuckets) * 100 / c->nbuckets;
1318 }
1319 
1320 static bool btree_gc_mark_node(struct btree *b, struct gc_stat *gc)
1321 {
1322 	uint8_t stale = 0;
1323 	unsigned int keys = 0, good_keys = 0;
1324 	struct bkey *k;
1325 	struct btree_iter iter;
1326 	struct bset_tree *t;
1327 
1328 	gc->nodes++;
1329 
1330 	for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid) {
1331 		stale = max(stale, btree_mark_key(b, k));
1332 		keys++;
1333 
1334 		if (bch_ptr_bad(&b->keys, k))
1335 			continue;
1336 
1337 		gc->key_bytes += bkey_u64s(k);
1338 		gc->nkeys++;
1339 		good_keys++;
1340 
1341 		gc->data += KEY_SIZE(k);
1342 	}
1343 
1344 	for (t = b->keys.set; t <= &b->keys.set[b->keys.nsets]; t++)
1345 		btree_bug_on(t->size &&
1346 			     bset_written(&b->keys, t) &&
1347 			     bkey_cmp(&b->key, &t->end) < 0,
1348 			     b, "found short btree key in gc");
1349 
1350 	if (b->c->gc_always_rewrite)
1351 		return true;
1352 
1353 	if (stale > 10)
1354 		return true;
1355 
1356 	if ((keys - good_keys) * 2 > keys)
1357 		return true;
1358 
1359 	return false;
1360 }
1361 
1362 #define GC_MERGE_NODES	4U
1363 
1364 struct gc_merge_info {
1365 	struct btree	*b;
1366 	unsigned int	keys;
1367 };
1368 
1369 static int bch_btree_insert_node(struct btree *b, struct btree_op *op,
1370 				 struct keylist *insert_keys,
1371 				 atomic_t *journal_ref,
1372 				 struct bkey *replace_key);
1373 
1374 static int btree_gc_coalesce(struct btree *b, struct btree_op *op,
1375 			     struct gc_stat *gc, struct gc_merge_info *r)
1376 {
1377 	unsigned int i, nodes = 0, keys = 0, blocks;
1378 	struct btree *new_nodes[GC_MERGE_NODES];
1379 	struct keylist keylist;
1380 	struct closure cl;
1381 	struct bkey *k;
1382 
1383 	bch_keylist_init(&keylist);
1384 
1385 	if (btree_check_reserve(b, NULL))
1386 		return 0;
1387 
1388 	memset(new_nodes, 0, sizeof(new_nodes));
1389 	closure_init_stack(&cl);
1390 
1391 	while (nodes < GC_MERGE_NODES && !IS_ERR_OR_NULL(r[nodes].b))
1392 		keys += r[nodes++].keys;
1393 
1394 	blocks = btree_default_blocks(b->c) * 2 / 3;
1395 
1396 	if (nodes < 2 ||
1397 	    __set_blocks(b->keys.set[0].data, keys,
1398 			 block_bytes(b->c)) > blocks * (nodes - 1))
1399 		return 0;
1400 
1401 	for (i = 0; i < nodes; i++) {
1402 		new_nodes[i] = btree_node_alloc_replacement(r[i].b, NULL);
1403 		if (IS_ERR_OR_NULL(new_nodes[i]))
1404 			goto out_nocoalesce;
1405 	}
1406 
1407 	/*
1408 	 * We have to check the reserve here, after we've allocated our new
1409 	 * nodes, to make sure the insert below will succeed - we also check
1410 	 * before as an optimization to potentially avoid a bunch of expensive
1411 	 * allocs/sorts
1412 	 */
1413 	if (btree_check_reserve(b, NULL))
1414 		goto out_nocoalesce;
1415 
1416 	for (i = 0; i < nodes; i++)
1417 		mutex_lock(&new_nodes[i]->write_lock);
1418 
1419 	for (i = nodes - 1; i > 0; --i) {
1420 		struct bset *n1 = btree_bset_first(new_nodes[i]);
1421 		struct bset *n2 = btree_bset_first(new_nodes[i - 1]);
1422 		struct bkey *k, *last = NULL;
1423 
1424 		keys = 0;
1425 
1426 		if (i > 1) {
1427 			for (k = n2->start;
1428 			     k < bset_bkey_last(n2);
1429 			     k = bkey_next(k)) {
1430 				if (__set_blocks(n1, n1->keys + keys +
1431 						 bkey_u64s(k),
1432 						 block_bytes(b->c)) > blocks)
1433 					break;
1434 
1435 				last = k;
1436 				keys += bkey_u64s(k);
1437 			}
1438 		} else {
1439 			/*
1440 			 * Last node we're not getting rid of - we're getting
1441 			 * rid of the node at r[0]. Have to try and fit all of
1442 			 * the remaining keys into this node; we can't ensure
1443 			 * they will always fit due to rounding and variable
1444 			 * length keys (shouldn't be possible in practice,
1445 			 * though)
1446 			 */
1447 			if (__set_blocks(n1, n1->keys + n2->keys,
1448 					 block_bytes(b->c)) >
1449 			    btree_blocks(new_nodes[i]))
1450 				goto out_nocoalesce;
1451 
1452 			keys = n2->keys;
1453 			/* Take the key of the node we're getting rid of */
1454 			last = &r->b->key;
