1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com> 4 * 5 * Uses a block device as cache for other block devices; optimized for SSDs. 6 * All allocation is done in buckets, which should match the erase block size 7 * of the device. 8 * 9 * Buckets containing cached data are kept on a heap sorted by priority; 10 * bucket priority is increased on cache hit, and periodically all the buckets 11 * on the heap have their priority scaled down. This currently is just used as 12 * an LRU but in the future should allow for more intelligent heuristics. 13 * 14 * Buckets have an 8 bit counter; freeing is accomplished by incrementing the 15 * counter. Garbage collection is used to remove stale pointers. 16 * 17 * Indexing is done via a btree; nodes are not necessarily fully sorted, rather 18 * as keys are inserted we only sort the pages that have not yet been written. 19 * When garbage collection is run, we resort the entire node. 20 * 21 * All configuration is done via sysfs; see Documentation/bcache.txt. 22 */ 23 24 #include "bcache.h" 25 #include "btree.h" 26 #include "debug.h" 27 #include "extents.h" 28 29 #include <linux/slab.h> 30 #include <linux/bitops.h> 31 #include <linux/hash.h> 32 #include <linux/kthread.h> 33 #include <linux/prefetch.h> 34 #include <linux/random.h> 35 #include <linux/rcupdate.h> 36 #include <linux/sched/clock.h> 37 #include <linux/rculist.h> 38 39 #include <trace/events/bcache.h> 40 41 /* 42 * Todo: 43 * register_bcache: Return errors out to userspace correctly 44 * 45 * Writeback: don't undirty key until after a cache flush 46 * 47 * Create an iterator for key pointers 48 * 49 * On btree write error, mark bucket such that it won't be freed from the cache 50 * 51 * Journalling: 52 * Check for bad keys in replay 53 * Propagate barriers 54 * Refcount journal entries in journal_replay 55 * 56 * Garbage collection: 57 * Finish incremental gc 58 * Gc should free old UUIDs, data for invalid UUIDs 59 * 60 * Provide a way to list backing device UUIDs we have data cached for, and 61 * probably how long it's been since we've seen them, and a way to invalidate 62 * dirty data for devices that will never be attached again 63 * 64 * Keep 1 min/5 min/15 min statistics of how busy a block device has been, so 65 * that based on that and how much dirty data we have we can keep writeback 66 * from being starved 67 * 68 * Add a tracepoint or somesuch to watch for writeback starvation 69 * 70 * When btree depth > 1 and splitting an interior node, we have to make sure 71 * alloc_bucket() cannot fail. This should be true but is not completely 72 * obvious. 73 * 74 * Plugging? 75 * 76 * If data write is less than hard sector size of ssd, round up offset in open 77 * bucket to the next whole sector 78 * 79 * Superblock needs to be fleshed out for multiple cache devices 80 * 81 * Add a sysfs tunable for the number of writeback IOs in flight 82 * 83 * Add a sysfs tunable for the number of open data buckets 84 * 85 * IO tracking: Can we track when one process is doing io on behalf of another? 86 * IO tracking: Don't use just an average, weigh more recent stuff higher 87 * 88 * Test module load/unload 89 */ 90 91 #define MAX_NEED_GC 64 92 #define MAX_SAVE_PRIO 72 93 94 #define PTR_DIRTY_BIT (((uint64_t) 1 << 36)) 95 96 #define PTR_HASH(c, k) \ 97 (((k)->ptr[0] >> c->bucket_bits) | PTR_GEN(k, 0)) 98 99 #define insert_lock(s, b) ((b)->level <= (s)->lock) 100 101 /* 102 * These macros are for recursing down the btree - they handle the details of 103 * locking and looking up nodes in the cache for you. They're best treated as 104 * mere syntax when reading code that uses them. 105 * 106 * op->lock determines whether we take a read or a write lock at a given depth. 107 * If you've got a read lock and find that you need a write lock (i.e. you're 108 * going to have to split), set op->lock and return -EINTR; btree_root() will 109 * call you again and you'll have the correct lock. 110 */ 111 112 /** 113 * btree - recurse down the btree on a specified key 114 * @fn: function to call, which will be passed the child node 115 * @key: key to recurse on 116 * @b: parent btree node 117 * @op: pointer to struct btree_op 118 */ 119 #define btree(fn, key, b, op, ...) \ 120 ({ \ 121 int _r, l = (b)->level - 1; \ 122 bool _w = l <= (op)->lock; \ 123 struct btree *_child = bch_btree_node_get((b)->c, op, key, l, \ 124 _w, b); \ 125 if (!IS_ERR(_child)) { \ 126 _r = bch_btree_ ## fn(_child, op, ##__VA_ARGS__); \ 127 rw_unlock(_w, _child); \ 128 } else \ 129 _r = PTR_ERR(_child); \ 130 _r; \ 131 }) 132 133 /** 134 * btree_root - call a function on the root of the btree 135 * @fn: function to call, which will be passed the child node 136 * @c: cache set 137 * @op: pointer to struct btree_op 138 */ 139 #define btree_root(fn, c, op, ...) \ 140 ({ \ 141 int _r = -EINTR; \ 142 do { \ 143 struct btree *_b = (c)->root; \ 144 bool _w = insert_lock(op, _b); \ 145 rw_lock(_w, _b, _b->level); \ 146 if (_b == (c)->root && \ 147 _w == insert_lock(op, _b)) { \ 148 _r = bch_btree_ ## fn(_b, op, ##__VA_ARGS__); \ 149 } \ 150 rw_unlock(_w, _b); \ 151 bch_cannibalize_unlock(c); \ 152 if (_r == -EINTR) \ 153 schedule(); \ 154 } while (_r == -EINTR); \ 155 \ 156 finish_wait(&(c)->btree_cache_wait, &(op)->wait); \ 157 _r; \ 158 }) 159 160 static inline struct bset *write_block(struct btree *b) 161 { 162 return ((void *) btree_bset_first(b)) + b->written * block_bytes(b->c); 163 } 164 165 static void bch_btree_init_next(struct btree *b) 166 { 167 /* If not a leaf node, always sort */ 168 if (b->level && b->keys.nsets) 169 bch_btree_sort(&b->keys, &b->c->sort); 170 else 171 bch_btree_sort_lazy(&b->keys, &b->c->sort); 172 173 if (b->written < btree_blocks(b)) 174 bch_bset_init_next(&b->keys, write_block(b), 175 bset_magic(&b->c->sb)); 176 177 } 178 179 /* Btree key manipulation */ 180 181 void bkey_put(struct cache_set *c, struct bkey *k) 182 { 183 unsigned i; 184 185 for (i = 0; i < KEY_PTRS(k); i++) 186 if (ptr_available(c, k, i)) 187 atomic_dec_bug(&PTR_BUCKET(c, k, i)->pin); 188 } 189 190 /* Btree IO */ 191 192 static uint64_t btree_csum_set(struct btree *b, struct bset *i) 193 { 194 uint64_t crc = b->key.ptr[0]; 195 void *data = (void *) i + 8, *end = bset_bkey_last(i); 196 197 crc = bch_crc64_update(crc, data, end - data); 198 return crc ^ 0xffffffffffffffffULL; 199 } 200 201 void bch_btree_node_read_done(struct btree *b) 202 { 203 const char *err = "bad btree header"; 204 struct bset *i = btree_bset_first(b); 205 struct btree_iter *iter; 206 207 iter = mempool_alloc(b->c->fill_iter, GFP_NOIO); 208 iter->size = b->c->sb.bucket_size / b->c->sb.block_size; 209 iter->used = 0; 210 211 #ifdef CONFIG_BCACHE_DEBUG 212 iter->b = &b->keys; 213 #endif 214 215 if (!i->seq) 216 goto err; 217 218 for (; 219 b->written < btree_blocks(b) && i->seq == b->keys.set[0].data->seq; 220 i = write_block(b)) { 221 err = "unsupported bset version"; 222 if (i->version > BCACHE_BSET_VERSION) 223 goto err; 224 225 err = "bad btree header"; 226 if (b->written + set_blocks(i, block_bytes(b->c)) > 227 btree_blocks(b)) 228 goto err; 229 230 err = "bad magic"; 231 if (i->magic != bset_magic(&b->c->sb)) 232 goto err; 233 234 err = "bad checksum"; 235 switch (i->version) { 236 case 0: 237 if (i->csum != csum_set(i)) 238 goto err; 239 break; 240 case BCACHE_BSET_VERSION: 241 if (i->csum != btree_csum_set(b, i)) 242 goto err; 243 break; 244 } 245 246 err = "empty set"; 247 if (i != b->keys.set[0].data && !i->keys) 248 goto err; 249 250 bch_btree_iter_push(iter, i->start, bset_bkey_last(i)); 251 252 b->written += set_blocks(i, block_bytes(b->c)); 253 } 254 255 err = "corrupted btree"; 256 for (i = write_block(b); 257 bset_sector_offset(&b->keys, i) < KEY_SIZE(&b->key); 258 i = ((void *) i) + block_bytes(b->c)) 259 if (i->seq == b->keys.set[0].data->seq) 260 goto err; 261 262 bch_btree_sort_and_fix_extents(&b->keys, iter, &b->c->sort); 263 264 i = b->keys.set[0].data; 265 err = "short btree key"; 266 if (b->keys.set[0].size && 267 bkey_cmp(&b->key, &b->keys.set[0].end) < 0) 268 goto err; 269 270 if (b->written < btree_blocks(b)) 271 bch_bset_init_next(&b->keys, write_block(b), 272 bset_magic(&b->c->sb)); 273 out: 274 mempool_free(iter, b->c->fill_iter); 