1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com> 4 * 5 * Uses a block device as cache for other block devices; optimized for SSDs. 6 * All allocation is done in buckets, which should match the erase block size 7 * of the device. 8 * 9 * Buckets containing cached data are kept on a heap sorted by priority; 10 * bucket priority is increased on cache hit, and periodically all the buckets 11 * on the heap have their priority scaled down. This currently is just used as 12 * an LRU but in the future should allow for more intelligent heuristics. 13 * 14 * Buckets have an 8 bit counter; freeing is accomplished by incrementing the 15 * counter. Garbage collection is used to remove stale pointers. 16 * 17 * Indexing is done via a btree; nodes are not necessarily fully sorted, rather 18 * as keys are inserted we only sort the pages that have not yet been written. 19 * When garbage collection is run, we resort the entire node. 20 * 21 * All configuration is done via sysfs; see Documentation/admin-guide/bcache.rst. 22 */ 23 24 #include "bcache.h" 25 #include "btree.h" 26 #include "debug.h" 27 #include "extents.h" 28 29 #include <linux/slab.h> 30 #include <linux/bitops.h> 31 #include <linux/hash.h> 32 #include <linux/kthread.h> 33 #include <linux/prefetch.h> 34 #include <linux/random.h> 35 #include <linux/rcupdate.h> 36 #include <linux/sched/clock.h> 37 #include <linux/rculist.h> 38 #include <linux/delay.h> 39 #include <trace/events/bcache.h> 40 41 /* 42 * Todo: 43 * register_bcache: Return errors out to userspace correctly 44 * 45 * Writeback: don't undirty key until after a cache flush 46 * 47 * Create an iterator for key pointers 48 * 49 * On btree write error, mark bucket such that it won't be freed from the cache 50 * 51 * Journalling: 52 * Check for bad keys in replay 53 * Propagate barriers 54 * Refcount journal entries in journal_replay 55 * 56 * Garbage collection: 57 * Finish incremental gc 58 * Gc should free old UUIDs, data for invalid UUIDs 59 * 60 * Provide a way to list backing device UUIDs we have data cached for, and 61 * probably how long it's been since we've seen them, and a way to invalidate 62 * dirty data for devices that will never be attached again 63 * 64 * Keep 1 min/5 min/15 min statistics of how busy a block device has been, so 65 * that based on that and how much dirty data we have we can keep writeback 66 * from being starved 67 * 68 * Add a tracepoint or somesuch to watch for writeback starvation 69 * 70 * When btree depth > 1 and splitting an interior node, we have to make sure 71 * alloc_bucket() cannot fail. This should be true but is not completely 72 * obvious. 73 * 74 * Plugging? 75 * 76 * If data write is less than hard sector size of ssd, round up offset in open 77 * bucket to the next whole sector 78 * 79 * Superblock needs to be fleshed out for multiple cache devices 80 * 81 * Add a sysfs tunable for the number of writeback IOs in flight 82 * 83 * Add a sysfs tunable for the number of open data buckets 84 * 85 * IO tracking: Can we track when one process is doing io on behalf of another? 86 * IO tracking: Don't use just an average, weigh more recent stuff higher 87 * 88 * Test module load/unload 89 */ 90 91 #define MAX_NEED_GC 64 92 #define MAX_SAVE_PRIO 72 93 #define MAX_GC_TIMES 100 94 #define MIN_GC_NODES 100 95 #define GC_SLEEP_MS 100 96 97 #define PTR_DIRTY_BIT (((uint64_t) 1 << 36)) 98 99 #define PTR_HASH(c, k) \ 100 (((k)->ptr[0] >> c->bucket_bits) | PTR_GEN(k, 0)) 101 102 #define insert_lock(s, b) ((b)->level <= (s)->lock) 103 104 /* 105 * These macros are for recursing down the btree - they handle the details of 106 * locking and looking up nodes in the cache for you. They're best treated as 107 * mere syntax when reading code that uses them. 108 * 109 * op->lock determines whether we take a read or a write lock at a given depth. 110 * If you've got a read lock and find that you need a write lock (i.e. you're 111 * going to have to split), set op->lock and return -EINTR; btree_root() will 112 * call you again and you'll have the correct lock. 113 */ 114 115 /** 116 * btree - recurse down the btree on a specified key 117 * @fn: function to call, which will be passed the child node 118 * @key: key to recurse on 119 * @b: parent btree node 120 * @op: pointer to struct btree_op 121 */ 122 #define btree(fn, key, b, op, ...) \ 123 ({ \ 124 int _r, l = (b)->level - 1; \ 125 bool _w = l <= (op)->lock; \ 126 struct btree *_child = bch_btree_node_get((b)->c, op, key, l, \ 127 _w, b); \ 128 if (!IS_ERR(_child)) { \ 129 _r = bch_btree_ ## fn(_child, op, ##__VA_ARGS__); \ 130 rw_unlock(_w, _child); \ 131 } else \ 132 _r = PTR_ERR(_child); \ 133 _r; \ 134 }) 135 136 /** 137 * btree_root - call a function on the root of the btree 138 * @fn: function to call, which will be passed the child node 139 * @c: cache set 140 * @op: pointer to struct btree_op 141 */ 142 #define btree_root(fn, c, op, ...) \ 143 ({ \ 144 int _r = -EINTR; \ 145 do { \ 146 struct btree *_b = (c)->root; \ 147 bool _w = insert_lock(op, _b); \ 148 rw_lock(_w, _b, _b->level); \ 149 if (_b == (c)->root && \ 150 _w == insert_lock(op, _b)) { \ 151 _r = bch_btree_ ## fn(_b, op, ##__VA_ARGS__); \ 152 } \ 153 rw_unlock(_w, _b); \ 154 bch_cannibalize_unlock(c); \ 155 if (_r == -EINTR) \ 156 schedule(); \ 157 } while (_r == -EINTR); \ 158 \ 159 finish_wait(&(c)->btree_cache_wait, &(op)->wait); \ 160 _r; \ 161 }) 162 163 static inline struct bset *write_block(struct btree *b) 164 { 165 return ((void *) btree_bset_first(b)) + b->written * block_bytes(b->c); 166 } 167 168 static void bch_btree_init_next(struct btree *b) 169 { 170 /* If not a leaf node, always sort */ 171 if (b->level && b->keys.nsets) 172 bch_btree_sort(&b->keys, &b->c->sort); 173 else 174 bch_btree_sort_lazy(&b->keys, &b->c->sort); 175 176 if (b->written < btree_blocks(b)) 177 bch_bset_init_next(&b->keys, write_block(b), 178 bset_magic(&b->c->sb)); 179 180 } 181 182 /* Btree key manipulation */ 183 184 void bkey_put(struct cache_set *c, struct bkey *k) 185 { 186 unsigned int i; 187 188 for (i = 0; i < KEY_PTRS(k); i++) 189 if (ptr_available(c, k, i)) 190 atomic_dec_bug(&PTR_BUCKET(c, k, i)->pin); 191 } 192 193 /* Btree IO */ 194 195 static uint64_t btree_csum_set(struct btree *b, struct bset *i) 196 { 197 uint64_t crc = b->key.ptr[0]; 198 void *data = (void *) i + 8, *end = bset_bkey_last(i); 199 200 crc = bch_crc64_update(crc, data, end - data); 201 return crc ^ 0xffffffffffffffffULL; 202 } 203 204 void bch_btree_node_read_done(struct btree *b) 205 { 206 const char *err = "bad btree header"; 207 struct bset *i = btree_bset_first(b); 208 struct btree_iter *iter; 209 210 /* 211 * c->fill_iter can allocate an iterator with more memory space 212 * than static MAX_BSETS. 213 * See the comment arount cache_set->fill_iter. 214 */ 215 iter = mempool_alloc(&b->c->fill_iter, GFP_NOIO); 216 iter->size = b->c->sb.bucket_size / b->c->sb.block_size; 217 iter->used = 0; 218 219 #ifdef CONFIG_BCACHE_DEBUG 220 iter->b = &b->keys; 221 #endif 222 223 if (!i->seq) 224 goto err; 225 226 for (; 227 b->written < btree_blocks(b) && i->seq == b->keys.set[0].data->seq; 228 i = write_block(b)) { 229 err = "unsupported bset version"; 230 if (i->version > BCACHE_BSET_VERSION) 231 goto err; 232 233 err = "bad btree header"; 234 if (b->written + set_blocks(i, block_bytes(b->c)) > 235 btree_blocks(b)) 236 goto err; 237 238 err = "bad magic"; 239 if (i->magic != bset_magic(&b->c->sb)) 240 goto err; 241 242 err = "bad checksum"; 243 switch (i->version) { 244 case 0: 245 if (i->csum != csum_set(i)) 246 goto err; 247 break; 248 case BCACHE_BSET_VERSION: 249 if (i->csum != btree_csum_set(b, i)) 250 goto err; 251 break; 252 } 253 254 err = "empty set"; 255 if (i != b->keys.set[0].data && !i->keys) 256 goto err; 257 258 bch_btree_iter_push(iter, i->start, bset_bkey_last(i)); 259 260 b->written += set_blocks(i, block_bytes(b->c)); 261 } 262 263 err = "corrupted btree"; 264 for (i = write_block(b); 265 bset_sector_offset(&b->keys, i) < KEY_SIZE(&b->key); 266 i = ((void *) i) + block_bytes(b->c)) 267 if (i->seq == b->keys.set[0].data->seq) 268 goto err; 269 270 bch_btree_sort_and_fix_extents(&b->keys, iter, &b->c->sort); 271 272 i = b->keys.set[0].data; 273 err = "short btree key"; 274 if (b->keys.set[0].size && 275 bkey_cmp(&b->key, &b->keys.set[0].end) < 0) 276 goto err; 277 278 if (b->written < btree_blocks(b)) 279 bch_bset_init_next(&b->keys, write_block(b), 280 bset_magic(&b->c->sb)); 281 out: 282 mempool_free(iter, &b->c->fill_iter); 283 return; 284 err: 285 set_btree_node_io_error(b); 286 bch_cache_set_error(b->c, "%s at bucket %zu, block %u, %u keys", 287 err, PTR_BUCKET_NR(b->c, &b->key, 0), 288 