1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com> 4 * 5 * Uses a block device as cache for other block devices; optimized for SSDs. 6 * All allocation is done in buckets, which should match the erase block size 7 * of the device. 8 * 9 * Buckets containing cached data are kept on a heap sorted by priority; 10 * bucket priority is increased on cache hit, and periodically all the buckets 11 * on the heap have their priority scaled down. This currently is just used as 12 * an LRU but in the future should allow for more intelligent heuristics. 13 * 14 * Buckets have an 8 bit counter; freeing is accomplished by incrementing the 15 * counter. Garbage collection is used to remove stale pointers. 16 * 17 * Indexing is done via a btree; nodes are not necessarily fully sorted, rather 18 * as keys are inserted we only sort the pages that have not yet been written. 19 * When garbage collection is run, we resort the entire node. 20 * 21 * All configuration is done via sysfs; see Documentation/admin-guide/bcache.rst. 22 */ 23 24 #include "bcache.h" 25 #include "btree.h" 26 #include "debug.h" 27 #include "extents.h" 28 29 #include <linux/slab.h> 30 #include <linux/bitops.h> 31 #include <linux/hash.h> 32 #include <linux/kthread.h> 33 #include <linux/prefetch.h> 34 #include <linux/random.h> 35 #include <linux/rcupdate.h> 36 #include <linux/sched/clock.h> 37 #include <linux/rculist.h> 38 #include <linux/delay.h> 39 #include <trace/events/bcache.h> 40 41 /* 42 * Todo: 43 * register_bcache: Return errors out to userspace correctly 44 * 45 * Writeback: don't undirty key until after a cache flush 46 * 47 * Create an iterator for key pointers 48 * 49 * On btree write error, mark bucket such that it won't be freed from the cache 50 * 51 * Journalling: 52 * Check for bad keys in replay 53 * Propagate barriers 54 * Refcount journal entries in journal_replay 55 * 56 * Garbage collection: 57 * Finish incremental gc 58 * Gc should free old UUIDs, data for invalid UUIDs 59 * 60 * Provide a way to list backing device UUIDs we have data cached for, and 61 * probably how long it's been since we've seen them, and a way to invalidate 62 * dirty data for devices that will never be attached again 63 * 64 * Keep 1 min/5 min/15 min statistics of how busy a block device has been, so 65 * that based on that and how much dirty data we have we can keep writeback 66 * from being starved 67 * 68 * Add a tracepoint or somesuch to watch for writeback starvation 69 * 70 * When btree depth > 1 and splitting an interior node, we have to make sure 71 * alloc_bucket() cannot fail. This should be true but is not completely 72 * obvious. 73 * 74 * Plugging? 75 * 76 * If data write is less than hard sector size of ssd, round up offset in open 77 * bucket to the next whole sector 78 * 79 * Superblock needs to be fleshed out for multiple cache devices 80 * 81 * Add a sysfs tunable for the number of writeback IOs in flight 82 * 83 * Add a sysfs tunable for the number of open data buckets 84 * 85 * IO tracking: Can we track when one process is doing io on behalf of another? 86 * IO tracking: Don't use just an average, weigh more recent stuff higher 87 * 88 * Test module load/unload 89 */ 90 91 #define MAX_NEED_GC 64 92 #define MAX_SAVE_PRIO 72 93 #define MAX_GC_TIMES 100 94 #define MIN_GC_NODES 100 95 #define GC_SLEEP_MS 100 96 97 #define PTR_DIRTY_BIT (((uint64_t) 1 << 36)) 98 99 #define PTR_HASH(c, k) \ 100 (((k)->ptr[0] >> c->bucket_bits) | PTR_GEN(k, 0)) 101 102 #define insert_lock(s, b) ((b)->level <= (s)->lock) 103 104 /* 105 * These macros are for recursing down the btree - they handle the details of 106 * locking and looking up nodes in the cache for you. They're best treated as 107 * mere syntax when reading code that uses them. 108 * 109 * op->lock determines whether we take a read or a write lock at a given depth. 110 * If you've got a read lock and find that you need a write lock (i.e. you're 111 * going to have to split), set op->lock and return -EINTR; btree_root() will 112 * call you again and you'll have the correct lock. 113 */ 114 115 /** 116 * btree - recurse down the btree on a specified key 117 * @fn: function to call, which will be passed the child node 118 * @key: key to recurse on 119 * @b: parent btree node 120 * @op: pointer to struct btree_op 121 */ 122 #define btree(fn, key, b, op, ...) \ 123 ({ \ 124 int _r, l = (b)->level - 1; \ 125 bool _w = l <= (op)->lock; \ 126 struct btree *_child = bch_btree_node_get((b)->c, op, key, l, \ 127 _w, b); \ 128 if (!IS_ERR(_child)) { \ 129 _r = bch_btree_ ## fn(_child, op, ##__VA_ARGS__); \ 130 rw_unlock(_w, _child); \ 131 } else \ 132 _r = PTR_ERR(_child); \ 133 _r; \ 134 }) 135 136 /** 137 * btree_root - call a function on the root of the btree 138 * @fn: function to call, which will be passed the child node 139 * @c: cache set 140 * @op: pointer to struct btree_op 141 */ 142 #define btree_root(fn, c, op, ...) \ 143 ({ \ 144 int _r = -EINTR; \ 145 do { \ 146 struct btree *_b = (c)->root; \ 147 bool _w = insert_lock(op, _b); \ 148 rw_lock(_w, _b, _b->level); \ 149 if (_b == (c)->root && \ 150 _w == insert_lock(op, _b)) { \ 151 _r = bch_btree_ ## fn(_b, op, ##__VA_ARGS__); \ 152 } \ 153 rw_unlock(_w, _b); \ 154 bch_cannibalize_unlock(c); \ 155 if (_r == -EINTR) \ 156 schedule(); \ 157 } while (_r == -EINTR); \ 158 \ 159 finish_wait(&(c)->btree_cache_wait, &(op)->wait); \ 160 _r; \ 161 }) 162 163 static inline struct bset *write_block(struct btree *b) 164 { 165 return ((void *) btree_bset_first(b)) + b->written * block_bytes(b->c); 166 } 167 168 static void bch_btree_init_next(struct btree *b) 169 { 170 /* If not a leaf node, always sort */ 171 if (b->level && b->keys.nsets) 172 bch_btree_sort(&b->keys, &b->c->sort); 173 else 174 bch_btree_sort_lazy(&b->keys, &b->c->sort); 175 176 if (b->written < btree_blocks(b)) 177 bch_bset_init_next(&b->keys, write_block(b), 178 bset_magic(&b->c->sb)); 179 180 } 181 182 /* Btree key manipulation */ 183 184 void bkey_put(struct cache_set *c, struct bkey *k) 185 { 186 unsigned int i; 187 188 for (i = 0; i < KEY_PTRS(k); i++) 189 if (ptr_available(c, k, i)) 190 atomic_dec_bug(&PTR_BUCKET(c, k, i)->pin); 191 } 192 193 /* Btree IO */ 194 195 static uint64_t btree_csum_set(struct btree *b, struct bset *i) 196 { 197 uint64_t crc = b->key.ptr[0]; 198 void *data = (void *) i + 8, *end = bset_bkey_last(i); 199 200 crc = bch_crc64_update(crc, data, end - data); 201 return crc ^ 0xffffffffffffffffULL; 202 } 203 204 void bch_btree_node_read_done(struct btree *b) 205 { 206 const char *err = "bad btree header"; 207 struct bset *i = btree_bset_first(b); 208 struct btree_iter *iter; 209 210 /* 211 * c->fill_iter can allocate an iterator with more memory space 212 * than static MAX_BSETS. 