275 return; 276 err: 277 set_btree_node_io_error(b); 278 bch_cache_set_error(b->c, "%s at bucket %zu, block %u, %u keys", 279 err, PTR_BUCKET_NR(b->c, &b->key, 0), 280 bset_block_offset(b, i), i->keys); 281 goto out; 282 } 283 284 static void btree_node_read_endio(struct bio *bio) 285 { 286 struct closure *cl = bio->bi_private; 287 closure_put(cl); 288 } 289 290 static void bch_btree_node_read(struct btree *b) 291 { 292 uint64_t start_time = local_clock(); 293 struct closure cl; 294 struct bio *bio; 295 296 trace_bcache_btree_read(b); 297 298 closure_init_stack(&cl); 299 300 bio = bch_bbio_alloc(b->c); 301 bio->bi_iter.bi_size = KEY_SIZE(&b->key) << 9; 302 bio->bi_end_io = btree_node_read_endio; 303 bio->bi_private = &cl; 304 bio->bi_opf = REQ_OP_READ | REQ_META; 305 306 bch_bio_map(bio, b->keys.set[0].data); 307 308 bch_submit_bbio(bio, b->c, &b->key, 0); 309 closure_sync(&cl); 310 311 if (bio->bi_status) 312 set_btree_node_io_error(b); 313 314 bch_bbio_free(bio, b->c); 315 316 if (btree_node_io_error(b)) 317 goto err; 318 319 bch_btree_node_read_done(b); 320 bch_time_stats_update(&b->c->btree_read_time, start_time); 321 322 return; 323 err: 324 bch_cache_set_error(b->c, "io error reading bucket %zu", 325 PTR_BUCKET_NR(b->c, &b->key, 0)); 326 } 327 328 static void btree_complete_write(struct btree *b, struct btree_write *w) 329 { 330 if (w->prio_blocked && 331 !atomic_sub_return(w->prio_blocked, &b->c->prio_blocked)) 332 wake_up_allocators(b->c); 333 334 if (w->journal) { 335 atomic_dec_bug(w->journal); 336 __closure_wake_up(&b->c->journal.wait); 337 } 338 339 w->prio_blocked = 0; 340 w->journal = NULL; 341 } 342 343 static void btree_node_write_unlock(struct closure *cl) 344 { 345 struct btree *b = container_of(cl, struct btree, io); 346 347 up(&b->io_mutex); 348 } 349 350 static void __btree_node_write_done(struct closure *cl) 351 { 352 struct btree *b = container_of(cl, struct btree, io); 353 struct btree_write *w = btree_prev_write(b); 354 355 bch_bbio_free(b->bio, b->c); 356 b->bio = NULL; 357 btree_complete_write(b, w); 358 359 if (btree_node_dirty(b)) 360 schedule_delayed_work(&b->work, 30 * HZ); 361 362 closure_return_with_destructor(cl, btree_node_write_unlock); 363 } 364 365 static void btree_node_write_done(struct closure *cl) 366 { 367 struct btree *b = container_of(cl, struct btree, io); 368 369 bio_free_pages(b->bio); 370 __btree_node_write_done(cl); 371 } 372 373 static void btree_node_write_endio(struct bio *bio) 374 { 375 struct closure *cl = bio->bi_private; 376 struct btree *b = container_of(cl, struct btree, io); 377 378 if (bio->bi_status) 379 set_btree_node_io_error(b); 380 381 bch_bbio_count_io_errors(b->c, bio, bio->bi_status, "writing btree"); 382 closure_put(cl); 383 } 384 385 static void do_btree_node_write(struct btree *b) 386 { 387 struct closure *cl = &b->io; 388 struct bset *i = btree_bset_last(b); 389 BKEY_PADDED(key) k; 390 391 i->version = BCACHE_BSET_VERSION; 392 i->csum = btree_csum_set(b, i); 393 394 BUG_ON(b->bio); 395 b->bio = bch_bbio_alloc(b->c); 396 397 b->bio->bi_end_io = btree_node_write_endio; 398 b->bio->bi_private = cl; 399 b->bio->bi_iter.bi_size = roundup(set_bytes(i), block_bytes(b->c)); 400 b->bio->bi_opf = REQ_OP_WRITE | REQ_META | REQ_FUA; 401 bch_bio_map(b->bio, i); 402 403 /* 404 * If we're appending to a leaf node, we don't technically need FUA - 405 * this write just needs to be persisted before the next journal write, 406 * which will be marked FLUSH|FUA. 407 * 408 * Similarly if we're writing a new btree root - the pointer is going to 409 * be in the next journal entry. 410 * 411 * But if we're writing a new btree node (that isn't a root) or 412 * appending to a non leaf btree node, we need either FUA or a flush 413 * when we write the parent with the new pointer. FUA is cheaper than a 414 * flush, and writes appending to leaf nodes aren't blocking anything so 415 * just make all btree node writes FUA to keep things sane. 416 */ 417 418 bkey_copy(&k.key, &b->key); 419 SET_PTR_OFFSET(&k.key, 0, PTR_OFFSET(&k.key, 0) + 420 bset_sector_offset(&b->keys, i)); 421 422 if (!bch_bio_alloc_pages(b->bio, __GFP_NOWARN|GFP_NOWAIT)) { 423 int j; 424 struct bio_vec *bv; 425 void *base = (void *) ((unsigned long) i & ~(PAGE_SIZE - 1)); 426 427 bio_for_each_segment_all(bv, b->bio, j) 428 memcpy(page_address(bv->bv_page), 429 base + j * PAGE_SIZE, PAGE_SIZE); 430 431 bch_submit_bbio(b->bio, b->c, &k.key, 0); 432 433 continue_at(cl, btree_node_write_done, NULL); 434 } else { 435 /* No problem for multipage bvec since the bio is just allocated */ 436 b->bio->bi_vcnt = 0; 437 bch_bio_map(b->bio, i); 438 439 bch_submit_bbio(b->bio, b->c, &k.key, 0); 440 441 closure_sync(cl); 442 continue_at_nobarrier(cl, __btree_node_write_done, NULL); 443 } 444 } 445 446 void __bch_btree_node_write(struct btree *b, struct closure *parent) 447 { 448 struct bset *i = btree_bset_last(b); 449 450 lockdep_assert_held(&b->write_lock); 451 452 trace_bcache_btree_write(b); 453 454 BUG_ON(current->bio_list); 455 BUG_ON(b->written >= btree_blocks(b)); 456 BUG_ON(b->written && !i->keys); 457 BUG_ON(btree_bset_first(b)->seq != i->seq); 458 bch_check_keys(&b->keys, "writing"); 459 460 cancel_delayed_work(&b->work); 461 462 /* If caller isn't waiting for write, parent refcount is cache set */ 463 down(&b->io_mutex); 464 closure_init(&b->io, parent ?: &b->c->cl); 465 466 clear_bit(BTREE_NODE_dirty, &b->flags); 467 change_bit(BTREE_NODE_write_idx, &b->flags); 468 469 do_btree_node_write(b); 470 471 atomic_long_add(set_blocks(i, block_bytes(b->c)) * b->c->sb.block_size, 472 &PTR_CACHE(b->c, &b->key, 0)->btree_sectors_written); 473 474 b->written += set_blocks(i, block_bytes(b->c)); 475 } 476 477 void bch_btree_node_write(struct btree *b, struct closure *parent) 478 { 479 unsigned nsets = b->keys.nsets; 480 481 lockdep_assert_held(&b->lock); 482 483 __bch_btree_node_write(b, parent); 484 485 /* 486 * do verify if there was more than one set initially (i.e. we did a 487 * sort) and we sorted down to a single set: 488 */ 489 if (nsets && !b->keys.nsets) 490 bch_btree_verify(b); 491 492 bch_btree_init_next(b); 493 } 494 495 static void bch_btree_node_write_sync(struct btree *b) 496 { 497 struct closure cl; 498 499 closure_init_stack(&cl); 500 501 mutex_lock(&b->write_lock); 502 bch_btree_node_write(b, &cl); 503 mutex_unlock(&b->write_lock); 504 505 closure_sync(&cl); 506 } 507 508 static void btree_node_write_work(struct work_struct *w) 509 { 510 struct btree *b = container_of(to_delayed_work(w), struct btree, work); 511 512 mutex_lock(&b->write_lock); 513 if (btree_node_dirty(b)) 514 __bch_btree_node_write(b, NULL); 515 mutex_unlock(&b->write_lock); 516 } 517 518 static void bch_btree_leaf_dirty(struct btree *b, atomic_t *journal_ref) 519 { 520 struct bset *i = btree_bset_last(b); 521 struct btree_write *w = btree_current_write(b); 522 523 lockdep_assert_held(&b->write_lock); 524 525 BUG_ON(!b->written); 526 BUG_ON(!i->keys); 527 528 if (!btree_node_dirty(b)) 529 schedule_delayed_work(&b->work, 30 * HZ); 530 531 set_btree_node_dirty(b); 532 533 if (journal_ref) { 534 if (w->journal && 535 journal_pin_cmp(b->c, w->journal, journal_ref)) { 536 atomic_dec_bug(w->journal); 537 w->journal = NULL; 538 } 539 540 if (!w->journal) { 541 w->journal = journal_ref; 542 atomic_inc(w->journal); 543 } 544 } 545 546 /* Force write if set is too big */ 547 if (set_bytes(i) > PAGE_SIZE - 48 && 548 !current->bio_list) 549 bch_btree_node_write(b, NULL); 550 } 551 552 /* 553 * Btree in memory cache - allocation/freeing 554 * mca -> memory cache 555 */ 556 557 #define mca_reserve(c) (((c->root && c->root->level) \ 558 ? c->root->level : 1) * 8 + 16) 559 #define mca_can_free(c) \ 560 max_t(int, 0, c->btree_cache_used - mca_reserve(c)) 561 562 static void mca_data_free(struct btree *b) 563 { 564 BUG_ON(b->io_mutex.count != 1); 565 566 bch_btree_keys_free(&b->keys); 567 568 b->c->btree_cache_used--; 569 list_move(&b->list, &b->c->btree_cache_freed); 570 } 571 572 static void mca_bucket_free(struct btree *b) 573 { 574 BUG_ON(btree_node_dirty(b)); 575 576 b->key.ptr[0] = 0; 577 hlist_del_init_rcu(&b->hash); 578 list_move(&b->list, &b->c->btree_cache_freeable); 579 } 580 581 static unsigned