xref: /openbmc/linux/drivers/md/bcache/btree.c (revision b802fb99ae964681d1754428f67970911e0476e9)
1 /*
2  * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com>
3  *
4  * Uses a block device as cache for other block devices; optimized for SSDs.
5  * All allocation is done in buckets, which should match the erase block size
6  * of the device.
7  *
8  * Buckets containing cached data are kept on a heap sorted by priority;
9  * bucket priority is increased on cache hit, and periodically all the buckets
10  * on the heap have their priority scaled down. This currently is just used as
11  * an LRU but in the future should allow for more intelligent heuristics.
12  *
13  * Buckets have an 8 bit counter; freeing is accomplished by incrementing the
14  * counter. Garbage collection is used to remove stale pointers.
15  *
16  * Indexing is done via a btree; nodes are not necessarily fully sorted, rather
17  * as keys are inserted we only sort the pages that have not yet been written.
18  * When garbage collection is run, we resort the entire node.
19  *
20  * All configuration is done via sysfs; see Documentation/bcache.txt.
21  */
22 
23 #include "bcache.h"
24 #include "btree.h"
25 #include "debug.h"
26 #include "extents.h"
27 
28 #include <linux/slab.h>
29 #include <linux/bitops.h>
30 #include <linux/freezer.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/prefetch.h>
34 #include <linux/random.h>
35 #include <linux/rcupdate.h>
36 #include <trace/events/bcache.h>
37 
38 /*
39  * Todo:
40  * register_bcache: Return errors out to userspace correctly
41  *
42  * Writeback: don't undirty key until after a cache flush
43  *
44  * Create an iterator for key pointers
45  *
46  * On btree write error, mark bucket such that it won't be freed from the cache
47  *
48  * Journalling:
49  *   Check for bad keys in replay
50  *   Propagate barriers
51  *   Refcount journal entries in journal_replay
52  *
53  * Garbage collection:
54  *   Finish incremental gc
55  *   Gc should free old UUIDs, data for invalid UUIDs
56  *
57  * Provide a way to list backing device UUIDs we have data cached for, and
58  * probably how long it's been since we've seen them, and a way to invalidate
59  * dirty data for devices that will never be attached again
60  *
61  * Keep 1 min/5 min/15 min statistics of how busy a block device has been, so
62  * that based on that and how much dirty data we have we can keep writeback
63  * from being starved
64  *
65  * Add a tracepoint or somesuch to watch for writeback starvation
66  *
67  * When btree depth > 1 and splitting an interior node, we have to make sure
68  * alloc_bucket() cannot fail. This should be true but is not completely
69  * obvious.
70  *
71  * Plugging?
72  *
73  * If data write is less than hard sector size of ssd, round up offset in open
74  * bucket to the next whole sector
75  *
76  * Superblock needs to be fleshed out for multiple cache devices
77  *
78  * Add a sysfs tunable for the number of writeback IOs in flight
79  *
80  * Add a sysfs tunable for the number of open data buckets
81  *
82  * IO tracking: Can we track when one process is doing io on behalf of another?
83  * IO tracking: Don't use just an average, weigh more recent stuff higher
84  *
85  * Test module load/unload
86  */
87 
88 #define MAX_NEED_GC		64
89 #define MAX_SAVE_PRIO		72
90 
91 #define PTR_DIRTY_BIT		(((uint64_t) 1 << 36))
92 
93 #define PTR_HASH(c, k)							\
94 	(((k)->ptr[0] >> c->bucket_bits) | PTR_GEN(k, 0))
95 
96 #define insert_lock(s, b)	((b)->level <= (s)->lock)
97 
98 /*
99  * These macros are for recursing down the btree - they handle the details of
100  * locking and looking up nodes in the cache for you. They're best treated as
101  * mere syntax when reading code that uses them.
102  *
103  * op->lock determines whether we take a read or a write lock at a given depth.
104  * If you've got a read lock and find that you need a write lock (i.e. you're
105  * going to have to split), set op->lock and return -EINTR; btree_root() will
106  * call you again and you'll have the correct lock.
107  */
108 
109 /**
110  * btree - recurse down the btree on a specified key
111  * @fn:		function to call, which will be passed the child node
112  * @key:	key to recurse on
113  * @b:		parent btree node
114  * @op:		pointer to struct btree_op
115  */
116 #define btree(fn, key, b, op, ...)					\
117 ({									\
118 	int _r, l = (b)->level - 1;					\
119 	bool _w = l <= (op)->lock;					\
120 	struct btree *_child = bch_btree_node_get((b)->c, op, key, l,	\
121 						  _w, b);		\
122 	if (!IS_ERR(_child)) {						\
123 		_r = bch_btree_ ## fn(_child, op, ##__VA_ARGS__);	\
124 		rw_unlock(_w, _child);					\
125 	} else								\
126 		_r = PTR_ERR(_child);					\
127 	_r;								\
128 })
129 
130 /**
131  * btree_root - call a function on the root of the btree
132  * @fn:		function to call, which will be passed the child node
133  * @c:		cache set
134  * @op:		pointer to struct btree_op
135  */
136 #define btree_root(fn, c, op, ...)					\
137 ({									\
138 	int _r = -EINTR;						\
139 	do {								\
140 		struct btree *_b = (c)->root;				\
141 		bool _w = insert_lock(op, _b);				\
142 		rw_lock(_w, _b, _b->level);				\
143 		if (_b == (c)->root &&					\
144 		    _w == insert_lock(op, _b)) {			\
145 			_r = bch_btree_ ## fn(_b, op, ##__VA_ARGS__);	\
146 		}							\
147 		rw_unlock(_w, _b);					\
148 		bch_cannibalize_unlock(c);				\
149 		if (_r == -EINTR)					\
150 			schedule();					\
151 	} while (_r == -EINTR);						\
152 									\
153 	finish_wait(&(c)->btree_cache_wait, &(op)->wait);		\
154 	_r;								\
155 })
156 
157 static inline struct bset *write_block(struct btree *b)
158 {
159 	return ((void *) btree_bset_first(b)) + b->written * block_bytes(b->c);
160 }
161 
162 static void bch_btree_init_next(struct btree *b)
163 {
164 	/* If not a leaf node, always sort */
165 	if (b->level && b->keys.nsets)
166 		bch_btree_sort(&b->keys, &b->c->sort);
167 	else
168 		bch_btree_sort_lazy(&b->keys, &b->c->sort);
169 
170 	if (b->written < btree_blocks(b))
171 		bch_bset_init_next(&b->keys, write_block(b),
172 				   bset_magic(&b->c->sb));
173 
174 }
175 
176 /* Btree key manipulation */
177 
178 void bkey_put(struct cache_set *c, struct bkey *k)
179 {
180 	unsigned i;
181 
182 	for (i = 0; i < KEY_PTRS(k); i++)
183 		if (ptr_available(c, k, i))
184 			atomic_dec_bug(&PTR_BUCKET(c, k, i)->pin);
185 }
186 
187 /* Btree IO */
188 
189 static uint64_t btree_csum_set(struct btree *b, struct bset *i)
190 {
191 	uint64_t crc = b->key.ptr[0];
192 	void *data = (void *) i + 8, *end = bset_bkey_last(i);
193 
194 	crc = bch_crc64_update(crc, data, end - data);
195 	return crc ^ 0xffffffffffffffffULL;
196 }
197 
198 void bch_btree_node_read_done(struct btree *b)
199 {
200 	const char *err = "bad btree header";
201 	struct bset *i = btree_bset_first(b);
202 	struct btree_iter *iter;
203 
204 	iter = mempool_alloc(b->c->fill_iter, GFP_NOIO);
205 	iter->size = b->c->sb.bucket_size / b->c->sb.block_size;
206 	iter->used = 0;
207 
208 #ifdef CONFIG_BCACHE_DEBUG
209 	iter->b = &b->keys;
210 #endif
211 
212 	if (!i->seq)
213 		goto err;
214 
215 	for (;
216 	     b->written < btree_blocks(b) && i->seq == b->keys.set[0].data->seq;
217 	     i = write_block(b)) {
218 		err = "unsupported bset version";
219 		if (i->version > BCACHE_BSET_VERSION)
220 			goto err;
221 
222 		err = "bad btree header";
223 		if (b->written + set_blocks(i, block_bytes(b->c)) >
224 		    btree_blocks(b))
225 			goto err;
226 
227 		err = "bad magic";
228 		if (i->magic != bset_magic(&b->c->sb))
229 			goto err;
230 
231 		err = "bad checksum";
232 		switch (i->version) {
233 		case 0:
234 			if (i->csum != csum_set(i))
235 				goto err;
236 			break;
237 		case BCACHE_BSET_VERSION:
238 			if (i->csum != btree_csum_set(b, i))
239 				goto err;
240 			break;
241 		}
242 
243 		err = "empty set";
244 		if (i != b->keys.set[0].data && !i->keys)
245 			goto err;
246 
247 		bch_btree_iter_push(iter, i->start, bset_bkey_last(i));
248 
249 		b->written += set_blocks(i, block_bytes(b->c));
250 	}
251 
252 	err = "corrupted btree";
253 	for (i = write_block(b);
254 	     bset_sector_offset(&b->keys, i) < KEY_SIZE(&b->key);
255 	     i = ((void *) i) + block_bytes(b->c))
256 		if (i->seq == b->keys.set[0].data->seq)
257 			goto err;
258 
259 	bch_btree_sort_and_fix_extents(&b->keys, iter, &b->c->sort);
260 
261 	i = b->keys.set[0].data;
262 	err = "short btree key";
263 	if (b->keys.set[0].size &&
264 	    bkey_cmp(&b->key, &b->keys.set[0].end) < 0)
265 		goto err;
266 
267 	if (b->written < btree_blocks(b))
268 		bch_bset_init_next(&b->keys, write_block(b),
269 				   bset_magic(&b->c->sb));
270 out:
271 	mempool_free(iter, b->c->fill_iter);
272 	return;
273 err:
274 	set_btree_node_io_error(b);
275 	bch_cache_set_error(b->c, "%s at bucket %zu, block %u, %u keys",
276 			    err, PTR_BUCKET_NR(b->c, &b->key, 0),
277 			    bset_block_offset(b, i), i->keys);
278 	goto out;
279 }
280 
281 static void btree_node_read_endio(struct bio *bio)
282 {
283 	struct closure *cl = bio->bi_private;
284 	closure_put(cl);
285 }
286 
287 static void bch_btree_node_read(struct btree *b)
288 {
289 	uint64_t start_time = local_clock();
290 	struct closure cl;
291 	struct bio *bio;
292 
293 	trace_bcache_btree_read(b);
294 
295 	closure_init_stack(&cl);
296 
297 	bio = bch_bbio_alloc(b->c);
298 	bio->bi_rw	= REQ_META|READ_SYNC;
299 	bio->bi_iter.bi_size = KEY_SIZE(&b->key) << 9;
300 	bio->bi_end_io	= btree_node_read_endio;
301 	bio->bi_private	= &cl;
302 
303 	bch_bio_map(bio, b->keys.set[0].data);
304 
305 	bch_submit_bbio(bio, b->c, &b->key, 0);
306 	closure_sync(&cl);
307 
308 	if (bio->bi_error)
309 		set_btree_node_io_error(b);
310 
311 	bch_bbio_free(bio, b->c);
312 
313 	if (btree_node_io_error(b))
314 		goto err;
315 
316 	bch_btree_node_read_done(b);
317 	bch_time_stats_update(&b->c->btree_read_time, start_time);
318 
319 	return;
320 err:
321 	bch_cache_set_error(b->c, "io error reading bucket %zu",
322 			    PTR_BUCKET_NR(b->c, &b->key, 0));
323 }
324 
325 static void btree_complete_write(struct btree *b, struct btree_write *w)
326 {
327 	if (w->prio_blocked &&
328 	    !atomic_sub_return(w->prio_blocked, &b->c->prio_blocked))
329 		wake_up_allocators(b->c);
330 
331 	if (w->journal) {
332 		atomic_dec_bug(w->journal);
333 		__closure_wake_up(&b->c->journal.wait);
334 	}
335 
336 	w->prio_blocked	= 0;
337 	w->journal	= NULL;
338 }
339 
340 static void btree_node_write_unlock(struct closure *cl)
341 {
342 	struct btree *b = container_of(cl, struct btree, io);
343 
344 	up(&b->io_mutex);
345 }
346 
347 static void __btree_node_write_done(struct closure *cl)
348 {
349 	struct btree *b = container_of(cl, struct btree, io);
350 	struct btree_write *w = btree_prev_write(b);
351 
352 	bch_bbio_free(b->bio, b->c);
353 	b->bio = NULL;
354 	btree_complete_write(b, w);
355 
356 	if (btree_node_dirty(b))
357 		schedule_delayed_work(&b->work, 30 * HZ);
358 
359 	closure_return_with_destructor(cl, btree_node_write_unlock);
360 }
361 
362 static void btree_node_write_done(struct closure *cl)
363 {
364 	struct btree *b = container_of(cl, struct btree, io);
365 	struct bio_vec *bv;
366 	int n;
367 
368 	bio_for_each_segment_all(bv, b->bio, n)
369 		__free_page(bv->bv_page);
370 
371 	__btree_node_write_done(cl);
372 }
373 
374 static void btree_node_write_endio(struct bio *bio)
375 {
376 	struct closure *cl = bio->bi_private;
377 	struct btree *b = container_of(cl, struct btree, io);
378 
379 	if (bio->bi_error)
380 		set_btree_node_io_error(b);
381 
382 	bch_bbio_count_io_errors(b->c, bio, bio->bi_error, "writing btree");
383 	closure_put(cl);
384 }
385 
386 static void do_btree_node_write(struct btree *b)
387 {
388 	struct closure *cl = &b->io;
389 	struct bset *i = btree_bset_last(b);
390 	BKEY_PADDED(key) k;
391 
392 	i->version	= BCACHE_BSET_VERSION;
393 	i->csum		= btree_csum_set(b, i);
394 
395 	BUG_ON(b->bio);
396 	b->bio = bch_bbio_alloc(b->c);
397 
398 	b->bio->bi_end_io	= btree_node_write_endio;
399 	b->bio->bi_private	= cl;
400 	b->bio->bi_rw		= REQ_META|WRITE_SYNC|REQ_FUA;
401 	b->bio->bi_iter.bi_size	= roundup(set_bytes(i), block_bytes(b->c));
402 	bch_bio_map(b->bio, i);
403 
404 	/*
405 	 * If we're appending to a leaf node, we don't technically need FUA -
406 	 * this write just needs to be persisted before the next journal write,
407 	 * which will be marked FLUSH|FUA.