213 * See the comment arount cache_set->fill_iter. 214 */ 215 iter = mempool_alloc(&b->c->fill_iter, GFP_NOIO); 216 iter->size = b->c->sb.bucket_size / b->c->sb.block_size; 217 iter->used = 0; 218 219 #ifdef CONFIG_BCACHE_DEBUG 220 iter->b = &b->keys; 221 #endif 222 223 if (!i->seq) 224 goto err; 225 226 for (; 227 b->written < btree_blocks(b) && i->seq == b->keys.set[0].data->seq; 228 i = write_block(b)) { 229 err = "unsupported bset version"; 230 if (i->version > BCACHE_BSET_VERSION) 231 goto err; 232 233 err = "bad btree header"; 234 if (b->written + set_blocks(i, block_bytes(b->c)) > 235 btree_blocks(b)) 236 goto err; 237 238 err = "bad magic"; 239 if (i->magic != bset_magic(&b->c->sb)) 240 goto err; 241 242 err = "bad checksum"; 243 switch (i->version) { 244 case 0: 245 if (i->csum != csum_set(i)) 246 goto err; 247 break; 248 case BCACHE_BSET_VERSION: 249 if (i->csum != btree_csum_set(b, i)) 250 goto err; 251 break; 252 } 253 254 err = "empty set"; 255 if (i != b->keys.set[0].data && !i->keys) 256 goto err; 257 258 bch_btree_iter_push(iter, i->start, bset_bkey_last(i)); 259 260 b->written += set_blocks(i, block_bytes(b->c)); 261 } 262 263 err = "corrupted btree"; 264 for (i = write_block(b); 265 bset_sector_offset(&b->keys, i) < KEY_SIZE(&b->key); 266 i = ((void *) i) + block_bytes(b->c)) 267 if (i->seq == b->keys.set[0].data->seq) 268 goto err; 269 270 bch_btree_sort_and_fix_extents(&b->keys, iter, &b->c->sort); 271 272 i = b->keys.set[0].data; 273 err = "short btree key"; 274 if (b->keys.set[0].size && 275 bkey_cmp(&b->key, &b->keys.set[0].end) < 0) 276 goto err; 277 278 if (b->written < btree_blocks(b)) 279 bch_bset_init_next(&b->keys, write_block(b), 280 bset_magic(&b->c->sb)); 281 out: 282 mempool_free(iter, &b->c->fill_iter); 283 return; 284 err: 285 set_btree_node_io_error(b); 286 bch_cache_set_error(b->c, "%s at bucket %zu, block %u, %u keys", 287 err, PTR_BUCKET_NR(b->c, &b->key, 0), 288 bset_block_offset(b, i), i->keys); 289 goto out; 290 } 291 292 static void btree_node_read_endio(struct bio *bio) 293 { 294 struct closure *cl = bio->bi_private; 295 296 closure_put(cl); 297 } 298 299 static void bch_btree_node_read(struct btree *b) 300 { 301 uint64_t start_time = local_clock(); 302 struct closure cl; 303 struct bio *bio; 304 305 trace_bcache_btree_read(b); 306 307 closure_init_stack(&cl); 308 309 bio = bch_bbio_alloc(b->c); 310 bio->bi_iter.bi_size = KEY_SIZE(&b->key) << 9; 311 bio->bi_end_io = btree_node_read_endio; 312 bio->bi_private = &cl; 313 bio->bi_opf = REQ_OP_READ | REQ_META; 314 315 bch_bio_map(bio, b->keys.set[0].data); 316 317 bch_submit_bbio(bio, b->c, &b->key, 0); 318 closure_sync(&cl); 319 320 if (bio->bi_status) 321 set_btree_node_io_error(b); 322 323 bch_bbio_free(bio, b->c); 324 325 if (btree_node_io_error(b)) 326 goto err; 327 328 bch_btree_node_read_done(b); 329 bch_time_stats_update(&b->c->btree_read_time, start_time); 330 331 return; 332 err: 333 bch_cache_set_error(b->c, "io error reading bucket %zu", 334 PTR_BUCKET_NR(b->c, &b->key, 0)); 335 } 336 337 static void btree_complete_write(struct btree *b, struct btree_write *w) 338 { 339 if (w->prio_blocked && 340 !atomic_sub_return(w->prio_blocked, &b->c->prio_blocked)) 341 wake_up_allocators(b->c); 342 343 if (w->journal) { 344 atomic_dec_bug(w->journal); 345 __closure_wake_up(&b->c->journal.wait); 346 } 347 348 w->prio_blocked = 0; 349 w->journal = NULL; 350 } 351 352 static void btree_node_write_unlock(struct closure *cl) 353 { 354 struct btree *b = container_of(cl, struct btree, io); 355 356 up(&b->io_mutex); 357 } 358 359 static void __btree_node_write_done(struct closure *cl) 360 { 361 struct btree *b = container_of(cl, struct btree, io); 362 struct btree_write *w = btree_prev_write(b); 363 364 bch_bbio_free(b->bio, b->c); 365 b->bio = NULL; 366 btree_complete_write(b, w); 367 368 if (btree_node_dirty(b)) 369 schedule_delayed_work(&b->work, 30 * HZ); 370 371 closure_return_with_destructor(cl, btree_node_write_unlock); 372 } 373 374 static void btree_node_write_done(struct closure *cl) 375 { 376 struct btree *b = container_of(cl, struct btree, io); 377 378 bio_free_pages(b->bio); 379 __btree_node_write_done(cl); 380 } 381 382 static void btree_node_write_endio(struct bio *bio) 383 { 384 struct closure *cl = bio->bi_private; 385 struct btree *b = container_of(cl, struct btree, io); 386 387 if (bio->bi_status) 388 set_btree_node_io_error(b); 389 390 bch_bbio_count_io_errors(b->c, bio, bio->bi_status, "writing btree"); 391 closure_put(cl); 392 } 393 394 static void do_btree_node_write(struct btree *b) 395 { 396 struct closure *cl = &b->io; 397 struct bset *i = btree_bset_last(b); 398 BKEY_PADDED(key) k; 399 400 i->version = BCACHE_BSET_VERSION; 401 i->csum = btree_csum_set(b, i); 402 403 BUG_ON(b->bio); 404 b->bio = bch_bbio_alloc(b->c); 405 406 b->bio->bi_end_io = btree_node_write_endio; 407 b->bio->bi_private = cl; 408 b->bio->bi_iter.bi_size = roundup(set_bytes(i), block_bytes(b->c)); 409 b->bio->bi_opf = REQ_OP_WRITE | REQ_META | REQ_FUA; 410 bch_bio_map(b->bio, i); 411 412 /* 413 * If we're appending to a leaf node, we don't technically need FUA - 414 * this write just needs to be persisted before the next journal write, 415 * which will be marked FLUSH|FUA. 416 * 417 * Similarly if we're writing a new btree root - the pointer is going to 418 * be in the next journal entry. 419 * 420 * But if we're writing a new btree node (that isn't a root) or 421 * appending to a non leaf btree node, we need either FUA or a flush 422 * when we write the parent with the new pointer. FUA is cheaper than a 423 * flush, and writes appending to leaf nodes aren't blocking anything so 424 * just make all btree node writes FUA to keep things sane. 425 */ 426 427 bkey_copy(&k.key, &b->key); 428 SET_PTR_OFFSET(&k.key, 0, PTR_OFFSET(&k.key, 0) + 429 bset_sector_offset(&b->keys, i)); 430 431 if (!bch_bio_alloc_pages(b->bio, __GFP_NOWARN|GFP_NOWAIT)) { 432 struct bio_vec *bv; 433 void *addr = (void *) ((unsigned long) i & ~(PAGE_SIZE - 1)); 434 struct bvec_iter_all iter_all; 435 436 bio_for_each_segment_all(bv, b->bio, iter_all) { 437 memcpy(page_address(bv->bv_page), addr, PAGE_SIZE); 438 addr += PAGE_SIZE; 439 } 440 441 bch_submit_bbio(b->bio, b->c, &k.key, 0); 442 443 continue_at(cl, btree_node_write_done, NULL); 444 } else { 445 /* 446 * No problem for multipage bvec since the bio is 447 * just allocated 448 */ 449 b->bio->bi_vcnt = 0; 450 bch_bio_map(b->bio, i); 451 452 bch_submit_bbio(b->bio, b->c, &k.key, 0); 453 454 closure_sync(cl); 455 continue_at_nobarrier(cl, __btree_node_write_done, NULL); 456 } 457 } 458 459 void __bch_btree_node_write(struct btree *b, struct closure *parent) 460 { 461 struct bset *i = btree_bset_last(b); 462 463 lockdep_assert_held(&b->write_lock); 464 465 trace_bcache_btree_write(b); 466 467 BUG_ON(current->bio_list); 468 BUG_ON(b->written >= btree_blocks(b)); 469 BUG_ON(b->written && !i->keys); 470 BUG_ON(btree_bset_first(b)->seq != i->seq); 471 bch_check_keys(&b->keys, "writing"); 472 473 cancel_delayed_work(&b->work); 474 475 /* If caller isn't waiting