btree_order(struct bkey *k) 582 { 583 return ilog2(KEY_SIZE(k) / PAGE_SECTORS ?: 1); 584 } 585 586 static void mca_data_alloc(struct btree *b, struct bkey *k, gfp_t gfp) 587 { 588 if (!bch_btree_keys_alloc(&b->keys, 589 max_t(unsigned, 590 ilog2(b->c->btree_pages), 591 btree_order(k)), 592 gfp)) { 593 b->c->btree_cache_used++; 594 list_move(&b->list, &b->c->btree_cache); 595 } else { 596 list_move(&b->list, &b->c->btree_cache_freed); 597 } 598 } 599 600 static struct btree *mca_bucket_alloc(struct cache_set *c, 601 struct bkey *k, gfp_t gfp) 602 { 603 struct btree *b = kzalloc(sizeof(struct btree), gfp); 604 if (!b) 605 return NULL; 606 607 init_rwsem(&b->lock); 608 lockdep_set_novalidate_class(&b->lock); 609 mutex_init(&b->write_lock); 610 lockdep_set_novalidate_class(&b->write_lock); 611 INIT_LIST_HEAD(&b->list); 612 INIT_DELAYED_WORK(&b->work, btree_node_write_work); 613 b->c = c; 614 sema_init(&b->io_mutex, 1); 615 616 mca_data_alloc(b, k, gfp); 617 return b; 618 } 619 620 static int mca_reap(struct btree *b, unsigned min_order, bool flush) 621 { 622 struct closure cl; 623 624 closure_init_stack(&cl); 625 lockdep_assert_held(&b->c->bucket_lock); 626 627 if (!down_write_trylock(&b->lock)) 628 return -ENOMEM; 629 630 BUG_ON(btree_node_dirty(b) && !b->keys.set[0].data); 631 632 if (b->keys.page_order < min_order) 633 goto out_unlock; 634 635 if (!flush) { 636 if (btree_node_dirty(b)) 637 goto out_unlock; 638 639 if (down_trylock(&b->io_mutex)) 640 goto out_unlock; 641 up(&b->io_mutex); 642 } 643 644 mutex_lock(&b->write_lock); 645 if (btree_node_dirty(b)) 646 __bch_btree_node_write(b, &cl); 647 mutex_unlock(&b->write_lock); 648 649 closure_sync(&cl); 650 651 /* wait for any in flight btree write */ 652 down(&b->io_mutex); 653 up(&b->io_mutex); 654 655 return 0; 656 out_unlock: 657 rw_unlock(true, b); 658 return -ENOMEM; 659 } 660 661 static unsigned long bch_mca_scan(struct shrinker *shrink, 662 struct shrink_control *sc) 663 { 664 struct cache_set *c = container_of(shrink, struct cache_set, shrink); 665 struct btree *b, *t; 666 unsigned long i, nr = sc->nr_to_scan; 667 unsigned long freed = 0; 668 669 if (c->shrinker_disabled) 670 return SHRINK_STOP; 671 672 if (c->btree_cache_alloc_lock) 673 return SHRINK_STOP; 674 675 /* Return -1 if we can't do anything right now */ 676 if (sc->gfp_mask & __GFP_IO) 677 mutex_lock(&c->bucket_lock); 678 else if (!mutex_trylock(&c->bucket_lock)) 679 return -1; 680 681 /* 682 * It's _really_ critical that we don't free too many btree nodes - we 683 * have to always leave ourselves a reserve. The reserve is how we 684 * guarantee that allocating memory for a new btree node can always 685 * succeed, so that inserting keys into the btree can always succeed and 686 * IO can always make forward progress: 687 */ 688 nr /= c->btree_pages; 689 nr = min_t(unsigned long, nr, mca_can_free(c)); 690 691 i = 0; 692 list_for_each_entry_safe(b, t, &c->btree_cache_freeable, list) { 693 if (freed >= nr) 694 break; 695 696 if (++i > 3 && 697 !mca_reap(b, 0, false)) { 698 mca_data_free(b); 699 rw_unlock(true, b); 700 freed++; 701 } 702 } 703 704 for (i = 0; (nr--) && i < c->btree_cache_used; i++) { 705 if (list_empty(&c->btree_cache)) 706 goto out; 707 708 b = list_first_entry(&c->btree_cache, struct btree, list); 709 list_rotate_left(&c->btree_cache); 710 711 if (!b->accessed && 712 !mca_reap(b, 0, false)) { 713 mca_bucket_free(b); 714 mca_data_free(b); 715 rw_unlock(true, b); 716 freed++; 717 } else 718 b->accessed = 0; 719 } 720 out: 721 mutex_unlock(&c->bucket_lock); 722 return freed; 723 } 724 725 static unsigned long bch_mca_count(struct shrinker *shrink, 726 struct shrink_control *sc) 727 { 728 struct cache_set *c = container_of(shrink, struct cache_set, shrink); 729 730 if (c->shrinker_disabled) 731 return 0; 732 733 if (c->btree_cache_alloc_lock) 734 return 0; 735 736 return mca_can_free(c) * c->btree_pages; 737 } 738 739 void bch_btree_cache_free(struct cache_set *c) 740 { 741 struct btree *b; 742 struct closure cl; 743 closure_init_stack(&cl); 744 745 if (c->shrink.list.next) 746 unregister_shrinker(&c->shrink); 747 748 mutex_lock(&c->bucket_lock); 749 750 #ifdef CONFIG_BCACHE_DEBUG 751 if (c->verify_data) 752 list_move(&c->verify_data->list, &c->btree_cache); 753 754 free_pages((unsigned long) c->verify_ondisk, ilog2(bucket_pages(c))); 755 #endif 756 757 list_splice(&c->btree_cache_freeable, 758 &c->btree_cache); 759 760 while (!list_empty(&c->btree_cache)) { 761 b = list_first_entry(&c->btree_cache, struct btree, list); 762 763 if (btree_node_dirty(b)) 764 btree_complete_write(b, btree_current_write(b)); 765 clear_bit(BTREE_NODE_dirty, &b->flags); 766 767 mca_data_free(b); 768 } 769 770 while (!list_empty(&c->btree_cache_freed)) { 771 b = list_first_entry(&c->btree_cache_freed, 772 struct btree, list); 773 list_del(&b->list); 774 cancel_delayed_work_sync(&b->work); 775 kfree(b); 776 } 777 778 mutex_unlock(&c->bucket_lock); 779 } 780 781 int bch_btree_cache_alloc(struct cache_set *c) 782 { 783 unsigned i; 784 785 for (i = 0; i < mca_reserve(c); i++) 786 if (!mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL)) 787 return -ENOMEM; 788 789 list_splice_init(&c->btree_cache, 790 &c->btree_cache_freeable); 791 792 #ifdef CONFIG_BCACHE_DEBUG 793 mutex_init(&c->verify_lock); 794 795 c->verify_ondisk = (void *) 796 __get_free_pages(GFP_KERNEL, ilog2(bucket_pages(c))); 797 798 c->verify_data = mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL); 799 800 if (c->verify_data && 801 c->verify_data->keys.set->data) 802 list_del_init(&c->verify_data->list); 803 else 804 c->verify_data = NULL; 805 #endif 806 807 c->shrink.count_objects = bch_mca_count; 808 c->shrink.scan_objects = bch_mca_scan; 809 c->shrink.seeks = 4; 810 c->shrink.batch = c->btree_pages * 2; 811 812 if (register_shrinker(&c->shrink)) 813 pr_warn("bcache: %s: could not register shrinker", 814 __func__); 815 816 return 0; 817 } 818 819 /* Btree in memory cache - hash table */ 820 821 static struct hlist_head *mca_hash(struct cache_set *c, struct bkey *k) 822 { 823 return &c->bucket_hash[hash_32(PTR_HASH(c, k), BUCKET_HASH_BITS)]; 824 } 825 826 static struct btree *mca_find(struct cache_set *c, struct bkey *k) 827 { 828 struct btree *b; 829 830 rcu_read_lock(); 831 hlist_for_each_entry_rcu(b, mca_hash(c, k), hash) 832 if (PTR_HASH(c, &b->key) == PTR_HASH(c, k)) 833 goto out; 834 b = NULL; 835 out: 836 rcu_read_unlock(); 837 return b; 838 } 839 840 static int mca_cannibalize_lock(struct cache_set *c, struct btree_op *op) 841 { 842 struct task_struct *old; 843 844 old = cmpxchg(&c->btree_cache_alloc_lock, NULL, current); 845 if (old && old != current) { 846 if (op) 847 prepare_to_wait(&c->btree_cache_wait, &op->wait, 848 TASK_UNINTERRUPTIBLE); 849 return -EINTR; 850 } 851 852 return 0; 853 } 854 855 static struct btree *mca_cannibalize(struct cache_set *c, struct btree_op *op, 856 struct bkey *k) 857 { 858 struct btree *b; 859 860 trace_bcache_btree_cache_cannibalize(c); 861 862 if (mca_cannibalize_lock(c, op)) 863 return ERR_PTR(-EINTR); 864 865 list_for_each_entry_reverse(b, &c->btree_cache, list) 866 if (!mca_reap(b, btree_order(k), false)) 867 return b; 868 869 list_for_each_entry_reverse(b, &c->btree_cache, list) 870 if (!mca_reap(b, btree_order(k), true)) 871 return b; 872 873 WARN(1, "btree cache cannibalize failed\n"); 874 return ERR_PTR(-ENOMEM); 875 } 876 877 /* 878 * We can only have one thread cannibalizing other cached btree nodes at a time, 879 * or we'll deadlock. We use an open coded mutex to ensure that, which a 880 * cannibalize_bucket() will take. This means every time we unlock the root of 881 * the btree, we need to release this lock if we have it held. 882 */ 883 static void bch_cannibalize_unlock(struct cache_set *c) 884 { 885 if (c->btree_cache_alloc_lock == current) { 886 c->btree_cache_alloc_lock = NULL; 887 wake_up(&c->btree_cache_wait); 888 } 889 } 890 891 static struct btree *mca_alloc(struct cache_set *c, struct btree_op *op, 892 struct bkey *k, int level) 893 { 894 struct btree *b; 895 896 BUG_ON(current->bio_list); 897 898 lockdep_assert_held(&c->bucket_lock); 899 900 if (mca_find(c, k)) 901 return NULL; 902 903 /* btree_free() doesn't free memory; it sticks