bset_block_offset(b, i), i->keys); 289 goto out; 290 } 291 292 static void btree_node_read_endio(struct bio *bio) 293 { 294 struct closure *cl = bio->bi_private; 295 296 closure_put(cl); 297 } 298 299 static void bch_btree_node_read(struct btree *b) 300 { 301 uint64_t start_time = local_clock(); 302 struct closure cl; 303 struct bio *bio; 304 305 trace_bcache_btree_read(b); 306 307 closure_init_stack(&cl); 308 309 bio = bch_bbio_alloc(b->c); 310 bio->bi_iter.bi_size = KEY_SIZE(&b->key) << 9; 311 bio->bi_end_io = btree_node_read_endio; 312 bio->bi_private = &cl; 313 bio->bi_opf = REQ_OP_READ | REQ_META; 314 315 bch_bio_map(bio, b->keys.set[0].data); 316 317 bch_submit_bbio(bio, b->c, &b->key, 0); 318 closure_sync(&cl); 319 320 if (bio->bi_status) 321 set_btree_node_io_error(b); 322 323 bch_bbio_free(bio, b->c); 324 325 if (btree_node_io_error(b)) 326 goto err; 327 328 bch_btree_node_read_done(b); 329 bch_time_stats_update(&b->c->btree_read_time, start_time); 330 331 return; 332 err: 333 bch_cache_set_error(b->c, "io error reading bucket %zu", 334 PTR_BUCKET_NR(b->c, &b->key, 0)); 335 } 336 337 static void btree_complete_write(struct btree *b, struct btree_write *w) 338 { 339 if (w->prio_blocked && 340 !atomic_sub_return(w->prio_blocked, &b->c->prio_blocked)) 341 wake_up_allocators(b->c); 342 343 if (w->journal) { 344 atomic_dec_bug(w->journal); 345 __closure_wake_up(&b->c->journal.wait); 346 } 347 348 w->prio_blocked = 0; 349 w->journal = NULL; 350 } 351 352 static void btree_node_write_unlock(struct closure *cl) 353 { 354 struct btree *b = container_of(cl, struct btree, io); 355 356 up(&b->io_mutex); 357 } 358 359 static void __btree_node_write_done(struct closure *cl) 360 { 361 struct btree *b = container_of(cl, struct btree, io); 362 struct btree_write *w = btree_prev_write(b); 363 364 bch_bbio_free(b->bio, b->c); 365 b->bio = NULL; 366 btree_complete_write(b, w); 367 368 if (btree_node_dirty(b)) 369 schedule_delayed_work(&b->work, 30 * HZ); 370 371 closure_return_with_destructor(cl, btree_node_write_unlock); 372 } 373 374 static void btree_node_write_done(struct closure *cl) 375 { 376 struct btree *b = container_of(cl, struct btree, io); 377 378 bio_free_pages(b->bio); 379 __btree_node_write_done(cl); 380 } 381 382 static void btree_node_write_endio(struct bio *bio) 383 { 384 struct closure *cl = bio->bi_private; 385 struct btree *b = container_of(cl, struct btree, io); 386 387 if (bio->bi_status) 388 set_btree_node_io_error(b); 389 390 bch_bbio_count_io_errors(b->c, bio, bio->bi_status, "writing btree"); 391 closure_put(cl); 392 } 393 394 static void do_btree_node_write(struct btree *b) 395 { 396 struct closure *cl = &b->io; 397 struct bset *i = btree_bset_last(b); 398 BKEY_PADDED(key) k; 399 400 i->version = BCACHE_BSET_VERSION; 401 i->csum = btree_csum_set(b, i); 402 403 BUG_ON(b->bio); 404 b->bio = bch_bbio_alloc(b->c); 405 406 b->bio->bi_end_io = btree_node_write_endio; 407 b->bio->bi_private = cl; 408 b->bio->bi_iter.bi_size = roundup(set_bytes(i), block_bytes(b->c)); 409 b->bio->bi_opf = REQ_OP_WRITE | REQ_META | REQ_FUA; 410 bch_bio_map(b->bio, i); 411 412 /* 413 * If we're appending to a leaf node, we don't technically need FUA - 414 * this write just needs to be persisted before the next journal write, 415 * which will be marked FLUSH|FUA. 416 * 417 * Similarly if we're writing a new btree root - the pointer is going to 418 * be in the next journal entry. 419 * 420 * But if we're writing a new btree node (that isn't a root) or 421 * appending to a non leaf btree node, we need either FUA or a flush 422 * when we write the parent with the new pointer. FUA is cheaper than a 423 * flush, and writes appending to leaf nodes aren't blocking anything so 424 * just make all btree node writes FUA to keep things sane. 425 */ 426 427 bkey_copy(&k.key, &b->key); 428 SET_PTR_OFFSET(&k.key, 0, PTR_OFFSET(&k.key, 0) + 429 bset_sector_offset(&b->keys, i)); 430 431 if (!bch_bio_alloc_pages(b->bio, __GFP_NOWARN|GFP_NOWAIT)) { 432 struct bio_vec *bv; 433 void *addr = (void *) ((unsigned long) i & ~(PAGE_SIZE - 1)); 434 struct bvec_iter_all iter_all; 435 436 bio_for_each_segment_all(bv, b->bio, iter_all) { 437 memcpy(page_address(bv->bv_page), addr, PAGE_SIZE); 438 addr += PAGE_SIZE; 439 } 440 441 bch_submit_bbio(b->bio, b->c, &k.key, 0); 442 443 continue_at(cl, btree_node_write_done, NULL); 444 } else { 445 /* 446 * No problem for multipage bvec since the bio is 447 * just allocated 448 */ 449 b->bio->bi_vcnt = 0; 450 bch_bio_map(b->bio, i); 451 452 bch_submit_bbio(b->bio, b->c, &k.key, 0); 453 454 closure_sync(cl); 455 continue_at_nobarrier(cl, __btree_node_write_done, NULL); 456 } 457 } 458 459 void __bch_btree_node_write(struct btree *b, struct closure *parent) 460 { 461 struct bset *i = btree_bset_last(b); 462 463 lockdep_assert_held(&b->write_lock); 464 465 trace_bcache_btree_write(b); 466 467 BUG_ON(current->bio_list); 468 BUG_ON(b->written >= btree_blocks(b)); 469 BUG_ON(b->written && !i->keys); 470 BUG_ON(btree_bset_first(b)->seq != i->seq); 471 bch_check_keys(&b->keys, "writing"); 472 473 cancel_delayed_work(&b->work); 474 475 /* If caller isn't waiting for write, parent refcount is cache set */ 476 down(&b->io_mutex); 477 closure_init(&b->io, parent ?: &b->c->cl); 478 479 clear_bit(BTREE_NODE_dirty, &b->flags); 480 change_bit(BTREE_NODE_write_idx, &b->flags); 481 482 do_btree_node_write(b); 483 484 atomic_long_add(set_blocks(i, block_bytes(b->c)) * b->c->sb.block_size, 485 &PTR_CACHE(b->c, &b->key, 0)->btree_sectors_written); 486 487 b->written += set_blocks(i, block_bytes(b->c)); 488 } 489 490 void bch_btree_node_write(struct btree *b, struct closure *parent) 491 { 492 unsigned int nsets = b->keys.nsets; 493 494 lockdep_assert_held(&b->lock); 495 496 __bch_btree_node_write(b, parent); 497 498 /* 499 * do verify if there was more than one set initially (i.e. we did a 500 * sort) and we sorted down to a single set: 501 */ 502 if (nsets && !b->keys.nsets) 503 bch_btree_verify(b); 504 505 bch_btree_init_next(b); 506 } 507 508 static void bch_btree_node_write_sync(struct btree *b) 509 { 510 struct closure cl; 511 512 closure_init_stack(&cl); 513 514 mutex_lock(&b->write_lock); 515 bch_btree_node_write(b, &cl); 516 mutex_unlock(&b->write_lock); 517 518 closure_sync(&cl); 519 } 520 521 static void btree_node_write_work(struct work_struct *w) 522 { 523 struct btree *b = container_of(to_delayed_work(w), struct btree, work); 524 525 mutex_lock(&b->write_lock); 526 if (btree_node_dirty(b)) 527 __bch_btree_node_write(b, NULL); 528 mutex_unlock(&b->write_lock); 529 } 530 531 static void bch_btree_leaf_dirty(struct btree *b, atomic_t *journal_ref) 532 { 533 struct bset *i = btree_bset_last(b); 534 struct btree_write *w = btree_current_write(b); 535 536 lockdep_assert_held(&b->write_lock); 537 538 BUG_ON(!b->written); 539 BUG_ON(!i->keys); 540 541 if (!btree_node_dirty(b)) 542 schedule_delayed_work(&b->work, 30 * HZ); 543 544 set_btree_node_dirty(b); 545 546 if (journal_ref) { 547 if (w->journal && 548 journal_pin_cmp(b->c, w->journal, journal_ref)) { 549 atomic_dec_bug(w->journal); 550 w->journal = NULL; 551 } 552 553 if (!w->journal) { 554 w->journal = journal_ref; 555 atomic_inc(w->journal); 556 } 557 } 558 559 /* Force write if set is too big */ 560 if (set_bytes(i) > PAGE_SIZE - 48 && 561 !current->bio_list) 562 bch_btree_node_write(b, NULL); 563 } 564 565 /* 566 * Btree in memory cache - allocation/freeing 567 * mca -> memory cache 568 */ 569 570 #define mca_reserve(c) (((c->root && c->root->level) \ 571 ? c->root->level : 1) * 8 + 16) 572 #define mca_can_free(c) \ 573 max_t(int, 0, c->btree_cache_used - mca_reserve(c)) 574 575 static void mca_data_free(struct btree *b) 576 { 577 BUG_ON(b->io_mutex.count != 1); 578 579 bch_btree_keys_free(&b->keys); 580 581 b->c->btree_cache_used--; 582 list_move(&b->list, &b->c->btree_cache_freed); 583 } 584 585 static void mca_bucket_free(struct btree *b) 586 { 587 BUG_ON(btree_node_dirty(b)); 588 589 b->key.ptr[0] = 0; 590 hlist_del_init_rcu(&b->hash); 591 list_move(&b->list, &b->c->btree_cache_freeable); 592 } 593 594 static unsigned int btree_order(struct bkey *k) 595 { 596 return ilog2(KEY_SIZE(k) / PAGE_SECTORS ?: 1); 597 } 598 599 static void mca_data_alloc(struct btree *b, struct bkey *k, gfp_t gfp) 600 { 601 if (!bch_btree_keys_alloc(&b->keys, 602 max_t(unsigned int, 603 ilog2(b->c->btree_pages), 604 btree_order(k)), 605 gfp)) { 606 b->c->btree_cache_used++; 607 list_move(&b->list, &b->c->btree_cache); 608 } else { 609 list_move(&b->list, &b->c->btree_cache_freed); 610 } 611 } 612 613 static struct btree *mca_bucket_alloc(struct cache_set *c, 614 struct bkey *k, gfp_t gfp) 615 { 616 /* 617 * kzalloc() is necessary here for initialization, 618 * see code comments in bch_btree_keys_init(). 