1455 		}
1456 
1457 		BUG_ON(__set_blocks(n1, n1->keys + keys, block_bytes(b->c)) >
1458 		       btree_blocks(new_nodes[i]));
1459 
1460 		if (last)
1461 			bkey_copy_key(&new_nodes[i]->key, last);
1462 
1463 		memcpy(bset_bkey_last(n1),
1464 		       n2->start,
1465 		       (void *) bset_bkey_idx(n2, keys) - (void *) n2->start);
1466 
1467 		n1->keys += keys;
1468 		r[i].keys = n1->keys;
1469 
1470 		memmove(n2->start,
1471 			bset_bkey_idx(n2, keys),
1472 			(void *) bset_bkey_last(n2) -
1473 			(void *) bset_bkey_idx(n2, keys));
1474 
1475 		n2->keys -= keys;
1476 
1477 		if (__bch_keylist_realloc(&keylist,
1478 					  bkey_u64s(&new_nodes[i]->key)))
1479 			goto out_nocoalesce;
1480 
1481 		bch_btree_node_write(new_nodes[i], &cl);
1482 		bch_keylist_add(&keylist, &new_nodes[i]->key);
1483 	}
1484 
1485 	for (i = 0; i < nodes; i++)
1486 		mutex_unlock(&new_nodes[i]->write_lock);
1487 
1488 	closure_sync(&cl);
1489 
1490 	/* We emptied out this node */
1491 	BUG_ON(btree_bset_first(new_nodes[0])->keys);
1492 	btree_node_free(new_nodes[0]);
1493 	rw_unlock(true, new_nodes[0]);
1494 	new_nodes[0] = NULL;
1495 
1496 	for (i = 0; i < nodes; i++) {
1497 		if (__bch_keylist_realloc(&keylist, bkey_u64s(&r[i].b->key)))
1498 			goto out_nocoalesce;
1499 
1500 		make_btree_freeing_key(r[i].b, keylist.top);
1501 		bch_keylist_push(&keylist);
1502 	}
1503 
1504 	bch_btree_insert_node(b, op, &keylist, NULL, NULL);
1505 	BUG_ON(!bch_keylist_empty(&keylist));
1506 
1507 	for (i = 0; i < nodes; i++) {
1508 		btree_node_free(r[i].b);
1509 		rw_unlock(true, r[i].b);
1510 
1511 		r[i].b = new_nodes[i];
1512 	}
1513 
1514 	memmove(r, r + 1, sizeof(r[0]) * (nodes - 1));
1515 	r[nodes - 1].b = ERR_PTR(-EINTR);
1516 
1517 	trace_bcache_btree_gc_coalesce(nodes);
1518 	gc->nodes--;
1519 
1520 	bch_keylist_free(&keylist);
1521 
1522 	/* Invalidated our iterator */
1523 	return -EINTR;
1524 
1525 out_nocoalesce:
1526 	closure_sync(&cl);
1527 
1528 	while ((k = bch_keylist_pop(&keylist)))
1529 		if (!bkey_cmp(k, &ZERO_KEY))
1530 			atomic_dec(&b->c->prio_blocked);
1531 	bch_keylist_free(&keylist);
1532 
1533 	for (i = 0; i < nodes; i++)
1534 		if (!IS_ERR_OR_NULL(new_nodes[i])) {
1535 			btree_node_free(new_nodes[i]);
1536 			rw_unlock(true, new_nodes[i]);
1537 		}
1538 	return 0;
1539 }
1540 
1541 static int btree_gc_rewrite_node(struct btree *b, struct btree_op *op,
1542 				 struct btree *replace)
1543 {
1544 	struct keylist keys;
1545 	struct btree *n;
1546 
1547 	if (btree_check_reserve(b, NULL))
1548 		return 0;
1549 
1550 	n = btree_node_alloc_replacement(replace, NULL);
1551 
1552 	/* recheck reserve after allocating replacement node */
1553 	if (btree_check_reserve(b, NULL)) {
1554 		btree_node_free(n);
1555 		rw_unlock(true, n);
1556 		return 0;
1557 	}
1558 
1559 	bch_btree_node_write_sync(n);
1560 
1561 	bch_keylist_init(&keys);
1562 	bch_keylist_add(&keys, &n->key);
1563 
1564 	make_btree_freeing_key(replace, keys.top);
1565 	bch_keylist_push(&keys);
1566 
1567 	bch_btree_insert_node(b, op, &keys, NULL, NULL);
1568 	BUG_ON(!bch_keylist_empty(&keys));
1569 
1570 	btree_node_free(replace);
1571 	rw_unlock(true, n);
1572 
1573 	/* Invalidated our iterator */
1574 	return -EINTR;
1575 }
1576 
1577 static unsigned int btree_gc_count_keys(struct btree *b)
1578 {
1579 	struct bkey *k;
1580 	struct btree_iter iter;
1581 	unsigned int ret = 0;
1582 
1583 	for_each_key_filter(&b->keys, k, &iter, bch_ptr_bad)
1584 		ret += bkey_u64s(k);
1585 
1586 	return ret;
1587 }
1588 
1589 static size_t btree_gc_min_nodes(struct cache_set *c)
1590 {
1591 	size_t min_nodes;
1592 
1593 	/*
1594 	 * Since incremental GC would stop 100ms when front
1595 	 * side I/O comes, so when there are many btree nodes,
1596 	 * if GC only processes constant (100) nodes each time,
1597 	 * GC would last a long time, and the front side I/Os
1598 	 * would run out of the buckets (since no new bucket
1599 	 * can be allocated during GC), and be blocked again.