the node on the end of 904 * the list. Check if there's any freed nodes there: 905 */ 906 list_for_each_entry(b, &c->btree_cache_freeable, list) 907 if (!mca_reap(b, btree_order(k), false)) 908 goto out; 909 910 /* We never free struct btree itself, just the memory that holds the on 911 * disk node. Check the freed list before allocating a new one: 912 */ 913 list_for_each_entry(b, &c->btree_cache_freed, list) 914 if (!mca_reap(b, 0, false)) { 915 mca_data_alloc(b, k, __GFP_NOWARN|GFP_NOIO); 916 if (!b->keys.set[0].data) 917 goto err; 918 else 919 goto out; 920 } 921 922 b = mca_bucket_alloc(c, k, __GFP_NOWARN|GFP_NOIO); 923 if (!b) 924 goto err; 925 926 BUG_ON(!down_write_trylock(&b->lock)); 927 if (!b->keys.set->data) 928 goto err; 929 out: 930 BUG_ON(b->io_mutex.count != 1); 931 932 bkey_copy(&b->key, k); 933 list_move(&b->list, &c->btree_cache); 934 hlist_del_init_rcu(&b->hash); 935 hlist_add_head_rcu(&b->hash, mca_hash(c, k)); 936 937 lock_set_subclass(&b->lock.dep_map, level + 1, _THIS_IP_); 938 b->parent = (void *) ~0UL; 939 b->flags = 0; 940 b->written = 0; 941 b->level = level; 942 943 if (!b->level) 944 bch_btree_keys_init(&b->keys, &bch_extent_keys_ops, 945 &b->c->expensive_debug_checks); 946 else 947 bch_btree_keys_init(&b->keys, &bch_btree_keys_ops, 948 &b->c->expensive_debug_checks); 949 950 return b; 951 err: 952 if (b) 953 rw_unlock(true, b); 954 955 b = mca_cannibalize(c, op, k); 956 if (!IS_ERR(b)) 957 goto out; 958 959 return b; 960 } 961 962 /** 963 * bch_btree_node_get - find a btree node in the cache and lock it, reading it 964 * in from disk if necessary. 965 * 966 * If IO is necessary and running under generic_make_request, returns -EAGAIN. 967 * 968 * The btree node will have either a read or a write lock held, depending on 969 * level and op->lock. 970 */ 971 struct btree *bch_btree_node_get(struct cache_set *c, struct btree_op *op, 972 struct bkey *k, int level, bool write, 973 struct btree *parent) 974 { 975 int i = 0; 976 struct btree *b; 977 978 BUG_ON(level < 0); 979 retry: 980 b = mca_find(c, k); 981 982 if (!b) { 983 if (current->bio_list) 984 return ERR_PTR(-EAGAIN); 985 986 mutex_lock(&c->bucket_lock); 987 b = mca_alloc(c, op, k, level); 988 mutex_unlock(&c->bucket_lock); 989 990 if (!b) 991 goto retry; 992 if (IS_ERR(b)) 993 return b; 994 995 bch_btree_node_read(b); 996 997 if (!write) 998 downgrade_write(&b->lock); 999 } else { 1000 rw_lock(write, b, level); 1001 if (PTR_HASH(c, &b->key) != PTR_HASH(c, k)) { 1002 rw_unlock(write, b); 1003 goto retry; 1004 } 1005 BUG_ON(b->level != level); 1006 } 1007 1008 b->parent = parent; 1009 b->accessed = 1; 1010 1011 for (; i <= b->keys.nsets && b->keys.set[i].size; i++) { 1012 prefetch(b->keys.set[i].tree); 1013 prefetch(b->keys.set[i].data); 1014 } 1015 1016 for (; i <= b->keys.nsets; i++) 1017 prefetch(b->keys.set[i].data); 1018 1019 if (btree_node_io_error(b)) { 1020 rw_unlock(write, b); 1021 return ERR_PTR(-EIO); 1022 } 1023 1024 BUG_ON(!b->written); 1025 1026 return b; 1027 } 1028 1029 static void btree_node_prefetch(struct btree *parent, struct bkey *k) 1030 { 1031 struct btree *b; 1032 1033 mutex_lock(&parent->c->bucket_lock); 1034 b = mca_alloc(parent->c, NULL, k, parent->level - 1); 1035 mutex_unlock(&parent->c->bucket_lock); 1036 1037 if (!IS_ERR_OR_NULL(b)) { 1038 b->parent = parent; 1039 bch_btree_node_read(b); 1040 rw_unlock(true, b); 1041 } 1042 } 1043 1044 /* Btree alloc */ 1045 1046 static void btree_node_free(struct btree *b) 1047 { 1048 trace_bcache_btree_node_free(b); 1049 1050 BUG_ON(b == b->c->root); 1051 1052 mutex_lock(&b->write_lock); 1053 1054 if (btree_node_dirty(b)) 1055 btree_complete_write(b, btree_current_write(b)); 1056 clear_bit(BTREE_NODE_dirty, &b->flags); 1057 1058 mutex_unlock(&b->write_lock); 1059 1060 cancel_delayed_work(&b->work); 1061 1062 mutex_lock(&b->c->bucket_lock); 1063 bch_bucket_free(b->c, &b->key); 1064 mca_bucket_free(b); 1065 mutex_unlock(&b->c->bucket_lock); 1066 } 1067 1068 struct btree *__bch_btree_node_alloc(struct cache_set *c, struct btree_op *op, 1069 int level, bool wait, 1070 struct btree *parent) 1071 { 1072 BKEY_PADDED(key) k; 1073 struct btree *b = ERR_PTR(-EAGAIN); 1074 1075 mutex_lock(&c->bucket_lock); 1076 retry: 1077 if (__bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, 1, wait)) 1078 goto err; 1079 1080 bkey_put(c, &k.key); 1081 SET_KEY_SIZE(&k.key, c->btree_pages * PAGE_SECTORS); 1082 1083 b = mca_alloc(c, op, &k.key, level); 1084 if (IS_ERR(b)) 1085 goto err_free; 1086 1087 if (!b) { 1088 cache_bug(c, 1089 "Tried to allocate bucket that was in btree cache"); 1090 goto retry; 1091 } 1092 1093 b->accessed = 1; 1094 b->parent = parent; 1095 bch_bset_init_next(&b->keys, b->keys.set->data, bset_magic(&b->c->sb)); 1096 1097 mutex_unlock(&c->bucket_lock); 1098 1099 trace_bcache_btree_node_alloc(b); 1100 return b; 1101 err_free: 1102 bch_bucket_free(c, &k.key); 1103 err: 1104 mutex_unlock(&c->bucket_lock); 1105 1106 trace_bcache_btree_node_alloc_fail(c); 1107 return b; 1108 } 1109 1110 static struct btree *bch_btree_node_alloc(struct cache_set *c, 1111 struct btree_op *op, int level, 1112 struct btree *parent) 1113 { 1114 return __bch_btree_node_alloc(c, op, level, op != NULL, parent); 1115 } 1116 1117 static struct btree *btree_node_alloc_replacement(struct btree *b, 1118 struct btree_op *op) 1119 { 1120 struct btree *n = bch_btree_node_alloc(b->c, op, b->level, b->parent); 1121 if (!IS_ERR_OR_NULL(n)) { 1122 mutex_lock(&n->write_lock); 1123 bch_btree_sort_into(&b->keys, &n->keys, &b->c->sort); 1124 bkey_copy_key(&n->key, &b->key); 1125 mutex_unlock(&n->write_lock); 1126 } 1127 1128 return n; 1129 } 1130 1131 static void make_btree_freeing_key(struct btree *b, struct bkey *k) 1132 { 1133 unsigned i; 1134 1135 mutex_lock(&b->c->bucket_lock); 1136 1137 atomic_inc(&b->c->prio_blocked); 1138 1139 bkey_copy(k, &b->key); 1140 bkey_copy_key(k, &ZERO_KEY); 1141 1142 for (i = 0; i < KEY_PTRS(k); i++) 1143 SET_PTR_GEN(k, i, 1144 bch_inc_gen(PTR_CACHE(b->c, &b->key, i), 1145 PTR_BUCKET(b->c, &b->key, i))); 1146 1147 mutex_unlock(&b->c->bucket_lock); 1148 } 1149 1150 static int btree_check_reserve(struct btree *b, struct btree_op *op) 1151 { 1152 struct cache_set *c = b->c; 1153 struct cache *ca; 1154 unsigned i, reserve = (c->root->level - b->level) * 2 + 1; 1155 1156 mutex_lock(&c->bucket_lock); 1157 1158 for_each_cache(ca, c, i) 1159 if (fifo_used(&ca->free[RESERVE_BTREE]) < reserve) { 1160 if (op) 1161 prepare_to_wait(&c->btree_cache_wait, &op->wait, 1162 TASK_UNINTERRUPTIBLE); 1163 mutex_unlock(&c->bucket_lock); 1164 return -EINTR; 1165 } 1166 1167 mutex_unlock(&c->bucket_lock); 1168 1169 return mca_cannibalize_lock(b->c, op); 1170 } 1171 1172 /* Garbage collection */ 1173 1174 static uint8_t __bch_btree_mark_key(struct cache_set *c, int level, 1175 struct bkey *k) 1176 { 1177 uint8_t stale = 0; 1178 unsigned i; 1179 struct bucket *g; 1180 1181 /* 1182 * ptr_invalid() can't return true for the keys that mark btree nodes as 1183 * freed, but since ptr_bad() returns true we'll never actually use them 1184 * for anything and thus we don't want mark their pointers here 1185 */ 1186 if (!bkey_cmp(k, &ZERO_KEY)) 1187 return stale; 1188 1189 for (i = 0; i < KEY_PTRS(k); i++) { 1190 if (!ptr_available(c, k, i)) 1191 continue; 1192 1193 g = PTR_BUCKET(c, k, i); 1194 1195 if (gen_after(g->last_gc, PTR_GEN(k, i))) 1196 g->last_gc = PTR_GEN(k, i); 1197 1198 if (ptr_stale(c, k, i)) { 1199 stale = max(stale, ptr_stale(c, k, i)); 1200 continue; 1201 } 1202 1203 cache_bug_on(GC_MARK(g) && 1204 (GC_MARK(g) == GC_MARK_METADATA) != (level != 0), 1205 c, "inconsistent ptrs: mark = %llu, level = %i", 1206 GC_MARK(g), level); 1207 1208 if (level) 1209 SET_GC_MARK(g, GC_MARK_METADATA); 1210 else if (KEY_DIRTY(k)) 1211 SET_GC_MARK(g, GC_MARK_DIRTY); 1212 else if (!GC_MARK(g)) 1213 SET_GC_MARK(g, GC_MARK_RECLAIMABLE); 1214 1215 /* guard against overflow */ 1216 SET_GC_SECTORS_USED(g, min_t(unsigned, 1217 GC_SECTORS_USED(g) + KEY_SIZE(k), 1218 MAX_GC_SECTORS_USED)); 1219 1220 BUG_ON(!GC_SECTORS_USED(g)); 1221 } 1222 1223 return stale; 1224 } 1225 1226 #define btree_mark_key(b, k) __bch_btree_mark_key(b->c, b->level, k) 1227 1228 void bch_initial_mark_key(struct