for write, parent refcount is cache set */ 476 down(&b->io_mutex); 477 closure_init(&b->io, parent ?: &b->c->cl); 478 479 clear_bit(BTREE_NODE_dirty, &b->flags); 480 change_bit(BTREE_NODE_write_idx, &b->flags); 481 482 do_btree_node_write(b); 483 484 atomic_long_add(set_blocks(i, block_bytes(b->c)) * b->c->sb.block_size, 485 &PTR_CACHE(b->c, &b->key, 0)->btree_sectors_written); 486 487 b->written += set_blocks(i, block_bytes(b->c)); 488 } 489 490 void bch_btree_node_write(struct btree *b, struct closure *parent) 491 { 492 unsigned int nsets = b->keys.nsets; 493 494 lockdep_assert_held(&b->lock); 495 496 __bch_btree_node_write(b, parent); 497 498 /* 499 * do verify if there was more than one set initially (i.e. we did a 500 * sort) and we sorted down to a single set: 501 */ 502 if (nsets && !b->keys.nsets) 503 bch_btree_verify(b); 504 505 bch_btree_init_next(b); 506 } 507 508 static void bch_btree_node_write_sync(struct btree *b) 509 { 510 struct closure cl; 511 512 closure_init_stack(&cl); 513 514 mutex_lock(&b->write_lock); 515 bch_btree_node_write(b, &cl); 516 mutex_unlock(&b->write_lock); 517 518 closure_sync(&cl); 519 } 520 521 static void btree_node_write_work(struct work_struct *w) 522 { 523 struct btree *b = container_of(to_delayed_work(w), struct btree, work); 524 525 mutex_lock(&b->write_lock); 526 if (btree_node_dirty(b)) 527 __bch_btree_node_write(b, NULL); 528 mutex_unlock(&b->write_lock); 529 } 530 531 static void bch_btree_leaf_dirty(struct btree *b, atomic_t *journal_ref) 532 { 533 struct bset *i = btree_bset_last(b); 534 struct btree_write *w = btree_current_write(b); 535 536 lockdep_assert_held(&b->write_lock); 537 538 BUG_ON(!b->written); 539 BUG_ON(!i->keys); 540 541 if (!btree_node_dirty(b)) 542 schedule_delayed_work(&b->work, 30 * HZ); 543 544 set_btree_node_dirty(b); 545 546 /* 547 * w->journal is always the oldest journal pin of all bkeys 548 * in the leaf node, to make sure the oldest jset seq won't 549 * be increased before this btree node is flushed. 550 */ 551 if (journal_ref) { 552 if (w->journal && 553 journal_pin_cmp(b->c, w->journal, journal_ref)) { 554 atomic_dec_bug(w->journal); 555 w->journal = NULL; 556 } 557 558 if (!w->journal) { 559 w->journal = journal_ref; 560 atomic_inc(w->journal); 561 } 562 } 563 564 /* Force write if set is too big */ 565 if (set_bytes(i) > PAGE_SIZE - 48 && 566 !current->bio_list) 567 bch_btree_node_write(b, NULL); 568 } 569 570 /* 571 * Btree in memory cache - allocation/freeing 572 * mca -> memory cache 573 */ 574 575 #define mca_reserve(c) (((c->root && c->root->level) \ 576 ? c->root->level : 1) * 8 + 16) 577 #define mca_can_free(c) \ 578 max_t(int, 0, c->btree_cache_used - mca_reserve(c)) 579 580 static void mca_data_free(struct btree *b) 581 { 582 BUG_ON(b->io_mutex.count != 1); 583 584 bch_btree_keys_free(&b->keys); 585 586 b->c->btree_cache_used--; 587 list_move(&b->list, &b->c->btree_cache_freed); 588 } 589 590 static void mca_bucket_free(struct btree *b) 591 { 592 BUG_ON(btree_node_dirty(b)); 593 594 b->key.ptr[0] = 0; 595 hlist_del_init_rcu(&b->hash); 596 list_move(&b->list, &b->c->btree_cache_freeable); 597 } 598 599 static unsigned int btree_order(struct bkey *k) 600 { 601 return ilog2(KEY_SIZE(k) / PAGE_SECTORS ?: 1); 602 } 603 604 static void mca_data_alloc(struct btree *b, struct bkey *k, gfp_t gfp) 605 { 606 if (!bch_btree_keys_alloc(&b->keys, 607 max_t(unsigned int, 608 ilog2(b->c->btree_pages), 609 btree_order(k)), 610 gfp)) { 611 b->c->btree_cache_used++; 612 list_move(&b->list, &b->c->btree_cache); 613 } else { 614 list_move(&b->list, &b->c->btree_cache_freed); 615 } 616 } 617 618 static struct btree *mca_bucket_alloc(struct cache_set *c, 619 struct bkey *k, gfp_t gfp) 620 { 621 /* 622 * kzalloc() is necessary here for initialization, 623 * see code comments in bch_btree_keys_init(). 624 */ 625 struct btree *b = kzalloc(sizeof(struct btree), gfp); 626 627 if (!b) 628 return NULL; 629 630 init_rwsem(&b->lock); 631 lockdep_set_novalidate_class(&b->lock); 632 mutex_init(&b->write_lock); 633 lockdep_set_novalidate_class(&b->write_lock); 634 INIT_LIST_HEAD(&b->list); 635 INIT_DELAYED_WORK(&b->work, btree_node_write_work); 636 b->c = c; 637 sema_init(&b->io_mutex, 1); 638 639 mca_data_alloc(b, k, gfp); 640 return b; 641 } 642 643 static int mca_reap(struct btree *b, unsigned int min_order, bool flush) 644 { 645 struct closure cl; 646 647 closure_init_stack(&cl); 648 lockdep_assert_held(&b->c->bucket_lock); 649 650 if (!down_write_trylock(&b->lock)) 651 return -ENOMEM; 652 653 BUG_ON(btree_node_dirty(b) && !b->keys.set[0].data); 654 655 if (b->keys.page_order < min_order) 656 goto out_unlock; 657 658 if (!flush) { 659 if (btree_node_dirty(b)) 660 goto out_unlock; 661 662 if (down_trylock(&b->io_mutex)) 663 goto out_unlock; 664 up(&b->io_mutex); 665 } 666 667 retry: 668 /* 669 * BTREE_NODE_dirty might be cleared in btree_flush_btree() by 670 * __bch_btree_node_write(). To avoid an extra flush, acquire 671 * b->write_lock before checking BTREE_NODE_dirty bit. 672 */ 673 mutex_lock(&b->write_lock); 674 /* 675 * If this btree node is selected in btree_flush_write() by journal 676 * code, delay and retry until the node is flushed by journal code 677 * and BTREE_NODE_journal_flush bit cleared by btree_flush_write(). 678 */ 679 if (btree_node_journal_flush(b)) { 680 pr_debug("bnode %p is flushing by journal, retry", b); 681 mutex_unlock(&b->write_lock); 682 udelay(1); 683 goto retry; 684 } 685 686 if (btree_node_dirty(b)) 687 __bch_btree_node_write(b, &cl); 688 mutex_unlock(&b->write_lock); 689 690 closure_sync(&cl); 691 692 /* wait for any in flight btree write */ 693 down(&b->io_mutex); 694 up(&b->io_mutex); 695 696 return 0; 697 out_unlock: 698 rw_unlock(true, b); 699 return -ENOMEM; 700 } 701 702 static unsigned long bch_mca_scan(struct shrinker *shrink, 703 struct shrink_control *sc) 704 { 705 struct cache_set *c = container_of(shrink, struct cache_set, shrink); 706 struct btree *b, *t; 707 unsigned long i, nr = sc->nr_to_scan; 708 unsigned long freed = 0; 709 unsigned int btree_cache_used; 710 711 if (c->shrinker_disabled) 712 return SHRINK_STOP; 713 714 if (c->btree_cache_alloc_lock) 715 return SHRINK_STOP; 716 717 /* Return -1 if we can't do anything right now */ 718 if (sc->gfp_mask & __GFP_IO) 719 mutex_lock(&c->bucket_lock); 720 else if (!mutex_trylock(&c->bucket_lock)) 721 return -1; 722 723 /* 724 * It's _really_ critical that we don't free too many btree nodes - we 725 * have to always leave ourselves a reserve. The reserve is how we 726 * guarantee that allocating memory for a new btree node can always 727 * succeed, so that inserting keys into the btree can always succeed and 728 * IO can always make forward progress: 729 */ 730 nr /= c->btree_pages; 731 if (nr == 0) 732 nr = 1; 733 nr = min_t(unsigned long, nr, mca_can_free(c)); 734 735 i = 0; 736 btree_cache_used = c->btree_cache_used; 737 