1600 	 * So GC should not process constant nodes, but varied
1601 	 * nodes according to the number of btree nodes, which
1602 	 * realized by dividing GC into constant(100) times,
1603 	 * so when there are many btree nodes, GC can process
1604 	 * more nodes each time, otherwise, GC will process less
1605 	 * nodes each time (but no less than MIN_GC_NODES)
1606 	 */
1607 	min_nodes = c->gc_stats.nodes / MAX_GC_TIMES;
1608 	if (min_nodes < MIN_GC_NODES)
1609 		min_nodes = MIN_GC_NODES;
1610 
1611 	return min_nodes;
1612 }
1613 
1614 
1615 static int btree_gc_recurse(struct btree *b, struct btree_op *op,
1616 			    struct closure *writes, struct gc_stat *gc)
1617 {
1618 	int ret = 0;
1619 	bool should_rewrite;
1620 	struct bkey *k;
1621 	struct btree_iter iter;
1622 	struct gc_merge_info r[GC_MERGE_NODES];
1623 	struct gc_merge_info *i, *last = r + ARRAY_SIZE(r) - 1;
1624 
1625 	bch_btree_iter_init(&b->keys, &iter, &b->c->gc_done);
1626 
1627 	for (i = r; i < r + ARRAY_SIZE(r); i++)
1628 		i->b = ERR_PTR(-EINTR);
1629 
1630 	while (1) {
1631 		k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad);
1632 		if (k) {
1633 			r->b = bch_btree_node_get(b->c, op, k, b->level - 1,
1634 						  true, b);
1635 			if (IS_ERR(r->b)) {
1636 				ret = PTR_ERR(r->b);
1637 				break;
1638 			}
1639 
1640 			r->keys = btree_gc_count_keys(r->b);
1641 
1642 			ret = btree_gc_coalesce(b, op, gc, r);
1643 			if (ret)
1644 				break;
1645 		}
1646 
1647 		if (!last->b)
1648 			break;
1649 
1650 		if (!IS_ERR(last->b)) {
1651 			should_rewrite = btree_gc_mark_node(last->b, gc);
1652 			if (should_rewrite) {
1653 				ret = btree_gc_rewrite_node(b, op, last->b);
1654 				if (ret)
1655 					break;
1656 			}
1657 
1658 			if (last->b->level) {
1659 				ret = btree_gc_recurse(last->b, op, writes, gc);
1660 				if (ret)
1661 					break;
1662 			}
1663 
1664 			bkey_copy_key(&b->c->gc_done, &last->b->key);
1665 
1666 			/*
1667 			 * Must flush leaf nodes before gc ends, since replace
1668 			 * operations aren't journalled
1669 			 */
1670 			mutex_lock(&last->b->write_lock);
1671 			if (btree_node_dirty(last->b))
1672 				bch_btree_node_write(last->b, writes);
1673 			mutex_unlock(&last->b->write_lock);
1674 			rw_unlock(true, last->b);
1675 		}
1676 
1677 		memmove(r + 1, r, sizeof(r[0]) * (GC_MERGE_NODES - 1));
1678 		r->b = NULL;
1679 
1680 		if (atomic_read(&b->c->search_inflight) &&
1681 		    gc->nodes >= gc->nodes_pre + btree_gc_min_nodes(b->c)) {
1682 			gc->nodes_pre =  gc->nodes;
1683 			ret = -EAGAIN;
1684 			break;
1685 		}
1686 
1687 		if (need_resched()) {
1688 			ret = -EAGAIN;
1689 			break;
1690 		}
1691 	}
1692 
1693 	for (i = r; i < r + ARRAY_SIZE(r); i++)
1694 		if (!IS_ERR_OR_NULL(i->b)) {
1695 			mutex_lock(&i->b->write_lock);
1696 			if (btree_node_dirty(i->b))
1697 				bch_btree_node_write(i->b, writes);
1698 			mutex_unlock(&i->b->write_lock);
1699 			rw_unlock(true, i->b);
1700 		}
1701 
1702 	return ret;
1703 }
1704 
1705 static int bch_btree_gc_root(struct btree *b, struct btree_op *op,
1706 			     struct closure *writes, struct gc_stat *gc)
1707 {
1708 	struct btree *n = NULL;
1709 	int ret = 0;
1710 	bool should_rewrite;
1711 
1712 	should_rewrite = btree_gc_mark_node(b, gc);
1713 	if (should_rewrite) {
1714 		n = btree_node_alloc_replacement(b, NULL);
1715 
1716 		if (!IS_ERR_OR_NULL(n)) {
1717 			bch_btree_node_write_sync(n);
1718 
1719 			bch_btree_set_root(n);
1720 			btree_node_free(b);
1721 			rw_unlock(true, n);
1722 
1723 			return -EINTR;
1724 		}
1725 	}
1726 
1727 	__bch_btree_mark_key(b->c, b->level + 1, &b->key);
1728 
1729 	if (b->level) {
1730 		ret = btree_gc_recurse(b, op, writes, gc);
1731 		if (ret)
1732 			return ret;
1733 	}
1734 
1735 	bkey_copy_key(&b->c->gc_done, &b->key);
1736 
1737 	return ret;
1738 }
1739 
1740 static void btree_gc_start(struct cache_set *c)
1741 {
1742 	struct cache *ca;
1743 	struct bucket *b;
1744 	unsigned int i;
1745 
1746 	if (!c->gc_mark_valid)
1747 		return;
1748 
1749 	mutex_lock(&c->bucket_lock);
1750 
1751 	c->gc_mark_valid = 0;
1752 	c->gc_done = ZERO_KEY;
1753 
1754 	for_each_cache(ca, c, i)
1755 		for_each_bucket(b, ca) {
1756 			b->last_gc = b->gen;
1757 			if (!atomic_read(&b->pin)) {
1758 				SET_GC_MARK(b, 0);
1759 				SET_GC_SECTORS_USED(b, 0);
1760 			}
1761 		}
1762 
1763 	mutex_unlock(&c->bucket_lock);
1764 }
1765 
1766 static void bch_btree_gc_finish(struct cache_set *c)
1767 {
1768 	struct bucket *b;
1769 	struct cache *ca;
1770 	unsigned int i;
1771 
1772 	mutex_lock(&c->bucket_lock);
1773 
1774 	set_gc_sectors(c);
1775 	c->gc_mark_valid = 1;
1776 	c->need_gc	= 0;
1777 
1778 	for (i = 0; i < KEY_PTRS(&c->uuid_bucket); i++)
1779 		SET_GC_MARK(PTR_BUCKET(c, &c->uuid_bucket, i),
1780 			    GC_MARK_METADATA);
1781 
1782 	/* don't reclaim buckets to which writeback keys point */
1783 	rcu_read_lock();
1784 	for (i = 0; i < c->devices_max_used; i++) {
1785 		struct bcache_device *d = c->devices[i];
1786 		struct cached_dev *dc;
1787 		struct keybuf_key *w, *n;
1788 		unsigned int j;
1789 
1790 		if (!d || UUID_FLASH_ONLY(&c->uuids[i]))