cache_set *c, int level, struct bkey *k) 1229 { 1230 unsigned i; 1231 1232 for (i = 0; i < KEY_PTRS(k); i++) 1233 if (ptr_available(c, k, i) && 1234 !ptr_stale(c, k, i)) { 1235 struct bucket *b = PTR_BUCKET(c, k, i); 1236 1237 b->gen = PTR_GEN(k, i); 1238 1239 if (level && bkey_cmp(k, &ZERO_KEY)) 1240 b->prio = BTREE_PRIO; 1241 else if (!level && b->prio == BTREE_PRIO) 1242 b->prio = INITIAL_PRIO; 1243 } 1244 1245 __bch_btree_mark_key(c, level, k); 1246 } 1247 1248 void bch_update_bucket_in_use(struct cache_set *c, struct gc_stat *stats) 1249 { 1250 stats->in_use = (c->nbuckets - c->avail_nbuckets) * 100 / c->nbuckets; 1251 } 1252 1253 static bool btree_gc_mark_node(struct btree *b, struct gc_stat *gc) 1254 { 1255 uint8_t stale = 0; 1256 unsigned keys = 0, good_keys = 0; 1257 struct bkey *k; 1258 struct btree_iter iter; 1259 struct bset_tree *t; 1260 1261 gc->nodes++; 1262 1263 for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid) { 1264 stale = max(stale, btree_mark_key(b, k)); 1265 keys++; 1266 1267 if (bch_ptr_bad(&b->keys, k)) 1268 continue; 1269 1270 gc->key_bytes += bkey_u64s(k); 1271 gc->nkeys++; 1272 good_keys++; 1273 1274 gc->data += KEY_SIZE(k); 1275 } 1276 1277 for (t = b->keys.set; t <= &b->keys.set[b->keys.nsets]; t++) 1278 btree_bug_on(t->size && 1279 bset_written(&b->keys, t) && 1280 bkey_cmp(&b->key, &t->end) < 0, 1281 b, "found short btree key in gc"); 1282 1283 if (b->c->gc_always_rewrite) 1284 return true; 1285 1286 if (stale > 10) 1287 return true; 1288 1289 if ((keys - good_keys) * 2 > keys) 1290 return true; 1291 1292 return false; 1293 } 1294 1295 #define GC_MERGE_NODES 4U 1296 1297 struct gc_merge_info { 1298 struct btree *b; 1299 unsigned keys; 1300 }; 1301 1302 static int bch_btree_insert_node(struct btree *, struct btree_op *, 1303 struct keylist *, atomic_t *, struct bkey *); 1304 1305 static int btree_gc_coalesce(struct btree *b, struct btree_op *op, 1306 struct gc_stat *gc, struct gc_merge_info *r) 1307 { 1308 unsigned i, nodes = 0, keys = 0, blocks; 1309 struct btree *new_nodes[GC_MERGE_NODES]; 1310 struct keylist keylist; 1311 struct closure cl; 1312 struct bkey *k; 1313 1314 bch_keylist_init(&keylist); 1315 1316 if (btree_check_reserve(b, NULL)) 1317 return 0; 1318 1319 memset(new_nodes, 0, sizeof(new_nodes)); 1320 closure_init_stack(&cl); 1321 1322 while (nodes < GC_MERGE_NODES && !IS_ERR_OR_NULL(r[nodes].b)) 1323 keys += r[nodes++].keys; 1324 1325 blocks = btree_default_blocks(b->c) * 2 / 3; 1326 1327 if (nodes < 2 || 1328 __set_blocks(b->keys.set[0].data, keys, 1329 block_bytes(b->c)) > blocks * (nodes - 1)) 1330 return 0; 1331 1332 for (i = 0; i < nodes; i++) { 1333 new_nodes[i] = btree_node_alloc_replacement(r[i].b, NULL); 1334 if (IS_ERR_OR_NULL(new_nodes[i])) 1335 goto out_nocoalesce; 1336 } 1337 1338 /* 1339 * We have to check the reserve here, after we've allocated our new 1340 * nodes, to make sure the insert below will succeed - we also check 1341 * before as an optimization to potentially avoid a bunch of expensive 1342 * allocs/sorts 1343 */ 1344 if (btree_check_reserve(b, NULL)) 1345 goto out_nocoalesce; 1346 1347 for (i = 0; i < nodes; i++) 1348 mutex_lock(&new_nodes[i]->write_lock); 1349 1350 for (i = nodes - 1; i > 0; --i) { 1351 struct bset *n1 = btree_bset_first(new_nodes[i]); 1352 struct bset *n2 = btree_bset_first(new_nodes[i - 1]); 1353 struct bkey *k, *last = NULL; 1354 1355 keys = 0; 1356 1357 if (i > 1) { 1358 for (k = n2->start; 1359 k < bset_bkey_last(n2); 1360 k = bkey_next(k)) { 1361 if (__set_blocks(n1, n1->keys + keys + 1362 bkey_u64s(k), 1363 block_bytes(b->c)) > blocks) 1364 break; 1365 1366 last = k; 1367 keys += bkey_u64s(k); 1368 } 1369 } else { 1370 /* 1371 * Last node we're not getting rid of - we're getting 1372 * rid of the node at r[0]. Have to try and fit all of 1373 * the remaining keys into this node; we can't ensure 1374 * they will always fit due to rounding and variable 1375 * length keys (shouldn't be possible in practice, 1376 * though) 1377 */ 1378 if (__set_blocks(n1, n1->keys + n2->keys, 1379 block_bytes(b->c)) > 1380 btree_blocks(new_nodes[i])) 1381 goto out_nocoalesce; 1382 1383 keys = n2->keys; 1384 /* Take the key of the node we're getting rid of */ 1385 last = &r->b->key; 1386 } 1387 1388 BUG_ON(__set_blocks(n1, n1->keys + keys, block_bytes(b->c)) > 1389 btree_blocks(new_nodes[i])); 1390 1391 if (last) 1392 bkey_copy_key(&new_nodes[i]->key, last); 1393 1394 memcpy(bset_bkey_last(n1), 1395 n2->start, 1396 (void *) bset_bkey_idx(n2, keys) - (void *) n2->start); 1397 1398 n1->keys += keys; 1399 r[i].keys = n1->keys; 1400 1401 memmove(n2->start, 1402 bset_bkey_idx(n2, keys), 1403 (void *) bset_bkey_last(n2) - 1404 (void *) bset_bkey_idx(n2, keys)); 1405 1406 n2->keys -= keys; 1407 1408 if (__bch_keylist_realloc(&keylist, 1409 bkey_u64s(&new_nodes[i]->key))) 1410 goto out_nocoalesce; 1411 1412 bch_btree_node_write(new_nodes[i], &cl); 1413 bch_keylist_add(&keylist, &new_nodes[i]->key); 1414 } 1415 1416 for (i = 0; i < nodes; i++) 1417 mutex_unlock(&new_nodes[i]->write_lock); 1418 1419 closure_sync(&cl); 1420 1421 /* We emptied out this node */ 1422 BUG_ON(btree_bset_first(new_nodes[0])->keys); 1423 btree_node_free(new_nodes[0]); 1424 rw_unlock(true, new_nodes[0]); 1425 new_nodes[0] = NULL; 1426 1427 for (i = 0; i < nodes; i++) { 1428 if (__bch_keylist_realloc(&keylist, bkey_u64s(&r[i].b->key))) 1429 goto out_nocoalesce; 1430 1431 make_btree_freeing_key(r[i].b, keylist.top); 1432 bch_keylist_push(&keylist); 1433 } 1434 1435 bch_btree_insert_node(b, op, &keylist, NULL, NULL); 1436 BUG_ON(!bch_keylist_empty(&keylist)); 1437 1438 for (i = 0; i < nodes; i++) { 1439 btree_node_free(r[i].b); 1440 rw_unlock(true, r[i].b); 1441 1442 r[i].b = new_nodes[i]; 1443 } 1444 1445 memmove(r, r + 1, sizeof(r[0]) * (nodes - 1)); 1446 r[nodes - 1].b = ERR_PTR(-EINTR); 1447 1448 trace_bcache_btree_gc_coalesce(nodes); 1449 gc->nodes--; 1450 1451 bch_keylist_free(&keylist); 1452 1453 /* Invalidated our iterator */ 1454 return -EINTR; 1455 1456 out_nocoalesce: 1457 closure_sync(&cl); 1458 bch_keylist_free(&keylist); 1459 1460 while ((k = bch_keylist_pop(&keylist))) 1461 if (!bkey_cmp(k, &ZERO_KEY)) 1462 atomic_dec(&b->c->prio_blocked); 1463 1464 for (i = 0; i < nodes; i++) 1465 if (!IS_ERR_OR_NULL(new_nodes[i])) { 1466 btree_node_free(new_nodes[i]); 1467 rw_unlock(true, new_nodes[i]); 1468 } 1469 return 0; 1470 } 1471 1472 static int btree_gc_rewrite_node(struct btree *b, struct btree_op *op, 1473 struct btree *replace) 1474 { 1475 struct keylist keys; 1476 struct btree *n; 1477 1478 if (btree_check_reserve(b, NULL)) 1479 return 0; 1480 1481 n = btree_node_alloc_replacement(replace, NULL); 1482 1483 /* recheck reserve after allocating replacement node */ 1484 if (btree_check_reserve(b, NULL)) { 1485 btree_node_free(n); 1486 rw_unlock(true, n); 1487 return 0; 1488 } 1489 1490 bch_btree_node_write_sync(n); 1491 1492 bch_keylist_init(&keys); 1493 bch_keylist_add(&keys, &n->key); 1494 1495 make_btree_freeing_key(replace, keys.top); 1496 bch_keylist_push(&keys); 1497 1498 bch_btree_insert_node(b, op, &keys, NULL, NULL); 1499 BUG_ON(!bch_keylist_empty(&keys)); 1500 1501 btree_node_free(replace); 1502 rw_unlock(true, n); 1503 1504 /* Invalidated our iterator */ 1505 return -EINTR; 1506 } 1507 1508 static unsigned btree_gc_count_keys(struct btree *b) 1509 { 1510 struct bkey *k; 1511 struct btree_iter iter; 1512 unsigned ret = 0; 1513 1514 for_each_key_filter(&b->keys, k, &iter, bch_ptr_bad) 1515 ret += bkey_u64s(k); 1516 1517 return ret; 1518 } 1519 1520 static int btree_gc_recurse(struct btree *b, struct btree_op *op, 1521 struct closure *writes, struct gc_stat *gc) 1522 { 1523 int ret = 0; 1524 bool should_rewrite; 1525 struct bkey *k; 1526 struct btree_iter iter; 1527 struct gc_merge_info r[GC_MERGE_NODES]; 1528 struct gc_merge_info *i, *last = r + ARRAY_SIZE(r) - 1; 1529 1530 bch_btree_iter_init(&b->keys, &iter, &b->c->gc_done); 1531 1532 for (i = r; i < r + ARRAY_SIZE(r); i++) 1533 i->b = ERR_PTR(-EINTR); 1534 1535 while (1) { 1536 k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad); 1537 if (k) { 1538 r->b = bch_btree_node_get(b->c, op, k, b->level - 1, 1539 true, b); 1540 if (IS_ERR(r->b)) { 1541 ret = PTR_ERR(r->b); 1542 break; 1543 } 1544 1545 r->keys = btree_gc_count_keys(r->b); 1546 1547 ret = btree_gc_coalesce(b, op, gc, r); 1548 if (ret) 1549 break; 1550 } 1551 1552 if (!last->b) 1553 break; 1554 1555 if (!IS_ERR(last->b)) { 1556 should_rewrite = btree_gc_mark_node(last->b, gc); 1557 if (should_rewrite) { 1558 ret = btree_gc_rewrite_node(b, op, last->b); 1559 if (ret) 1560 break; 1561 } 1562 1563 if (last->b->level) { 1564 ret = btree_gc_recurse(last->b, op, writes, gc); 1565 if (ret) 1566 break; 1567 } 1568 1569 bkey_copy_key(&b->c->gc_done, &last->b->key); 1570 1571 /* 1572 * Must flush leaf nodes before gc ends, since replace 1573 * operations aren't journalled 1574 */ 1575 mutex_lock(&last->b->write_lock); 1576 if (btree_node_dirty(last->b)) 1577 bch_btree_node_write(last->b, writes); 1578 mutex_unlock(&last->b->write_lock); 1579 rw_unlock(true, last->b); 1580 } 1581 1582 memmove(r + 1, r, sizeof(r[0]) * (GC_MERGE_NODES - 1)); 1583 r->b = NULL; 1584 1585 if (need_resched()) { 1586 ret = -EAGAIN; 1587 break; 1588 } 1589 } 1590 1591 for (i = r; i < r + ARRAY_SIZE(r); i++) 1592 if (!IS_ERR_OR_NULL(i->b)) { 1593 mutex_lock(&i->b->write_lock); 1594 if (btree_node_dirty(i->b)) 1595 bch_btree_node_write(i->b, writes); 1596 mutex_unlock(&i->b->write_lock); 1597 rw_unlock(true, i->b); 1598 } 1599 1600 return ret; 1601 } 1602 1603 static int bch_btree_gc_root(struct btree *b, struct btree_op *op, 1604 struct closure *writes, struct gc_stat *gc) 1605 { 1606 struct btree *n = NULL; 1607 int ret = 0; 1608 bool should_rewrite; 1609 1610 should_rewrite = btree_gc_mark_node(b, gc); 1611 if (should_rewrite) { 1612 n = btree_node_alloc_replacement(b, NULL); 1613 1614 if (!IS_ERR_OR_NULL(n)) { 1615 bch_btree_node_write_sync(n); 1616 1617 bch_btree_set_root(n); 1618 btree_node_free(b); 1619 rw_unlock(true, n); 1620 1621 return -EINTR; 1622 } 1623 } 1624 1625 __bch_btree_mark_key(b->c, b->level + 1, &b->key); 1626 1627 if (b->level) { 1628 ret = btree_gc_recurse(b, op, writes, gc); 1629 if (ret) 1630 return ret; 1631 } 1632 1633 bkey_copy_key(&b->c->gc_done, &b->key); 1634 1635 return ret; 1636 } 1637 1638 static void btree_gc_start(struct cache_set *c) 1639 { 1640 struct cache *ca; 1641 struct bucket *b; 1642 unsigned i; 1643 1644 if (!c->gc_mark_valid) 1645 return; 1646 1647 mutex_lock(&c->bucket_lock); 1648 1649 c->gc_mark_valid = 0; 1650 c->gc_done = ZERO_KEY; 1651 1652 for_each_cache(ca, c, i) 1653 for_each_bucket(b, ca) { 1654 b->last_gc = b->gen; 1655 if (!atomic_read(&b->pin)) { 1656 SET_GC_MARK(b, 0); 1657 SET_GC_SECTORS_USED(b, 0); 1658 } 1659 } 1660 1661 mutex_unlock(&c->bucket_lock); 1662 } 1663 1664 static void bch_btree_gc_finish(struct cache_set *c) 1665 { 1666 struct bucket *b; 1667 struct cache *ca; 1668 unsigned i; 1669 1670 mutex_lock(&c->bucket_lock); 1671 1672 set_gc_sectors(c); 1673 c->gc_mark_valid = 1; 1674 c->need_gc = 0; 1675 1676 for (i = 0; i < KEY_PTRS(&c->uuid_bucket); i++) 1677 SET_GC_MARK(PTR_BUCKET(c, &c->uuid_bucket, i), 1678 GC_MARK_METADATA); 1679 1680 /* don't reclaim buckets to which writeback keys point */ 1681 rcu_read_lock(); 1682 for (i = 0; i < c->devices_max_used; i++) { 1683 struct bcache_device *d = c->devices[i]; 1684 struct cached_dev *dc; 1685 struct keybuf_key *w, *n; 1686 unsigned j; 1687 1688 if (!d || UUID_FLASH_ONLY(&c->uuids[i])) 1689 continue; 1690 dc = container_of(d, struct cached_dev, disk); 1691 1692 spin_lock(&dc->writeback_keys.lock); 1693 rbtree_postorder_for_each_entry_safe(w, n, 1694 &dc->writeback_keys.keys, node) 1695 for (j = 0; j < KEY_PTRS(&w->key); j++) 1696 SET_GC_MARK(PTR_BUCKET(c, &w->key, j), 1697 GC_MARK_DIRTY); 1698 spin_unlock(&dc->writeback_keys.lock); 1699 } 1700 rcu_read_unlock(); 1701 1702 c->avail_nbuckets = 0; 1703 for_each_cache(ca, c, i) { 1704 uint64_t *i; 1705 1706 ca->invalidate_needs_gc = 0; 1707 1708 for (i = ca->sb.d; i < ca->sb.d + ca->sb.keys; i++) 1709 SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA); 1710 1711 for (i = ca->prio_buckets; 1712 i < ca->prio_buckets + prio_buckets(ca) * 2; i++) 1713 SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA); 1714 1715 for_each_bucket(b, ca) { 1716 c->need_gc = max(c->need_gc, bucket_gc_gen(b)); 1717 1718 if (atomic_read(&b->pin)) 1719 continue; 1720 1721 BUG_ON(!GC_MARK(b) && GC_SECTORS_USED(b)); 1722 1723 if (!GC_MARK(b) || GC_MARK(b) == GC_MARK_RECLAIMABLE) 1724 c->avail_nbuckets++; 1725 } 1726 } 1727 1728 mutex_unlock(&c->bucket_lock); 1729 } 1730 1731 static void bch_btree_gc(struct cache_set *c) 1732 { 1733 int ret; 1734 struct gc_stat stats; 1735 struct closure writes; 1736 struct btree_op op; 1737 uint64_t start_time = local_clock(); 1738 1739 trace_bcache_gc_start(c); 1740 1741 memset(&stats, 0, sizeof(struct gc_stat)); 1742 closure_init_stack(&writes); 1743 bch_btree_op_init(&op, SHRT_MAX); 1744 1745 btree_gc_start(c); 1746 1747 do { 1748 ret = btree_root(gc_root, c, &op, &writes, &stats); 1749 closure_sync(&writes); 1750 cond_resched(); 1751 1752 if (ret && ret != -EAGAIN) 1753 pr_warn("gc failed!"); 1754 } while (ret); 1755 1756 bch_btree_gc_finish(c); 1757 wake_up_allocators(c); 1758 1759 bch_time_stats_update(&c->btree_gc_time, start_time); 1760 1761 stats.key_bytes *= sizeof(uint64_t); 1762 stats.data <<= 9; 1763 bch_update_bucket_in_use(c, &stats); 1764 memcpy(&c->gc_stats, &stats, sizeof(struct gc_stat)); 1765 1766 trace_bcache_gc_end(c); 1767 1768 bch_moving_gc(c); 1769 } 1770 1771 static bool gc_should_run(struct cache_set *c) 1772 { 1773 struct cache *ca; 1774 unsigned i; 1775 1776 for_each_cache(ca, c, i) 1777 if (ca->invalidate_needs_gc) 1778 return true; 1779 1780 if (atomic_read(&c->sectors_to_gc) < 0) 1781 return true; 1782 1783 return false; 1784 } 1785 1786 static int bch_gc_thread(void *arg) 1787 { 1788 struct cache_set *c = arg; 1789 1790 while (1) { 1791 wait_event_interruptible(c->gc_wait, 1792 kthread_should_stop() || gc_should_run(c)); 1793 1794 if (kthread_should_stop()) 1795 break; 1796 1797 set_gc_sectors(c); 1798 bch_btree_gc(c); 1799 } 1800 1801 return 0; 1802 } 1803 1804 int bch_gc_thread_start(struct cache_set *c) 1805 { 1806 c->gc_thread = kthread_run(bch_gc_thread, c, "bcache_gc"); 1807 return PTR_ERR_OR_ZERO(c->gc_thread); 1808 } 1809 1810 /* Initial partial gc */ 1811 1812 static int bch_btree_check_recurse(struct btree *b, struct btree_op *op) 1813 { 1814 int ret = 0; 1815 struct bkey *k, *p = NULL; 1816 struct btree_iter iter; 1817 1818 for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid) 1819 bch_initial_mark_key(b->c, b->level, k); 1820 1821 bch_initial_mark_key(b->c, b->level + 1, &b->key); 1822 1823 if (b->level) { 1824 bch_btree_iter_init(&b->keys, &iter, NULL); 1825 1826 do { 1827 k = bch_btree_iter_next_filter(&iter, &b->keys, 1828 bch_ptr_bad); 1829 if (k) 1830 btree_node_prefetch(b, k); 1831 1832 if (p) 1833 ret = btree(check_recurse, p, b, op); 1834 1835 p = k; 1836 } while (p && !ret); 1837 } 1838 1839 return ret; 1840 } 1841 1842 int bch_btree_check(struct cache_set *c) 1843 { 1844 struct btree_op op; 1845 1846 bch_btree_op_init(&op, SHRT_MAX); 1847 1848 return btree_root(check_recurse, c, &op); 1849 } 1850 1851 void bch_initial_gc_finish(struct cache_set *c) 1852 { 1853 struct cache *ca; 1854 struct bucket *b; 1855 unsigned i; 1856 1857 bch_btree_gc_finish(c); 1858 1859 mutex_lock(&c->bucket_lock); 1860 1861 /* 1862 * We need to put some unused buckets directly on the prio freelist in 1863 * order to get the allocator thread started - it needs freed buckets in 1864 * order to rewrite the prios and gens, and it needs to rewrite prios 1865 * and gens in order to free buckets. 