list_for_each_entry_safe_reverse(b, t, &c->btree_cache_freeable, list) { 738 if (nr <= 0) 739 goto out; 740 741 if (!mca_reap(b, 0, false)) { 742 mca_data_free(b); 743 rw_unlock(true, b); 744 freed++; 745 } 746 nr--; 747 i++; 748 } 749 750 list_for_each_entry_safe_reverse(b, t, &c->btree_cache, list) { 751 if (nr <= 0 || i >= btree_cache_used) 752 goto out; 753 754 if (!mca_reap(b, 0, false)) { 755 mca_bucket_free(b); 756 mca_data_free(b); 757 rw_unlock(true, b); 758 freed++; 759 } 760 761 nr--; 762 i++; 763 } 764 out: 765 mutex_unlock(&c->bucket_lock); 766 return freed * c->btree_pages; 767 } 768 769 static unsigned long bch_mca_count(struct shrinker *shrink, 770 struct shrink_control *sc) 771 { 772 struct cache_set *c = container_of(shrink, struct cache_set, shrink); 773 774 if (c->shrinker_disabled) 775 return 0; 776 777 if (c->btree_cache_alloc_lock) 778 return 0; 779 780 return mca_can_free(c) * c->btree_pages; 781 } 782 783 void bch_btree_cache_free(struct cache_set *c) 784 { 785 struct btree *b; 786 struct closure cl; 787 788 closure_init_stack(&cl); 789 790 if (c->shrink.list.next) 791 unregister_shrinker(&c->shrink); 792 793 mutex_lock(&c->bucket_lock); 794 795 #ifdef CONFIG_BCACHE_DEBUG 796 if (c->verify_data) 797 list_move(&c->verify_data->list, &c->btree_cache); 798 799 free_pages((unsigned long) c->verify_ondisk, ilog2(bucket_pages(c))); 800 #endif 801 802 list_splice(&c->btree_cache_freeable, 803 &c->btree_cache); 804 805 while (!list_empty(&c->btree_cache)) { 806 b = list_first_entry(&c->btree_cache, struct btree, list); 807 808 /* 809 * This function is called by cache_set_free(), no I/O 810 * request on cache now, it is unnecessary to acquire 811 * b->write_lock before clearing BTREE_NODE_dirty anymore. 812 */ 813 if (btree_node_dirty(b)) { 814 btree_complete_write(b, btree_current_write(b)); 815 clear_bit(BTREE_NODE_dirty, &b->flags); 816 } 817 mca_data_free(b); 818 } 819 820 while (!list_empty(&c->btree_cache_freed)) { 821 b = list_first_entry(&c->btree_cache_freed, 822 struct btree, list); 823 list_del(&b->list); 824 cancel_delayed_work_sync(&b->work); 825 kfree(b); 826 } 827 828 mutex_unlock(&c->bucket_lock); 829 } 830 831 int bch_btree_cache_alloc(struct cache_set *c) 832 { 833 unsigned int i; 834 835 for (i = 0; i < mca_reserve(c); i++) 836 if (!mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL)) 837 return -ENOMEM; 838 839 list_splice_init(&c->btree_cache, 840 &c->btree_cache_freeable); 841 842 #ifdef CONFIG_BCACHE_DEBUG 843 mutex_init(&c->verify_lock); 844 845 c->verify_ondisk = (void *) 846 __get_free_pages(GFP_KERNEL, ilog2(bucket_pages(c))); 847 848 c->verify_data = mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL); 849 850 if (c->verify_data && 851 c->verify_data->keys.set->data) 852 list_del_init(&c->verify_data->list); 853 else 854 c->verify_data = NULL; 855 #endif 856 857 c->shrink.count_objects = bch_mca_count; 858 c->shrink.scan_objects = bch_mca_scan; 859 c->shrink.seeks = 4; 860 c->shrink.batch = c->btree_pages * 2; 861 862 if (register_shrinker(&c->shrink)) 863 pr_warn("bcache: %s: could not register shrinker", 864 __func__); 865 866 return 0; 867 } 868 869 /* Btree in memory cache - hash table */ 870 871 static struct hlist_head *mca_hash(struct cache_set *c, struct bkey *k) 872 { 873 return &c->bucket_hash[hash_32(PTR_HASH(c, k), BUCKET_HASH_BITS)]; 874 } 875 876 static struct btree *mca_find(struct cache_set *c, struct bkey *k) 877 { 878 struct btree *b; 879 880 rcu_read_lock(); 881 hlist_for_each_entry_rcu(b, mca_hash(c, k), hash) 882 if (PTR_HASH(c, &b->key) == PTR_HASH(c, k)) 883 goto out; 884 b = NULL; 885 out: 886 rcu_read_unlock(); 887 return b; 888 } 889 890 static int mca_cannibalize_lock(struct cache_set *c, struct btree_op *op) 891 { 892 spin_lock(&c->btree_cannibalize_lock); 893 if (likely(c->btree_cache_alloc_lock == NULL)) { 894 c->btree_cache_alloc_lock = current; 895 } else if (c->btree_cache_alloc_lock != current) { 896 if (op) 897 prepare_to_wait(&c->btree_cache_wait, &op->wait, 898 TASK_UNINTERRUPTIBLE); 899 spin_unlock(&c->btree_cannibalize_lock); 900 return -EINTR; 901 } 902 spin_unlock(&c->btree_cannibalize_lock); 903 904 return 0; 905 } 906 907 static struct btree *mca_cannibalize(struct cache_set *c, struct btree_op *op, 908 struct bkey *k) 909 { 910 struct btree *b; 911 912 trace_bcache_btree_cache_cannibalize(c); 913 914 if (mca_cannibalize_lock(c, op)) 915 return ERR_PTR(-EINTR); 916 917 list_for_each_entry_reverse(b, &c->btree_cache, list) 918 if (!mca_reap(b, btree_order(k), false)) 919 return b; 920 921 list_for_each_entry_reverse(b, &c->btree_cache, list) 922 if (!mca_reap(b, btree_order(k), true)) 923 return b; 924 925 WARN(1, "btree cache cannibalize failed\n"); 926 return ERR_PTR(-ENOMEM); 927 } 928 929 /* 930 * We can only have one thread cannibalizing other cached btree nodes at a time, 931 * or we'll deadlock. We use an open coded mutex to ensure that, which a 932 * cannibalize_bucket() will take. This means every time we unlock the root of 933 * the btree, we need to release this lock if we have it held. 934 */ 935 static void bch_cannibalize_unlock(struct cache_set *c) 936 { 937 spin_lock(&c->btree_cannibalize_lock); 938 if (c->btree_cache_alloc_lock == current) { 939 c->btree_cache_alloc_lock = NULL; 940 wake_up(&c->btree_cache_wait); 941 } 942 spin_unlock(&c->btree_cannibalize_lock); 943 } 944 945 static struct btree *mca_alloc(struct cache_set *c, struct btree_op *op, 946 struct bkey *k, int level) 947 { 948 struct btree *b; 949 950 BUG_ON(current->bio_list); 951 952 lockdep_assert_held(&c->bucket_lock); 953 954 if (mca_find(c, k)) 955 return NULL; 956 957 /* btree_free() doesn't free memory; it sticks the node on the end of 958 * the list. Check if there's any freed nodes there: 959 */ 960 list_for_each_entry(b, &c->btree_cache_freeable, list) 961 if (!mca_reap(b, btree_order(k), false)) 962 goto out; 963 964 /* We never free struct btree itself, just the memory that holds the on 965 * disk node. Check the freed list before allocating a new one: 966 */ 967 list_for_each_entry(b, &c->btree_cache_freed, list) 968 if (!mca_reap(b, 0, false)) { 969 mca_data_alloc(b, k, __GFP_NOWARN|GFP_NOIO); 970 if (!b->keys.set[0].data) 971 goto err; 972 else 973 goto out; 974 } 975 976 b = mca_bucket_alloc(c, k, __GFP_NOWARN|GFP_NOIO); 977 if (!b) 978 goto err; 979 980 BUG_ON(!down_write_trylock(&b->lock)); 981 if (!b->keys.set->data) 982 goto err; 983 out: 984 BUG_ON(b->io_mutex.count != 1); 985 986 bkey_copy(&b->key, k); 987 list_move(&b->list, &c->btree_cache); 988 hlist_del_init_rcu(&b->hash); 989 hlist_add_head_rcu(&b->hash, mca_hash(c, k)); 990 991 lock_set_subclass(&b->lock.dep_map, level + 1, _THIS_IP_); 992 b->parent = (void *) ~0UL; 993 b->flags = 0; 994 b->written = 0; 995 b->level = level; 996 997 if (!b->level) 998 bch_btree_keys_init(&b->keys, &bch_extent_keys_ops, 999 &b->c->expensive_debug_checks); 1000 else 1001 bch_btree_keys_init(&b->keys, &bch_btree_keys_ops, 1002 &b->c->expensive_debug_checks); 1003 1004 return b; 1005 err: 1006 if (b) 1007 rw_unlock(true, b); 1008 1009 b = mca_cannibalize(c, op, k); 1010 if (!IS_ERR(b)) 1011 goto out; 1012 1013 return b; 1014 } 1015 1016 /* 1017 * bch_btree_node_get - find a btree node in the cache and lock it, reading it 1018 * in from disk if necessary. 