619 */ 620 struct btree *b = kzalloc(sizeof(struct btree), gfp); 621 622 if (!b) 623 return NULL; 624 625 init_rwsem(&b->lock); 626 lockdep_set_novalidate_class(&b->lock); 627 mutex_init(&b->write_lock); 628 lockdep_set_novalidate_class(&b->write_lock); 629 INIT_LIST_HEAD(&b->list); 630 INIT_DELAYED_WORK(&b->work, btree_node_write_work); 631 b->c = c; 632 sema_init(&b->io_mutex, 1); 633 634 mca_data_alloc(b, k, gfp); 635 return b; 636 } 637 638 static int mca_reap(struct btree *b, unsigned int min_order, bool flush) 639 { 640 struct closure cl; 641 642 closure_init_stack(&cl); 643 lockdep_assert_held(&b->c->bucket_lock); 644 645 if (!down_write_trylock(&b->lock)) 646 return -ENOMEM; 647 648 BUG_ON(btree_node_dirty(b) && !b->keys.set[0].data); 649 650 if (b->keys.page_order < min_order) 651 goto out_unlock; 652 653 if (!flush) { 654 if (btree_node_dirty(b)) 655 goto out_unlock; 656 657 if (down_trylock(&b->io_mutex)) 658 goto out_unlock; 659 up(&b->io_mutex); 660 } 661 662 retry: 663 /* 664 * BTREE_NODE_dirty might be cleared in btree_flush_btree() by 665 * __bch_btree_node_write(). To avoid an extra flush, acquire 666 * b->write_lock before checking BTREE_NODE_dirty bit. 667 */ 668 mutex_lock(&b->write_lock); 669 /* 670 * If this btree node is selected in btree_flush_write() by journal 671 * code, delay and retry until the node is flushed by journal code 672 * and BTREE_NODE_journal_flush bit cleared by btree_flush_write(). 673 */ 674 if (btree_node_journal_flush(b)) { 675 pr_debug("bnode %p is flushing by journal, retry", b); 676 mutex_unlock(&b->write_lock); 677 udelay(1); 678 goto retry; 679 } 680 681 if (btree_node_dirty(b)) 682 __bch_btree_node_write(b, &cl); 683 mutex_unlock(&b->write_lock); 684 685 closure_sync(&cl); 686 687 /* wait for any in flight btree write */ 688 down(&b->io_mutex); 689 up(&b->io_mutex); 690 691 return 0; 692 out_unlock: 693 rw_unlock(true, b); 694 return -ENOMEM; 695 } 696 697 static unsigned long bch_mca_scan(struct shrinker *shrink, 698 struct shrink_control *sc) 699 { 700 struct cache_set *c = container_of(shrink, struct cache_set, shrink); 701 struct btree *b, *t; 702 unsigned long i, nr = sc->nr_to_scan; 703 unsigned long freed = 0; 704 unsigned int btree_cache_used; 705 706 if (c->shrinker_disabled) 707 return SHRINK_STOP; 708 709 if (c->btree_cache_alloc_lock) 710 return SHRINK_STOP; 711 712 /* Return -1 if we can't do anything right now */ 713 if (sc->gfp_mask & __GFP_IO) 714 mutex_lock(&c->bucket_lock); 715 else if (!mutex_trylock(&c->bucket_lock)) 716 return -1; 717 718 /* 719 * It's _really_ critical that we don't free too many btree nodes - we 720 * have to always leave ourselves a reserve. The reserve is how we 721 * guarantee that allocating memory for a new btree node can always 722 * succeed, so that inserting keys into the btree can always succeed and 723 * IO can always make forward progress: 724 */ 725 nr /= c->btree_pages; 726 nr = min_t(unsigned long, nr, mca_can_free(c)); 727 728 i = 0; 729 btree_cache_used = c->btree_cache_used; 730 list_for_each_entry_safe(b, t, &c->btree_cache_freeable, list) { 731 if (nr <= 0) 732 goto out; 733 734 if (++i > 3 && 735 !mca_reap(b, 0, false)) { 736 mca_data_free(b); 737 rw_unlock(true, b); 738 freed++; 739 } 740 nr--; 741 } 742 743 for (; (nr--) && i < btree_cache_used; i++) { 744 if (list_empty(&c->btree_cache)) 745 goto out; 746 747 b = list_first_entry(&c->btree_cache, struct btree, list); 748 list_rotate_left(&c->btree_cache); 749 750 if (!b->accessed && 751 !mca_reap(b, 0, false)) { 752 mca_bucket_free(b); 753 mca_data_free(b); 754 rw_unlock(true, b); 755 freed++; 756 } else 757 b->accessed = 0; 758 } 759 out: 760 mutex_unlock(&c->bucket_lock); 761 return freed * c->btree_pages; 762 } 763 764 static unsigned long bch_mca_count(struct shrinker *shrink, 765 struct shrink_control *sc) 766 { 767 struct cache_set *c = container_of(shrink, struct cache_set, shrink); 768 769 if (c->shrinker_disabled) 770 return 0; 771 772 if (c->btree_cache_alloc_lock) 773 return 0; 774 775 return mca_can_free(c) * c->btree_pages; 776 } 777 778 void bch_btree_cache_free(struct cache_set *c) 779 { 780 struct btree *b; 781 struct closure cl; 782 783 closure_init_stack(&cl); 784 785 if (c->shrink.list.next) 786 unregister_shrinker(&c->shrink); 787 788 mutex_lock(&c->bucket_lock); 789 790 #ifdef CONFIG_BCACHE_DEBUG 791 if (c->verify_data) 792 list_move(&c->verify_data->list, &c->btree_cache); 793 794 free_pages((unsigned long) c->verify_ondisk, ilog2(bucket_pages(c))); 795 #endif 796 797 list_splice(&c->btree_cache_freeable, 798 &c->btree_cache); 799 800 while (!list_empty(&c->btree_cache)) { 801 b = list_first_entry(&c->btree_cache, struct btree, list); 802 803 /* 804 * This function is called by cache_set_free(), no I/O 805 * request on cache now, it is unnecessary to acquire 806 * b->write_lock before clearing BTREE_NODE_dirty anymore. 807 */ 808 if (btree_node_dirty(b)) { 809 btree_complete_write(b, btree_current_write(b)); 810 clear_bit(BTREE_NODE_dirty, &b->flags); 811 } 812 mca_data_free(b); 813 } 814 815 while (!list_empty(&c->btree_cache_freed)) { 816 b = list_first_entry(&c->btree_cache_freed, 817 struct btree, list); 818 list_del(&b->list); 819 cancel_delayed_work_sync(&b->work); 820 kfree(b); 821 } 822 823 mutex_unlock(&c->bucket_lock); 824 } 825 826 int bch_btree_cache_alloc(struct cache_set *c) 827 { 828 unsigned int i; 829 830 for (i = 0; i < mca_reserve(c); i++) 831 if (!mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL)) 832 return -ENOMEM; 833 834 list_splice_init(&c->btree_cache, 835 &c->btree_cache_freeable); 836 837 #ifdef CONFIG_BCACHE_DEBUG 838 mutex_init(&c->verify_lock); 839 840 c->verify_ondisk = (void *) 841 __get_free_pages(GFP_KERNEL, ilog2(bucket_pages(c))); 842 843 c->verify_data = mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL); 844 845 if (c->verify_data && 846 c->verify_data->keys.set->data) 847 list_del_init(&c->verify_data->list); 848 else 849 c->verify_data = NULL; 850 #endif 851 852 c->shrink.count_objects = bch_mca_count; 853 c->shrink.scan_objects = bch_mca_scan; 854 c->shrink.seeks = 4; 855 c->shrink.batch = c->btree_pages * 2; 856 857 if (register_shrinker(&c->shrink)) 858 pr_warn("bcache: %s: could not register shrinker", 859 __func__); 860 861 return 0; 862 } 863 864 /* Btree in memory cache - hash table */ 865 866 static struct hlist_head *mca_hash(struct cache_set *c, struct bkey *k) 867 { 868 return &c->bucket_hash[hash_32(PTR_HASH(c, k), BUCKET_HASH_BITS)]; 869 } 870 871 static struct btree *mca_find(struct cache_set *c, struct bkey *k) 872 { 873 struct btree *b; 874 875 rcu_read_lock(); 876 hlist_for_each_entry_rcu(b, mca_hash(c, k), hash) 877 if (PTR_HASH(c, &b->key) == PTR_HASH(c, k)) 878 goto out; 879 b = NULL; 880 out: 881 rcu_read_unlock(); 882 return b; 883 } 884 885 static int mca_cannibalize_lock(struct cache_set *c, struct btree_op *op) 886 { 887 struct task_struct *old; 888 889 old = cmpxchg(&c->btree_cache_alloc_lock, NULL, current); 890 if (old && old != current) { 891 if (op) 892 prepare_to_wait(&c->btree_cache_wait, &op->wait, 893 TASK_UNINTERRUPTIBLE); 894 return -EINTR; 895 } 896 897 return 0; 898 } 899 900 static struct btree *mca_cannibalize(struct cache_set *c, struct btree_op *op, 901 struct bkey *k) 902 { 903 struct btree *b; 904 905 trace_bcache_btree_cache_cannibalize(c); 906 907 if (mca_cannibalize_lock(c, op)) 908 return ERR_PTR(-EINTR); 909 910 list_for_each_entry_reverse(b, &c->btree_cache, list) 911 if (!mca_reap(b, btree_order(k), false)) 912 return b; 913 914 list_for_each_entry_reverse(b, &c->btree_cache, list) 915 if (!mca_reap(b, btree_order(k), true)) 916 return b; 917 918 WARN(1, "btree cache cannibalize failed\n"); 919 return ERR_PTR(-ENOMEM); 920 } 921 922 /* 923 * We can only have one thread cannibalizing other cached btree nodes at a time, 924 * or we'll deadlock. We use an open coded mutex to ensure that, which a 925 * cannibalize_bucket() will take. This means every time we unlock the root of 926 * the btree, we need to release this lock if we have it held. 927 */ 928 static void bch_cannibalize_unlock(struct cache_set *c) 929 { 930 if (c->btree_cache_alloc_lock == current) { 931 c->btree_cache_alloc_lock = NULL; 932 wake_up(&c->btree_cache_wait); 933 } 934 } 935 936 static struct btree *mca_alloc(struct cache_set *c, struct btree_op *op, 937 struct bkey *k, int level) 938 { 939 struct btree *b; 940 941 BUG_ON(current->bio_list); 942 943 lockdep_assert_held(&c->bucket_lock); 944 945 if (mca_find(c, k)) 946 return NULL; 947 948 /* btree_free() doesn't