1866 * 1867 * This is only safe for buckets that have no live data in them, which 1868 * there should always be some of. 1869 */ 1870 for_each_cache(ca, c, i) { 1871 for_each_bucket(b, ca) { 1872 if (fifo_full(&ca->free[RESERVE_PRIO]) && 1873 fifo_full(&ca->free[RESERVE_BTREE])) 1874 break; 1875 1876 if (bch_can_invalidate_bucket(ca, b) && 1877 !GC_MARK(b)) { 1878 __bch_invalidate_one_bucket(ca, b); 1879 if (!fifo_push(&ca->free[RESERVE_PRIO], 1880 b - ca->buckets)) 1881 fifo_push(&ca->free[RESERVE_BTREE], 1882 b - ca->buckets); 1883 } 1884 } 1885 } 1886 1887 mutex_unlock(&c->bucket_lock); 1888 } 1889 1890 /* Btree insertion */ 1891 1892 static bool btree_insert_key(struct btree *b, struct bkey *k, 1893 struct bkey *replace_key) 1894 { 1895 unsigned status; 1896 1897 BUG_ON(bkey_cmp(k, &b->key) > 0); 1898 1899 status = bch_btree_insert_key(&b->keys, k, replace_key); 1900 if (status != BTREE_INSERT_STATUS_NO_INSERT) { 1901 bch_check_keys(&b->keys, "%u for %s", status, 1902 replace_key ? "replace" : "insert"); 1903 1904 trace_bcache_btree_insert_key(b, k, replace_key != NULL, 1905 status); 1906 return true; 1907 } else 1908 return false; 1909 } 1910 1911 static size_t insert_u64s_remaining(struct btree *b) 1912 { 1913 long ret = bch_btree_keys_u64s_remaining(&b->keys); 1914 1915 /* 1916 * Might land in the middle of an existing extent and have to split it 1917 */ 1918 if (b->keys.ops->is_extents) 1919 ret -= KEY_MAX_U64S; 1920 1921 return max(ret, 0L); 1922 } 1923 1924 static bool bch_btree_insert_keys(struct btree *b, struct btree_op *op, 1925 struct keylist *insert_keys, 1926 struct bkey *replace_key) 1927 { 1928 bool ret = false; 1929 int oldsize = bch_count_data(&b->keys); 1930 1931 while (!bch_keylist_empty(insert_keys)) { 1932 struct bkey *k = insert_keys->keys; 1933 1934 if (bkey_u64s(k) > insert_u64s_remaining(b)) 1935 break; 1936 1937 if (bkey_cmp(k, &b->key) <= 0) { 1938 if (!b->level) 1939 bkey_put(b->c, k); 1940 1941 ret |= btree_insert_key(b, k, replace_key); 1942 bch_keylist_pop_front(insert_keys); 1943 } else if (bkey_cmp(&START_KEY(k), &b->key) < 0) { 1944 BKEY_PADDED(key) temp; 1945 bkey_copy(&temp.key, insert_keys->keys); 1946 1947 bch_cut_back(&b->key, &temp.key); 1948 bch_cut_front(&b->key, insert_keys->keys); 1949 1950 ret |= btree_insert_key(b, &temp.key, replace_key); 1951 break; 1952 } else { 1953 break; 1954 } 1955 } 1956 1957 if (!ret) 1958 op->insert_collision = true; 1959 1960 BUG_ON(!bch_keylist_empty(insert_keys) && b->level); 1961 1962 BUG_ON(bch_count_data(&b->keys) < oldsize); 1963 return ret; 1964 } 1965 1966 static int btree_split(struct btree *b, struct btree_op *op, 1967 struct keylist *insert_keys, 1968 struct bkey *replace_key) 1969 { 1970 bool split; 1971 struct btree *n1, *n2 = NULL, *n3 = NULL; 1972 uint64_t start_time = local_clock(); 1973 struct closure cl; 1974 struct keylist parent_keys; 1975 1976 closure_init_stack(&cl); 1977 bch_keylist_init(&parent_keys); 1978 1979 if (btree_check_reserve(b, op)) { 1980 if (!b->level) 1981 return -EINTR; 1982 else 1983 WARN(1, "insufficient reserve for split\n"); 1984 } 1985 1986 n1 = btree_node_alloc_replacement(b, op); 1987 if (IS_ERR(n1)) 1988 goto err; 1989 1990 split = set_blocks(btree_bset_first(n1), 1991 block_bytes(n1->c)) > (btree_blocks(b) * 4) / 5; 1992 1993 if (split) { 1994 unsigned keys = 0; 1995 1996 trace_bcache_btree_node_split(b, btree_bset_first(n1)->keys); 1997 1998 n2 = bch_btree_node_alloc(b->c, op, b->level, b->parent); 1999 if (IS_ERR(n2)) 2000 goto err_free1; 2001 2002 if (!b->parent) { 2003 n3 = bch_btree_node_alloc(b->c, op, b->level + 1, NULL); 2004 if (IS_ERR(n3)) 2005 goto err_free2; 2006 } 2007 2008 mutex_lock(&n1->write_lock); 2009 mutex_lock(&n2->write_lock); 2010 2011 bch_btree_insert_keys(n1, op, insert_keys, replace_key); 2012 2013 /* 2014 * Has to be a linear search because we don't have an auxiliary 2015 * search tree yet 2016 */ 2017 2018 while (keys < (btree_bset_first(n1)->keys * 3) / 5) 2019 keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1), 2020 keys)); 2021 2022 bkey_copy_key(&n1->key, 2023 bset_bkey_idx(btree_bset_first(n1), keys)); 2024 keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1), keys)); 2025 2026 btree_bset_first(n2)->keys = btree_bset_first(n1)->keys - keys; 2027 btree_bset_first(n1)->keys = keys; 2028 2029 memcpy(btree_bset_first(n2)->start, 2030 bset_bkey_last(btree_bset_first(n1)), 2031 btree_bset_first(n2)->keys * sizeof(uint64_t)); 2032 2033 bkey_copy_key(&n2->key, &b->key); 2034 2035 bch_keylist_add(&parent_keys, &n2->key); 2036 bch_btree_node_write(n2, &cl); 2037 mutex_unlock(&n2->write_lock); 2038 rw_unlock(true, n2); 2039 } else { 2040 trace_bcache_btree_node_compact(b, btree_bset_first(n1)->keys); 2041 2042 mutex_lock(&n1->write_lock); 2043 bch_btree_insert_keys(n1, op, insert_keys, replace_key); 2044 } 2045 2046 bch_keylist_add(&parent_keys, &n1->key); 2047 bch_btree_node_write(n1, &cl); 2048 mutex_unlock(&n1->write_lock); 2049 2050 if (n3) { 2051 /* Depth increases, make a new root */ 2052 mutex_lock(&n3->write_lock); 2053 bkey_copy_key(&n3->key, &MAX_KEY); 2054 bch_btree_insert_keys(n3, op, &parent_keys, NULL); 2055 bch_btree_node_write(n3, &cl); 2056 mutex_unlock(&n3->write_lock); 2057 2058 closure_sync(&cl); 2059 bch_btree_set_root(n3); 2060 rw_unlock(true, n3); 2061 } else if (!b->parent) { 2062 /* Root filled up but didn't need to be split */ 2063 closure_sync(&cl); 2064 bch_btree_set_root(n1); 2065 } else { 2066 /* Split a non root node */ 2067 closure_sync(&cl); 2068 make_btree_freeing_key(b, parent_keys.top); 2069 bch_keylist_push(&parent_keys); 2070 2071 bch_btree_insert_node(b->parent, op, &parent_keys, NULL, NULL); 2072 BUG_ON(!bch_keylist_empty(&parent_keys)); 2073 } 2074 2075 btree_node_free(b); 2076 rw_unlock(true, n1); 2077 2078 bch_time_stats_update(&b->c->btree_split_time, start_time); 2079 2080 return 0; 2081 err_free2: 2082 bkey_put(b->c, &n2->key); 2083 btree_node_free(n2); 2084 rw_unlock(true, n2); 2085 err_free1: 2086 bkey_put(b->c, &n1->key); 2087 btree_node_free(n1); 2088 rw_unlock(true, n1); 2089 err: 2090 WARN(1, "bcache: btree split failed (level %u)", b->level); 2091 2092 if (n3 == ERR_PTR(-EAGAIN) || 2093 n2 == ERR_PTR(-EAGAIN) || 2094 n1 == ERR_PTR(-EAGAIN)) 2095 return -EAGAIN; 2096 2097 return -ENOMEM; 2098 } 2099 2100 static int bch_btree_insert_node(struct btree *b, struct btree_op *op, 2101 struct keylist *insert_keys, 2102 atomic_t *journal_ref, 2103 struct bkey *replace_key) 2104 { 2105 struct closure cl; 2106 2107 BUG_ON(b->level && replace_key); 2108 2109 closure_init_stack(&cl); 2110 2111 mutex_lock(&b->write_lock); 2112 2113 if (write_block(b) != btree_bset_last(b) && 2114 b->keys.last_set_unwritten) 2115 bch_btree_init_next(b); /* just wrote a set */ 2116 2117 if (bch_keylist_nkeys(insert_keys) > insert_u64s_remaining(b)) { 2118 mutex_unlock(&b->write_lock); 2119 goto split; 2120 } 2121 2122 BUG_ON(write_block(b) != btree_bset_last(b)); 2123 2124 if (bch_btree_insert_keys(b, op, insert_keys, replace_key)) { 2125 if (!b->level) 2126 bch_btree_leaf_dirty(b, journal_ref); 2127 else 2128 bch_btree_node_write(b, &cl); 2129 } 2130 2131 mutex_unlock(&b->write_lock); 2132 2133 /* wait for btree node write if necessary, after unlock */ 2134 closure_sync(&cl); 2135 2136 return 0; 2137 split: 2138 if (current->bio_list) { 2139 op->lock = b->c->root->level + 1; 2140 return -EAGAIN; 2141 } else if (op->lock <= b->c->root->level) { 2142 op->lock = b->c->root->level + 1; 2143 return -EINTR; 2144 } else { 2145 /* Invalidated all iterators */ 2146 int ret = btree_split(b, op, insert_keys, replace_key); 2147 2148 if (bch_keylist_empty(insert_keys)) 2149 return 0; 2150 else if (!ret) 2151 return -EINTR; 2152 return ret; 2153 } 2154 } 2155 2156 int bch_btree_insert_check_key(struct btree *b, struct btree_op *op, 2157 struct bkey *check_key) 2158 { 2159 int ret = -EINTR; 2160 uint64_t btree_ptr = b->key.ptr[0]; 2161 unsigned long seq = b->seq; 2162 struct keylist insert; 2163 bool upgrade = op->lock == -1; 2164 2165 bch_keylist_init(&insert); 2166 2167 if (upgrade) { 2168 rw_unlock(false, b); 2169 rw_lock(true, b, b->level); 2170 2171 if (b->key.ptr[0] != btree_ptr || 2172 b->seq != seq + 1) { 2173 op->lock = b->level; 2174 goto out; 2175 } 2176 } 2177 2178 SET_KEY_PTRS(check_key, 1); 2179 get_random_bytes(&check_key->ptr[0], sizeof(uint64_t)); 2180 2181 SET_PTR_DEV(check_key, 0, PTR_CHECK_DEV); 2182 2183 bch_keylist_add(&insert, check_key); 2184 2185 ret = bch_btree_insert_node(b, op, &insert, NULL, NULL); 2186 2187 BUG_ON(!ret && !bch_keylist_empty(&insert)); 2188 out: 2189 if (upgrade) 2190 downgrade_write(&b->lock); 2191 return ret; 2192 } 2193 2194 struct btree_insert_op { 2195 struct btree_op op; 2196 struct keylist *keys; 2197 atomic_t *journal_ref; 2198 struct bkey *replace_key; 