1019 * 1020 * If IO is necessary and running under generic_make_request, returns -EAGAIN. 1021 * 1022 * The btree node will have either a read or a write lock held, depending on 1023 * level and op->lock. 1024 */ 1025 struct btree *bch_btree_node_get(struct cache_set *c, struct btree_op *op, 1026 struct bkey *k, int level, bool write, 1027 struct btree *parent) 1028 { 1029 int i = 0; 1030 struct btree *b; 1031 1032 BUG_ON(level < 0); 1033 retry: 1034 b = mca_find(c, k); 1035 1036 if (!b) { 1037 if (current->bio_list) 1038 return ERR_PTR(-EAGAIN); 1039 1040 mutex_lock(&c->bucket_lock); 1041 b = mca_alloc(c, op, k, level); 1042 mutex_unlock(&c->bucket_lock); 1043 1044 if (!b) 1045 goto retry; 1046 if (IS_ERR(b)) 1047 return b; 1048 1049 bch_btree_node_read(b); 1050 1051 if (!write) 1052 downgrade_write(&b->lock); 1053 } else { 1054 rw_lock(write, b, level); 1055 if (PTR_HASH(c, &b->key) != PTR_HASH(c, k)) { 1056 rw_unlock(write, b); 1057 goto retry; 1058 } 1059 BUG_ON(b->level != level); 1060 } 1061 1062 if (btree_node_io_error(b)) { 1063 rw_unlock(write, b); 1064 return ERR_PTR(-EIO); 1065 } 1066 1067 BUG_ON(!b->written); 1068 1069 b->parent = parent; 1070 1071 for (; i <= b->keys.nsets && b->keys.set[i].size; i++) { 1072 prefetch(b->keys.set[i].tree); 1073 prefetch(b->keys.set[i].data); 1074 } 1075 1076 for (; i <= b->keys.nsets; i++) 1077 prefetch(b->keys.set[i].data); 1078 1079 return b; 1080 } 1081 1082 static void btree_node_prefetch(struct btree *parent, struct bkey *k) 1083 { 1084 struct btree *b; 1085 1086 mutex_lock(&parent->c->bucket_lock); 1087 b = mca_alloc(parent->c, NULL, k, parent->level - 1); 1088 mutex_unlock(&parent->c->bucket_lock); 1089 1090 if (!IS_ERR_OR_NULL(b)) { 1091 b->parent = parent; 1092 bch_btree_node_read(b); 1093 rw_unlock(true, b); 1094 } 1095 } 1096 1097 /* Btree alloc */ 1098 1099 static void btree_node_free(struct btree *b) 1100 { 1101 trace_bcache_btree_node_free(b); 1102 1103 BUG_ON(b == b->c->root); 1104 1105 retry: 1106 mutex_lock(&b->write_lock); 1107 /* 1108 * If the btree node is selected and flushing in btree_flush_write(), 1109 * delay and retry until the BTREE_NODE_journal_flush bit cleared, 1110 * then it is safe to free the btree node here. Otherwise this btree 1111 * node will be in race condition. 1112 */ 1113 if (btree_node_journal_flush(b)) { 1114 mutex_unlock(&b->write_lock); 1115 pr_debug("bnode %p journal_flush set, retry", b); 1116 udelay(1); 1117 goto retry; 1118 } 1119 1120 if (btree_node_dirty(b)) { 1121 btree_complete_write(b, btree_current_write(b)); 1122 clear_bit(BTREE_NODE_dirty, &b->flags); 1123 } 1124 1125 mutex_unlock(&b->write_lock); 1126 1127 cancel_delayed_work(&b->work); 1128 1129 mutex_lock(&b->c->bucket_lock); 1130 bch_bucket_free(b->c, &b->key); 1131 mca_bucket_free(b); 1132 mutex_unlock(&b->c->bucket_lock); 1133 } 1134 1135 struct btree *__bch_btree_node_alloc(struct cache_set *c, struct btree_op *op, 1136 int level, bool wait, 1137 struct btree *parent) 1138 { 1139 BKEY_PADDED(key) k; 1140 struct btree *b = ERR_PTR(-EAGAIN); 1141 1142 mutex_lock(&c->bucket_lock); 1143 retry: 1144 if (__bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, 1, wait)) 1145 goto err; 1146 1147 bkey_put(c, &k.key); 1148 SET_KEY_SIZE(&k.key, c->btree_pages * PAGE_SECTORS); 1149 1150 b = mca_alloc(c, op, &k.key, level); 1151 if (IS_ERR(b)) 1152 goto err_free; 1153 1154 if (!b) { 1155 cache_bug(c, 1156 "Tried to allocate bucket that was in btree cache"); 1157 goto retry; 1158 } 1159 1160 b->parent = parent; 1161 bch_bset_init_next(&b->keys, b->keys.set->data, bset_magic(&b->c->sb)); 1162 1163 mutex_unlock(&c->bucket_lock); 1164 1165 trace_bcache_btree_node_alloc(b); 1166 return b; 1167 err_free: 1168 bch_bucket_free(c, &k.key); 1169 err: 1170 mutex_unlock(&c->bucket_lock); 1171 1172 trace_bcache_btree_node_alloc_fail(c); 1173 return b; 1174 } 1175 1176 static struct btree *bch_btree_node_alloc(struct cache_set *c, 1177 struct btree_op *op, int level, 1178 struct btree *parent) 1179 { 1180 return __bch_btree_node_alloc(c, op, level, op != NULL, parent); 1181 } 1182 1183 static struct btree *btree_node_alloc_replacement(struct btree *b, 1184 struct btree_op *op) 1185 { 1186 struct btree *n = bch_btree_node_alloc(b->c, op, b->level, b->parent); 1187 1188 if (!IS_ERR_OR_NULL(n)) { 1189 mutex_lock(&n->write_lock); 1190 bch_btree_sort_into(&b->keys, &n->keys, &b->c->sort); 1191 bkey_copy_key(&n->key, &b->key); 1192 mutex_unlock(&n->write_lock); 1193 } 1194 1195 return n; 1196 } 1197 1198 static void make_btree_freeing_key(struct btree *b, struct bkey *k) 1199 { 1200 unsigned int i; 1201 1202 mutex_lock(&b->c->bucket_lock); 1203 1204 atomic_inc(&b->c->prio_blocked); 1205 1206 bkey_copy(k, &b->key); 1207 bkey_copy_key(k, &ZERO_KEY); 1208 1209 for (i = 0; i < KEY_PTRS(k); i++) 1210 SET_PTR_GEN(k, i, 1211 bch_inc_gen(PTR_CACHE(b->c, &b->key, i), 1212 PTR_BUCKET(b->c, &b->key, i))); 1213 1214 mutex_unlock(&b->c->bucket_lock); 1215 } 1216 1217 static int btree_check_reserve(struct btree *b, struct btree_op *op) 1218 { 1219 struct cache_set *c = b->c; 1220 struct cache *ca; 1221 unsigned int i, reserve = (c->root->level - b->level) * 2 + 1; 1222 1223 mutex_lock(&c->bucket_lock); 1224 1225 for_each_cache(ca, c, i) 1226 if (fifo_used(&ca->free[RESERVE_BTREE]) < reserve) { 1227 if (op) 1228 prepare_to_wait(&c->btree_cache_wait, &op->wait, 1229 TASK_UNINTERRUPTIBLE); 1230 mutex_unlock(&c->bucket_lock); 1231 return -EINTR; 1232 } 1233 1234 mutex_unlock(&c->bucket_lock); 1235 1236 return mca_cannibalize_lock(b->c, op); 1237 } 1238 1239 /* Garbage collection */ 1240 1241 static uint8_t __bch_btree_mark_key(struct cache_set *c, int level, 1242 struct bkey *k) 1243 { 1244 uint8_t stale = 0; 1245 unsigned int i; 1246 struct bucket *g; 1247 1248 /* 1249 * ptr_invalid() can't return true for the keys that mark btree nodes as 1250 * freed, but since ptr_bad() returns true we'll never actually use them 1251 * for anything and thus we don't want mark their pointers here 1252 */ 1253 if (!bkey_cmp(k, &ZERO_KEY)) 1254 return stale; 1255 1256 for (i = 0; i < KEY_PTRS(k); i++) { 1257 if (!ptr_available(c, k, i)) 1258 continue; 1259 1260 g = PTR_BUCKET(c, k, i); 1261 1262 if (gen_after(g->last_gc, PTR_GEN(k, i))) 1263 g->last_gc = PTR_GEN(k, i); 1264 1265 if (ptr_stale(c, k, i)) { 1266 stale = max(stale, ptr_stale(c, k, i)); 1267 continue; 1268 } 1269 1270 cache_bug_on(GC_MARK(g) && 1271 (GC_MARK(g) == GC_MARK_METADATA) != (level != 0), 1272 c, "inconsistent ptrs: mark = %llu, level = %i", 1273 GC_MARK(g), level); 1274 1275 if (level) 1276 SET_GC_MARK(g, GC_MARK_METADATA); 1277 else if (KEY_DIRTY(k)) 1278 SET_GC_MARK(g, GC_MARK_DIRTY); 1279 else if (!GC_MARK(g)) 1280 SET_GC_MARK(g, GC_MARK_RECLAIMABLE); 1281 1282 /* guard against overflow */ 1283 SET_GC_SECTORS_USED(g, min_t(unsigned int, 1284 GC_SECTORS_USED(g) + KEY_SIZE(k), 1285 MAX_GC_SECTORS_USED)); 1286 1287 BUG_ON(!GC_SECTORS_USED(g)); 1288 } 1289 1290 return stale; 1291 } 1292 1293 #define btree_mark_key(b, k) __bch_btree_mark_key(b->c, b->level, k) 1294 1295 void bch_initial_mark_key(struct cache_set *c, int level, struct bkey *k) 1296 { 1297 unsigned int i; 1298 1299 for (i = 0; i < KEY_PTRS(k); i++) 1300 if (ptr_available(c, k, i) && 1301 !ptr_stale(c, k, i)) { 1302 struct bucket *b = PTR_BUCKET(c, k, i); 1303 1304 b->gen = PTR_GEN(k, i); 1305 1306 if (level && bkey_cmp(k, &ZERO_KEY)) 1307 b->prio = BTREE_PRIO; 1308 else if (!level && b->prio == BTREE_PRIO) 1309 b->prio = INITIAL_PRIO; 1310 } 1311 1312 __bch_btree_mark_key(c, level, k); 1313 } 1314 1315 void bch_update_bucket_in_use(struct cache_set *c, struct gc_stat *stats) 1316 { 1317 stats->in_use = (c->nbuckets - c->avail_nbuckets) * 100 / c->nbuckets; 1318 } 1319 1320 static bool btree_gc_mark_node(struct btree *b, struct gc_stat *gc) 1321 { 1322 uint8_t stale = 0; 1323 unsigned int keys = 0, good_keys = 0; 1324 struct bkey *k; 1325 struct btree_iter iter; 1326 struct bset_tree *t; 1327 1328 gc->nodes++; 1329 1330 for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid) { 1331 stale = max(stale, btree_mark_key(b, k)); 1332 keys++; 1333 1334 if (bch_ptr_bad(&b->keys, k)) 1335 continue; 1336 1337 gc->key_bytes += bkey_u64s(k); 1338 gc->nkeys++; 1339 good_keys++; 1340 1341 gc->data += KEY_SIZE(k); 1342 } 1343 1344 for (t = b->keys.set; t <= &b->keys.set[b->keys.nsets]; t++) 1345 btree_bug_on(t->size && 1346 bset_written(&b->keys, t) && 1347 bkey_cmp(&b->key, &t->end) < 0, 1348 b, "found short btree key in gc"); 1349 1350 if (b->c->gc_always_rewrite) 1351 return true; 1352 1353 if (stale > 10) 1354 return true; 1355 1356 if ((keys - good_keys) * 2 > keys) 1357 return true; 1358 1359 return false; 1360 } 1361 1362 #define GC_MERGE_NODES 4U 1363 1364 struct gc_merge_info { 1365 struct btree *b; 1366 unsigned int keys; 1367 }; 1368 1369 static int bch_btree_insert_node(struct btree *b, struct btree_op *op, 1370 struct keylist *insert_keys, 1371 atomic_t *journal_ref, 1372 struct bkey *replace_key); 1373 1374 static int btree_gc_coalesce(struct btree *b, struct btree_op *op, 1375 struct gc_stat *gc, struct gc_merge_info *r) 1376 { 1377 unsigned int i, nodes = 0, keys = 0, blocks; 1378 struct btree *new_nodes[GC_MERGE_NODES]; 1379 struct keylist keylist; 1380 struct closure cl; 1381 struct bkey *k; 1382 1383 bch_keylist_init(&keylist); 1384 1385 if (btree_check_reserve(b, NULL)) 1386 return 0; 1387 1388 memset(new_nodes, 0, sizeof(new_nodes)); 1389 closure_init_stack(&cl); 1390 1391 while (nodes < GC_MERGE_NODES && !IS_ERR_OR_NULL(r[nodes].b)) 1392 keys += r[nodes++].keys; 1393 1394 blocks = btree_default_blocks(b->c) * 2 / 3; 1395 1396 if (nodes < 2 || 1397 __set_blocks(b->keys.set[0].data, keys, 1398 block_bytes(b->c)) > blocks * (nodes - 1)) 1399 return 0; 1400 1401 for (i = 0; i < nodes; i++) { 1402 new_nodes[i] = btree_node_alloc_replacement(r[i].b, NULL); 1403 if (IS_ERR_OR_NULL(new_nodes[i])) 1404 goto out_nocoalesce; 1405 } 1406 1407 /* 1408 * We have to check the reserve here, after we've allocated our new 1409 * nodes, to make sure the insert below will succeed - we also check 1410 * before as an optimization to potentially avoid a bunch of expensive 1411 * allocs/sorts 1412 */ 1413 if (btree_check_reserve(b, NULL)) 1414 goto out_nocoalesce; 1415 1416 for (i = 0; i < nodes; i++) 1417 mutex_lock(&new_nodes[i]->write_lock); 1418 1419 for (i = nodes - 1; i > 0; --i) { 1420 struct bset *n1 = btree_bset_first(new_nodes[i]); 1421 struct bset *n2 = btree_bset_first(new_nodes[i - 1]); 1422 struct bkey *k, *last = NULL; 1423 1424 keys = 0; 1425 1426 if (i > 1) { 1427 for (k = n2->start; 1428 k < bset_bkey_last(n2); 1429 k = bkey_next(k)) { 1430 if (__set_blocks(n1, n1->keys + keys + 1431 bkey_u64s(k), 1432 block_bytes(b->c)) > blocks) 1433 break; 1434 1435 last = k; 1436 keys += bkey_u64s(k); 1437 } 1438 } else { 1439 /* 1440 * Last node we're not getting rid of - we're getting 1441 * rid of the node at r[0]. Have to try and fit all of 1442 * the remaining keys into this node; we can't ensure 1443 * they will always fit due to rounding and variable 1444 * length keys (shouldn't be possible in practice, 1445 * though) 1446 */ 1447 if (__set_blocks(n1, n1->keys + n2->keys, 1448 block_bytes(b->c)) > 1449 btree_blocks(new_nodes[i])) 1450 goto out_nocoalesce; 1451 1452 keys = n2->keys; 1453 /* Take the key of the node we're getting rid of */ 1454 last = &r->b->key; 1455 } 1456 1457 BUG_ON(__set_blocks(n1, n1->keys + keys, block_bytes(b->c)) > 1458 btree_blocks(new_nodes[i])); 1459 1460 if (last) 1461 bkey_copy_key(&new_nodes[i]->key, last); 1462 1463 memcpy(bset_bkey_last(n1), 1464 n2->start, 1465 (void *) bset_bkey_idx(n2, keys) - (void *) n2->start); 1466 1467 n1->keys += keys; 1468 r[i].keys = n1->keys; 1469 1470 memmove(n2->start, 1471 bset_bkey_idx(n2, keys), 1472 (void *) bset_bkey_last(n2) - 1473 (void *) bset_bkey_idx(n2, keys)); 1474 1475 n2->keys -= keys; 1476 1477 if (__bch_keylist_realloc(&keylist, 1478 bkey_u64s(&new_nodes[i]->key))) 1479 goto out_nocoalesce; 1480 1481 bch_btree_node_write(new_nodes[i], &cl); 1482 bch_keylist_add(&keylist, &new_nodes[i]->key); 1483 } 1484 1485 for (i = 0; i < nodes; i++) 1486 mutex_unlock(&new_nodes[i]->write_lock); 1487 1488 closure_sync(&cl); 1489 1490 /* We emptied out this node */ 1491 BUG_ON(btree_bset_first(new_nodes[0])->keys); 1492 btree_node_free(new_nodes[0]); 1493 rw_unlock(true, new_nodes[0]); 1494 new_nodes[0] = NULL; 1495 1496 for (i = 0; i < nodes; i++) { 1497 if (__bch_keylist_realloc(&keylist, bkey_u64s(&r[i].b->key))) 1498 goto out_nocoalesce; 1499 1500 make_btree_freeing_key(r[i].b, keylist.top); 1501 bch_keylist_push(&keylist); 1502 } 1503 1504 bch_btree_insert_node(b, op, &keylist, NULL, NULL); 1505 BUG_ON(!bch_keylist_empty(&keylist)); 1506 1507 for (i = 0; i < nodes; i++) { 1508 btree_node_free(r[i].b); 1509 rw_unlock(true, r[i].b); 1510 1511 r[i].b = new_nodes[i]; 1512 } 1513 1514 memmove(r, r + 1, sizeof(r[0]) * (nodes - 1)); 1515 r[nodes - 1].b = ERR_PTR(-EINTR); 1516 1517 trace_bcache_btree_gc_coalesce(nodes); 1518 gc->nodes--; 1519 1520 bch_keylist_free(&keylist); 1521 1522 /* Invalidated our iterator */ 1523 return -EINTR; 1524 1525 out_nocoalesce: 1526 closure_sync(&cl); 1527 1528 while ((k = bch_keylist_pop(&keylist))) 1529 if (!bkey_cmp(k, &ZERO_KEY)) 1530 atomic_dec(&b->c->prio_blocked); 1531 bch_keylist_free(&keylist); 1532 1533 for (i = 0; i < nodes; i++) 1534 if (!IS_ERR_OR_NULL(new_nodes[i])) { 1535 btree_node_free(new_nodes[i]); 1536 rw_unlock(true, new_nodes[i]); 1537 } 1538 return 0; 1539 } 1540 1541 static int btree_gc_rewrite_node(struct btree *b, struct btree_op *op, 1542 struct btree *replace) 1543 { 1544 struct keylist keys; 1545 struct btree *n; 1546 1547 if (btree_check_reserve(b, NULL)) 1548 return 0; 1549 1550 n = btree_node_alloc_replacement(replace, NULL); 1551 1552 /* recheck reserve after allocating replacement node */ 1553 if (btree_check_reserve(b, NULL)) { 1554 btree_node_free(n); 1555 rw_unlock(true, n); 1556 return 0; 1557 } 1558 1559 bch_btree_node_write_sync(n); 1560 1561 bch_keylist_init(&keys); 1562 bch_keylist_add(&keys, &n->key); 1563 1564 make_btree_freeing_key(replace, keys.top); 1565 bch_keylist_push(&keys); 1566 1567 bch_btree_insert_node(b, op, &keys, NULL, NULL); 1568 BUG_ON(!bch_keylist_empty(&keys)); 1569 1570 btree_node_free(replace); 1571 rw_unlock(true, n); 1572 1573 /* Invalidated our iterator */ 1574 return -EINTR; 1575 } 1576 1577 static unsigned int btree_gc_count_keys(struct btree *b) 1578 { 1579 struct bkey *k; 1580 struct btree_iter iter; 1581 unsigned int ret = 0; 1582 1583 for_each_key_filter(&b->keys, k, &iter, bch_ptr_bad) 1584 ret += bkey_u64s(k); 1585 1586 return ret; 1587 } 1588 1589 static size_t btree_gc_min_nodes(struct cache_set *c) 1590 { 1591 size_t min_nodes; 1592 1593 /* 1594 * Since incremental GC would stop 100ms when front 1595 * side I/O comes, so when there are many btree nodes, 1596 * if GC only processes constant (100) nodes each time, 1597 * GC would last a long time, and the front side I/Os 1598 * would run out of the buckets (since no new bucket 1599 * can be allocated during GC), and be blocked again. 1600 * So GC should not process constant nodes, but varied 1601 * nodes according to the number of btree nodes, which 1602 * realized by dividing GC into constant(100) times, 1603 * so when there are many btree nodes, GC can process 1604 * more nodes each time, otherwise, GC will process less 1605 * nodes each time (but no less than MIN_GC_NODES) 1606 */ 1607 min_nodes = c->gc_stats.nodes / MAX_GC_TIMES; 1608 if (min_nodes < MIN_GC_NODES) 1609 min_nodes = MIN_GC_NODES; 1610 1611 return min_nodes; 1612 } 1613 1614 1615 static int btree_gc_recurse(struct btree *b, struct btree_op *op, 1616 struct closure *writes, struct gc_stat *gc) 1617 { 1618 int ret = 0; 1619 bool should_rewrite; 1620 struct bkey *k; 1621 struct btree_iter iter; 1622 struct gc_merge_info r[GC_MERGE_NODES]; 1623 struct gc_merge_info *i, *last = r + ARRAY_SIZE(r) - 1; 1624 1625 bch_btree_iter_init(&b->keys, &iter, &b->c->gc_done); 1626 1627 for (i = r; i < r + ARRAY_SIZE(r); i++) 1628 i->b = ERR_PTR(-EINTR); 1629 1630 while (1) { 1631 k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad); 1632 if (k) { 1633 r->b = bch_btree_node_get(b->c, op, k, b->level - 1, 1634 true, b); 1635 if (IS_ERR(r->b)) { 1636 ret = PTR_ERR(r->b); 1637 break; 1638 } 1639 1640 r->keys = btree_gc_count_keys(r->b); 1641 1642 ret = btree_gc_coalesce(b, op, gc, r); 1643 if (ret) 1644 break; 1645 } 1646 1647 if (!last->b) 1648 break; 1649 1650 if (!IS_ERR(last->b)) { 1651 should_rewrite = btree_gc_mark_node(last->b, gc); 1652 if (should_rewrite) { 1653 ret = btree_gc_rewrite_node(b, op, last->b); 1654 if (ret) 1655 break; 1656 } 1657 1658 if (last->b->level) { 1659 ret = btree_gc_recurse(last->b, op, writes, gc); 1660 if (ret) 1661 break; 1662 } 1663 1664 bkey_copy_key(&b->c->gc_done, &last->b->key); 1665 1666 /* 1667 * Must flush leaf nodes before gc ends, since replace 1668 * operations aren't journalled 1669 */ 1670 mutex_lock(&last->b->write_lock); 1671 if (btree_node_dirty(last->b)) 1672 bch_btree_node_write(last->b, writes); 1673 mutex_unlock(&last->b->write_lock); 1674 rw_unlock(true, last->b); 1675 } 1676 1677 memmove(r + 1, r, sizeof(r[0]) * (GC_MERGE_NODES - 1)); 1678 r->b = NULL; 1679 1680 if (atomic_read(&b->c->search_inflight) && 1681 gc->nodes >= gc->nodes_pre + btree_gc_min_nodes(b->c)) { 1682 gc->nodes_pre = gc->nodes; 1683 ret = -EAGAIN; 1684 break; 1685 } 1686 1687 if (need_resched()) { 1688 ret = -EAGAIN; 1689 break; 1690 } 1691 } 1692 1693 for (i = r; i < r + ARRAY_SIZE(r); i++) 1694 if (!IS_ERR_OR_NULL(i->b)) { 1695 mutex_lock(&i->b->write_lock); 1696 if (btree_node_dirty(i->b)) 1697 bch_btree_node_write(i->b, writes); 1698 mutex_unlock(&i->b->write_lock); 1699 rw_unlock(true, i->b); 1700 } 1701 1702 return ret; 1703 } 1704 1705 static int bch_btree_gc_root(struct btree *b, struct btree_op *op, 1706 struct closure *writes, struct gc_stat *gc) 1707 { 1708 struct btree *n = NULL; 1709 int ret = 0; 1710 bool should_rewrite; 1711 1712 should_rewrite = btree_gc_mark_node(b, gc); 1713 if (should_rewrite) { 1714 n = btree_node_alloc_replacement(b, NULL); 1715 1716 if (!IS_ERR_OR_NULL(n)) { 1717 bch_btree_node_write_sync(n); 1718 1719 bch_btree_set_root(n); 1720 btree_node_free(b); 1721 rw_unlock(true, n); 1722 1723 return -EINTR; 1724 } 1725 } 1726 1727 __bch_btree_mark_key(b->c, b->level + 1, &b->key); 1728 1729 if (b->level) { 1730 ret = btree_gc_recurse(b, op, writes, gc); 1731 if (ret) 1732 return ret; 1733 } 1734 1735 bkey_copy_key(&b->c->gc_done, &b->key); 1736 1737 return ret; 1738 } 1739 1740 static void btree_gc_start(struct cache_set *c) 1741 { 1742 struct cache *ca; 1743 struct bucket *b; 1744 unsigned int i; 1745 1746 if (!c->gc_mark_valid) 1747 return; 1748 1749 mutex_lock(&c->bucket_lock); 1750 1751 c->gc_mark_valid = 0; 1752 c->gc_done = ZERO_KEY; 1753 1754 for_each_cache(ca, c, i) 1755 for_each_bucket(b, ca) { 1756 b->last_gc = b->gen; 1757 if (!atomic_read(&b->pin)) { 1758 SET_GC_MARK(b, 0); 1759 SET_GC_SECTORS_USED(b, 0); 1760 } 1761 } 1762 1763 mutex_unlock(&c->bucket_lock); 1764 } 1765 1766 static void bch_btree_gc_finish(struct cache_set *c) 1767 { 1768 struct bucket *b; 1769 struct cache *ca; 1770 unsigned int i; 1771 1772 mutex_lock(&c->bucket_lock); 1773 1774 set_gc_sectors(c); 1775 c->gc_mark_valid = 1; 1776 c->need_gc = 0; 1777 1778 for (i = 0; i < KEY_PTRS(&c->uuid_bucket); i++) 1779 SET_GC_MARK(PTR_BUCKET(c, &c->uuid_bucket, i), 1780 GC_MARK_METADATA); 1781 1782 /* don't reclaim buckets to which writeback keys point */ 1783 rcu_read_lock(); 1784 for (i = 0; i < c->devices_max_used; i++) { 1785 struct bcache_device *d = c->devices[i]; 1786 struct cached_dev *dc; 1787 struct keybuf_key *w, *n; 1788 unsigned int j; 1789 1790 if (!d || UUID_FLASH_ONLY(&c->uuids[i])) 1791 continue; 1792 dc = container_of(d, struct cached_dev, disk); 1793 1794 spin_lock(&dc->writeback_keys.lock); 1795 rbtree_postorder_for_each_entry_safe(w, n, 1796 &dc->writeback_keys.keys, node) 1797 for (j = 0; j < KEY_PTRS(&w->key); j++) 1798 SET_GC_MARK(PTR_BUCKET(c, &w->key, j), 1799 GC_MARK_DIRTY); 1800 spin_unlock(&dc->writeback_keys.lock); 1801 } 1802 rcu_read_unlock(); 1803 1804 c->avail_nbuckets = 0; 1805 for_each_cache(ca, c, i) { 1806 