1791 			continue;
1792 		dc = container_of(d, struct cached_dev, disk);
1793 
1794 		spin_lock(&dc->writeback_keys.lock);
1795 		rbtree_postorder_for_each_entry_safe(w, n,
1796 					&dc->writeback_keys.keys, node)
1797 			for (j = 0; j < KEY_PTRS(&w->key); j++)
1798 				SET_GC_MARK(PTR_BUCKET(c, &w->key, j),
1799 					    GC_MARK_DIRTY);
1800 		spin_unlock(&dc->writeback_keys.lock);
1801 	}
1802 	rcu_read_unlock();
1803 
1804 	c->avail_nbuckets = 0;
1805 	for_each_cache(ca, c, i) {
1806 		uint64_t *i;
1807 
1808 		ca->invalidate_needs_gc = 0;
1809 
1810 		for (i = ca->sb.d; i < ca->sb.d + ca->sb.keys; i++)
1811 			SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA);
1812 
1813 		for (i = ca->prio_buckets;
1814 		     i < ca->prio_buckets + prio_buckets(ca) * 2; i++)
1815 			SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA);
1816 
1817 		for_each_bucket(b, ca) {
1818 			c->need_gc	= max(c->need_gc, bucket_gc_gen(b));
1819 
1820 			if (atomic_read(&b->pin))
1821 				continue;
1822 
1823 			BUG_ON(!GC_MARK(b) && GC_SECTORS_USED(b));
1824 
1825 			if (!GC_MARK(b) || GC_MARK(b) == GC_MARK_RECLAIMABLE)
1826 				c->avail_nbuckets++;
1827 		}
1828 	}
1829 
1830 	mutex_unlock(&c->bucket_lock);
1831 }
1832 
1833 static void bch_btree_gc(struct cache_set *c)
1834 {
1835 	int ret;
1836 	struct gc_stat stats;
1837 	struct closure writes;
1838 	struct btree_op op;
1839 	uint64_t start_time = local_clock();
1840 
1841 	trace_bcache_gc_start(c);
1842 
1843 	memset(&stats, 0, sizeof(struct gc_stat));
1844 	closure_init_stack(&writes);
1845 	bch_btree_op_init(&op, SHRT_MAX);
1846 
1847 	btree_gc_start(c);
1848 
1849 	/* if CACHE_SET_IO_DISABLE set, gc thread should stop too */
1850 	do {
1851 		ret = btree_root(gc_root, c, &op, &writes, &stats);
1852 		closure_sync(&writes);
1853 		cond_resched();
1854 
1855 		if (ret == -EAGAIN)
1856 			schedule_timeout_interruptible(msecs_to_jiffies
1857 						       (GC_SLEEP_MS));
1858 		else if (ret)
1859 			pr_warn("gc failed!");
1860 	} while (ret && !test_bit(CACHE_SET_IO_DISABLE, &c->flags));
1861 
1862 	bch_btree_gc_finish(c);
1863 	wake_up_allocators(c);
1864 
1865 	bch_time_stats_update(&c->btree_gc_time, start_time);
1866 
1867 	stats.key_bytes *= sizeof(uint64_t);
1868 	stats.data	<<= 9;
1869 	bch_update_bucket_in_use(c, &stats);
1870 	memcpy(&c->gc_stats, &stats, sizeof(struct gc_stat));
1871 
1872 	trace_bcache_gc_end(c);
1873 
1874 	bch_moving_gc(c);
1875 }
1876 
1877 static bool gc_should_run(struct cache_set *c)
1878 {
1879 	struct cache *ca;
1880 	unsigned int i;
1881 
1882 	for_each_cache(ca, c, i)
1883 		if (ca->invalidate_needs_gc)
1884 			return true;
1885 
1886 	if (atomic_read(&c->sectors_to_gc) < 0)
1887 		return true;
1888 
1889 	return false;
1890 }
1891 
1892 static int bch_gc_thread(void *arg)
1893 {
1894 	struct cache_set *c = arg;
1895 
1896 	while (1) {
1897 		wait_event_interruptible(c->gc_wait,
1898 			   kthread_should_stop() ||
1899 			   test_bit(CACHE_SET_IO_DISABLE, &c->flags) ||
1900 			   gc_should_run(c));
1901 
1902 		if (kthread_should_stop() ||
1903 		    test_bit(CACHE_SET_IO_DISABLE, &c->flags))
1904 			break;
1905 
1906 		set_gc_sectors(c);
1907 		bch_btree_gc(c);
1908 	}
1909 
1910 	wait_for_kthread_stop();
1911 	return 0;
1912 }
1913 
1914 int bch_gc_thread_start(struct cache_set *c)
1915 {
1916 	c->gc_thread = kthread_run(bch_gc_thread, c, "bcache_gc");
1917 	return PTR_ERR_OR_ZERO(c->gc_thread);
1918 }
1919 
1920 /* Initial partial gc */
1921 
1922 static int bch_btree_check_recurse(struct btree *b, struct btree_op *op)
1923 {
1924 	int ret = 0;
1925 	struct bkey *k, *p = NULL;
1926 	struct btree_iter iter;
1927 
1928 	for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid)
1929 		bch_initial_mark_key(b->c, b->level, k);
1930 
1931 	bch_initial_mark_key(b->c, b->level + 1, &b->key);
1932 
1933 	if (b->level) {
1934 		bch_btree_iter_init(&b->keys, &iter, NULL);
1935 
1936 		do {
1937 			k = bch_btree_iter_next_filter(&iter, &b->keys,
1938 						       bch_ptr_bad);
1939 			if (k) {
1940 				btree_node_prefetch(b, k);
1941 				/*
1942 				 * initiallize c->gc_stats.nodes
1943 				 * for incremental GC
1944 				 */
1945 				b->c->gc_stats.nodes++;
1946 			}
1947 
1948 			if (p)
1949 				ret = btree(check_recurse, p, b, op);
1950 
1951 			p = k;
1952 		} while (p && !ret);
1953 	}
1954 
1955 	return ret;
1956 }
1957 
1958 int bch_btree_check(struct cache_set *c)
1959 {
1960 	struct btree_op op;
1961 
1962 	bch_btree_op_init(&op, SHRT_MAX);
1963 
1964 	return btree_root(check_recurse, c, &op);
1965 }
1966 
1967 void bch_initial_gc_finish(struct cache_set *c)
1968 {
1969 	struct cache *ca;
1970 	struct bucket *b;
1971 	unsigned int i;
1972 
1973 	bch_btree_gc_finish(c);
1974 
1975 	mutex_lock(&c->bucket_lock);
1976 
1977 	/*
1978 	 * We need to put some unused buckets directly on the prio freelist in
1979 	 * order to get the allocator thread started - it needs freed buckets in
1980 	 * order to rewrite the prios and gens, and it needs to rewrite prios
1981 	 * and gens in order to free buckets.