408 	 *
409 	 * Similarly if we're writing a new btree root - the pointer is going to
410 	 * be in the next journal entry.
411 	 *
412 	 * But if we're writing a new btree node (that isn't a root) or
413 	 * appending to a non leaf btree node, we need either FUA or a flush
414 	 * when we write the parent with the new pointer. FUA is cheaper than a
415 	 * flush, and writes appending to leaf nodes aren't blocking anything so
416 	 * just make all btree node writes FUA to keep things sane.
417 	 */
418 
419 	bkey_copy(&k.key, &b->key);
420 	SET_PTR_OFFSET(&k.key, 0, PTR_OFFSET(&k.key, 0) +
421 		       bset_sector_offset(&b->keys, i));
422 
423 	if (!bio_alloc_pages(b->bio, __GFP_NOWARN|GFP_NOWAIT)) {
424 		int j;
425 		struct bio_vec *bv;
426 		void *base = (void *) ((unsigned long) i & ~(PAGE_SIZE - 1));
427 
428 		bio_for_each_segment_all(bv, b->bio, j)
429 			memcpy(page_address(bv->bv_page),
430 			       base + j * PAGE_SIZE, PAGE_SIZE);
431 
432 		bch_submit_bbio(b->bio, b->c, &k.key, 0);
433 
434 		continue_at(cl, btree_node_write_done, NULL);
435 	} else {
436 		b->bio->bi_vcnt = 0;
437 		bch_bio_map(b->bio, i);
438 
439 		bch_submit_bbio(b->bio, b->c, &k.key, 0);
440 
441 		closure_sync(cl);
442 		continue_at_nobarrier(cl, __btree_node_write_done, NULL);
443 	}
444 }
445 
446 void __bch_btree_node_write(struct btree *b, struct closure *parent)
447 {
448 	struct bset *i = btree_bset_last(b);
449 
450 	lockdep_assert_held(&b->write_lock);
451 
452 	trace_bcache_btree_write(b);
453 
454 	BUG_ON(current->bio_list);
455 	BUG_ON(b->written >= btree_blocks(b));
456 	BUG_ON(b->written && !i->keys);
457 	BUG_ON(btree_bset_first(b)->seq != i->seq);
458 	bch_check_keys(&b->keys, "writing");
459 
460 	cancel_delayed_work(&b->work);
461 
462 	/* If caller isn't waiting for write, parent refcount is cache set */
463 	down(&b->io_mutex);
464 	closure_init(&b->io, parent ?: &b->c->cl);
465 
466 	clear_bit(BTREE_NODE_dirty,	 &b->flags);
467 	change_bit(BTREE_NODE_write_idx, &b->flags);
468 
469 	do_btree_node_write(b);
470 
471 	atomic_long_add(set_blocks(i, block_bytes(b->c)) * b->c->sb.block_size,
472 			&PTR_CACHE(b->c, &b->key, 0)->btree_sectors_written);
473 
474 	b->written += set_blocks(i, block_bytes(b->c));
475 }
476 
477 void bch_btree_node_write(struct btree *b, struct closure *parent)
478 {
479 	unsigned nsets = b->keys.nsets;
480 
481 	lockdep_assert_held(&b->lock);
482 
483 	__bch_btree_node_write(b, parent);
484 
485 	/*
486 	 * do verify if there was more than one set initially (i.e. we did a
487 	 * sort) and we sorted down to a single set:
488 	 */
489 	if (nsets && !b->keys.nsets)
490 		bch_btree_verify(b);
491 
492 	bch_btree_init_next(b);
493 }
494 
495 static void bch_btree_node_write_sync(struct btree *b)
496 {
497 	struct closure cl;
498 
499 	closure_init_stack(&cl);
500 
501 	mutex_lock(&b->write_lock);
502 	bch_btree_node_write(b, &cl);
503 	mutex_unlock(&b->write_lock);
504 
505 	closure_sync(&cl);
506 }
507 
508 static void btree_node_write_work(struct work_struct *w)
509 {
510 	struct btree *b = container_of(to_delayed_work(w), struct btree, work);
511 
512 	mutex_lock(&b->write_lock);
513 	if (btree_node_dirty(b))
514 		__bch_btree_node_write(b, NULL);
515 	mutex_unlock(&b->write_lock);
516 }
517 
518 static void bch_btree_leaf_dirty(struct btree *b, atomic_t *journal_ref)
519 {
520 	struct bset *i = btree_bset_last(b);
521 	struct btree_write *w = btree_current_write(b);
522 
523 	lockdep_assert_held(&b->write_lock);
524 
525 	BUG_ON(!b->written);
526 	BUG_ON(!i->keys);
527 
528 	if (!btree_node_dirty(b))
529 		schedule_delayed_work(&b->work, 30 * HZ);
530 
531 	set_btree_node_dirty(b);
532 
533 	if (journal_ref) {
534 		if (w->journal &&
535 		    journal_pin_cmp(b->c, w->journal, journal_ref)) {
536 			atomic_dec_bug(w->journal);
537 			w->journal = NULL;
538 		}
539 
540 		if (!w->journal) {
541 			w->journal = journal_ref;
542 			atomic_inc(w->journal);
543 		}
544 	}
545 
546 	/* Force write if set is too big */
547 	if (set_bytes(i) > PAGE_SIZE - 48 &&
548 	    !current->bio_list)
549 		bch_btree_node_write(b, NULL);
550 }
551 
552 /*
553  * Btree in memory cache - allocation/freeing
554  * mca -> memory cache
555  */
556 
557 #define mca_reserve(c)	(((c->root && c->root->level)		\
558 			  ? c->root->level : 1) * 8 + 16)
559 #define mca_can_free(c)						\
560 	max_t(int, 0, c->btree_cache_used - mca_reserve(c))
561 
562 static void mca_data_free(struct btree *b)
563 {
564 	BUG_ON(b->io_mutex.count != 1);
565 
566 	bch_btree_keys_free(&b->keys);
567 
568 	b->c->btree_cache_used--;
569 	list_move(&b->list, &b->c->btree_cache_freed);
570 }
571 
572 static void mca_bucket_free(struct btree *b)
573 {
574 	BUG_ON(btree_node_dirty(b));
575 
576 	b->key.ptr[0] = 0;
577 	hlist_del_init_rcu(&b->hash);
578 	list_move(&b->list, &b->c->btree_cache_freeable);
579 }
580 
581 static unsigned btree_order(struct bkey *k)
582 {
583 	return ilog2(KEY_SIZE(k) / PAGE_SECTORS ?: 1);
584 }
585 
586 static void mca_data_alloc(struct btree *b, struct bkey *k, gfp_t gfp)
587 {
588 	if (!bch_btree_keys_alloc(&b->keys,
589 				  max_t(unsigned,
590 					ilog2(b->c->btree_pages),
591 					btree_order(k)),
592 				  gfp)) {
593 		b->c->btree_cache_used++;
594 		list_move(&b->list, &b->c->btree_cache);
595 	} else {
596 		list_move(&b->list, &b->c->btree_cache_freed);
597 	}
598 }
599 
600 static struct btree *mca_bucket_alloc(struct cache_set *c,
601 				      struct bkey *k, gfp_t gfp)
602 {
603 	struct btree *b = kzalloc(sizeof(struct btree), gfp);
604 	if (!b)
605 		return NULL;
606 
607 	init_rwsem(&b->lock);
608 	lockdep_set_novalidate_class(&b->lock);
609 	mutex_init(&b->write_lock);
610 	lockdep_set_novalidate_class(&b->write_lock);
611 	INIT_LIST_HEAD(&b->list);
612 	INIT_DELAYED_WORK(&b->work, btree_node_write_work);
613 	b->c = c;
614 	sema_init(&b->io_mutex, 1);
615 
616 	mca_data_alloc(b, k, gfp);
617 	return b;
618 }
619 
620 static int mca_reap(struct btree *b, unsigned min_order, bool flush)
621 {
622 	struct closure cl;
623 
624 	closure_init_stack(&cl);
625 	lockdep_assert_held(&b->c->bucket_lock);
626 
627 	if (!down_write_trylock(&b->lock))
628 		return -ENOMEM;
629 
630 	BUG_ON(btree_node_dirty(b) && !b->keys.set[0].data);
631 
632 	if (b->keys.page_order < min_order)
633 		goto out_unlock;
634 
635 	if (!flush) {
636 		if (btree_node_dirty(b))
637 			goto out_unlock;
638 
639 		if (down_trylock(&b->io_mutex))
640 			goto out_unlock;
641 		up(&b->io_mutex);
642 	}
643 
644 	mutex_lock(&b->write_lock);
645 	if (btree_node_dirty(b))
646 		__bch_btree_node_write(b, &cl);
647 	mutex_unlock(&b->write_lock);
648 
649 	closure_sync(&cl);
650 
651 	/* wait for any in flight btree write */
652 	down(&b->io_mutex);
653 	up(&b->io_mutex);
654 
655 	return 0;
656 out_unlock:
657 	rw_unlock(true, b);
658 	return -ENOMEM;
659 }
660 
661 static unsigned long bch_mca_scan(struct shrinker *shrink,
662 				  struct shrink_control *sc)
663 {
664 	struct cache_set *c = container_of(shrink, struct cache_set, shrink);
665 	struct btree *b, *t;
666 	unsigned long i, nr = sc->nr_to_scan;
667 	unsigned long freed = 0;
668 
669 	if (c->shrinker_disabled)
670 		return SHRINK_STOP;
671 
672 	if (c->btree_cache_alloc_lock)
673 		return SHRINK_STOP;
674 
675 	/* Return -1 if we can't do anything right now */
676 	if (sc->gfp_mask & __GFP_IO)
677 		mutex_lock(&c->bucket_lock);
678 	else if (!mutex_trylock(&c->bucket_lock))
679 		return -1;
680 
681 	/*
682 	 * It's _really_ critical that we don't free too many btree nodes - we
683 	 * have to always leave ourselves a reserve. The reserve is how we