free memory; it sticks the node on the end of 949 * the list. Check if there's any freed nodes there: 950 */ 951 list_for_each_entry(b, &c->btree_cache_freeable, list) 952 if (!mca_reap(b, btree_order(k), false)) 953 goto out; 954 955 /* We never free struct btree itself, just the memory that holds the on 956 * disk node. Check the freed list before allocating a new one: 957 */ 958 list_for_each_entry(b, &c->btree_cache_freed, list) 959 if (!mca_reap(b, 0, false)) { 960 mca_data_alloc(b, k, __GFP_NOWARN|GFP_NOIO); 961 if (!b->keys.set[0].data) 962 goto err; 963 else 964 goto out; 965 } 966 967 b = mca_bucket_alloc(c, k, __GFP_NOWARN|GFP_NOIO); 968 if (!b) 969 goto err; 970 971 BUG_ON(!down_write_trylock(&b->lock)); 972 if (!b->keys.set->data) 973 goto err; 974 out: 975 BUG_ON(b->io_mutex.count != 1); 976 977 bkey_copy(&b->key, k); 978 list_move(&b->list, &c->btree_cache); 979 hlist_del_init_rcu(&b->hash); 980 hlist_add_head_rcu(&b->hash, mca_hash(c, k)); 981 982 lock_set_subclass(&b->lock.dep_map, level + 1, _THIS_IP_); 983 b->parent = (void *) ~0UL; 984 b->flags = 0; 985 b->written = 0; 986 b->level = level; 987 988 if (!b->level) 989 bch_btree_keys_init(&b->keys, &bch_extent_keys_ops, 990 &b->c->expensive_debug_checks); 991 else 992 bch_btree_keys_init(&b->keys, &bch_btree_keys_ops, 993 &b->c->expensive_debug_checks); 994 995 return b; 996 err: 997 if (b) 998 rw_unlock(true, b); 999 1000 b = mca_cannibalize(c, op, k); 1001 if (!IS_ERR(b)) 1002 goto out; 1003 1004 return b; 1005 } 1006 1007 /* 1008 * bch_btree_node_get - find a btree node in the cache and lock it, reading it 1009 * in from disk if necessary. 1010 * 1011 * If IO is necessary and running under generic_make_request, returns -EAGAIN. 1012 * 1013 * The btree node will have either a read or a write lock held, depending on 1014 * level and op->lock. 1015 */ 1016 struct btree *bch_btree_node_get(struct cache_set *c, struct btree_op *op, 1017 struct bkey *k, int level, bool write, 1018 struct btree *parent) 1019 { 1020 int i = 0; 1021 struct btree *b; 1022 1023 BUG_ON(level < 0); 1024 retry: 1025 b = mca_find(c, k); 1026 1027 if (!b) { 1028 if (current->bio_list) 1029 return ERR_PTR(-EAGAIN); 1030 1031 mutex_lock(&c->bucket_lock); 1032 b = mca_alloc(c, op, k, level); 1033 mutex_unlock(&c->bucket_lock); 1034 1035 if (!b) 1036 goto retry; 1037 if (IS_ERR(b)) 1038 return b; 1039 1040 bch_btree_node_read(b); 1041 1042 if (!write) 1043 downgrade_write(&b->lock); 1044 } else { 1045 rw_lock(write, b, level); 1046 if (PTR_HASH(c, &b->key) != PTR_HASH(c, k)) { 1047 rw_unlock(write, b); 1048 goto retry; 1049 } 1050 BUG_ON(b->level != level); 1051 } 1052 1053 if (btree_node_io_error(b)) { 1054 rw_unlock(write, b); 1055 return ERR_PTR(-EIO); 1056 } 1057 1058 BUG_ON(!b->written); 1059 1060 b->parent = parent; 1061 b->accessed = 1; 1062 1063 for (; i <= b->keys.nsets && b->keys.set[i].size; i++) { 1064 prefetch(b->keys.set[i].tree); 1065 prefetch(b->keys.set[i].data); 1066 } 1067 1068 for (; i <= b->keys.nsets; i++) 1069 prefetch(b->keys.set[i].data); 1070 1071 return b; 1072 } 1073 1074 static void btree_node_prefetch(struct btree *parent, struct bkey *k) 1075 { 1076 struct btree *b; 1077 1078 mutex_lock(&parent->c->bucket_lock); 1079 b = mca_alloc(parent->c, NULL, k, parent->level - 1); 1080 mutex_unlock(&parent->c->bucket_lock); 1081 1082 if (!IS_ERR_OR_NULL(b)) { 1083 b->parent = parent; 1084 bch_btree_node_read(b); 1085 rw_unlock(true, b); 1086 } 1087 } 1088 1089 /* Btree alloc */ 1090 1091 static void btree_node_free(struct btree *b) 1092 { 1093 trace_bcache_btree_node_free(b); 1094 1095 BUG_ON(b == b->c->root); 1096 1097 retry: 1098 mutex_lock(&b->write_lock); 1099 /* 1100 * If the btree node is selected and flushing in btree_flush_write(), 1101 * delay and retry until the BTREE_NODE_journal_flush bit cleared, 1102 * then it is safe to free the btree node here. Otherwise this btree 1103 * node will be in race condition. 1104 */ 1105 if (btree_node_journal_flush(b)) { 1106 mutex_unlock(&b->write_lock); 1107 pr_debug("bnode %p journal_flush set, retry", b); 1108 udelay(1); 1109 goto retry; 1110 } 1111 1112 if (btree_node_dirty(b)) { 1113 btree_complete_write(b, btree_current_write(b)); 1114 clear_bit(BTREE_NODE_dirty, &b->flags); 1115 } 1116 1117 mutex_unlock(&b->write_lock); 1118 1119 cancel_delayed_work(&b->work); 1120 1121 mutex_lock(&b->c->bucket_lock); 1122 bch_bucket_free(b->c, &b->key); 1123 mca_bucket_free(b); 1124 mutex_unlock(&b->c->bucket_lock); 1125 } 1126 1127 struct btree *__bch_btree_node_alloc(struct cache_set *c, struct btree_op *op, 1128 int level, bool wait, 1129 struct btree *parent) 1130 { 1131 BKEY_PADDED(key) k; 1132 struct btree *b = ERR_PTR(-EAGAIN); 1133 1134 mutex_lock(&c->bucket_lock); 1135 retry: 1136 if (__bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, 1, wait)) 1137 goto err; 1138 1139 bkey_put(c, &k.key); 1140 SET_KEY_SIZE(&k.key, c->btree_pages * PAGE_SECTORS); 1141 1142 b = mca_alloc(c, op, &k.key, level); 1143 if (IS_ERR(b)) 1144 goto err_free; 1145 1146 if (!b) { 1147 cache_bug(c, 1148 "Tried to allocate bucket that was in btree cache"); 1149 goto retry; 1150 } 1151 1152 b->accessed = 1; 1153 b->parent = parent; 1154 bch_bset_init_next(&b->keys, b->keys.set->data, bset_magic(&b->c->sb)); 1155 1156 mutex_unlock(&c->bucket_lock); 1157 1158 trace_bcache_btree_node_alloc(b); 1159 return b; 1160 err_free: 1161 bch_bucket_free(c, &k.key); 1162 err: 1163 mutex_unlock(&c->bucket_lock); 1164 1165 trace_bcache_btree_node_alloc_fail(c); 1166 return b; 1167 } 1168 1169 static struct btree *bch_btree_node_alloc(struct cache_set *c, 1170 struct btree_op *op, int level, 1171 struct btree *parent) 1172 { 1173 return __bch_btree_node_alloc(c, op, level, op != NULL, parent); 1174 } 1175 1176 static struct btree *btree_node_alloc_replacement(struct btree *b, 1177 struct btree_op *op) 1178 { 1179 struct btree *n = bch_btree_node_alloc(b->c, op, b->level, b->parent); 1180 1181 if (!IS_ERR_OR_NULL(n)) { 1182 mutex_lock(&n->write_lock); 1183 bch_btree_sort_into(&b->keys, &n->keys, &b->c->sort); 1184 bkey_copy_key(&n->key, &b->key); 1185 mutex_unlock(&n->write_lock); 1186 } 1187 1188 return n; 1189 } 1190 1191 static void make_btree_freeing_key(struct btree *b, struct bkey *k) 1192 { 1193 unsigned int i; 1194 1195 mutex_lock(&b->c->bucket_lock); 1196 1197 atomic_inc(&b->c->prio_blocked); 1198 1199 bkey_copy(k, &b->key); 1200 bkey_copy_key(k, &ZERO_KEY); 1201 1202 for (i = 0; i < KEY_PTRS(k); i++) 1203 SET_PTR_GEN(k, i, 1204 bch_inc_gen(PTR_CACHE(b->c, &b->key, i), 1205 PTR_BUCKET(b->c, &b->key, i))); 1206 1207 mutex_unlock(&b->c->bucket_lock); 1208 } 1209 1210 static int btree_check_reserve(struct btree *b, struct btree_op *op) 1211 { 1212 struct cache_set *c = b->c; 1213 struct cache *ca; 1214 unsigned int i, reserve = (c->root->level - b->level) * 2 + 1; 1215 1216 mutex_lock(&c->bucket_lock); 1217 1218 for_each_cache(ca, c, i) 1219 if (fifo_used(&ca->free[RESERVE_BTREE]) < reserve) { 1220 if (op) 1221 prepare_to_wait(&c->btree_cache_wait, &op->wait, 1222 TASK_UNINTERRUPTIBLE); 1223 mutex_unlock(&c->bucket_lock); 1224 return -EINTR; 1225 } 1226 1227 mutex_unlock(&c->bucket_lock); 1228 1229 return mca_cannibalize_lock(b->c, op); 1230 } 1231 1232 /* Garbage collection */ 1233 1234 static uint8_t __bch_btree_mark_key(struct cache_set *c, int level, 1235 struct bkey *k) 1236 { 1237 uint8_t stale = 0; 1238 unsigned int i; 1239 struct bucket *g; 1240 1241 /* 1242 * ptr_invalid() can't return true for the keys that mark btree nodes as 1243 * freed, but since ptr_bad() returns true we'll never actually use them 1244 * for anything and thus we don't want mark their pointers here 1245 */ 1246 if (!bkey_cmp(k, &ZERO_KEY)) 1247 return stale; 1248 1249 for (i = 0; i < KEY_PTRS(k); i++) { 1250 if (!ptr_available(c, k, i)) 1251 continue; 1252 1253 g = PTR_BUCKET(c, k, i); 1254 1255 if (gen_after(g->last_gc, PTR_GEN(k, i))) 1256 g->last_gc = PTR_GEN(k, i); 1257 1258 if (ptr_stale(c, k, i)) { 1259 stale = max(stale, ptr_stale(c, k, i)); 1260 continue; 1261 } 1262 1263 cache_bug_on(GC_MARK(g) && 1264 (GC_MARK(g) == GC_MARK_METADATA) != (level != 0), 1265 c, "inconsistent ptrs: mark = %llu, level = %i", 1266 GC_MARK(g), level); 1267 1268 if (level) 1269 SET_GC_MARK(g, GC_MARK_METADATA); 1270 else if (KEY_DIRTY(k)) 1271 SET_GC_MARK(g, GC_MARK_DIRTY); 1272 else if (!GC_MARK(g)) 1273 SET_GC_MARK(g, GC_MARK_RECLAIMABLE); 1274 1275 /* guard against overflow */ 1276 SET_GC_SECTORS_USED(g, min_t(unsigned int, 1277 GC_SECTORS_USED(g) + KEY_SIZE(k), 1278 MAX_GC_SECTORS_USED)); 1279 1280 BUG_ON(!GC_SECTORS_USED(g)); 1281 } 1282 1283 return stale; 1284 } 1285 1286 #define