1982 	 *
1983 	 * This is only safe for buckets that have no live data in them, which
1984 	 * there should always be some of.
1985 	 */
1986 	for_each_cache(ca, c, i) {
1987 		for_each_bucket(b, ca) {
1988 			if (fifo_full(&ca->free[RESERVE_PRIO]) &&
1989 			    fifo_full(&ca->free[RESERVE_BTREE]))
1990 				break;
1991 
1992 			if (bch_can_invalidate_bucket(ca, b) &&
1993 			    !GC_MARK(b)) {
1994 				__bch_invalidate_one_bucket(ca, b);
1995 				if (!fifo_push(&ca->free[RESERVE_PRIO],
1996 				   b - ca->buckets))
1997 					fifo_push(&ca->free[RESERVE_BTREE],
1998 						  b - ca->buckets);
1999 			}
2000 		}
2001 	}
2002 
2003 	mutex_unlock(&c->bucket_lock);
2004 }
2005 
2006 /* Btree insertion */
2007 
2008 static bool btree_insert_key(struct btree *b, struct bkey *k,
2009 			     struct bkey *replace_key)
2010 {
2011 	unsigned int status;
2012 
2013 	BUG_ON(bkey_cmp(k, &b->key) > 0);
2014 
2015 	status = bch_btree_insert_key(&b->keys, k, replace_key);
2016 	if (status != BTREE_INSERT_STATUS_NO_INSERT) {
2017 		bch_check_keys(&b->keys, "%u for %s", status,
2018 			       replace_key ? "replace" : "insert");
2019 
2020 		trace_bcache_btree_insert_key(b, k, replace_key != NULL,
2021 					      status);
2022 		return true;
2023 	} else
2024 		return false;
2025 }
2026 
2027 static size_t insert_u64s_remaining(struct btree *b)
2028 {
2029 	long ret = bch_btree_keys_u64s_remaining(&b->keys);
2030 
2031 	/*
2032 	 * Might land in the middle of an existing extent and have to split it
2033 	 */
2034 	if (b->keys.ops->is_extents)
2035 		ret -= KEY_MAX_U64S;
2036 
2037 	return max(ret, 0L);
2038 }
2039 
2040 static bool bch_btree_insert_keys(struct btree *b, struct btree_op *op,
2041 				  struct keylist *insert_keys,
2042 				  struct bkey *replace_key)
2043 {
2044 	bool ret = false;
2045 	int oldsize = bch_count_data(&b->keys);
2046 
2047 	while (!bch_keylist_empty(insert_keys)) {
2048 		struct bkey *k = insert_keys->keys;
2049 
2050 		if (bkey_u64s(k) > insert_u64s_remaining(b))
2051 			break;
2052 
2053 		if (bkey_cmp(k, &b->key) <= 0) {
2054 			if (!b->level)
2055 				bkey_put(b->c, k);
2056 
2057 			ret |= btree_insert_key(b, k, replace_key);
2058 			bch_keylist_pop_front(insert_keys);
2059 		} else if (bkey_cmp(&START_KEY(k), &b->key) < 0) {
2060 			BKEY_PADDED(key) temp;
2061 			bkey_copy(&temp.key, insert_keys->keys);
2062 
2063 			bch_cut_back(&b->key, &temp.key);
2064 			bch_cut_front(&b->key, insert_keys->keys);
2065 
2066 			ret |= btree_insert_key(b, &temp.key, replace_key);
2067 			break;
2068 		} else {
2069 			break;
2070 		}
2071 	}
2072 
2073 	if (!ret)
2074 		op->insert_collision = true;
2075 
2076 	BUG_ON(!bch_keylist_empty(insert_keys) && b->level);
2077 
2078 	BUG_ON(bch_count_data(&b->keys) < oldsize);
2079 	return ret;
2080 }
2081 
2082 static int btree_split(struct btree *b, struct btree_op *op,
2083 		       struct keylist *insert_keys,
2084 		       struct bkey *replace_key)
2085 {
2086 	bool split;
2087 	struct btree *n1, *n2 = NULL, *n3 = NULL;
2088 	uint64_t start_time = local_clock();
2089 	struct closure cl;
2090 	struct keylist parent_keys;
2091 
2092 	closure_init_stack(&cl);
2093 	bch_keylist_init(&parent_keys);
2094 
2095 	if (btree_check_reserve(b, op)) {
2096 		if (!b->level)
2097 			return -EINTR;
2098 		else
2099 			WARN(1, "insufficient reserve for split\n");
2100 	}
2101 
2102 	n1 = btree_node_alloc_replacement(b, op);
2103 	if (IS_ERR(n1))
2104 		goto err;
2105 
2106 	split = set_blocks(btree_bset_first(n1),
2107 			   block_bytes(n1->c)) > (btree_blocks(b) * 4) / 5;
2108 
2109 	if (split) {
2110 		unsigned int keys = 0;
2111 
2112 		trace_bcache_btree_node_split(b, btree_bset_first(n1)->keys);
2113 
2114 		n2 = bch_btree_node_alloc(b->c, op, b->level, b->parent);
2115 		if (IS_ERR(n2))
2116 			goto err_free1;
2117 
2118 		if (!b->parent) {
2119 			n3 = bch_btree_node_alloc(b->c, op, b->level + 1, NULL);
2120 			if (IS_ERR(n3))
2121 				goto err_free2;
2122 		}
2123 
2124 		mutex_lock(&n1->write_lock);
2125 		mutex_lock(&n2->write_lock);
2126 
2127 		bch_btree_insert_keys(n1, op, insert_keys, replace_key);
2128 
2129 		/*
2130 		 * Has to be a linear search because we don't have an auxiliary
2131 		 * search tree yet
2132 		 */
2133 
2134 		while (keys < (btree_bset_first(n1)->keys * 3) / 5)
2135 			keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1),
2136 							keys));
2137 
2138 		bkey_copy_key(&n1->key,
2139 			      bset_bkey_idx(btree_bset_first(n1), keys));
2140 		keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1), keys));
2141 