2199 }; 2200 2201 static int btree_insert_fn(struct btree_op *b_op, struct btree *b) 2202 { 2203 struct btree_insert_op *op = container_of(b_op, 2204 struct btree_insert_op, op); 2205 2206 int ret = bch_btree_insert_node(b, &op->op, op->keys, 2207 op->journal_ref, op->replace_key); 2208 if (ret && !bch_keylist_empty(op->keys)) 2209 return ret; 2210 else 2211 return MAP_DONE; 2212 } 2213 2214 int bch_btree_insert(struct cache_set *c, struct keylist *keys, 2215 atomic_t *journal_ref, struct bkey *replace_key) 2216 { 2217 struct btree_insert_op op; 2218 int ret = 0; 2219 2220 BUG_ON(current->bio_list); 2221 BUG_ON(bch_keylist_empty(keys)); 2222 2223 bch_btree_op_init(&op.op, 0); 2224 op.keys = keys; 2225 op.journal_ref = journal_ref; 2226 op.replace_key = replace_key; 2227 2228 while (!ret && !bch_keylist_empty(keys)) { 2229 op.op.lock = 0; 2230 ret = bch_btree_map_leaf_nodes(&op.op, c, 2231 &START_KEY(keys->keys), 2232 btree_insert_fn); 2233 } 2234 2235 if (ret) { 2236 struct bkey *k; 2237 2238 pr_err("error %i", ret); 2239 2240 while ((k = bch_keylist_pop(keys))) 2241 bkey_put(c, k); 2242 } else if (op.op.insert_collision) 2243 ret = -ESRCH; 2244 2245 return ret; 2246 } 2247 2248 void bch_btree_set_root(struct btree *b) 2249 { 2250 unsigned i; 2251 struct closure cl; 2252 2253 closure_init_stack(&cl); 2254 2255 trace_bcache_btree_set_root(b); 2256 2257 BUG_ON(!b->written); 2258 2259 for (i = 0; i < KEY_PTRS(&b->key); i++) 2260 BUG_ON(PTR_BUCKET(b->c, &b->key, i)->prio != BTREE_PRIO); 2261 2262 mutex_lock(&b->c->bucket_lock); 2263 list_del_init(&b->list); 2264 mutex_unlock(&b->c->bucket_lock); 2265 2266 b->c->root = b; 2267 2268 bch_journal_meta(b->c, &cl); 2269 closure_sync(&cl); 2270 } 2271 2272 /* Map across nodes or keys */ 2273 2274 static int bch_btree_map_nodes_recurse(struct btree *b, struct btree_op *op, 2275 struct bkey *from, 2276 btree_map_nodes_fn *fn, int flags) 2277 { 2278 int ret = MAP_CONTINUE; 2279 2280 if (b->level) { 2281 struct bkey *k; 2282 struct btree_iter iter; 2283 2284 bch_btree_iter_init(&b->keys, &iter, from); 2285 2286 while ((k = bch_btree_iter_next_filter(&iter, &b->keys, 2287 bch_ptr_bad))) { 2288 ret = btree(map_nodes_recurse, k, b, 2289 op, from, fn, flags); 2290 from = NULL; 2291 2292 if (ret != MAP_CONTINUE) 2293 return ret; 2294 } 2295 } 2296 2297 if (!b->level || flags == MAP_ALL_NODES) 2298 ret = fn(op, b); 2299 2300 return ret; 2301 } 2302 2303 int __bch_btree_map_nodes(struct btree_op *op, struct cache_set *c, 2304 struct bkey *from, btree_map_nodes_fn *fn, int flags) 2305 { 2306 return btree_root(map_nodes_recurse, c, op, from, fn, flags); 2307 } 2308 2309 static int bch_btree_map_keys_recurse(struct btree *b, struct btree_op *op, 2310 struct bkey *from, btree_map_keys_fn *fn, 2311 int flags) 2312 { 2313 int ret = MAP_CONTINUE; 2314 struct bkey *k; 2315 struct btree_iter iter; 2316 2317 bch_btree_iter_init(&b->keys, &iter, from); 2318 2319 while ((k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad))) { 2320 ret = !b->level 2321 ? fn(op, b, k) 2322 : btree(map_keys_recurse, k, b, op, from, fn, flags); 2323 from = NULL; 2324 2325 if (ret != MAP_CONTINUE) 2326 return ret; 2327 } 2328 2329 if (!b->level && (flags & MAP_END_KEY)) 2330 ret = fn(op, b, &KEY(KEY_INODE(&b->key), 2331 KEY_OFFSET(&b->key), 0)); 2332 2333 return ret; 2334 } 2335 2336 int bch_btree_map_keys(struct btree_op *op, struct cache_set *c, 2337 struct bkey *from, btree_map_keys_fn *fn, int flags) 2338 { 2339 return btree_root(map_keys_recurse, c, op, from, fn, flags); 2340 } 2341 2342 /* Keybuf code */ 2343 2344 static inline int keybuf_cmp(struct keybuf_key *l, struct keybuf_key *r) 2345 { 2346 /* Overlapping keys compare equal */ 2347 if (bkey_cmp(&l->key, &START_KEY(&r->key)) <= 0) 2348 return -1; 2349 if (bkey_cmp(&START_KEY(&l->key), &r->key) >= 0) 2350 return 1; 2351 return 0; 2352 } 2353 2354 static inline int keybuf_nonoverlapping_cmp(struct keybuf_key *l, 2355 struct keybuf_key *r) 2356 { 2357 return clamp_t(int64_t, bkey_cmp(&l->key, &r->key), -1, 1); 2358 } 2359 2360 struct refill { 2361 struct btree_op op; 2362 unsigned nr_found; 2363 struct keybuf *buf; 2364 struct bkey *end; 2365 keybuf_pred_fn *pred; 2366 }; 2367 2368 static int refill_keybuf_fn(struct btree_op *op, struct btree *b, 2369 struct bkey *k) 2370 { 2371 struct refill *refill = container_of(op, struct refill, op); 2372 struct keybuf *buf = refill->buf; 2373 int ret = MAP_CONTINUE; 2374 2375 if (bkey_cmp(k, refill->end) >= 0) { 2376 ret = MAP_DONE; 2377 goto out; 2378 } 2379 2380 if (!KEY_SIZE(k)) /* end key */ 2381 goto out; 2382 2383 if (refill->pred(buf, k)) { 2384 struct keybuf_key *w; 2385 2386 spin_lock(&buf->lock); 2387 2388 w = array_alloc(&buf->freelist); 2389 if (!w) { 2390 spin_unlock(&buf->lock); 2391 return MAP_DONE; 2392 } 2393 2394 w->private = NULL; 2395 bkey_copy(&w->key, k); 2396 2397 if (RB_INSERT(&buf->keys, w, node, keybuf_cmp)) 2398 array_free(&buf->freelist, w); 2399 else 2400 refill->nr_found++; 2401 2402 if (array_freelist_empty(&buf->freelist)) 2403 ret = MAP_DONE; 2404 2405 spin_unlock(&buf->lock); 2406 } 2407 out: 2408 buf->last_scanned = *k; 2409 return ret; 2410 } 2411 2412 void bch_refill_keybuf(struct cache_set *c, struct keybuf *buf, 2413 struct bkey *end, keybuf_pred_fn *pred) 2414 { 2415 struct bkey start = buf->last_scanned; 2416 struct refill refill; 2417 2418 cond_resched(); 2419 2420 bch_btree_op_init(&refill.op, -1); 2421 refill.nr_found = 0; 2422 refill.buf = buf; 2423 refill.end = end; 2424 refill.pred = pred; 2425 2426 bch_btree_map_keys(&refill.op, c, &buf->last_scanned, 2427 refill_keybuf_fn, MAP_END_KEY); 2428 2429 trace_bcache_keyscan(refill.nr_found, 2430 KEY_INODE(&start), KEY_OFFSET(&start), 2431 KEY_INODE(&buf->last_scanned), 2432 KEY_OFFSET(&buf->last_scanned)); 2433 2434 spin_lock(&buf->lock); 2435 2436 if (!RB_EMPTY_ROOT(&buf->keys)) { 2437 struct keybuf_key *w; 2438 w = RB_FIRST(&buf->keys, struct keybuf_key, node); 2439 buf->start = START_KEY(&w->key); 2440 2441 w = RB_LAST(&buf->keys, struct keybuf_key, node); 2442 buf->end = w->key; 2443 } else { 2444 buf->start = MAX_KEY; 2445 buf->end = MAX_KEY; 2446 } 2447 2448 spin_unlock(&buf->lock); 2449 } 2450 2451 static void __bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w) 2452 { 2453 rb_erase(&w->node, &buf->keys); 2454 array_free(&buf->freelist, w); 2455 } 2456 2457 void bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w) 2458 { 2459 spin_lock(&buf->lock); 2460 __bch_keybuf_del(buf, w); 2461 spin_unlock(&buf->lock); 2462 } 2463 2464 bool bch_keybuf_check_overlapping(struct keybuf *buf, struct bkey *start, 2465 struct bkey *end) 2466 { 2467 bool ret = false; 2468 struct keybuf_key *p, *w, s; 2469 s.key = *start; 2470 2471 if (bkey_cmp(end, &buf->start) <= 0 || 2472 bkey_cmp(start, &buf->end) >= 0) 2473 return false; 2474 2475 spin_lock(&buf->lock); 2476 w = RB_GREATER(&buf->keys, s, node, keybuf_nonoverlapping_cmp); 2477 2478 while (w && bkey_cmp(&START_KEY(&w->key), end) < 0) { 2479 p = w; 2480 w = RB_NEXT(w, node); 2481 2482 if (p->private) 2483 ret = true; 2484 else 2485 __bch_keybuf_del(buf, p); 2486 } 2487 2488 spin_unlock(&buf->lock); 2489 return ret; 2490 } 2491 2492 struct keybuf_key *bch_keybuf_next(struct keybuf *buf) 2493 { 2494 struct keybuf_key *w; 2495 spin_lock(&buf->lock); 2496 2497 w = RB_FIRST(&buf->keys, struct keybuf_key, node); 2498 2499 while (w && w->private) 2500 w = RB_NEXT(w, node); 2501 2502 if (w) 2503 w->private = ERR_PTR(-EINTR); 2504 2505 spin_unlock(&buf->lock); 2506 return w; 2507 } 2508 2509 struct keybuf_key *bch_keybuf_next_rescan(struct cache_set *c, 2510 struct keybuf *buf, 2511 struct bkey *end, 2512 keybuf_pred_fn *pred) 2513 { 2514 struct keybuf_key *ret; 2515 2516 while (1) { 2517 ret = bch_keybuf_next(buf); 2518 if (ret) 2519 break; 2520 2521 if (bkey_cmp(&buf->last_scanned, end) >= 0) { 2522 pr_debug("scan finished"); 2523 break; 2524 } 2525 2526 bch_refill_keybuf(c, buf, end, pred); 2527 } 2528 2529 return ret; 2530 } 2531 2532 void bch_keybuf_init(struct keybuf *buf) 2533 { 2534 buf->last_scanned = MAX_KEY; 2535 buf->keys = RB_ROOT; 2536 2537 spin_lock_init(&buf->lock); 2538 array_allocator_init(&buf->freelist); 2539 } 2540