684 	 * guarantee that allocating memory for a new btree node can always
685 	 * succeed, so that inserting keys into the btree can always succeed and
686 	 * IO can always make forward progress:
687 	 */
688 	nr /= c->btree_pages;
689 	nr = min_t(unsigned long, nr, mca_can_free(c));
690 
691 	i = 0;
692 	list_for_each_entry_safe(b, t, &c->btree_cache_freeable, list) {
693 		if (freed >= nr)
694 			break;
695 
696 		if (++i > 3 &&
697 		    !mca_reap(b, 0, false)) {
698 			mca_data_free(b);
699 			rw_unlock(true, b);
700 			freed++;
701 		}
702 	}
703 
704 	for (i = 0; (nr--) && i < c->btree_cache_used; i++) {
705 		if (list_empty(&c->btree_cache))
706 			goto out;
707 
708 		b = list_first_entry(&c->btree_cache, struct btree, list);
709 		list_rotate_left(&c->btree_cache);
710 
711 		if (!b->accessed &&
712 		    !mca_reap(b, 0, false)) {
713 			mca_bucket_free(b);
714 			mca_data_free(b);
715 			rw_unlock(true, b);
716 			freed++;
717 		} else
718 			b->accessed = 0;
719 	}
720 out:
721 	mutex_unlock(&c->bucket_lock);
722 	return freed;
723 }
724 
725 static unsigned long bch_mca_count(struct shrinker *shrink,
726 				   struct shrink_control *sc)
727 {
728 	struct cache_set *c = container_of(shrink, struct cache_set, shrink);
729 
730 	if (c->shrinker_disabled)
731 		return 0;
732 
733 	if (c->btree_cache_alloc_lock)
734 		return 0;
735 
736 	return mca_can_free(c) * c->btree_pages;
737 }
738 
739 void bch_btree_cache_free(struct cache_set *c)
740 {
741 	struct btree *b;
742 	struct closure cl;
743 	closure_init_stack(&cl);
744 
745 	if (c->shrink.list.next)
746 		unregister_shrinker(&c->shrink);
747 
748 	mutex_lock(&c->bucket_lock);
749 
750 #ifdef CONFIG_BCACHE_DEBUG
751 	if (c->verify_data)
752 		list_move(&c->verify_data->list, &c->btree_cache);
753 
754 	free_pages((unsigned long) c->verify_ondisk, ilog2(bucket_pages(c)));
755 #endif
756 
757 	list_splice(&c->btree_cache_freeable,
758 		    &c->btree_cache);
759 
760 	while (!list_empty(&c->btree_cache)) {
761 		b = list_first_entry(&c->btree_cache, struct btree, list);
762 
763 		if (btree_node_dirty(b))
764 			btree_complete_write(b, btree_current_write(b));
765 		clear_bit(BTREE_NODE_dirty, &b->flags);
766 
767 		mca_data_free(b);
768 	}
769 
770 	while (!list_empty(&c->btree_cache_freed)) {
771 		b = list_first_entry(&c->btree_cache_freed,
772 				     struct btree, list);
773 		list_del(&b->list);
774 		cancel_delayed_work_sync(&b->work);
775 		kfree(b);
776 	}
777 
778 	mutex_unlock(&c->bucket_lock);
779 }
780 
781 int bch_btree_cache_alloc(struct cache_set *c)
782 {
783 	unsigned i;
784 
785 	for (i = 0; i < mca_reserve(c); i++)
786 		if (!mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL))
787 			return -ENOMEM;
788 
789 	list_splice_init(&c->btree_cache,
790 			 &c->btree_cache_freeable);
791 
792 #ifdef CONFIG_BCACHE_DEBUG
793 	mutex_init(&c->verify_lock);
794 
795 	c->verify_ondisk = (void *)
796 		__get_free_pages(GFP_KERNEL, ilog2(bucket_pages(c)));
797 
798 	c->verify_data = mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL);
799 
800 	if (c->verify_data &&
801 	    c->verify_data->keys.set->data)
802 		list_del_init(&c->verify_data->list);
803 	else
804 		c->verify_data = NULL;
805 #endif
806 
807 	c->shrink.count_objects = bch_mca_count;
808 	c->shrink.scan_objects = bch_mca_scan;
809 	c->shrink.seeks = 4;
810 	c->shrink.batch = c->btree_pages * 2;
811 	register_shrinker(&c->shrink);
812 
813 	return 0;
814 }
815 
816 /* Btree in memory cache - hash table */
817 
818 static struct hlist_head *mca_hash(struct cache_set *c, struct bkey *k)
819 {
820 	return &c->bucket_hash[hash_32(PTR_HASH(c, k), BUCKET_HASH_BITS)];
821 }
822 
823 static struct btree *mca_find(struct cache_set *c, struct bkey *k)
824 {
825 	struct btree *b;
826 
827 	rcu_read_lock();
828 	hlist_for_each_entry_rcu(b, mca_hash(c, k), hash)
829 		if (PTR_HASH(c, &b->key) == PTR_HASH(c, k))
830 			goto out;
831 	b = NULL;
832 out:
833 	rcu_read_unlock();
834 	return b;
835 }
836 
837 static int mca_cannibalize_lock(struct cache_set *c, struct btree_op *op)
838 {
839 	struct task_struct *old;
840 
841 	old = cmpxchg(&c->btree_cache_alloc_lock, NULL, current);
842 	if (old && old != current) {
843 		if (op)
844 			prepare_to_wait(&c->btree_cache_wait, &op->wait,
845 					TASK_UNINTERRUPTIBLE);
846 		return -EINTR;
847 	}
848 
849 	return 0;
850 }
851 
852 static struct btree *mca_cannibalize(struct cache_set *c, struct btree_op *op,
853 				     struct bkey *k)
854 {
855 	struct btree *b;
856 
857 	trace_bcache_btree_cache_cannibalize(c);
858 
859 	if (mca_cannibalize_lock(c, op))
860 		return ERR_PTR(-EINTR);
861 
862 	list_for_each_entry_reverse(b, &c->btree_cache, list)
863 		if (!mca_reap(b, btree_order(k), false))
864 			return b;
865 
866 	list_for_each_entry_reverse(b, &c->btree_cache, list)
867 		if (!mca_reap(b, btree_order(k), true))
868 			return b;
869 
870 	WARN(1, "btree cache cannibalize failed\n");
871 	return ERR_PTR(-ENOMEM);
872 }
873 
874 /*
875  * We can only have one thread cannibalizing other cached btree nodes at a time,
876  * or we'll deadlock. We use an open coded mutex to ensure that, which a
877  * cannibalize_bucket() will take. This means every time we unlock the root of
878  * the btree, we need to release this lock if we have it held.
879  */
880 static void bch_cannibalize_unlock(struct cache_set *c)
881 {
882 	if (c->btree_cache_alloc_lock == current) {
883 		c->btree_cache_alloc_lock = NULL;
884 		wake_up(&c->btree_cache_wait);
885 	}
886 }
887 
888 static struct btree *mca_alloc(struct cache_set *c, struct btree_op *op,
889 			       struct bkey *k, int level)
890 {
891 	struct btree *b;
892 
893 	BUG_ON(current->bio_list);
894 
895 	lockdep_assert_held(&c->bucket_lock);
896 
897 	if (mca_find(c, k))
898 		return NULL;
899 
900 	/* btree_free() doesn't free memory; it sticks the node on the end of
901 	 * the list. Check if there's any freed nodes there:
902 	 */
903 	list_for_each_entry(b, &c->btree_cache_freeable, list)
904 		if (!mca_reap(b, btree_order(k), false))
905 			goto out;
906 
907 	/* We never free struct btree itself, just the memory that holds the on
908 	 * disk node. Check the freed list before allocating a new one:
909 	 */
910 	list_for_each_entry(b, &c->btree_cache_freed, list)
911 		if (!mca_reap(b, 0, false)) {
912 			mca_data_alloc(b, k, __GFP_NOWARN|GFP_NOIO);
913 			if (!b->keys.set[0].data)
914 				goto err;
915 			else
916 				goto out;
917 		}
918 
919 	b = mca_bucket_alloc(c, k, __GFP_NOWARN|GFP_NOIO);
920 	if (!b)
921 		goto err;
922 
923 	BUG_ON(!down_write_trylock(&b->lock));
924 	if (!b->keys.set->data)
925 		goto err;
926 out:
927 	BUG_ON(b->io_mutex.count != 1);
928 
929 	bkey_copy(&b->key, k);
930 	list_move(&b->list, &c->btree_cache);
931 	hlist_del_init_rcu(&b->hash);
932 	hlist_add_head_rcu(&b->hash, mca_hash(c, k));
933 
934 	lock_set_subclass(&b->lock.dep_map, level + 1, _THIS_IP_);
935 	b->parent	= (void *) ~0UL;
936 	b->flags	= 0;
937 	b->written	= 0;
938 	b->level	= level;
939 
940 	if (!b->level)
941 		bch_btree_keys_init(&b->keys, &bch_extent_keys_ops,
942 				    &b->c->expensive_debug_checks);
943 	else
944 		bch_btree_keys_init(&b->keys, &bch_btree_keys_ops,
945 				    &b->c->expensive_debug_checks);
946 
947 	return b;
948 err:
949 	if (b)
950 		rw_unlock(true, b);
951 
952 	b = mca_cannibalize(c, op, k);
953 	if (!IS_ERR(b))
954 		goto out;
955 
956 	return b;
957 }
958 
959 /**
960  * bch_btree_node_get - find a btree node in the cache and lock it, reading it
961  * in from disk if necessary.
962  *
963  * If IO is necessary and running under generic_make_request, returns -EAGAIN.