2142 		btree_bset_first(n2)->keys = btree_bset_first(n1)->keys - keys;
2143 		btree_bset_first(n1)->keys = keys;
2144 
2145 		memcpy(btree_bset_first(n2)->start,
2146 		       bset_bkey_last(btree_bset_first(n1)),
2147 		       btree_bset_first(n2)->keys * sizeof(uint64_t));
2148 
2149 		bkey_copy_key(&n2->key, &b->key);
2150 
2151 		bch_keylist_add(&parent_keys, &n2->key);
2152 		bch_btree_node_write(n2, &cl);
2153 		mutex_unlock(&n2->write_lock);
2154 		rw_unlock(true, n2);
2155 	} else {
2156 		trace_bcache_btree_node_compact(b, btree_bset_first(n1)->keys);
2157 
2158 		mutex_lock(&n1->write_lock);
2159 		bch_btree_insert_keys(n1, op, insert_keys, replace_key);
2160 	}
2161 
2162 	bch_keylist_add(&parent_keys, &n1->key);
2163 	bch_btree_node_write(n1, &cl);
2164 	mutex_unlock(&n1->write_lock);
2165 
2166 	if (n3) {
2167 		/* Depth increases, make a new root */
2168 		mutex_lock(&n3->write_lock);
2169 		bkey_copy_key(&n3->key, &MAX_KEY);
2170 		bch_btree_insert_keys(n3, op, &parent_keys, NULL);
2171 		bch_btree_node_write(n3, &cl);
2172 		mutex_unlock(&n3->write_lock);
2173 
2174 		closure_sync(&cl);
2175 		bch_btree_set_root(n3);
2176 		rw_unlock(true, n3);
2177 	} else if (!b->parent) {
2178 		/* Root filled up but didn't need to be split */
2179 		closure_sync(&cl);
2180 		bch_btree_set_root(n1);
2181 	} else {
2182 		/* Split a non root node */
2183 		closure_sync(&cl);
2184 		make_btree_freeing_key(b, parent_keys.top);
2185 		bch_keylist_push(&parent_keys);
2186 
2187 		bch_btree_insert_node(b->parent, op, &parent_keys, NULL, NULL);
2188 		BUG_ON(!bch_keylist_empty(&parent_keys));
2189 	}
2190 
2191 	btree_node_free(b);
2192 	rw_unlock(true, n1);
2193 
2194 	bch_time_stats_update(&b->c->btree_split_time, start_time);
2195 
2196 	return 0;
2197 err_free2:
2198 	bkey_put(b->c, &n2->key);
2199 	btree_node_free(n2);
2200 	rw_unlock(true, n2);
2201 err_free1:
2202 	bkey_put(b->c, &n1->key);
2203 	btree_node_free(n1);
2204 	rw_unlock(true, n1);
2205 err:
2206 	WARN(1, "bcache: btree split failed (level %u)", b->level);
2207 
2208 	if (n3 == ERR_PTR(-EAGAIN) ||
2209 	    n2 == ERR_PTR(-EAGAIN) ||
2210 	    n1 == ERR_PTR(-EAGAIN))
2211 		return -EAGAIN;
2212 
2213 	return -ENOMEM;
2214 }
2215 
2216 static int bch_btree_insert_node(struct btree *b, struct btree_op *op,
2217 				 struct keylist *insert_keys,
2218 				 atomic_t *journal_ref,
2219 				 struct bkey *replace_key)
2220 {
2221 	struct closure cl;
2222 
2223 	BUG_ON(b->level && replace_key);
2224 
2225 	closure_init_stack(&cl);
2226 
2227 	mutex_lock(&b->write_lock);
2228 
2229 	if (write_block(b) != btree_bset_last(b) &&
2230 	    b->keys.last_set_unwritten)
2231 		bch_btree_init_next(b); /* just wrote a set */
2232 
2233 	if (bch_keylist_nkeys(insert_keys) > insert_u64s_remaining(b)) {
2234 		mutex_unlock(&b->write_lock);
2235 		goto split;
2236 	}
2237 
2238 	BUG_ON(write_block(b) != btree_bset_last(b));
2239 
2240 	if (bch_btree_insert_keys(b, op, insert_keys, replace_key)) {
2241 		if (!b->level)
2242 			bch_btree_leaf_dirty(b, journal_ref);
2243 		else
2244 			bch_btree_node_write(b, &cl);
2245 	}
2246 
2247 	mutex_unlock(&b->write_lock);
2248 
2249 	/* wait for btree node write if necessary, after unlock */
2250 	closure_sync(&cl);
2251 
2252 	return 0;
2253 split:
2254 	if (current->bio_list) {
2255 		op->lock = b->c->root->level + 1;
2256 		return -EAGAIN;
2257 	} else if (op->lock <= b->c->root->level) {
2258 		op->lock = b->c->root->level + 1;
2259 		return -EINTR;
2260 	} else {
2261 		/* Invalidated all iterators */
2262 		int ret = btree_split(b, op, insert_keys, replace_key);
2263 
2264 		if (bch_keylist_empty(insert_keys))
2265 			return 0;
2266 		else if (!ret)
2267 			return -EINTR;
2268 		return ret;
2269 	}
2270 }
2271 
2272 int bch_btree_insert_check_key(struct btree *b, struct btree_op *op,
2273 			       struct bkey *check_key)
2274 {
2275 	int ret = -EINTR;
2276 	uint64_t btree_ptr = b->key.ptr[0];
2277 	unsigned long seq = b->seq;
2278 	struct keylist insert;
2279 	bool upgrade = op->lock == -1;
2280 
2281 	bch_keylist_init(&insert);
2282 
2283 	if (upgrade) {
2284 		rw_unlock(false, b);
2285 		rw_lock(true, b, b->level);
2286 
2287 		if (b->key.ptr[0] != btree_ptr ||
2288 		    b->seq != seq + 1) {
2289 			op->lock = b->level;
2290 			goto out;
2291 		}
2292 	}
2293 
2294 	SET_KEY_PTRS(check_key, 1);
2295 	get_random_bytes(&check_key->ptr[0], sizeof(uint64_t));
2296 
2297 	SET_PTR_DEV(check_key, 0, PTR_CHECK_DEV);
2298 
2299 	bch_keylist_add(&insert, check_key);
2300 
2301 	ret = bch_btree_insert_node(b, op, &insert, NULL, NULL);