btree_mark_key(b, k) __bch_btree_mark_key(b->c, b->level, k) 1287 1288 void bch_initial_mark_key(struct cache_set *c, int level, struct bkey *k) 1289 { 1290 unsigned int i; 1291 1292 for (i = 0; i < KEY_PTRS(k); i++) 1293 if (ptr_available(c, k, i) && 1294 !ptr_stale(c, k, i)) { 1295 struct bucket *b = PTR_BUCKET(c, k, i); 1296 1297 b->gen = PTR_GEN(k, i); 1298 1299 if (level && bkey_cmp(k, &ZERO_KEY)) 1300 b->prio = BTREE_PRIO; 1301 else if (!level && b->prio == BTREE_PRIO) 1302 b->prio = INITIAL_PRIO; 1303 } 1304 1305 __bch_btree_mark_key(c, level, k); 1306 } 1307 1308 void bch_update_bucket_in_use(struct cache_set *c, struct gc_stat *stats) 1309 { 1310 stats->in_use = (c->nbuckets - c->avail_nbuckets) * 100 / c->nbuckets; 1311 } 1312 1313 static bool btree_gc_mark_node(struct btree *b, struct gc_stat *gc) 1314 { 1315 uint8_t stale = 0; 1316 unsigned int keys = 0, good_keys = 0; 1317 struct bkey *k; 1318 struct btree_iter iter; 1319 struct bset_tree *t; 1320 1321 gc->nodes++; 1322 1323 for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid) { 1324 stale = max(stale, btree_mark_key(b, k)); 1325 keys++; 1326 1327 if (bch_ptr_bad(&b->keys, k)) 1328 continue; 1329 1330 gc->key_bytes += bkey_u64s(k); 1331 gc->nkeys++; 1332 good_keys++; 1333 1334 gc->data += KEY_SIZE(k); 1335 } 1336 1337 for (t = b->keys.set; t <= &b->keys.set[b->keys.nsets]; t++) 1338 btree_bug_on(t->size && 1339 bset_written(&b->keys, t) && 1340 bkey_cmp(&b->key, &t->end) < 0, 1341 b, "found short btree key in gc"); 1342 1343 if (b->c->gc_always_rewrite) 1344 return true; 1345 1346 if (stale > 10) 1347 return true; 1348 1349 if ((keys - good_keys) * 2 > keys) 1350 return true; 1351 1352 return false; 1353 } 1354 1355 #define GC_MERGE_NODES 4U 1356 1357 struct gc_merge_info { 1358 struct btree *b; 1359 unsigned int keys; 1360 }; 1361 1362 static int bch_btree_insert_node(struct btree *b, struct btree_op *op, 1363 struct keylist *insert_keys, 1364 atomic_t *journal_ref, 1365 struct bkey *replace_key); 1366 1367 static int btree_gc_coalesce(struct btree *b, struct btree_op *op, 1368 struct gc_stat *gc, struct gc_merge_info *r) 1369 { 1370 unsigned int i, nodes = 0, keys = 0, blocks; 1371 struct btree *new_nodes[GC_MERGE_NODES]; 1372 struct keylist keylist; 1373 struct closure cl; 1374 struct bkey *k; 1375 1376 bch_keylist_init(&keylist); 1377 1378 if (btree_check_reserve(b, NULL)) 1379 return 0; 1380 1381 memset(new_nodes, 0, sizeof(new_nodes)); 1382 closure_init_stack(&cl); 1383 1384 while (nodes < GC_MERGE_NODES && !IS_ERR_OR_NULL(r[nodes].b)) 1385 keys += r[nodes++].keys; 1386 1387 blocks = btree_default_blocks(b->c) * 2 / 3; 1388 1389 if (nodes < 2 || 1390 __set_blocks(b->keys.set[0].data, keys, 1391 block_bytes(b->c)) > blocks * (nodes - 1)) 1392 return 0; 1393 1394 for (i = 0; i < nodes; i++) { 1395 new_nodes[i] = btree_node_alloc_replacement(r[i].b, NULL); 1396 if (IS_ERR_OR_NULL(new_nodes[i])) 1397 goto out_nocoalesce; 1398 } 1399 1400 /* 1401 * We have to check the reserve here, after we've allocated our new 1402 * nodes, to make sure the insert below will succeed - we also check 1403 * before as an optimization to potentially avoid a bunch of expensive 1404 * allocs/sorts 1405 */ 1406 if (btree_check_reserve(b, NULL)) 1407 goto out_nocoalesce; 1408 1409 for (i = 0; i < nodes; i++) 1410 mutex_lock(&new_nodes[i]->write_lock); 1411 1412 for (i = nodes - 1; i > 0; --i) { 1413 struct bset *n1 = btree_bset_first(new_nodes[i]); 1414 struct bset *n2 = btree_bset_first(new_nodes[i - 1]); 1415 struct bkey *k, *last = NULL; 1416 1417 keys = 0; 1418 1419 if (i > 1) { 1420 for (k = n2->start; 1421 k < bset_bkey_last(n2); 1422 k = bkey_next(k)) { 1423 if (__set_blocks(n1, n1->keys + keys + 1424 bkey_u64s(k), 1425 block_bytes(b->c)) > blocks) 1426 break; 1427 1428 last = k; 1429 keys += bkey_u64s(k); 1430 } 1431 } else { 1432 /* 1433 * Last node we're not getting rid of - we're getting 1434 * rid of the node at r[0]. Have to try and fit all of 1435 * the remaining keys into this node; we can't ensure 1436 * they will always fit due to rounding and variable 1437 * length keys (shouldn't be possible in practice, 1438 * though) 1439 */ 1440 if (__set_blocks(n1, n1->keys + n2->keys, 1441 block_bytes(b->c)) > 1442 btree_blocks(new_nodes[i])) 1443 goto out_nocoalesce; 1444 1445 keys = n2->keys; 1446 /* Take the key of the node we're getting rid of */ 1447 last = &r->b->key; 1448 } 1449 1450 BUG_ON(__set_blocks(n1, n1->keys + keys, block_bytes(b->c)) > 1451 btree_blocks(new_nodes[i])); 1452 1453 if (last) 1454 bkey_copy_key(&new_nodes[i]->key, last); 1455 1456 memcpy(bset_bkey_last(n1), 1457 n2->start, 1458 (void *) bset_bkey_idx(n2, keys) - (void *) n2->start); 1459 1460 n1->keys += keys; 1461 r[i].keys = n1->keys; 1462 1463 memmove(n2->start, 1464 bset_bkey_idx(n2, keys), 1465 (void *) bset_bkey_last(n2) - 1466 (void *) bset_bkey_idx(n2, keys)); 1467 1468 n2->keys -= keys; 1469 1470 if (__bch_keylist_realloc(&keylist, 1471 bkey_u64s(&new_nodes[i]->key))) 1472 goto out_nocoalesce; 1473 1474 bch_btree_node_write(new_nodes[i], &cl); 1475 bch_keylist_add(&keylist, &new_nodes[i]->key); 1476 } 1477 1478 for (i = 0; i < nodes; i++) 1479 mutex_unlock(&new_nodes[i]->write_lock); 1480 1481 closure_sync(&cl); 1482 1483 /* We emptied out this node */ 1484 BUG_ON(btree_bset_first(new_nodes[0])->keys); 1485 btree_node_free(new_nodes[0]); 1486 rw_unlock(true, new_nodes[0]); 1487 new_nodes[0] = NULL; 1488 1489 for (i = 0; i < nodes; i++) { 1490 if (__bch_keylist_realloc(&keylist, bkey_u64s(&r[i].b->key))) 1491 goto out_nocoalesce; 1492 1493 make_btree_freeing_key(r[i].b, keylist.top); 1494 bch_keylist_push(&keylist); 1495 } 1496 1497 bch_btree_insert_node(b, op, &keylist, NULL, NULL); 1498 BUG_ON(!bch_keylist_empty(&keylist)); 1499 1500 for (i = 0; i < nodes; i++) { 1501 btree_node_free(r[i].b); 1502 rw_unlock(true, r[i].b); 1503 1504 r[i].b = new_nodes[i]; 1505 } 1506 1507 memmove(r, r + 1, sizeof(r[0]) * (nodes - 1)); 1508 r[nodes - 1].b = ERR_PTR(-EINTR); 1509 1510 trace_bcache_btree_gc_coalesce(nodes); 1511 gc->nodes--; 1512 1513 bch_keylist_free(&keylist); 1514 1515 /* Invalidated our iterator */ 1516 return -EINTR; 1517 1518 out_nocoalesce: 1519 closure_sync(&cl); 1520 1521 while ((k = bch_keylist_pop(&keylist))) 1522 if (!bkey_cmp(k, &ZERO_KEY)) 1523 atomic_dec(&b->c->prio_blocked); 1524 bch_keylist_free(&keylist); 1525 1526 for (i = 0; i < nodes; i++) 1527 if (!IS_ERR_OR_NULL(new_nodes[i])) { 1528 btree_node_free(new_nodes[i]); 1529 rw_unlock(true, new_nodes[i]); 1530 } 1531 return 0; 1532 } 1533 1534 static int btree_gc_rewrite_node(struct btree *b, struct btree_op *op, 1535 struct btree *replace) 1536 { 1537 struct keylist keys; 1538 struct btree *n; 1539 1540 if (btree_check_reserve(b, NULL)) 1541 return 0; 1542 1543 n = btree_node_alloc_replacement(replace, NULL); 1544 1545 /* recheck reserve after allocating replacement node */ 1546 if (btree_check_reserve(b, NULL)) { 1547 btree_node_free(n); 1548 rw_unlock(true, n); 1549 return 0; 1550 } 1551 1552 bch_btree_node_write_sync(n); 1553 1554 bch_keylist_init(&keys); 1555 bch_keylist_add(&keys, &n->key); 1556 1557 make_btree_freeing_key(replace, keys.top); 1558 bch_keylist_push(&keys); 1559 1560 bch_btree_insert_node(b, op, &keys, NULL, NULL); 1561 BUG_ON(!bch_keylist_empty(&keys)); 1562 1563 btree_node_free(replace); 1564 rw_unlock(true, n); 1565 1566 /* Invalidated our iterator */ 1567 return -EINTR; 1568 } 1569 1570 static unsigned int btree_gc_count_keys(struct btree *b) 1571 { 1572 struct bkey *k; 1573 struct btree_iter iter; 1574 unsigned int ret = 0; 1575 1576 for_each_key_filter(&b->keys, k, &iter, bch_ptr_bad) 1577 ret += bkey_u64s(k); 1578 1579 return ret; 1580 } 1581 1582 static size_t btree_gc_min_nodes(struct cache_set *c) 1583 { 1584 size_t min_nodes; 1585 1586 /* 1587 * Since incremental GC would stop 100ms when front 1588 * side I/O comes, so when there are many btree nodes, 1589 * if GC only processes constant (100) nodes each time, 1590 * GC would last a long time, and the front side I/Os 1591 * would run out of the buckets (since no new bucket 1592 * can be allocated during GC), and be blocked again. 