964  *
965  * The btree node will have either a read or a write lock held, depending on
966  * level and op->lock.
967  */
968 struct btree *bch_btree_node_get(struct cache_set *c, struct btree_op *op,
969 				 struct bkey *k, int level, bool write,
970 				 struct btree *parent)
971 {
972 	int i = 0;
973 	struct btree *b;
974 
975 	BUG_ON(level < 0);
976 retry:
977 	b = mca_find(c, k);
978 
979 	if (!b) {
980 		if (current->bio_list)
981 			return ERR_PTR(-EAGAIN);
982 
983 		mutex_lock(&c->bucket_lock);
984 		b = mca_alloc(c, op, k, level);
985 		mutex_unlock(&c->bucket_lock);
986 
987 		if (!b)
988 			goto retry;
989 		if (IS_ERR(b))
990 			return b;
991 
992 		bch_btree_node_read(b);
993 
994 		if (!write)
995 			downgrade_write(&b->lock);
996 	} else {
997 		rw_lock(write, b, level);
998 		if (PTR_HASH(c, &b->key) != PTR_HASH(c, k)) {
999 			rw_unlock(write, b);
1000 			goto retry;
1001 		}
1002 		BUG_ON(b->level != level);
1003 	}
1004 
1005 	b->parent = parent;
1006 	b->accessed = 1;
1007 
1008 	for (; i <= b->keys.nsets && b->keys.set[i].size; i++) {
1009 		prefetch(b->keys.set[i].tree);
1010 		prefetch(b->keys.set[i].data);
1011 	}
1012 
1013 	for (; i <= b->keys.nsets; i++)
1014 		prefetch(b->keys.set[i].data);
1015 
1016 	if (btree_node_io_error(b)) {
1017 		rw_unlock(write, b);
1018 		return ERR_PTR(-EIO);
1019 	}
1020 
1021 	BUG_ON(!b->written);
1022 
1023 	return b;
1024 }
1025 
1026 static void btree_node_prefetch(struct btree *parent, struct bkey *k)
1027 {
1028 	struct btree *b;
1029 
1030 	mutex_lock(&parent->c->bucket_lock);
1031 	b = mca_alloc(parent->c, NULL, k, parent->level - 1);
1032 	mutex_unlock(&parent->c->bucket_lock);
1033 
1034 	if (!IS_ERR_OR_NULL(b)) {
1035 		b->parent = parent;
1036 		bch_btree_node_read(b);
1037 		rw_unlock(true, b);
1038 	}
1039 }
1040 
1041 /* Btree alloc */
1042 
1043 static void btree_node_free(struct btree *b)
1044 {
1045 	trace_bcache_btree_node_free(b);
1046 
1047 	BUG_ON(b == b->c->root);
1048 
1049 	mutex_lock(&b->write_lock);
1050 
1051 	if (btree_node_dirty(b))
1052 		btree_complete_write(b, btree_current_write(b));
1053 	clear_bit(BTREE_NODE_dirty, &b->flags);
1054 
1055 	mutex_unlock(&b->write_lock);
1056 
1057 	cancel_delayed_work(&b->work);
1058 
1059 	mutex_lock(&b->c->bucket_lock);
1060 	bch_bucket_free(b->c, &b->key);
1061 	mca_bucket_free(b);
1062 	mutex_unlock(&b->c->bucket_lock);
1063 }
1064 
1065 struct btree *__bch_btree_node_alloc(struct cache_set *c, struct btree_op *op,
1066 				     int level, bool wait,
1067 				     struct btree *parent)
1068 {
1069 	BKEY_PADDED(key) k;
1070 	struct btree *b = ERR_PTR(-EAGAIN);
1071 
1072 	mutex_lock(&c->bucket_lock);
1073 retry:
1074 	if (__bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, 1, wait))
1075 		goto err;
1076 
1077 	bkey_put(c, &k.key);
1078 	SET_KEY_SIZE(&k.key, c->btree_pages * PAGE_SECTORS);
1079 
1080 	b = mca_alloc(c, op, &k.key, level);
1081 	if (IS_ERR(b))
1082 		goto err_free;
1083 
1084 	if (!b) {
1085 		cache_bug(c,
1086 			"Tried to allocate bucket that was in btree cache");
1087 		goto retry;
1088 	}
1089 
1090 	b->accessed = 1;
1091 	b->parent = parent;
1092 	bch_bset_init_next(&b->keys, b->keys.set->data, bset_magic(&b->c->sb));
1093 
1094 	mutex_unlock(&c->bucket_lock);
1095 
1096 	trace_bcache_btree_node_alloc(b);
1097 	return b;
1098 err_free:
1099 	bch_bucket_free(c, &k.key);
1100 err:
1101 	mutex_unlock(&c->bucket_lock);
1102 
1103 	trace_bcache_btree_node_alloc_fail(c);
1104 	return b;
1105 }
1106 
1107 static struct btree *bch_btree_node_alloc(struct cache_set *c,
1108 					  struct btree_op *op, int level,
1109 					  struct btree *parent)
1110 {
1111 	return __bch_btree_node_alloc(c, op, level, op != NULL, parent);
1112 }
1113 
1114 static struct btree *btree_node_alloc_replacement(struct btree *b,
1115 						  struct btree_op *op)
1116 {
1117 	struct btree *n = bch_btree_node_alloc(b->c, op, b->level, b->parent);
1118 	if (!IS_ERR_OR_NULL(n)) {
1119 		mutex_lock(&n->write_lock);
1120 		bch_btree_sort_into(&b->keys, &n->keys, &b->c->sort);
1121 		bkey_copy_key(&n->key, &b->key);
1122 		mutex_unlock(&n->write_lock);
1123 	}
1124 
1125 	return n;
1126 }
1127 
1128 static void make_btree_freeing_key(struct btree *b, struct bkey *k)
1129 {
1130 	unsigned i;
1131 
1132 	mutex_lock(&b->c->bucket_lock);
1133 
1134 	atomic_inc(&b->c->prio_blocked);
1135 
1136 	bkey_copy(k, &b->key);
1137 	bkey_copy_key(k, &ZERO_KEY);
1138 
1139 	for (i = 0; i < KEY_PTRS(k); i++)
1140 		SET_PTR_GEN(k, i,
1141 			    bch_inc_gen(PTR_CACHE(b->c, &b->key, i),
1142 					PTR_BUCKET(b->c, &b->key, i)));
1143 
1144 	mutex_unlock(&b->c->bucket_lock);
1145 }
1146 
1147 static int btree_check_reserve(struct btree *b, struct btree_op *op)
1148 {
1149 	struct cache_set *c = b->c;
1150 	struct cache *ca;
1151 	unsigned i, reserve = (c->root->level - b->level) * 2 + 1;
1152 
1153 	mutex_lock(&c->bucket_lock);
1154 
1155 	for_each_cache(ca, c, i)
1156 		if (fifo_used(&ca->free[RESERVE_BTREE]) < reserve) {
1157 			if (op)
1158 				prepare_to_wait(&c->btree_cache_wait, &op->wait,
1159 						TASK_UNINTERRUPTIBLE);
1160 			mutex_unlock(&c->bucket_lock);
1161 			return -EINTR;
1162 		}
1163 
1164 	mutex_unlock(&c->bucket_lock);
1165 
1166 	return mca_cannibalize_lock(b->c, op);
1167 }
1168 
1169 /* Garbage collection */
1170 
1171 static uint8_t __bch_btree_mark_key(struct cache_set *c, int level,
1172 				    struct bkey *k)
1173 {
1174 	uint8_t stale = 0;
1175 	unsigned i;
1176 	struct bucket *g;
1177 
1178 	/*
1179 	 * ptr_invalid() can't return true for the keys that mark btree nodes as
1180 	 * freed, but since ptr_bad() returns true we'll never actually use them
1181 	 * for anything and thus we don't want mark their pointers here
1182 	 */
1183 	if (!bkey_cmp(k, &ZERO_KEY))
1184 		return stale;
1185 
1186 	for (i = 0; i < KEY_PTRS(k); i++) {
1187 		if (!ptr_available(c, k, i))
1188 			continue;
1189 
1190 		g = PTR_BUCKET(c, k, i);
1191 
1192 		if (gen_after(g->last_gc, PTR_GEN(k, i)))
1193 			g->last_gc = PTR_GEN(k, i);
1194 
1195 		if (ptr_stale(c, k, i)) {
1196 			stale = max(stale, ptr_stale(c, k, i));
1197 			continue;
1198 		}
1199 
1200 		cache_bug_on(GC_MARK(g) &&
1201 			     (GC_MARK(g) == GC_MARK_METADATA) != (level != 0),
1202 			     c, "inconsistent ptrs: mark = %llu, level = %i",
1203 			     GC_MARK(g), level);
1204 
1205 		if (level)
1206 			SET_GC_MARK(g, GC_MARK_METADATA);
1207 		else if (KEY_DIRTY(k))
1208 			SET_GC_MARK(g, GC_MARK_DIRTY);
1209 		else if (!GC_MARK(g))
1210 			SET_GC_MARK(g, GC_MARK_RECLAIMABLE);
1211 
1212 		/* guard against overflow */
1213 		SET_GC_SECTORS_USED(g, min_t(unsigned,
1214 					     GC_SECTORS_USED(g) + KEY_SIZE(k),
1215 					     MAX_GC_SECTORS_USED));
1216 
1217 		BUG_ON(!GC_SECTORS_USED(g));
1218 	}
1219 
1220 	return stale;
1221 }
1222 
1223 #define btree_mark_key(b, k)	__bch_btree_mark_key(b->c, b->level, k)
1224 
1225 void bch_initial_mark_key(struct cache_set *c, int level, struct bkey *k)
1226 {
1227 	unsigned i;
1228 
1229 	for (i = 0; i < KEY_PTRS(k); i++)
1230 		if (ptr_available(c, k, i) &&
1231 		    !ptr_stale(c, k, i)) {
1232 			struct bucket *b = PTR_BUCKET(c, k, i);
1233 
1234 			b->gen = PTR_GEN(k, i);
1235 
1236 			if (level && bkey_cmp(k, &ZERO_KEY))
1237 				b->prio = BTREE_PRIO;
1238 			else if (!level && b->prio == BTREE_PRIO)
1239 				b->prio = INITIAL_PRIO;
1240 		}
1241 
1242 	__bch_btree_mark_key(c, level, k);
1243 }
1244 
1245 static bool btree_gc_mark_node(struct btree *b, struct gc_stat *gc)
1246 {
1247 	uint8_t stale = 0;
1248 	unsigned keys = 0, good_keys = 0;
1249 	struct bkey *k;
1250 	struct btree_iter iter;
1251 	struct bset_tree *t;
1252 
1253 	gc->nodes++;
1254 
1255 	for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid) {
1256 		stale = max(stale, btree_mark_key(b, k));
1257 		keys++;
1258 
1259 		if (bch_ptr_bad(&b->keys, k))
1260 			continue;
1261 
1262 		gc->key_bytes += bkey_u64s(k);
1263 		gc->nkeys++;
1264 		good_keys++;
1265 
1266 		gc->data += KEY_SIZE(k);