2302 
2303 	BUG_ON(!ret && !bch_keylist_empty(&insert));
2304 out:
2305 	if (upgrade)
2306 		downgrade_write(&b->lock);
2307 	return ret;
2308 }
2309 
2310 struct btree_insert_op {
2311 	struct btree_op	op;
2312 	struct keylist	*keys;
2313 	atomic_t	*journal_ref;
2314 	struct bkey	*replace_key;
2315 };
2316 
2317 static int btree_insert_fn(struct btree_op *b_op, struct btree *b)
2318 {
2319 	struct btree_insert_op *op = container_of(b_op,
2320 					struct btree_insert_op, op);
2321 
2322 	int ret = bch_btree_insert_node(b, &op->op, op->keys,
2323 					op->journal_ref, op->replace_key);
2324 	if (ret && !bch_keylist_empty(op->keys))
2325 		return ret;
2326 	else
2327 		return MAP_DONE;
2328 }
2329 
2330 int bch_btree_insert(struct cache_set *c, struct keylist *keys,
2331 		     atomic_t *journal_ref, struct bkey *replace_key)
2332 {
2333 	struct btree_insert_op op;
2334 	int ret = 0;
2335 
2336 	BUG_ON(current->bio_list);
2337 	BUG_ON(bch_keylist_empty(keys));
2338 
2339 	bch_btree_op_init(&op.op, 0);
2340 	op.keys		= keys;
2341 	op.journal_ref	= journal_ref;
2342 	op.replace_key	= replace_key;
2343 
2344 	while (!ret && !bch_keylist_empty(keys)) {
2345 		op.op.lock = 0;
2346 		ret = bch_btree_map_leaf_nodes(&op.op, c,
2347 					       &START_KEY(keys->keys),
2348 					       btree_insert_fn);
2349 	}
2350 
2351 	if (ret) {
2352 		struct bkey *k;
2353 
2354 		pr_err("error %i", ret);
2355 
2356 		while ((k = bch_keylist_pop(keys)))
2357 			bkey_put(c, k);
2358 	} else if (op.op.insert_collision)
2359 		ret = -ESRCH;
2360 
2361 	return ret;
2362 }
2363 
2364 void bch_btree_set_root(struct btree *b)
2365 {
2366 	unsigned int i;
2367 	struct closure cl;
2368 
2369 	closure_init_stack(&cl);
2370 
2371 	trace_bcache_btree_set_root(b);
2372 
2373 	BUG_ON(!b->written);
2374 
2375 	for (i = 0; i < KEY_PTRS(&b->key); i++)
2376 		BUG_ON(PTR_BUCKET(b->c, &b->key, i)->prio != BTREE_PRIO);
2377 
2378 	mutex_lock(&b->c->bucket_lock);
2379 	list_del_init(&b->list);
2380 	mutex_unlock(&b->c->bucket_lock);
2381 
2382 	b->c->root = b;
2383 
2384 	bch_journal_meta(b->c, &cl);
2385 	closure_sync(&cl);
2386 }
2387 
2388 /* Map across nodes or keys */
2389 
2390 static int bch_btree_map_nodes_recurse(struct btree *b, struct btree_op *op,
2391 				       struct bkey *from,
2392 				       btree_map_nodes_fn *fn, int flags)
2393 {
2394 	int ret = MAP_CONTINUE;
2395 
2396 	if (b->level) {
2397 		struct bkey *k;
2398 		struct btree_iter iter;
2399 
2400 		bch_btree_iter_init(&b->keys, &iter, from);
2401 
2402 		while ((k = bch_btree_iter_next_filter(&iter, &b->keys,
2403 						       bch_ptr_bad))) {
2404 			ret = btree(map_nodes_recurse, k, b,
2405 				    op, from, fn, flags);
2406 			from = NULL;
2407 
2408 			if (ret != MAP_CONTINUE)
2409 				return ret;
2410 		}
2411 	}
2412 
2413 	if (!b->level || flags == MAP_ALL_NODES)
2414 		ret = fn(op, b);
2415 
2416 	return ret;
2417 }
2418 
2419 int __bch_btree_map_nodes(struct btree_op *op, struct cache_set *c,
2420 			  struct bkey *from, btree_map_nodes_fn *fn, int flags)
2421 {
2422 	return btree_root(map_nodes_recurse, c, op, from, fn, flags);
2423 }
2424 
2425 static int bch_btree_map_keys_recurse(struct btree *b, struct btree_op *op,
2426 				      struct bkey *from, btree_map_keys_fn *fn,
2427 				      int flags)
2428 {
2429 	int ret = MAP_CONTINUE;
2430 	struct bkey *k;
2431 	struct btree_iter iter;
2432 
2433 	bch_btree_iter_init(&b->keys, &iter, from);
2434 
2435 	while ((k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad))) {
2436 		ret = !b->level
2437 			? fn(op, b, k)
2438 			: btree(map_keys_recurse, k, b, op, from, fn, flags);
2439 		from = NULL;
2440 
2441 		if (ret != MAP_CONTINUE)
2442 			return ret;
2443 	}
2444 
2445 	if (!b->level && (flags & MAP_END_KEY))
2446 		ret = fn(op, b, &KEY(KEY_INODE(&b->key),
2447 				     KEY_OFFSET(&b->key), 0));
2448 
2449 	return ret;
2450 }
2451 
2452 int bch_btree_map_keys(struct btree_op *op, struct cache_set *c,
2453 		       struct bkey *from, btree_map_keys_fn *fn, int flags)
2454 {
2455 	return btree_root(map_keys_recurse, c, op, from, fn, flags);
2456 }
2457 
2458 /* Keybuf code */
2459 
2460 static inline int keybuf_cmp(struct keybuf_key *l, struct keybuf_key *r)
2461 {
2462 	/* Overlapping keys compare equal */
2463 	if (bkey_cmp(&l->key, &START_KEY(&r->key)) <= 0)
2464 		return -1;
2465 	if (bkey_cmp(&START_KEY(&l->key), &r->key) >= 0)
2466 		return 1;
2467 	return 0;
2468 }
2469 
2470 static inline int keybuf_nonoverlapping_cmp(struct keybuf_key *l,