1593 * So GC should not process constant nodes, but varied 1594 * nodes according to the number of btree nodes, which 1595 * realized by dividing GC into constant(100) times, 1596 * so when there are many btree nodes, GC can process 1597 * more nodes each time, otherwise, GC will process less 1598 * nodes each time (but no less than MIN_GC_NODES) 1599 */ 1600 min_nodes = c->gc_stats.nodes / MAX_GC_TIMES; 1601 if (min_nodes < MIN_GC_NODES) 1602 min_nodes = MIN_GC_NODES; 1603 1604 return min_nodes; 1605 } 1606 1607 1608 static int btree_gc_recurse(struct btree *b, struct btree_op *op, 1609 struct closure *writes, struct gc_stat *gc) 1610 { 1611 int ret = 0; 1612 bool should_rewrite; 1613 struct bkey *k; 1614 struct btree_iter iter; 1615 struct gc_merge_info r[GC_MERGE_NODES]; 1616 struct gc_merge_info *i, *last = r + ARRAY_SIZE(r) - 1; 1617 1618 bch_btree_iter_init(&b->keys, &iter, &b->c->gc_done); 1619 1620 for (i = r; i < r + ARRAY_SIZE(r); i++) 1621 i->b = ERR_PTR(-EINTR); 1622 1623 while (1) { 1624 k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad); 1625 if (k) { 1626 r->b = bch_btree_node_get(b->c, op, k, b->level - 1, 1627 true, b); 1628 if (IS_ERR(r->b)) { 1629 ret = PTR_ERR(r->b); 1630 break; 1631 } 1632 1633 r->keys = btree_gc_count_keys(r->b); 1634 1635 ret = btree_gc_coalesce(b, op, gc, r); 1636 if (ret) 1637 break; 1638 } 1639 1640 if (!last->b) 1641 break; 1642 1643 if (!IS_ERR(last->b)) { 1644 should_rewrite = btree_gc_mark_node(last->b, gc); 1645 if (should_rewrite) { 1646 ret = btree_gc_rewrite_node(b, op, last->b); 1647 if (ret) 1648 break; 1649 } 1650 1651 if (last->b->level) { 1652 ret = btree_gc_recurse(last->b, op, writes, gc); 1653 if (ret) 1654 break; 1655 } 1656 1657 bkey_copy_key(&b->c->gc_done, &last->b->key); 1658 1659 /* 1660 * Must flush leaf nodes before gc ends, since replace 1661 * operations aren't journalled 1662 */ 1663 mutex_lock(&last->b->write_lock); 1664 if (btree_node_dirty(last->b)) 1665 bch_btree_node_write(last->b, writes); 1666 mutex_unlock(&last->b->write_lock); 1667 rw_unlock(true, last->b); 1668 } 1669 1670 memmove(r + 1, r, sizeof(r[0]) * (GC_MERGE_NODES - 1)); 1671 r->b = NULL; 1672 1673 if (atomic_read(&b->c->search_inflight) && 1674 gc->nodes >= gc->nodes_pre + btree_gc_min_nodes(b->c)) { 1675 gc->nodes_pre = gc->nodes; 1676 ret = -EAGAIN; 1677 break; 1678 } 1679 1680 if (need_resched()) { 1681 ret = -EAGAIN; 1682 break; 1683 } 1684 } 1685 1686 for (i = r; i < r + ARRAY_SIZE(r); i++) 1687 if (!IS_ERR_OR_NULL(i->b)) { 1688 mutex_lock(&i->b->write_lock); 1689 if (btree_node_dirty(i->b)) 1690 bch_btree_node_write(i->b, writes); 1691 mutex_unlock(&i->b->write_lock); 1692 rw_unlock(true, i->b); 1693 } 1694 1695 return ret; 1696 } 1697 1698 static int bch_btree_gc_root(struct btree *b, struct btree_op *op, 1699 struct closure *writes, struct gc_stat *gc) 1700 { 1701 struct btree *n = NULL; 1702 int ret = 0; 1703 bool should_rewrite; 1704 1705 should_rewrite = btree_gc_mark_node(b, gc); 1706 if (should_rewrite) { 1707 n = btree_node_alloc_replacement(b, NULL); 1708 1709 if (!IS_ERR_OR_NULL(n)) { 1710 bch_btree_node_write_sync(n); 1711 1712 bch_btree_set_root(n); 1713 btree_node_free(b); 1714 rw_unlock(true, n); 1715 1716 return -EINTR; 1717 } 1718 } 1719 1720 __bch_btree_mark_key(b->c, b->level + 1, &b->key); 1721 1722 if (b->level) { 1723 ret = btree_gc_recurse(b, op, writes, gc); 1724 if (ret) 1725 return ret; 1726 } 1727 1728 bkey_copy_key(&b->c->gc_done, &b->key); 1729 1730 return ret; 1731 } 1732 1733 static void btree_gc_start(struct cache_set *c) 1734 { 1735 struct cache *ca; 1736 struct bucket *b; 1737 unsigned int i; 1738 1739 if (!c->gc_mark_valid) 1740 return; 1741 1742 mutex_lock(&c->bucket_lock); 1743 1744 c->gc_mark_valid = 0; 1745 c->gc_done = ZERO_KEY; 1746 1747 for_each_cache(ca, c, i) 1748 for_each_bucket(b, ca) { 1749 b->last_gc = b->gen; 1750 if (!atomic_read(&b->pin)) { 1751 SET_GC_MARK(b, 0); 1752 SET_GC_SECTORS_USED(b, 0); 1753 } 1754 } 1755 1756 mutex_unlock(&c->bucket_lock); 1757 } 1758 1759 static void bch_btree_gc_finish(struct cache_set *c) 1760 { 1761 struct bucket *b; 1762 struct cache *ca; 1763 unsigned int i; 1764 1765 mutex_lock(&c->bucket_lock); 1766 1767 set_gc_sectors(c); 1768 c->gc_mark_valid = 1; 1769 c->need_gc = 0; 1770 1771 for (i = 0; i < KEY_PTRS(&c->uuid_bucket); i++) 1772 SET_GC_MARK(PTR_BUCKET(c, &c->uuid_bucket, i), 1773 GC_MARK_METADATA); 1774 1775 /* don't reclaim buckets to which writeback keys point */ 1776 rcu_read_lock(); 1777 for (i = 0; i < c->devices_max_used; i++) { 1778 struct bcache_device *d = c->devices[i]; 1779 struct cached_dev *dc; 1780 struct keybuf_key *w, *n; 1781 unsigned int j; 1782 1783 if (!d || UUID_FLASH_ONLY(&c->uuids[i])) 1784 continue; 1785 dc = container_of(d, struct cached_dev, disk); 1786 1787 spin_lock(&dc->writeback_keys.lock); 1788 rbtree_postorder_for_each_entry_safe(w, n, 1789 &dc->writeback_keys.keys, node) 1790 for (j = 0; j < KEY_PTRS(&w->key); j++) 1791 SET_GC_MARK(PTR_BUCKET(c, &w->key, j), 1792 GC_MARK_DIRTY); 1793 spin_unlock(&dc->writeback_keys.lock); 1794 } 1795 rcu_read_unlock(); 1796 1797 c->avail_nbuckets = 0; 1798 for_each_cache(ca, c, i) { 1799 uint64_t *i; 1800 1801 ca->invalidate_needs_gc = 0; 1802 1803 for (i = ca->sb.d; i < ca->sb.d + ca->sb.keys; i++) 1804 SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA); 1805 1806 for (i = ca->prio_buckets; 1807 i < ca->prio_buckets + prio_buckets(ca) * 2; i++) 1808 SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA); 1809 1810 for_each_bucket(b, ca) { 1811 c->need_gc = max(c->need_gc, bucket_gc_gen(b)); 1812 1813 if (atomic_read(&b->pin)) 1814 continue; 1815 1816 BUG_ON(!GC_MARK(b) && GC_SECTORS_USED(b)); 1817 1818 if (!GC_MARK(b) || GC_MARK(b) == GC_MARK_RECLAIMABLE) 1819 c->avail_nbuckets++; 1820 } 1821 } 1822 1823 mutex_unlock(&c->bucket_lock); 1824 } 1825 1826 static void bch_btree_gc(struct cache_set *c) 1827 { 1828 int ret; 1829 struct gc_stat stats; 1830 struct closure writes; 1831 struct btree_op op; 1832 uint64_t start_time = local_clock(); 1833 1834 trace_bcache_gc_start(c); 1835 1836 memset(&stats, 0, sizeof(struct gc_stat)); 1837 closure_init_stack(&writes); 1838 bch_btree_op_init(&op, SHRT_MAX); 1839 1840 btree_gc_start(c); 1841 1842 /* if CACHE_SET_IO_DISABLE set, gc thread should stop too */ 1843 do { 1844 ret = btree_root(gc_root, c, &op, &writes, &stats); 1845 closure_sync(&writes); 1846 cond_resched(); 1847 1848 if (ret == -EAGAIN) 1849 schedule_timeout_interruptible(msecs_to_jiffies 1850 (GC_SLEEP_MS)); 1851 else if (ret) 1852 pr_warn("gc failed!"); 1853 } while (ret && !test_bit(CACHE_SET_IO_DISABLE, &c->flags)); 1854 1855 bch_btree_gc_finish(c); 1856 wake_up_allocators(c); 1857 1858 bch_time_stats_update(&c->btree_gc_time, start_time); 1859 1860 stats.key_bytes *= sizeof(uint64_t); 1861 stats.data <<= 9; 1862 bch_update_bucket_in_use(c, &stats); 1863 memcpy(&c->gc_stats, &stats, sizeof(struct gc_stat)); 1864 1865 trace_bcache_gc_end(c); 1866 1867 bch_moving_gc(c); 1868 } 1869 1870 static bool gc_should_run(struct cache_set *c) 1871 { 1872 struct cache *ca; 1873 unsigned int i; 1874 1875 for_each_cache(ca, c, i) 1876 if (ca->invalidate_needs_gc) 1877 return true; 1878 1879 if (atomic_read(&c->sectors_to_gc) < 0) 1880 return true; 1881 1882 return false; 1883 } 1884 1885 static int bch_gc_thread(void *arg) 1886 { 1887 struct cache_set *c = arg; 1888 1889 while (1) { 1890 wait_event_interruptible(c->gc_wait, 1891 kthread_should_stop() || 1892 test_bit(CACHE_SET_IO_DISABLE, &c->flags) || 1893 gc_should_run(c)); 1894 1895 if (kthread_should_stop() || 1896 test_bit(CACHE_SET_IO_DISABLE, &c->flags)) 1897 break; 1898 1899 set_gc_sectors(c); 1900 bch_btree_gc(c); 1901 } 1902 1903 wait_for_kthread_stop(); 1904 return 0; 1905 } 1906 1907 int bch_gc_thread_start(struct cache_set *c) 1908 { 1909 c->gc_thread = kthread_run(bch_gc_thread, c, "bcache_gc"); 1910 return PTR_ERR_OR_ZERO(c->gc_thread); 1911 } 1912 1913 /* Initial partial gc */ 1914 1915 static int bch_btree_check_recurse(struct btree *b, struct btree_op *op) 1916 { 1917 int ret = 0; 1918 struct bkey *k, *p = NULL; 1919 struct btree_iter iter; 1920 1921 for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid) 1922 bch_initial_mark_key(b->c, b->level, k); 1923 1924 bch_initial_mark_key(b->c, b->level + 1, &b->key); 1925 1926 if (b->level) { 1927 bch_btree_iter_init(&b->keys, &iter, NULL); 1928 1929 do { 1930 k = bch_btree_iter_next_filter(&iter, &b->keys, 1931 bch_ptr_bad); 1932 if (k) { 1933 btree_node_prefetch(b, k); 1934 /* 1935 * initiallize c->gc_stats.nodes 1936 * for incremental GC 1937 */ 1938 b->c->gc_stats.nodes++; 1939 } 1940 1941 if (p) 1942 ret = btree(check_recurse, p, b, op); 1943 1944 p = k; 1945 } while (p && !ret); 1946 } 1947 1948 return ret; 1949 } 1950 1951 int bch_btree_check(struct cache_set *c) 1952 { 1953 struct btree_op op; 1954 1955 bch_btree_op_init(&op, SHRT_MAX); 1956 1957 return btree_root(check_recurse, c, &op); 1958 } 1959 1960 void bch_initial_gc_finish(struct cache_set *c) 1961 { 1962 struct cache *ca; 1963 struct bucket *b; 1964 unsigned int i; 1965 1966 bch_btree_gc_finish(c); 1967 1968 mutex_lock(&c->bucket_lock); 1969 1970 /* 1971 * We need to put some unused buckets directly on the prio freelist in 1972 * order to get the allocator thread started - it needs freed buckets in 1973 * order to rewrite the prios and gens, and it needs to rewrite prios 1974 * and gens in order to free buckets. 