1267 	}
1268 
1269 	for (t = b->keys.set; t <= &b->keys.set[b->keys.nsets]; t++)
1270 		btree_bug_on(t->size &&
1271 			     bset_written(&b->keys, t) &&
1272 			     bkey_cmp(&b->key, &t->end) < 0,
1273 			     b, "found short btree key in gc");
1274 
1275 	if (b->c->gc_always_rewrite)
1276 		return true;
1277 
1278 	if (stale > 10)
1279 		return true;
1280 
1281 	if ((keys - good_keys) * 2 > keys)
1282 		return true;
1283 
1284 	return false;
1285 }
1286 
1287 #define GC_MERGE_NODES	4U
1288 
1289 struct gc_merge_info {
1290 	struct btree	*b;
1291 	unsigned	keys;
1292 };
1293 
1294 static int bch_btree_insert_node(struct btree *, struct btree_op *,
1295 				 struct keylist *, atomic_t *, struct bkey *);
1296 
1297 static int btree_gc_coalesce(struct btree *b, struct btree_op *op,
1298 			     struct gc_stat *gc, struct gc_merge_info *r)
1299 {
1300 	unsigned i, nodes = 0, keys = 0, blocks;
1301 	struct btree *new_nodes[GC_MERGE_NODES];
1302 	struct keylist keylist;
1303 	struct closure cl;
1304 	struct bkey *k;
1305 
1306 	bch_keylist_init(&keylist);
1307 
1308 	if (btree_check_reserve(b, NULL))
1309 		return 0;
1310 
1311 	memset(new_nodes, 0, sizeof(new_nodes));
1312 	closure_init_stack(&cl);
1313 
1314 	while (nodes < GC_MERGE_NODES && !IS_ERR_OR_NULL(r[nodes].b))
1315 		keys += r[nodes++].keys;
1316 
1317 	blocks = btree_default_blocks(b->c) * 2 / 3;
1318 
1319 	if (nodes < 2 ||
1320 	    __set_blocks(b->keys.set[0].data, keys,
1321 			 block_bytes(b->c)) > blocks * (nodes - 1))
1322 		return 0;
1323 
1324 	for (i = 0; i < nodes; i++) {
1325 		new_nodes[i] = btree_node_alloc_replacement(r[i].b, NULL);
1326 		if (IS_ERR_OR_NULL(new_nodes[i]))
1327 			goto out_nocoalesce;
1328 	}
1329 
1330 	/*
1331 	 * We have to check the reserve here, after we've allocated our new
1332 	 * nodes, to make sure the insert below will succeed - we also check
1333 	 * before as an optimization to potentially avoid a bunch of expensive
1334 	 * allocs/sorts
1335 	 */
1336 	if (btree_check_reserve(b, NULL))
1337 		goto out_nocoalesce;
1338 
1339 	for (i = 0; i < nodes; i++)
1340 		mutex_lock(&new_nodes[i]->write_lock);
1341 
1342 	for (i = nodes - 1; i > 0; --i) {
1343 		struct bset *n1 = btree_bset_first(new_nodes[i]);
1344 		struct bset *n2 = btree_bset_first(new_nodes[i - 1]);
1345 		struct bkey *k, *last = NULL;
1346 
1347 		keys = 0;
1348 
1349 		if (i > 1) {
1350 			for (k = n2->start;
1351 			     k < bset_bkey_last(n2);
1352 			     k = bkey_next(k)) {
1353 				if (__set_blocks(n1, n1->keys + keys +
1354 						 bkey_u64s(k),
1355 						 block_bytes(b->c)) > blocks)
1356 					break;
1357 
1358 				last = k;
1359 				keys += bkey_u64s(k);
1360 			}
1361 		} else {
1362 			/*
1363 			 * Last node we're not getting rid of - we're getting
1364 			 * rid of the node at r[0]. Have to try and fit all of
1365 			 * the remaining keys into this node; we can't ensure
1366 			 * they will always fit due to rounding and variable
1367 			 * length keys (shouldn't be possible in practice,
1368 			 * though)
1369 			 */
1370 			if (__set_blocks(n1, n1->keys + n2->keys,
1371 					 block_bytes(b->c)) >
1372 			    btree_blocks(new_nodes[i]))
1373 				goto out_nocoalesce;
1374 
1375 			keys = n2->keys;
1376 			/* Take the key of the node we're getting rid of */
1377 			last = &r->b->key;
1378 		}
1379 
1380 		BUG_ON(__set_blocks(n1, n1->keys + keys, block_bytes(b->c)) >
1381 		       btree_blocks(new_nodes[i]));
1382 
1383 		if (last)
1384 			bkey_copy_key(&new_nodes[i]->key, last);
1385 
1386 		memcpy(bset_bkey_last(n1),
1387 		       n2->start,
1388 		       (void *) bset_bkey_idx(n2, keys) - (void *) n2->start);
1389 
1390 		n1->keys += keys;
1391 		r[i].keys = n1->keys;
1392 
1393 		memmove(n2->start,
1394 			bset_bkey_idx(n2, keys),
1395 			(void *) bset_bkey_last(n2) -
1396 			(void *) bset_bkey_idx(n2, keys));
1397 
1398 		n2->keys -= keys;
1399 
1400 		if (__bch_keylist_realloc(&keylist,
1401 					  bkey_u64s(&new_nodes[i]->key)))
1402 			goto out_nocoalesce;
1403 
1404 		bch_btree_node_write(new_nodes[i], &cl);
1405 		bch_keylist_add(&keylist, &new_nodes[i]->key);
1406 	}
1407 
1408 	for (i = 0; i < nodes; i++)
1409 		mutex_unlock(&new_nodes[i]->write_lock);
1410 
1411 	closure_sync(&cl);
1412 
1413 	/* We emptied out this node */
1414 	BUG_ON(btree_bset_first(new_nodes[0])->keys);
1415 	btree_node_free(new_nodes[0]);
1416 	rw_unlock(true, new_nodes[0]);
1417 	new_nodes[0] = NULL;
1418 
1419 	for (i = 0; i < nodes; i++) {
1420 		if (__bch_keylist_realloc(&keylist, bkey_u64s(&r[i].b->key)))
1421 			goto out_nocoalesce;
1422 
1423 		make_btree_freeing_key(r[i].b, keylist.top);
1424 		bch_keylist_push(&keylist);
1425 	}
1426 
1427 	bch_btree_insert_node(b, op, &keylist, NULL, NULL);
1428 	BUG_ON(!bch_keylist_empty(&keylist));
1429 
1430 	for (i = 0; i < nodes; i++) {
1431 		btree_node_free(r[i].b);
1432 		rw_unlock(true, r[i].b);
1433 
1434 		r[i].b = new_nodes[i];
1435 	}
1436 
1437 	memmove(r, r + 1, sizeof(r[0]) * (nodes - 1));
1438 	r[nodes - 1].b = ERR_PTR(-EINTR);
1439 
1440 	trace_bcache_btree_gc_coalesce(nodes);
1441 	gc->nodes--;
1442 
1443 	bch_keylist_free(&keylist);
1444 
1445 	/* Invalidated our iterator */
1446 	return -EINTR;
1447 
1448 out_nocoalesce:
1449 	closure_sync(&cl);
1450 	bch_keylist_free(&keylist);
1451 
1452 	while ((k = bch_keylist_pop(&keylist)))
1453 		if (!bkey_cmp(k, &ZERO_KEY))
1454 			atomic_dec(&b->c->prio_blocked);
1455 
1456 	for (i = 0; i < nodes; i++)
1457 		if (!IS_ERR_OR_NULL(new_nodes[i])) {
1458 			btree_node_free(new_nodes[i]);
1459 			rw_unlock(true, new_nodes[i]);
1460 		}
1461 	return 0;
1462 }
1463 
1464 static int btree_gc_rewrite_node(struct btree *b, struct btree_op *op,
1465 				 struct btree *replace)
1466 {
1467 	struct keylist keys;
1468 	struct btree *n;
1469 
1470 	if (btree_check_reserve(b, NULL))
1471 		return 0;
1472 
1473 	n = btree_node_alloc_replacement(replace, NULL);
1474 
1475 	/* recheck reserve after allocating replacement node */
1476 	if (btree_check_reserve(b, NULL)) {
1477 		btree_node_free(n);
1478 		rw_unlock(true, n);
1479 		return 0;
1480 	}
1481 
1482 	bch_btree_node_write_sync(n);
1483 
1484 	bch_keylist_init(&keys);
1485 	bch_keylist_add(&keys, &n->key);
1486 
1487 	make_btree_freeing_key(replace, keys.top);
1488 	bch_keylist_push(&keys);
1489 
1490 	bch_btree_insert_node(b, op, &keys, NULL, NULL);
1491 	BUG_ON(!bch_keylist_empty(&keys));
1492 
1493 	btree_node_free(replace);
1494 	rw_unlock(true, n);
1495 
1496 	/* Invalidated our iterator */
1497 	return -EINTR;
1498 }
1499 
1500 static unsigned btree_gc_count_keys(struct btree *b)
1501 {
1502 	struct bkey *k;
1503 	struct btree_iter iter;
1504 	unsigned ret = 0;
1505 
1506 	for_each_key_filter(&b->keys, k, &iter, bch_ptr_bad)
1507 		ret += bkey_u64s(k);
1508 
1509 	return ret;
1510 }
1511 
1512 static int btree_gc_recurse(struct btree *b, struct btree_op *op,
1513 			    struct closure *writes, struct gc_stat *gc)
1514 {
1515 	int ret = 0;
1516 	bool should_rewrite;
1517 	struct bkey *k;
1518 	struct btree_iter iter;
1519 	struct gc_merge_info r[GC_MERGE_NODES];
1520 	struct gc_merge_info *i, *last = r + ARRAY_SIZE(r) - 1;
1521 
1522 	bch_btree_iter_init(&b->keys, &iter, &b->c->gc_done);
1523 
1524 	for (i = r; i < r + ARRAY_SIZE(r); i++)
1525 		i->b = ERR_PTR(-EINTR);
1526 
1527 	while (1) {
1528 		k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad);
1529 		if (k) {
1530 			r->b = bch_btree_node_get(b->c, op, k, b->level - 1,
1531 						  true, b);
1532 			if (IS_ERR(r->b)) {
1533 				ret = PTR_ERR(r->b);
1534 				break;
1535 			}
1536 
1537 			r->keys = btree_gc_count_keys(r->b);
1538 
1539 			ret = btree_gc_coalesce(b, op, gc, r);
1540 			if (ret)
1541 				break;
1542 		}
1543 
1544 		if (!last->b)
1545 			break;
1546 
1547 		if (!IS_ERR(last->b)) {
1548 			should_rewrite = btree_gc_mark_node(last->b, gc);
1549 			if (should_rewrite) {
1550 				ret = btree_gc_rewrite_node(b, op, last->b);
1551 				if (ret)
1552 					break;
1553 			}