2471 					    struct keybuf_key *r)
2472 {
2473 	return clamp_t(int64_t, bkey_cmp(&l->key, &r->key), -1, 1);
2474 }
2475 
2476 struct refill {
2477 	struct btree_op	op;
2478 	unsigned int	nr_found;
2479 	struct keybuf	*buf;
2480 	struct bkey	*end;
2481 	keybuf_pred_fn	*pred;
2482 };
2483 
2484 static int refill_keybuf_fn(struct btree_op *op, struct btree *b,
2485 			    struct bkey *k)
2486 {
2487 	struct refill *refill = container_of(op, struct refill, op);
2488 	struct keybuf *buf = refill->buf;
2489 	int ret = MAP_CONTINUE;
2490 
2491 	if (bkey_cmp(k, refill->end) > 0) {
2492 		ret = MAP_DONE;
2493 		goto out;
2494 	}
2495 
2496 	if (!KEY_SIZE(k)) /* end key */
2497 		goto out;
2498 
2499 	if (refill->pred(buf, k)) {
2500 		struct keybuf_key *w;
2501 
2502 		spin_lock(&buf->lock);
2503 
2504 		w = array_alloc(&buf->freelist);
2505 		if (!w) {
2506 			spin_unlock(&buf->lock);
2507 			return MAP_DONE;
2508 		}
2509 
2510 		w->private = NULL;
2511 		bkey_copy(&w->key, k);
2512 
2513 		if (RB_INSERT(&buf->keys, w, node, keybuf_cmp))
2514 			array_free(&buf->freelist, w);
2515 		else
2516 			refill->nr_found++;
2517 
2518 		if (array_freelist_empty(&buf->freelist))
2519 			ret = MAP_DONE;
2520 
2521 		spin_unlock(&buf->lock);
2522 	}
2523 out:
2524 	buf->last_scanned = *k;
2525 	return ret;
2526 }
2527 
2528 void bch_refill_keybuf(struct cache_set *c, struct keybuf *buf,
2529 		       struct bkey *end, keybuf_pred_fn *pred)
2530 {
2531 	struct bkey start = buf->last_scanned;
2532 	struct refill refill;
2533 
2534 	cond_resched();
2535 
2536 	bch_btree_op_init(&refill.op, -1);
2537 	refill.nr_found	= 0;
2538 	refill.buf	= buf;
2539 	refill.end	= end;
2540 	refill.pred	= pred;
2541 
2542 	bch_btree_map_keys(&refill.op, c, &buf->last_scanned,
2543 			   refill_keybuf_fn, MAP_END_KEY);
2544 
2545 	trace_bcache_keyscan(refill.nr_found,
2546 			     KEY_INODE(&start), KEY_OFFSET(&start),
2547 			     KEY_INODE(&buf->last_scanned),
2548 			     KEY_OFFSET(&buf->last_scanned));
2549 
2550 	spin_lock(&buf->lock);
2551 
2552 	if (!RB_EMPTY_ROOT(&buf->keys)) {
2553 		struct keybuf_key *w;
2554 
2555 		w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2556 		buf->start	= START_KEY(&w->key);
2557 
2558 		w = RB_LAST(&buf->keys, struct keybuf_key, node);
2559 		buf->end	= w->key;
2560 	} else {
2561 		buf->start	= MAX_KEY;
2562 		buf->end	= MAX_KEY;
2563 	}
2564 
2565 	spin_unlock(&buf->lock);
2566 }
2567 
2568 static void __bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2569 {
2570 	rb_erase(&w->node, &buf->keys);
2571 	array_free(&buf->freelist, w);
2572 }
2573 
2574 void bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2575 {
2576 	spin_lock(&buf->lock);
2577 	__bch_keybuf_del(buf, w);
2578 	spin_unlock(&buf->lock);
2579 }
2580 
2581 bool bch_keybuf_check_overlapping(struct keybuf *buf, struct bkey *start,
2582 				  struct bkey *end)
2583 {
2584 	bool ret = false;
2585 	struct keybuf_key *p, *w, s;
2586 
2587 	s.key = *start;
2588 
2589 	if (bkey_cmp(end, &buf->start) <= 0 ||
2590 	    bkey_cmp(start, &buf->end) >= 0)
2591 		return false;
2592 
2593 	spin_lock(&buf->lock);
2594 	w = RB_GREATER(&buf->keys, s, node, keybuf_nonoverlapping_cmp);
2595 
2596 	while (w && bkey_cmp(&START_KEY(&w->key), end) < 0) {
2597 		p = w;
2598 		w = RB_NEXT(w, node);
2599 
2600 		if (p->private)
2601 			ret = true;
2602 		else
2603 			__bch_keybuf_del(buf, p);
2604 	}
2605 
2606 	spin_unlock(&buf->lock);
2607 	return ret;
2608 }
2609 
2610 struct keybuf_key *bch_keybuf_next(struct keybuf *buf)
2611 {
2612 	struct keybuf_key *w;
2613 
2614 	spin_lock(&buf->lock);
2615 
2616 	w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2617 
2618 	while (w && w->private)
2619 		w = RB_NEXT(w, node);
2620 
2621 	if (w)
2622 		w->private = ERR_PTR(-EINTR);
2623 
2624 	spin_unlock(&buf->lock);
2625 	return w;
2626 }
2627 
2628 struct keybuf_key *bch_keybuf_next_rescan(struct cache_set *c,
2629 					  struct keybuf *buf,
2630 					  struct bkey *end,
2631 					  keybuf_pred_fn *pred)
2632 {
2633 	struct keybuf_key *ret;
2634 
2635 	while (1) {
2636 		ret = bch_keybuf_next(buf);
2637 		if (ret)
2638 			break;
2639 
2640 		if (bkey_cmp(&buf->last_scanned, end) >= 0) {
2641 			pr_debug("scan finished");
2642 			break;
2643 		}
2644 
2645 		bch_refill_keybuf(c, buf, end, pred);
2646 	}
2647 
2648 	return ret;
2649 }
2650 
2651 void bch_keybuf_init(struct keybuf *buf)
2652 {
2653 	buf->last_scanned	= MAX_KEY;
2654 	buf->keys		= RB_ROOT;
2655 
2656 	spin_lock_init(&buf->lock);
2657 	array_allocator_init(&buf->freelist);
2658 }
2659