1975 * 1976 * This is only safe for buckets that have no live data in them, which 1977 * there should always be some of. 1978 */ 1979 for_each_cache(ca, c, i) { 1980 for_each_bucket(b, ca) { 1981 if (fifo_full(&ca->free[RESERVE_PRIO]) && 1982 fifo_full(&ca->free[RESERVE_BTREE])) 1983 break; 1984 1985 if (bch_can_invalidate_bucket(ca, b) && 1986 !GC_MARK(b)) { 1987 __bch_invalidate_one_bucket(ca, b); 1988 if (!fifo_push(&ca->free[RESERVE_PRIO], 1989 b - ca->buckets)) 1990 fifo_push(&ca->free[RESERVE_BTREE], 1991 b - ca->buckets); 1992 } 1993 } 1994 } 1995 1996 mutex_unlock(&c->bucket_lock); 1997 } 1998 1999 /* Btree insertion */ 2000 2001 static bool btree_insert_key(struct btree *b, struct bkey *k, 2002 struct bkey *replace_key) 2003 { 2004 unsigned int status; 2005 2006 BUG_ON(bkey_cmp(k, &b->key) > 0); 2007 2008 status = bch_btree_insert_key(&b->keys, k, replace_key); 2009 if (status != BTREE_INSERT_STATUS_NO_INSERT) { 2010 bch_check_keys(&b->keys, "%u for %s", status, 2011 replace_key ? "replace" : "insert"); 2012 2013 trace_bcache_btree_insert_key(b, k, replace_key != NULL, 2014 status); 2015 return true; 2016 } else 2017 return false; 2018 } 2019 2020 static size_t insert_u64s_remaining(struct btree *b) 2021 { 2022 long ret = bch_btree_keys_u64s_remaining(&b->keys); 2023 2024 /* 2025 * Might land in the middle of an existing extent and have to split it 2026 */ 2027 if (b->keys.ops->is_extents) 2028 ret -= KEY_MAX_U64S; 2029 2030 return max(ret, 0L); 2031 } 2032 2033 static bool bch_btree_insert_keys(struct btree *b, struct btree_op *op, 2034 struct keylist *insert_keys, 2035 struct bkey *replace_key) 2036 { 2037 bool ret = false; 2038 int oldsize = bch_count_data(&b->keys); 2039 2040 while (!bch_keylist_empty(insert_keys)) { 2041 struct bkey *k = insert_keys->keys; 2042 2043 if (bkey_u64s(k) > insert_u64s_remaining(b)) 2044 break; 2045 2046 if (bkey_cmp(k, &b->key) <= 0) { 2047 if (!b->level) 2048 bkey_put(b->c, k); 2049 2050 ret |= btree_insert_key(b, k, replace_key); 2051 bch_keylist_pop_front(insert_keys); 2052 } else if (bkey_cmp(&START_KEY(k), &b->key) < 0) { 2053 BKEY_PADDED(key) temp; 2054 bkey_copy(&temp.key, insert_keys->keys); 2055 2056 bch_cut_back(&b->key, &temp.key); 2057 bch_cut_front(&b->key, insert_keys->keys); 2058 2059 ret |= btree_insert_key(b, &temp.key, replace_key); 2060 break; 2061 } else { 2062 break; 2063 } 2064 } 2065 2066 if (!ret) 2067 op->insert_collision = true; 2068 2069 BUG_ON(!bch_keylist_empty(insert_keys) && b->level); 2070 2071 BUG_ON(bch_count_data(&b->keys) < oldsize); 2072 return ret; 2073 } 2074 2075 static int btree_split(struct btree *b, struct btree_op *op, 2076 struct keylist *insert_keys, 2077 struct bkey *replace_key) 2078 { 2079 bool split; 2080 struct btree *n1, *n2 = NULL, *n3 = NULL; 2081 uint64_t start_time = local_clock(); 2082 struct closure cl; 2083 struct keylist parent_keys; 2084 2085 closure_init_stack(&cl); 2086 bch_keylist_init(&parent_keys); 2087 2088 if (btree_check_reserve(b, op)) { 2089 if (!b->level) 2090 return -EINTR; 2091 else 2092 WARN(1, "insufficient reserve for split\n"); 2093 } 2094 2095 n1 = btree_node_alloc_replacement(b, op); 2096 if (IS_ERR(n1)) 2097 goto err; 2098 2099 split = set_blocks(btree_bset_first(n1), 2100 block_bytes(n1->c)) > (btree_blocks(b) * 4) / 5; 2101 2102 if (split) { 2103 unsigned int keys = 0; 2104 2105 trace_bcache_btree_node_split(b, btree_bset_first(n1)->keys); 2106 2107 n2 = bch_btree_node_alloc(b->c, op, b->level, b->parent); 2108 if (IS_ERR(n2)) 2109 goto err_free1; 2110 2111 if (!b->parent) { 2112 n3 = bch_btree_node_alloc(b->c, op, b->level + 1, NULL); 2113 if (IS_ERR(n3)) 2114 goto err_free2; 2115 } 2116 2117 mutex_lock(&n1->write_lock); 2118 mutex_lock(&n2->write_lock); 2119 2120 bch_btree_insert_keys(n1, op, insert_keys, replace_key); 2121 2122 /* 2123 * Has to be a linear search because we don't have an auxiliary 2124 * search tree yet 2125 */ 2126 2127 while (keys < (btree_bset_first(n1)->keys * 3) / 5) 2128 keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1), 2129 keys)); 2130 2131 bkey_copy_key(&n1->key, 2132 bset_bkey_idx(btree_bset_first(n1), keys)); 2133 keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1), keys)); 2134 2135 btree_bset_first(n2)->keys = btree_bset_first(n1)->keys - keys; 2136 btree_bset_first(n1)->keys = keys; 2137 2138 memcpy(btree_bset_first(n2)->start, 2139 bset_bkey_last(btree_bset_first(n1)), 2140 btree_bset_first(n2)->keys * sizeof(uint64_t)); 2141 2142 bkey_copy_key(&n2->key, &b->key); 2143 2144 bch_keylist_add(&parent_keys, &n2->key); 2145 bch_btree_node_write(n2, &cl); 2146 mutex_unlock(&n2->write_lock); 2147 rw_unlock(true, n2); 2148 } else { 2149 trace_bcache_btree_node_compact(b, btree_bset_first(n1)->keys); 2150 2151 mutex_lock(&n1->write_lock); 2152 bch_btree_insert_keys(n1, op, insert_keys, replace_key); 2153 } 2154 2155 bch_keylist_add(&parent_keys, &n1->key); 2156 bch_btree_node_write(n1, &cl); 2157 mutex_unlock(&n1->write_lock); 2158 2159 if (n3) { 2160 /* Depth increases, make a new root */ 2161 mutex_lock(&n3->write_lock); 2162 bkey_copy_key(&n3->key, &MAX_KEY); 2163 bch_btree_insert_keys(n3, op, &parent_keys, NULL); 2164 bch_btree_node_write(n3, &cl); 2165 mutex_unlock(&n3->write_lock); 2166 2167 closure_sync(&cl); 2168 bch_btree_set_root(n3); 2169 rw_unlock(true, n3); 2170 } else if (!b->parent) { 2171 /* Root filled up but didn't need to be split */ 2172 closure_sync(&cl); 2173 bch_btree_set_root(n1); 2174 } else { 2175 /* Split a non root node */ 2176 closure_sync(&cl); 2177 make_btree_freeing_key(b, parent_keys.top); 2178 bch_keylist_push(&parent_keys); 2179 2180 bch_btree_insert_node(b->parent, op, &parent_keys, NULL, NULL); 2181 BUG_ON(!bch_keylist_empty(&parent_keys)); 2182 } 2183 2184 btree_node_free(b); 2185 rw_unlock(true, n1); 2186 2187 bch_time_stats_update(&b->c->btree_split_time, start_time); 2188 2189 return 0; 2190 err_free2: 2191 bkey_put(b->c, &n2->key); 2192 btree_node_free(n2); 2193 rw_unlock(true, n2); 2194 err_free1: 2195 bkey_put(b->c, &n1->key); 2196 btree_node_free(n1); 2197 rw_unlock(true, n1); 2198 err: 2199 WARN(1, "bcache: btree split failed (level %u)", b->level); 2200 2201 if (n3 == ERR_PTR(-EAGAIN) || 2202 n2 == ERR_PTR(-EAGAIN) || 2203 n1 == ERR_PTR(-EAGAIN)) 2204 return -EAGAIN; 2205 2206 return -ENOMEM; 2207 } 2208 2209 static int bch_btree_insert_node(struct btree *b, struct btree_op *op, 2210 struct keylist *insert_keys, 2211 atomic_t *journal_ref, 2212 struct bkey *replace_key) 2213 { 2214 struct closure cl; 2215 2216 BUG_ON(b->level && replace_key); 2217 2218 closure_init_stack(&cl); 2219 2220 mutex_lock(&b->write_lock); 2221 2222 if (write_block(b) != btree_bset_last(b) && 2223 b->keys.last_set_unwritten) 2224 bch_btree_init_next(b); /* just wrote a set */ 2225 2226 if (bch_keylist_nkeys(insert_keys) > insert_u64s_remaining(b)) { 2227 mutex_unlock(&b->write_lock); 2228 goto split; 2229 } 2230 2231 BUG_ON(write_block(b) != btree_bset_last(b)); 2232 2233 if (bch_btree_insert_keys(b, op, insert_keys, replace_key)) { 2234 if (!b->level) 2235 bch_btree_leaf_dirty(b, journal_ref); 2236 else 2237 bch_btree_node_write(b, &cl); 2238 } 2239 2240 mutex_unlock(&b->write_lock); 2241 2242 /* wait for btree node write if necessary, after unlock */ 2243 closure_sync(&cl); 2244 2245 return 0; 2246 split: 2247 if (current->bio_list) { 2248 op->lock = b->c->root->level + 1; 2249 return -EAGAIN; 2250 } else if (op->lock <= b->c->root->level) { 2251 op->lock = b->c->root->level + 1; 2252 return -EINTR; 2253 } else { 2254 /* Invalidated all iterators */ 2255 int ret = btree_split(b, op, insert_keys, replace_key); 2256 2257 if (bch_keylist_empty(insert_keys)) 2258 return 0; 2259 else if (!ret) 2260 return -EINTR; 2261 return ret; 2262 } 2263 } 2264 2265 int bch_btree_insert_check_key(struct btree *b, struct btree_op *op, 2266 struct bkey *check_key) 2267 { 2268 int ret = -EINTR; 2269 uint64_t btree_ptr = b->key.ptr[0]; 2270 unsigned long seq = b->seq; 2271 struct keylist insert; 2272 bool upgrade = op->lock == -1; 2273 2274 bch_keylist_init(&insert); 2275 2276 if (upgrade) { 2277 rw_unlock(false, b); 2278 rw_lock(true, b, b->level); 2279 2280 if (b->key.ptr[0] != btree_ptr || 2281 b->seq != seq + 1) { 2282 op->lock = b->level; 2283 goto out; 2284 } 2285 } 2286 2287 SET_KEY_PTRS(check_key, 1); 2288 get_random_bytes(&check_key->ptr[0], sizeof(uint64_t)); 2289 2290 