1554 
1555 			if (last->b->level) {
1556 				ret = btree_gc_recurse(last->b, op, writes, gc);
1557 				if (ret)
1558 					break;
1559 			}
1560 
1561 			bkey_copy_key(&b->c->gc_done, &last->b->key);
1562 
1563 			/*
1564 			 * Must flush leaf nodes before gc ends, since replace
1565 			 * operations aren't journalled
1566 			 */
1567 			mutex_lock(&last->b->write_lock);
1568 			if (btree_node_dirty(last->b))
1569 				bch_btree_node_write(last->b, writes);
1570 			mutex_unlock(&last->b->write_lock);
1571 			rw_unlock(true, last->b);
1572 		}
1573 
1574 		memmove(r + 1, r, sizeof(r[0]) * (GC_MERGE_NODES - 1));
1575 		r->b = NULL;
1576 
1577 		if (need_resched()) {
1578 			ret = -EAGAIN;
1579 			break;
1580 		}
1581 	}
1582 
1583 	for (i = r; i < r + ARRAY_SIZE(r); i++)
1584 		if (!IS_ERR_OR_NULL(i->b)) {
1585 			mutex_lock(&i->b->write_lock);
1586 			if (btree_node_dirty(i->b))
1587 				bch_btree_node_write(i->b, writes);
1588 			mutex_unlock(&i->b->write_lock);
1589 			rw_unlock(true, i->b);
1590 		}
1591 
1592 	return ret;
1593 }
1594 
1595 static int bch_btree_gc_root(struct btree *b, struct btree_op *op,
1596 			     struct closure *writes, struct gc_stat *gc)
1597 {
1598 	struct btree *n = NULL;
1599 	int ret = 0;
1600 	bool should_rewrite;
1601 
1602 	should_rewrite = btree_gc_mark_node(b, gc);
1603 	if (should_rewrite) {
1604 		n = btree_node_alloc_replacement(b, NULL);
1605 
1606 		if (!IS_ERR_OR_NULL(n)) {
1607 			bch_btree_node_write_sync(n);
1608 
1609 			bch_btree_set_root(n);
1610 			btree_node_free(b);
1611 			rw_unlock(true, n);
1612 
1613 			return -EINTR;
1614 		}
1615 	}
1616 
1617 	__bch_btree_mark_key(b->c, b->level + 1, &b->key);
1618 
1619 	if (b->level) {
1620 		ret = btree_gc_recurse(b, op, writes, gc);
1621 		if (ret)
1622 			return ret;
1623 	}
1624 
1625 	bkey_copy_key(&b->c->gc_done, &b->key);
1626 
1627 	return ret;
1628 }
1629 
1630 static void btree_gc_start(struct cache_set *c)
1631 {
1632 	struct cache *ca;
1633 	struct bucket *b;
1634 	unsigned i;
1635 
1636 	if (!c->gc_mark_valid)
1637 		return;
1638 
1639 	mutex_lock(&c->bucket_lock);
1640 
1641 	c->gc_mark_valid = 0;
1642 	c->gc_done = ZERO_KEY;
1643 
1644 	for_each_cache(ca, c, i)
1645 		for_each_bucket(b, ca) {
1646 			b->last_gc = b->gen;
1647 			if (!atomic_read(&b->pin)) {
1648 				SET_GC_MARK(b, 0);
1649 				SET_GC_SECTORS_USED(b, 0);
1650 			}
1651 		}
1652 
1653 	mutex_unlock(&c->bucket_lock);
1654 }
1655 
1656 static size_t bch_btree_gc_finish(struct cache_set *c)
1657 {
1658 	size_t available = 0;
1659 	struct bucket *b;
1660 	struct cache *ca;
1661 	unsigned i;
1662 
1663 	mutex_lock(&c->bucket_lock);
1664 
1665 	set_gc_sectors(c);
1666 	c->gc_mark_valid = 1;
1667 	c->need_gc	= 0;
1668 
1669 	for (i = 0; i < KEY_PTRS(&c->uuid_bucket); i++)
1670 		SET_GC_MARK(PTR_BUCKET(c, &c->uuid_bucket, i),
1671 			    GC_MARK_METADATA);
1672 
1673 	/* don't reclaim buckets to which writeback keys point */
1674 	rcu_read_lock();
1675 	for (i = 0; i < c->nr_uuids; i++) {
1676 		struct bcache_device *d = c->devices[i];
1677 		struct cached_dev *dc;
1678 		struct keybuf_key *w, *n;
1679 		unsigned j;
1680 
1681 		if (!d || UUID_FLASH_ONLY(&c->uuids[i]))
1682 			continue;
1683 		dc = container_of(d, struct cached_dev, disk);
1684 
1685 		spin_lock(&dc->writeback_keys.lock);
1686 		rbtree_postorder_for_each_entry_safe(w, n,
1687 					&dc->writeback_keys.keys, node)
1688 			for (j = 0; j < KEY_PTRS(&w->key); j++)
1689 				SET_GC_MARK(PTR_BUCKET(c, &w->key, j),
1690 					    GC_MARK_DIRTY);
1691 		spin_unlock(&dc->writeback_keys.lock);
1692 	}
1693 	rcu_read_unlock();
1694 
1695 	for_each_cache(ca, c, i) {
1696 		uint64_t *i;
1697 
1698 		ca->invalidate_needs_gc = 0;
1699 
1700 		for (i = ca->sb.d; i < ca->sb.d + ca->sb.keys; i++)
1701 			SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA);
1702 
1703 		for (i = ca->prio_buckets;
1704 		     i < ca->prio_buckets + prio_buckets(ca) * 2; i++)
1705 			SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA);
1706 
1707 		for_each_bucket(b, ca) {
1708 			c->need_gc	= max(c->need_gc, bucket_gc_gen(b));
1709 
1710 			if (atomic_read(&b->pin))
1711 				continue;
1712 
1713 			BUG_ON(!GC_MARK(b) && GC_SECTORS_USED(b));
1714 
1715 			if (!GC_MARK(b) || GC_MARK(b) == GC_MARK_RECLAIMABLE)
1716 				available++;
1717 		}
1718 	}
1719 
1720 	mutex_unlock(&c->bucket_lock);
1721 	return available;
1722 }
1723 
1724 static void bch_btree_gc(struct cache_set *c)
1725 {
1726 	int ret;
1727 	unsigned long available;
1728 	struct gc_stat stats;
1729 	struct closure writes;
1730 	struct btree_op op;
1731 	uint64_t start_time = local_clock();
1732 
1733 	trace_bcache_gc_start(c);
1734 
1735 	memset(&stats, 0, sizeof(struct gc_stat));
1736 	closure_init_stack(&writes);
1737 	bch_btree_op_init(&op, SHRT_MAX);
1738 
1739 	btree_gc_start(c);
1740 
1741 	do {
1742 		ret = btree_root(gc_root, c, &op, &writes, &stats);
1743 		closure_sync(&writes);
1744 		cond_resched();
1745 
1746 		if (ret && ret != -EAGAIN)
1747 			pr_warn("gc failed!");
1748 	} while (ret);
1749 
1750 	available = bch_btree_gc_finish(c);
1751 	wake_up_allocators(c);
1752 
1753 	bch_time_stats_update(&c->btree_gc_time, start_time);
1754 
1755 	stats.key_bytes *= sizeof(uint64_t);
1756 	stats.data	<<= 9;
1757 	stats.in_use	= (c->nbuckets - available) * 100 / c->nbuckets;
1758 	memcpy(&c->gc_stats, &stats, sizeof(struct gc_stat));
1759 
1760 	trace_bcache_gc_end(c);
1761 
1762 	bch_moving_gc(c);
1763 }
1764 
1765 static int bch_gc_thread(void *arg)
1766 {
1767 	struct cache_set *c = arg;
1768 	struct cache *ca;
1769 	unsigned i;
1770 
1771 	while (1) {
1772 again:
1773 		bch_btree_gc(c);
1774 
1775 		set_current_state(TASK_INTERRUPTIBLE);
1776 		if (kthread_should_stop())
1777 			break;
1778 
1779 		mutex_lock(&c->bucket_lock);
1780 
1781 		for_each_cache(ca, c, i)
1782 			if (ca->invalidate_needs_gc) {
1783 				mutex_unlock(&c->bucket_lock);
1784 				set_current_state(TASK_RUNNING);
1785 				goto again;
1786 			}
1787 
1788 		mutex_unlock(&c->bucket_lock);
1789 
1790 		try_to_freeze();
1791 		schedule();
1792 	}
1793 
1794 	return 0;
1795 }
1796 
1797 int bch_gc_thread_start(struct cache_set *c)
1798 {
1799 	c->gc_thread = kthread_create(bch_gc_thread, c, "bcache_gc");
1800 	if (IS_ERR(c->gc_thread))
1801 		return PTR_ERR(c->gc_thread);
1802 
1803 	set_task_state(c->gc_thread, TASK_INTERRUPTIBLE);
1804 	return 0;
1805 }
1806 
1807 /* Initial partial gc */
1808 
1809 static int bch_btree_check_recurse(struct btree *b, struct btree_op *op)
1810 {
1811 	int ret = 0;
1812 	struct bkey *k, *p = NULL;
1813 	struct btree_iter iter;
1814 
1815 	for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid)
1816 		bch_initial_mark_key(b->c, b->level, k);
1817 
1818 	bch_initial_mark_key(b->c, b->level + 1, &b->key);
1819 
1820 	if (b->level) {
1821 		bch_btree_iter_init(&b->keys, &iter, NULL);
1822 
1823 		do {
1824 			k = bch_btree_iter_next_filter(&iter, &b->keys,
1825 						       bch_ptr_bad);
1826 			if (k)
1827 				btree_node_prefetch(b, k);
1828 
1829 			if (p)
1830 				ret = btree(check_recurse, p, b, op);
1831 
1832 			p = k;
1833 		} while (p && !ret);
1834 	}
1835 
1836 	return ret;
1837 }
1838 
1839 int bch_btree_check(struct cache_set *c)
1840 {
1841 	struct btree_op op;
1842 
1843 	bch_btree_op_init(&op, SHRT_MAX);
1844 
1845 	return btree_root(check_recurse, c, &op);
1846 }
1847 
1848 void bch_initial_gc_finish(struct cache_set *c)
1849 {
1850 	struct cache *ca;
1851 	struct bucket *b;
1852 	unsigned i;
1853 
1854 	bch_btree_gc_finish(c);
1855 
1856 	mutex_lock(&c->bucket_lock);
1857 
1858 	/*
1859 	 * We need to put some unused buckets directly on the prio freelist in
1860 	 * order to get the allocator thread started - it needs freed buckets in
1861 	 * order to rewrite the prios and gens, and it needs to rewrite prios
1862 	 * and gens in order to free buckets.
1863 	 *
1864 	 * This is only safe for buckets that have no live data in them, which
1865 	 * there should always be some of.