SET_PTR_DEV(check_key, 0, PTR_CHECK_DEV); 2291 2292 bch_keylist_add(&insert, check_key); 2293 2294 ret = bch_btree_insert_node(b, op, &insert, NULL, NULL); 2295 2296 BUG_ON(!ret && !bch_keylist_empty(&insert)); 2297 out: 2298 if (upgrade) 2299 downgrade_write(&b->lock); 2300 return ret; 2301 } 2302 2303 struct btree_insert_op { 2304 struct btree_op op; 2305 struct keylist *keys; 2306 atomic_t *journal_ref; 2307 struct bkey *replace_key; 2308 }; 2309 2310 static int btree_insert_fn(struct btree_op *b_op, struct btree *b) 2311 { 2312 struct btree_insert_op *op = container_of(b_op, 2313 struct btree_insert_op, op); 2314 2315 int ret = bch_btree_insert_node(b, &op->op, op->keys, 2316 op->journal_ref, op->replace_key); 2317 if (ret && !bch_keylist_empty(op->keys)) 2318 return ret; 2319 else 2320 return MAP_DONE; 2321 } 2322 2323 int bch_btree_insert(struct cache_set *c, struct keylist *keys, 2324 atomic_t *journal_ref, struct bkey *replace_key) 2325 { 2326 struct btree_insert_op op; 2327 int ret = 0; 2328 2329 BUG_ON(current->bio_list); 2330 BUG_ON(bch_keylist_empty(keys)); 2331 2332 bch_btree_op_init(&op.op, 0); 2333 op.keys = keys; 2334 op.journal_ref = journal_ref; 2335 op.replace_key = replace_key; 2336 2337 while (!ret && !bch_keylist_empty(keys)) { 2338 op.op.lock = 0; 2339 ret = bch_btree_map_leaf_nodes(&op.op, c, 2340 &START_KEY(keys->keys), 2341 btree_insert_fn); 2342 } 2343 2344 if (ret) { 2345 struct bkey *k; 2346 2347 pr_err("error %i", ret); 2348 2349 while ((k = bch_keylist_pop(keys))) 2350 bkey_put(c, k); 2351 } else if (op.op.insert_collision) 2352 ret = -ESRCH; 2353 2354 return ret; 2355 } 2356 2357 void bch_btree_set_root(struct btree *b) 2358 { 2359 unsigned int i; 2360 struct closure cl; 2361 2362 closure_init_stack(&cl); 2363 2364 trace_bcache_btree_set_root(b); 2365 2366 BUG_ON(!b->written); 2367 2368 for (i = 0; i < KEY_PTRS(&b->key); i++) 2369 BUG_ON(PTR_BUCKET(b->c, &b->key, i)->prio != BTREE_PRIO); 2370 2371 mutex_lock(&b->c->bucket_lock); 2372 list_del_init(&b->list); 2373 mutex_unlock(&b->c->bucket_lock); 2374 2375 b->c->root = b; 2376 2377 bch_journal_meta(b->c, &cl); 2378 closure_sync(&cl); 2379 } 2380 2381 /* Map across nodes or keys */ 2382 2383 static int bch_btree_map_nodes_recurse(struct btree *b, struct btree_op *op, 2384 struct bkey *from, 2385 btree_map_nodes_fn *fn, int flags) 2386 { 2387 int ret = MAP_CONTINUE; 2388 2389 if (b->level) { 2390 struct bkey *k; 2391 struct btree_iter iter; 2392 2393 bch_btree_iter_init(&b->keys, &iter, from); 2394 2395 while ((k = bch_btree_iter_next_filter(&iter, &b->keys, 2396 bch_ptr_bad))) { 2397 ret = btree(map_nodes_recurse, k, b, 2398 op, from, fn, flags); 2399 from = NULL; 2400 2401 if (ret != MAP_CONTINUE) 2402 return ret; 2403 } 2404 } 2405 2406 if (!b->level || flags == MAP_ALL_NODES) 2407 ret = fn(op, b); 2408 2409 return ret; 2410 } 2411 2412 int __bch_btree_map_nodes(struct btree_op *op, struct cache_set *c, 2413 struct bkey *from, btree_map_nodes_fn *fn, int flags) 2414 { 2415 return btree_root(map_nodes_recurse, c, op, from, fn, flags); 2416 } 2417 2418 static int bch_btree_map_keys_recurse(struct btree *b, struct btree_op *op, 2419 struct bkey *from, btree_map_keys_fn *fn, 2420 int flags) 2421 { 2422 int ret = MAP_CONTINUE; 2423 struct bkey *k; 2424 struct btree_iter iter; 2425 2426 bch_btree_iter_init(&b->keys, &iter, from); 2427 2428 while ((k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad))) { 2429 ret = !b->level 2430 ? fn(op, b, k) 2431 : btree(map_keys_recurse, k, b, op, from, fn, flags); 2432 from = NULL; 2433 2434 if (ret != MAP_CONTINUE) 2435 return ret; 2436 } 2437 2438 if (!b->level && (flags & MAP_END_KEY)) 2439 ret = fn(op, b, &KEY(KEY_INODE(&b->key), 2440 KEY_OFFSET(&b->key), 0)); 2441 2442 return ret; 2443 } 2444 2445 int bch_btree_map_keys(struct btree_op *op, struct cache_set *c, 2446 struct bkey *from, btree_map_keys_fn *fn, int flags) 2447 { 2448 return btree_root(map_keys_recurse, c, op, from, fn, flags); 2449 } 2450 2451 /* Keybuf code */ 2452 2453 static inline int keybuf_cmp(struct keybuf_key *l, struct keybuf_key *r) 2454 { 2455 /* Overlapping keys compare equal */ 2456 if (bkey_cmp(&l->key, &START_KEY(&r->key)) <= 0) 2457 return -1; 2458 if (bkey_cmp(&START_KEY(&l->key), &r->key) >= 0) 2459 return 1; 2460 return 0; 2461 } 2462 2463 static inline int keybuf_nonoverlapping_cmp(struct keybuf_key *l, 2464 struct keybuf_key *r) 2465 { 2466 return clamp_t(int64_t, bkey_cmp(&l->key, &r->key), -1, 1); 2467 } 2468 2469 struct refill { 2470 struct btree_op op; 2471 unsigned int nr_found; 2472 struct keybuf *buf; 2473 struct bkey *end; 2474 keybuf_pred_fn *pred; 2475 }; 2476 2477 static int refill_keybuf_fn(struct btree_op *op, struct btree *b, 2478 struct bkey *k) 2479 { 2480 struct refill *refill = container_of(op, struct refill, op); 2481 struct keybuf *buf = refill->buf; 2482 int ret = MAP_CONTINUE; 2483 2484 if (bkey_cmp(k, refill->end) > 0) { 2485 ret = MAP_DONE; 2486 goto out; 2487 } 2488 2489 if (!KEY_SIZE(k)) /* end key */ 2490 goto out; 2491 2492 if (refill->pred(buf, k)) { 2493 struct keybuf_key *w; 2494 2495 spin_lock(&buf->lock); 2496 2497 w = array_alloc(&buf->freelist); 2498 if (!w) { 2499 spin_unlock(&buf->lock); 2500 return MAP_DONE; 2501 } 2502 2503 w->private = NULL; 2504 bkey_copy(&w->key, k); 2505 2506 if (RB_INSERT(&buf->keys, w, node, keybuf_cmp)) 2507 array_free(&buf->freelist, w); 2508 else 2509 refill->nr_found++; 2510 2511 if (array_freelist_empty(&buf->freelist)) 2512 ret = MAP_DONE; 2513 2514 spin_unlock(&buf->lock); 2515 } 2516 out: 2517 buf->last_scanned = *k; 2518 return ret; 2519 } 2520 2521 void bch_refill_keybuf(struct cache_set *c, struct keybuf *buf, 2522 struct bkey *end, keybuf_pred_fn *pred) 2523 { 2524 struct bkey start = buf->last_scanned; 2525 struct refill refill; 2526 2527 cond_resched(); 2528 2529 bch_btree_op_init(&refill.op, -1); 2530 refill.nr_found = 0; 2531 refill.buf = buf; 2532 refill.end = end; 2533 refill.pred = pred; 2534 2535 bch_btree_map_keys(&refill.op, c, &buf->last_scanned, 2536 refill_keybuf_fn, MAP_END_KEY); 2537 2538 trace_bcache_keyscan(refill.nr_found, 2539 KEY_INODE(&start), KEY_OFFSET(&start), 2540 KEY_INODE(&buf->last_scanned), 2541 KEY_OFFSET(&buf->last_scanned)); 2542 2543 spin_lock(&buf->lock); 2544 2545 if (!RB_EMPTY_ROOT(&buf->keys)) { 2546 struct keybuf_key *w; 2547 2548 w = RB_FIRST(&buf->keys, struct keybuf_key, node); 2549 buf->start = START_KEY(&w->key); 2550 2551 w = RB_LAST(&buf->keys, struct keybuf_key, node); 2552 buf->end = w->key; 2553 } else { 2554 buf->start = MAX_KEY; 2555 buf->end = MAX_KEY; 2556 } 2557 2558 spin_unlock(&buf->lock); 2559 } 2560 2561 static void __bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w) 2562 { 2563 rb_erase(&w->node, &buf->keys); 2564 array_free(&buf->freelist, w); 2565 } 2566 2567 void bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w) 2568 { 2569 spin_lock(&buf->lock); 2570 __bch_keybuf_del(buf, w); 2571 spin_unlock(&buf->lock); 2572 } 2573 2574 bool bch_keybuf_check_overlapping(struct keybuf *buf, struct bkey *start, 2575 struct bkey *end) 2576 { 2577 bool ret = false; 2578 struct keybuf_key *p, *w, s; 2579 2580 s.key = *start; 2581 2582 if (bkey_cmp(end, &buf->start) <= 0 || 2583 bkey_cmp(start, &buf->end) >= 0) 2584 return false; 2585 2586 spin_lock(&buf->lock); 2587 w = RB_GREATER(&buf->keys, s, node, keybuf_nonoverlapping_cmp); 2588 2589 while (w && bkey_cmp(&START_KEY(&w->key), end) < 0) { 2590 p = w; 2591 w = RB_NEXT(w, node); 2592 2593 if (p->private) 2594 ret = true; 2595 else 2596 __bch_keybuf_del(buf, p); 2597 } 2598 2599 spin_unlock(&buf->lock); 2600 return ret; 2601 } 2602 2603 struct keybuf_key *bch_keybuf_next(struct keybuf *buf) 2604 { 2605 struct keybuf_key *w; 2606 2607 spin_lock(&buf->lock); 2608 2609 w = RB_FIRST(&buf->keys, struct keybuf_key, node); 2610 2611 while (w && w->private) 2612 w = RB_NEXT(w, node); 2613 2614 if (w) 2615 w->private = ERR_PTR(-EINTR); 2616 2617 spin_unlock(&buf->lock); 2618 return w; 2619 } 2620 2621 struct keybuf_key *bch_keybuf_next_rescan(struct cache_set *c, 2622 struct keybuf *buf, 2623 struct bkey *end, 2624 keybuf_pred_fn *pred) 2625 { 2626 struct keybuf_key *ret; 2627 2628 while (1) { 2629 ret = bch_keybuf_next(buf); 2630 if (ret) 2631 break; 2632 2633 if (bkey_cmp(&buf->last_scanned, end) >= 0) { 2634 pr_debug("scan finished"); 2635 break; 2636 } 2637 2638 bch_refill_keybuf(c, buf, end, pred); 2639 } 2640 2641 return ret; 2642 } 2643 2644 void bch_keybuf_init(struct keybuf *buf) 2645 { 2646 buf->last_scanned = MAX_KEY; 2647 buf->keys = RB_ROOT; 2648 2649 spin_lock_init(&buf->lock); 2650 array_allocator_init(&buf->freelist); 2651 } 2652