1866 	 */
1867 	for_each_cache(ca, c, i) {
1868 		for_each_bucket(b, ca) {
1869 			if (fifo_full(&ca->free[RESERVE_PRIO]))
1870 				break;
1871 
1872 			if (bch_can_invalidate_bucket(ca, b) &&
1873 			    !GC_MARK(b)) {
1874 				__bch_invalidate_one_bucket(ca, b);
1875 				fifo_push(&ca->free[RESERVE_PRIO],
1876 					  b - ca->buckets);
1877 			}
1878 		}
1879 	}
1880 
1881 	mutex_unlock(&c->bucket_lock);
1882 }
1883 
1884 /* Btree insertion */
1885 
1886 static bool btree_insert_key(struct btree *b, struct bkey *k,
1887 			     struct bkey *replace_key)
1888 {
1889 	unsigned status;
1890 
1891 	BUG_ON(bkey_cmp(k, &b->key) > 0);
1892 
1893 	status = bch_btree_insert_key(&b->keys, k, replace_key);
1894 	if (status != BTREE_INSERT_STATUS_NO_INSERT) {
1895 		bch_check_keys(&b->keys, "%u for %s", status,
1896 			       replace_key ? "replace" : "insert");
1897 
1898 		trace_bcache_btree_insert_key(b, k, replace_key != NULL,
1899 					      status);
1900 		return true;
1901 	} else
1902 		return false;
1903 }
1904 
1905 static size_t insert_u64s_remaining(struct btree *b)
1906 {
1907 	long ret = bch_btree_keys_u64s_remaining(&b->keys);
1908 
1909 	/*
1910 	 * Might land in the middle of an existing extent and have to split it
1911 	 */
1912 	if (b->keys.ops->is_extents)
1913 		ret -= KEY_MAX_U64S;
1914 
1915 	return max(ret, 0L);
1916 }
1917 
1918 static bool bch_btree_insert_keys(struct btree *b, struct btree_op *op,
1919 				  struct keylist *insert_keys,
1920 				  struct bkey *replace_key)
1921 {
1922 	bool ret = false;
1923 	int oldsize = bch_count_data(&b->keys);
1924 
1925 	while (!bch_keylist_empty(insert_keys)) {
1926 		struct bkey *k = insert_keys->keys;
1927 
1928 		if (bkey_u64s(k) > insert_u64s_remaining(b))
1929 			break;
1930 
1931 		if (bkey_cmp(k, &b->key) <= 0) {
1932 			if (!b->level)
1933 				bkey_put(b->c, k);
1934 
1935 			ret |= btree_insert_key(b, k, replace_key);
1936 			bch_keylist_pop_front(insert_keys);
1937 		} else if (bkey_cmp(&START_KEY(k), &b->key) < 0) {
1938 			BKEY_PADDED(key) temp;
1939 			bkey_copy(&temp.key, insert_keys->keys);
1940 
1941 			bch_cut_back(&b->key, &temp.key);
1942 			bch_cut_front(&b->key, insert_keys->keys);
1943 
1944 			ret |= btree_insert_key(b, &temp.key, replace_key);
1945 			break;
1946 		} else {
1947 			break;
1948 		}
1949 	}
1950 
1951 	if (!ret)
1952 		op->insert_collision = true;
1953 
1954 	BUG_ON(!bch_keylist_empty(insert_keys) && b->level);
1955 
1956 	BUG_ON(bch_count_data(&b->keys) < oldsize);
1957 	return ret;
1958 }
1959 
1960 static int btree_split(struct btree *b, struct btree_op *op,
1961 		       struct keylist *insert_keys,
1962 		       struct bkey *replace_key)
1963 {
1964 	bool split;
1965 	struct btree *n1, *n2 = NULL, *n3 = NULL;
1966 	uint64_t start_time = local_clock();
1967 	struct closure cl;
1968 	struct keylist parent_keys;
1969 
1970 	closure_init_stack(&cl);
1971 	bch_keylist_init(&parent_keys);
1972 
1973 	if (btree_check_reserve(b, op)) {
1974 		if (!b->level)
1975 			return -EINTR;
1976 		else
1977 			WARN(1, "insufficient reserve for split\n");
1978 	}
1979 
1980 	n1 = btree_node_alloc_replacement(b, op);
1981 	if (IS_ERR(n1))
1982 		goto err;
1983 
1984 	split = set_blocks(btree_bset_first(n1),
1985 			   block_bytes(n1->c)) > (btree_blocks(b) * 4) / 5;
1986 
1987 	if (split) {
1988 		unsigned keys = 0;
1989 
1990 		trace_bcache_btree_node_split(b, btree_bset_first(n1)->keys);
1991 
1992 		n2 = bch_btree_node_alloc(b->c, op, b->level, b->parent);
1993 		if (IS_ERR(n2))
1994 			goto err_free1;
1995 
1996 		if (!b->parent) {
1997 			n3 = bch_btree_node_alloc(b->c, op, b->level + 1, NULL);
1998 			if (IS_ERR(n3))
1999 				goto err_free2;
2000 		}
2001 
2002 		mutex_lock(&n1->write_lock);
2003 		mutex_lock(&n2->write_lock);
2004 
2005 		bch_btree_insert_keys(n1, op, insert_keys, replace_key);
2006 
2007 		/*
2008 		 * Has to be a linear search because we don't have an auxiliary
2009 		 * search tree yet
2010 		 */
2011 
2012 		while (keys < (btree_bset_first(n1)->keys * 3) / 5)
2013 			keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1),
2014 							keys));
2015 
2016 		bkey_copy_key(&n1->key,
2017 			      bset_bkey_idx(btree_bset_first(n1), keys));
2018 		keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1), keys));
2019 
2020 		btree_bset_first(n2)->keys = btree_bset_first(n1)->keys - keys;
2021 		btree_bset_first(n1)->keys = keys;
2022 
2023 		memcpy(btree_bset_first(n2)->start,
2024 		       bset_bkey_last(btree_bset_first(n1)),
2025 		       btree_bset_first(n2)->keys * sizeof(uint64_t));
2026 
2027 		bkey_copy_key(&n2->key, &b->key);
2028 
2029 		bch_keylist_add(&parent_keys, &n2->key);
2030 		bch_btree_node_write(n2, &cl);
2031 		mutex_unlock(&n2->write_lock);
2032 		rw_unlock(true, n2);
2033 	} else {
2034 		trace_bcache_btree_node_compact(b, btree_bset_first(n1)->keys);
2035 
2036 		mutex_lock(&n1->write_lock);
2037 		bch_btree_insert_keys(n1, op, insert_keys, replace_key);
2038 	}
2039 
2040 	bch_keylist_add(&parent_keys, &n1->key);
2041 	bch_btree_node_write(n1, &cl);
2042 	mutex_unlock(&n1->write_lock);
2043 
2044 	if (n3) {
2045 		/* Depth increases, make a new root */
2046 		mutex_lock(&n3->write_lock);
2047 		bkey_copy_key(&n3->key, &MAX_KEY);
2048 		bch_btree_insert_keys(n3, op, &parent_keys, NULL);
2049 		bch_btree_node_write(n3, &cl);
2050 		mutex_unlock(&n3->write_lock);
2051 
2052 		closure_sync(&cl);
2053 		bch_btree_set_root(n3);
2054 		rw_unlock(true, n3);
2055 	} else if (!b->parent) {
2056 		/* Root filled up but didn't need to be split */
2057 		closure_sync(&cl);
2058 		bch_btree_set_root(n1);
2059 	} else {
2060 		/* Split a non root node */
2061 		closure_sync(&cl);
2062 		make_btree_freeing_key(b, parent_keys.top);
2063 		bch_keylist_push(&parent_keys);
2064 
2065 		bch_btree_insert_node(b->parent, op, &parent_keys, NULL, NULL);
2066 		BUG_ON(!bch_keylist_empty(&parent_keys));
2067 	}
2068 
2069 	btree_node_free(b);
2070 	rw_unlock(true, n1);
2071 
2072 	bch_time_stats_update(&b->c->btree_split_time, start_time);
2073 
2074 	return 0;
2075 err_free2:
2076 	bkey_put(b->c, &n2->key);
2077 	btree_node_free(n2);
2078 	rw_unlock(true, n2);
2079 err_free1:
2080 	bkey_put(b->c, &n1->key);
2081 	btree_node_free(n1);
2082 	rw_unlock(true, n1);
2083 err:
2084 	WARN(1, "bcache: btree split failed (level %u)", b->level);
2085 
2086 	if (n3 == ERR_PTR(-EAGAIN) ||
2087 	    n2 == ERR_PTR(-EAGAIN) ||
2088 	    n1 == ERR_PTR(-EAGAIN))
2089 		return -EAGAIN;
2090 
2091 	return -ENOMEM;
2092 }
2093 
2094 static int bch_btree_insert_node(struct btree *b, struct btree_op *op,
2095 				 struct keylist *insert_keys,
2096 				 atomic_t *journal_ref,
2097 				 struct bkey *replace_key)
2098 {
2099 	struct closure cl;
2100 
2101 	BUG_ON(b->level && replace_key);
2102 
2103 	closure_init_stack(&cl);
2104 
2105 	mutex_lock(&b->write_lock);
2106 
2107 	if (write_block(b) != btree_bset_last(b) &&
2108 	    b->keys.last_set_unwritten)
2109 		bch_btree_init_next(b); /* just wrote a set */
2110 
2111 	if (bch_keylist_nkeys(insert_keys) > insert_u64s_remaining(b)) {
2112 		mutex_unlock(&b->write_lock);
2113 		goto split;
2114 	}
2115 
2116 	BUG_ON(write_block(b) != btree_bset_last(b));
2117 
2118 	if (bch_btree_insert_keys(b, op, insert_keys, replace_key)) {
2119 		if (!b->level)
2120 			bch_btree_leaf_dirty(b, journal_ref);
2121 		else
2122 			bch_btree_node_write(b, &cl);
2123 	}
2124 
2125 	mutex_unlock(&b->write_lock);
2126 
2127 	/* wait for btree node write if necessary, after unlock */
2128 	closure_sync(&cl);
2129 
2130 	return 0;
2131 split:
2132 	if (current->bio_list) {
2133 		op->lock = b->c->root->level + 1;
2134 		return -EAGAIN;
2135 	} else if (op->lock <= b->c->root->level) {
2136 		op->lock = b->c->root->level + 1;
2137 		return -EINTR;
2138 	} else {
2139 		/* Invalidated all iterators */
2140 		int ret = btree_split(b, op, insert_keys, replace_key);
2141 
2142 		if (bch_keylist_empty(insert_keys))
2143 			return 0;
2144 		else if (!ret)
2145 			return -EINTR;
2146 		return ret;
2147 	}
2148 }
2149 
2150 int bch_btree_insert_check_key(struct btree *b, struct btree_op *op,
2151 			       struct bkey *check_key)
2152 {
2153 	int ret = -EINTR;
2154 	uint64_t btree_ptr = b->key.ptr[0];
2155 	unsigned long seq = b->seq;
2156 	struct keylist insert;
2157 	bool upgrade = op->lock == -1;
2158 
2159 	bch_keylist_init(&insert);
2160 
2161 	if (upgrade) {
2162 		rw_unlock(false, b);
2163 		rw_lock(true, b, b->level);
2164 
2165 		if (b->key.ptr[0] != btree_ptr ||
2166                    b->seq != seq + 1) {
2167                        op->lock = b->level;
2168 			goto out;
2169                }
2170 	}
2171 
2172 	SET_KEY_PTRS(check_key, 1);
2173 	get_random_bytes(&check_key->ptr[0], sizeof(uint64_t));
2174 
2175 	SET_PTR_DEV(check_key, 0, PTR_CHECK_DEV);
2176 
2177 	bch_keylist_add(&insert, check_key);
2178 
2179 	ret = bch_btree_insert_node(b, op, &insert, NULL, NULL);
2180 
2181 	BUG_ON(!ret && !bch_keylist_empty(&insert));
2182 out:
2183 	if (upgrade)
2184 		downgrade_write(&b->lock);
2185 	return ret;
2186 }
2187 
2188 struct btree_insert_op {
2189 	struct btree_op	op;
2190 	struct keylist	*keys;
2191 	atomic_t	*journal_ref;
2192 	struct bkey	*replace_key;
2193 };
2194 
2195 static int btree_insert_fn(struct btree_op *b_op, struct btree *b)
2196 {
2197 	struct btree_insert_op *op = container_of(b_op,
2198 					struct btree_insert_op, op);
2199 
2200 	int ret = bch_btree_insert_node(b, &op->op, op->keys,
2201 					op->journal_ref, op->replace_key);
2202 	if (ret && !bch_keylist_empty(op->keys))
2203 		return ret;
2204 	else
2205 		return MAP_DONE;
2206 }
2207 
2208 int bch_btree_insert(struct cache_set *c, struct keylist *keys,
2209 		     atomic_t *journal_ref, struct bkey *replace_key)
2210 {
2211 	struct btree_insert_op op;
2212 	int ret = 0;
2213 
2214 	BUG_ON(current->bio_list);
2215 	BUG_ON(bch_keylist_empty(keys));
2216 
2217 	bch_btree_op_init(&op.op, 0);
2218 	op.keys		= keys;
2219 	op.journal_ref	= journal_ref;
2220 	op.replace_key	= replace_key;
2221 
2222 	while (!ret && !bch_keylist_empty(keys)) {
2223 		op.op.lock = 0;
2224 		ret = bch_btree_map_leaf_nodes(&op.op, c,
2225 					       &START_KEY(keys->keys),
2226 					       btree_insert_fn);
2227 	}
2228 
2229 	if (ret) {
2230 		struct bkey *k;
2231 
2232 		pr_err("error %i", ret);
2233 
2234 		while ((k = bch_keylist_pop(keys)))
2235 			bkey_put(c, k);
2236 	} else if (op.op.insert_collision)
2237 		ret = -ESRCH;
2238 
2239 	return ret;
2240 }
2241 
2242 void bch_btree_set_root(struct btree *b)
2243 {
2244 	unsigned i;
2245 	struct closure cl;
2246 
2247 	closure_init_stack(&cl);
2248 
2249 	trace_bcache_btree_set_root(b);
2250 
2251 	BUG_ON(!b->written);
2252 
2253 	for (i = 0; i < KEY_PTRS(&b->key); i++)
2254 		BUG_ON(PTR_BUCKET(b->c, &b->key, i)->prio != BTREE_PRIO);
2255 
2256 	mutex_lock(&b->c->bucket_lock);
2257 	list_del_init(&b->list);
2258 	mutex_unlock(&b->c->bucket_lock);
2259 
2260 	b->c->root = b;
2261 
2262 	bch_journal_meta(b->c, &cl);
2263 	closure_sync(&cl);
2264 }
2265 
2266 /* Map across nodes or keys */
2267 
2268 static int bch_btree_map_nodes_recurse(struct btree *b, struct btree_op *op,
2269 				       struct bkey *from,
2270 				       btree_map_nodes_fn *fn, int flags)
2271 {
2272 	int ret = MAP_CONTINUE;
2273 
2274 	if (b->level) {
2275 		struct bkey *k;
2276 		struct btree_iter iter;
2277 
2278 		bch_btree_iter_init(&b->keys, &iter, from);
2279 
2280 		while ((k = bch_btree_iter_next_filter(&iter, &b->keys,
2281 						       bch_ptr_bad))) {
2282 			ret = btree(map_nodes_recurse, k, b,
2283 				    op, from, fn, flags);
2284 			from = NULL;
2285 
2286 			if (ret != MAP_CONTINUE)
2287 				return ret;
2288 		}
2289 	}
2290 
2291 	if (!b->level || flags == MAP_ALL_NODES)
2292 		ret = fn(op, b);
2293 
2294 	return ret;
2295 }
2296 
2297 int __bch_btree_map_nodes(struct btree_op *op, struct cache_set *c,
2298 			  struct bkey *from, btree_map_nodes_fn *fn, int flags)
2299 {
2300 	return btree_root(map_nodes_recurse, c, op, from, fn, flags);
2301 }
2302 
2303 static int bch_btree_map_keys_recurse(struct btree *b, struct btree_op *op,
2304 				      struct bkey *from, btree_map_keys_fn *fn,
2305 				      int flags)
2306 {
2307 	int ret = MAP_CONTINUE;
2308 	struct bkey *k;
2309 	struct btree_iter iter;
2310 
2311 	bch_btree_iter_init(&b->keys, &iter, from);
2312 
2313 	while ((k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad))) {
2314 		ret = !b->level
2315 			? fn(op, b, k)
2316 			: btree(map_keys_recurse, k, b, op, from, fn, flags);
2317 		from = NULL;
2318 
2319 		if (ret != MAP_CONTINUE)
2320 			return ret;
2321 	}
2322 
2323 	if (!b->level && (flags & MAP_END_KEY))
2324 		ret = fn(op, b, &KEY(KEY_INODE(&b->key),
2325 				     KEY_OFFSET(&b->key), 0));
2326 
2327 	return ret;
2328 }
2329 
2330 int bch_btree_map_keys(struct btree_op *op, struct cache_set *c,
2331 		       struct bkey *from, btree_map_keys_fn *fn, int flags)
2332 {
2333 	return btree_root(map_keys_recurse, c, op, from, fn, flags);
2334 }
2335 
2336 /* Keybuf code */
2337 
2338 static inline int keybuf_cmp(struct keybuf_key *l, struct keybuf_key *r)
2339 {
2340 	/* Overlapping keys compare equal */
2341 	if (bkey_cmp(&l->key, &START_KEY(&r->key)) <= 0)
2342 		return -1;
2343 	if (bkey_cmp(&START_KEY(&l->key), &r->key) >= 0)
2344 		return 1;
2345 	return 0;
2346 }
2347 
2348 static inline int keybuf_nonoverlapping_cmp(struct keybuf_key *l,
2349 					    struct keybuf_key *r)
2350 {
2351 	return clamp_t(int64_t, bkey_cmp(&l->key, &r->key), -1, 1);
2352 }
2353 
2354 struct refill {
2355 	struct btree_op	op;
2356 	unsigned	nr_found;
2357 	struct keybuf	*buf;
2358 	struct bkey	*end;
2359 	keybuf_pred_fn	*pred;
2360 };
2361 
2362 static int refill_keybuf_fn(struct btree_op *op, struct btree *b,
2363 			    struct bkey *k)
2364 {
2365 	struct refill *refill = container_of(op, struct refill, op);
2366 	struct keybuf *buf = refill->buf;
2367 	int ret = MAP_CONTINUE;
2368 
2369 	if (bkey_cmp(k, refill->end) >= 0) {
2370 		ret = MAP_DONE;
2371 		goto out;
2372 	}
2373 
2374 	if (!KEY_SIZE(k)) /* end key */
2375 		goto out;
2376 
2377 	if (refill->pred(buf, k)) {
2378 		struct keybuf_key *w;
2379 
2380 		spin_lock(&buf->lock);
2381 
2382 		w = array_alloc(&buf->freelist);
2383 		if (!w) {
2384 			spin_unlock(&buf->lock);
2385 			return MAP_DONE;
2386 		}
2387 
2388 		w->private = NULL;
2389 		bkey_copy(&w->key, k);
2390 
2391 		if (RB_INSERT(&buf->keys, w, node, keybuf_cmp))
2392 			array_free(&buf->freelist, w);
2393 		else
2394 			refill->nr_found++;
2395 
2396 		if (array_freelist_empty(&buf->freelist))
2397 			ret = MAP_DONE;
2398 
2399 		spin_unlock(&buf->lock);
2400 	}
2401 out:
2402 	buf->last_scanned = *k;
2403 	return ret;
2404 }
2405 
2406 void bch_refill_keybuf(struct cache_set *c, struct keybuf *buf,
2407 		       struct bkey *end, keybuf_pred_fn *pred)
2408 {
2409 	struct bkey start = buf->last_scanned;
2410 	struct refill refill;
2411 
2412 	cond_resched();
2413 
2414 	bch_btree_op_init(&refill.op, -1);
2415 	refill.nr_found	= 0;
2416 	refill.buf	= buf;
2417 	refill.end	= end;
2418 	refill.pred	= pred;
2419 
2420 	bch_btree_map_keys(&refill.op, c, &buf->last_scanned,
2421 			   refill_keybuf_fn, MAP_END_KEY);
2422 
2423 	trace_bcache_keyscan(refill.nr_found,
2424 			     KEY_INODE(&start), KEY_OFFSET(&start),
2425 			     KEY_INODE(&buf->last_scanned),
2426 			     KEY_OFFSET(&buf->last_scanned));
2427 
2428 	spin_lock(&buf->lock);
2429 
2430 	if (!RB_EMPTY_ROOT(&buf->keys)) {
2431 		struct keybuf_key *w;
2432 		w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2433 		buf->start	= START_KEY(&w->key);
2434 
2435 		w = RB_LAST(&buf->keys, struct keybuf_key, node);
2436 		buf->end	= w->key;
2437 	} else {
2438 		buf->start	= MAX_KEY;
2439 		buf->end	= MAX_KEY;
2440 	}
2441 
2442 	spin_unlock(&buf->lock);
2443 }
2444 
2445 static void __bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2446 {
2447 	rb_erase(&w->node, &buf->keys);
2448 	array_free(&buf->freelist, w);
2449 }
2450 
2451 void bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2452 {
2453 	spin_lock(&buf->lock);
2454 	__bch_keybuf_del(buf, w);
2455 	spin_unlock(&buf->lock);
2456 }
2457 
2458 bool bch_keybuf_check_overlapping(struct keybuf *buf, struct bkey *start,
2459 				  struct bkey *end)
2460 {
2461 	bool ret = false;
2462 	struct keybuf_key *p, *w, s;
2463 	s.key = *start;
2464 
2465 	if (bkey_cmp(end, &buf->start) <= 0 ||
2466 	    bkey_cmp(start, &buf->end) >= 0)
2467 		return false;
2468 
2469 	spin_lock(&buf->lock);
2470 	w = RB_GREATER(&buf->keys, s, node, keybuf_nonoverlapping_cmp);
2471 
2472 	while (w && bkey_cmp(&START_KEY(&w->key), end) < 0) {
2473 		p = w;
2474 		w = RB_NEXT(w, node);
2475 
2476 		if (p->private)
2477 			ret = true;
2478 		else
2479 			__bch_keybuf_del(buf, p);
2480 	}
2481 
2482 	spin_unlock(&buf->lock);
2483 	return ret;
2484 }
2485 
2486 struct keybuf_key *bch_keybuf_next(struct keybuf *buf)
2487 {
2488 	struct keybuf_key *w;
2489 	spin_lock(&buf->lock);
2490 
2491 	w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2492 
2493 	while (w && w->private)
2494 		w = RB_NEXT(w, node);
2495 
2496 	if (w)
2497 		w->private = ERR_PTR(-EINTR);
2498 
2499 	spin_unlock(&buf->lock);
2500 	return w;
2501 }
2502 
2503 struct keybuf_key *bch_keybuf_next_rescan(struct cache_set *c,
2504 					  struct keybuf *buf,
2505 					  struct bkey *end,
2506 					  keybuf_pred_fn *pred)
2507 {
2508 	struct keybuf_key *ret;
2509 
2510 	while (1) {
2511 		ret = bch_keybuf_next(buf);
2512 		if (ret)
2513 			break;
2514 
2515 		if (bkey_cmp(&buf->last_scanned, end) >= 0) {
2516 			pr_debug("scan finished");
2517 			break;
2518 		}
2519 
2520 		bch_refill_keybuf(c, buf, end, pred);
2521 	}
2522 
2523 	return ret;
2524 }
2525 
2526 void bch_keybuf_init(struct keybuf *buf)
2527 {
2528 	buf->last_scanned	= MAX_KEY;
2529 	buf->keys		= RB_ROOT;
2530 
2531 	spin_lock_init(&buf->lock);
2532 	array_allocator_init(&buf->freelist);
2533 }
2534