uint64_t *i; 1807 1808 ca->invalidate_needs_gc = 0; 1809 1810 for (i = ca->sb.d; i < ca->sb.d + ca->sb.keys; i++) 1811 SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA); 1812 1813 for (i = ca->prio_buckets; 1814 i < ca->prio_buckets + prio_buckets(ca) * 2; i++) 1815 SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA); 1816 1817 for_each_bucket(b, ca) { 1818 c->need_gc = max(c->need_gc, bucket_gc_gen(b)); 1819 1820 if (atomic_read(&b->pin)) 1821 continue; 1822 1823 BUG_ON(!GC_MARK(b) && GC_SECTORS_USED(b)); 1824 1825 if (!GC_MARK(b) || GC_MARK(b) == GC_MARK_RECLAIMABLE) 1826 c->avail_nbuckets++; 1827 } 1828 } 1829 1830 mutex_unlock(&c->bucket_lock); 1831 } 1832 1833 static void bch_btree_gc(struct cache_set *c) 1834 { 1835 int ret; 1836 struct gc_stat stats; 1837 struct closure writes; 1838 struct btree_op op; 1839 uint64_t start_time = local_clock(); 1840 1841 trace_bcache_gc_start(c); 1842 1843 memset(&stats, 0, sizeof(struct gc_stat)); 1844 closure_init_stack(&writes); 1845 bch_btree_op_init(&op, SHRT_MAX); 1846 1847 btree_gc_start(c); 1848 1849 /* if CACHE_SET_IO_DISABLE set, gc thread should stop too */ 1850 do { 1851 ret = btree_root(gc_root, c, &op, &writes, &stats); 1852 closure_sync(&writes); 1853 cond_resched(); 1854 1855 if (ret == -EAGAIN) 1856 schedule_timeout_interruptible(msecs_to_jiffies 1857 (GC_SLEEP_MS)); 1858 else if (ret) 1859 pr_warn("gc failed!"); 1860 } while (ret && !test_bit(CACHE_SET_IO_DISABLE, &c->flags)); 1861 1862 bch_btree_gc_finish(c); 1863 wake_up_allocators(c); 1864 1865 bch_time_stats_update(&c->btree_gc_time, start_time); 1866 1867 stats.key_bytes *= sizeof(uint64_t); 1868 stats.data <<= 9; 1869 bch_update_bucket_in_use(c, &stats); 1870 memcpy(&c->gc_stats, &stats, sizeof(struct gc_stat)); 1871 1872 trace_bcache_gc_end(c); 1873 1874 bch_moving_gc(c); 1875 } 1876 1877 static bool gc_should_run(struct cache_set *c) 1878 { 1879 struct cache *ca; 1880 unsigned int i; 1881 1882 for_each_cache(ca, c, i) 1883 if (ca->invalidate_needs_gc) 1884 return true; 1885 1886 if (atomic_read(&c->sectors_to_gc) < 0) 1887 return true; 1888 1889 return false; 1890 } 1891 1892 static int bch_gc_thread(void *arg) 1893 { 1894 struct cache_set *c = arg; 1895 1896 while (1) { 1897 wait_event_interruptible(c->gc_wait, 1898 kthread_should_stop() || 1899 test_bit(CACHE_SET_IO_DISABLE, &c->flags) || 1900 gc_should_run(c)); 1901 1902 if (kthread_should_stop() || 1903 test_bit(CACHE_SET_IO_DISABLE, &c->flags)) 1904 break; 1905 1906 set_gc_sectors(c); 1907 bch_btree_gc(c); 1908 } 1909 1910 wait_for_kthread_stop(); 1911 return 0; 1912 } 1913 1914 int bch_gc_thread_start(struct cache_set *c) 1915 { 1916 c->gc_thread = kthread_run(bch_gc_thread, c, "bcache_gc"); 1917 return PTR_ERR_OR_ZERO(c->gc_thread); 1918 } 1919 1920 /* Initial partial gc */ 1921 1922 static int bch_btree_check_recurse(struct btree *b, struct btree_op *op) 1923 { 1924 int ret = 0; 1925 struct bkey *k, *p = NULL; 1926 struct btree_iter iter; 1927 1928 for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid) 1929 bch_initial_mark_key(b->c, b->level, k); 1930 1931 bch_initial_mark_key(b->c, b->level + 1, &b->key); 1932 1933 if (b->level) { 1934 bch_btree_iter_init(&b->keys, &iter, NULL); 1935 1936 do { 1937 k = bch_btree_iter_next_filter(&iter, &b->keys, 1938 bch_ptr_bad); 1939 if (k) { 1940 btree_node_prefetch(b, k); 1941 /* 1942 * initiallize c->gc_stats.nodes 1943 * for incremental GC 1944 */ 1945 b->c->gc_stats.nodes++; 1946 } 1947 1948 if (p) 1949 ret = btree(check_recurse, p, b, op); 1950 1951 p = k; 1952 } while (p && !ret); 1953 } 1954 1955 return ret; 1956 } 1957 1958 int bch_btree_check(struct cache_set *c) 1959 { 1960 struct btree_op op; 1961 1962 bch_btree_op_init(&op, SHRT_MAX); 1963 1964 return btree_root(check_recurse, c, &op); 1965 } 1966 1967 void bch_initial_gc_finish(struct cache_set *c) 1968 { 1969 struct cache *ca; 1970 struct bucket *b; 1971 unsigned int i; 1972 1973 bch_btree_gc_finish(c); 1974 1975 mutex_lock(&c->bucket_lock); 1976 1977 /* 1978 * We need to put some unused buckets directly on the prio freelist in 1979 * order to get the allocator thread started - it needs freed buckets in 1980 * order to rewrite the prios and gens, and it needs to rewrite prios 1981 * and gens in order to free buckets. 1982 * 1983 * This is only safe for buckets that have no live data in them, which 1984 * there should always be some of. 1985 */ 1986 for_each_cache(ca, c, i) { 1987 for_each_bucket(b, ca) { 1988 if (fifo_full(&ca->free[RESERVE_PRIO]) && 1989 fifo_full(&ca->free[RESERVE_BTREE])) 1990 break; 1991 1992 if (bch_can_invalidate_bucket(ca, b) && 1993 !GC_MARK(b)) { 1994 __bch_invalidate_one_bucket(ca, b); 1995 if (!fifo_push(&ca->free[RESERVE_PRIO], 1996 b - ca->buckets)) 1997 fifo_push(&ca->free[RESERVE_BTREE], 1998 b - ca->buckets); 1999 } 2000 } 2001 } 2002 2003 mutex_unlock(&c->bucket_lock); 2004 } 2005 2006 /* Btree insertion */ 2007 2008 static bool btree_insert_key(struct btree *b, struct bkey *k, 2009 struct bkey *replace_key) 2010 { 2011 unsigned int status; 2012 2013 BUG_ON(bkey_cmp(k, &b->key) > 0); 2014 2015 status = bch_btree_insert_key(&b->keys, k, replace_key); 2016 if (status != BTREE_INSERT_STATUS_NO_INSERT) { 2017 bch_check_keys(&b->keys, "%u for %s", status, 2018 replace_key ? "replace" : "insert"); 2019 2020 trace_bcache_btree_insert_key(b, k, replace_key != NULL, 2021 status); 2022 return true; 2023 } else 2024 return false; 2025 } 2026 2027 static size_t insert_u64s_remaining(struct btree *b) 2028 { 2029 long ret = bch_btree_keys_u64s_remaining(&b->keys); 2030 2031 /* 2032 * Might land in the middle of an existing extent and have to split it 2033 */ 2034 if (b->keys.ops->is_extents) 2035 ret -= KEY_MAX_U64S; 2036 2037 return max(ret, 0L); 2038 } 2039 2040 static bool bch_btree_insert_keys(struct btree *b, struct btree_op *op, 2041 struct keylist *insert_keys, 2042 struct bkey *replace_key) 2043 { 2044 bool ret = false; 2045 int oldsize = bch_count_data(&b->keys); 2046 2047 while (!bch_keylist_empty(insert_keys)) { 2048 struct bkey *k = insert_keys->keys; 2049 2050 if (bkey_u64s(k) > insert_u64s_remaining(b)) 2051 break; 2052 2053 if (bkey_cmp(k, &b->key) <= 0) { 2054 if (!b->level) 2055 bkey_put(b->c, k); 2056 2057 ret |= btree_insert_key(b, k, replace_key); 2058 bch_keylist_pop_front(insert_keys); 2059 } else if (bkey_cmp(&START_KEY(k), &b->key) < 0) { 2060 BKEY_PADDED(key) temp; 2061 bkey_copy(&temp.key, insert_keys->keys); 2062 2063 bch_cut_back(&b->key, &temp.key); 2064 bch_cut_front(&b->key, insert_keys->keys); 2065 2066 ret |= btree_insert_key(b, &temp.key, replace_key); 2067 break; 2068 } else { 2069 break; 2070 } 2071 } 2072 2073 if (!ret) 2074 op->insert_collision = true; 2075 2076 BUG_ON(!bch_keylist_empty(insert_keys) && b->level); 2077 2078 BUG_ON(bch_count_data(&b->keys) < oldsize); 2079 return ret; 2080 } 2081 2082 static int btree_split(struct btree *b, struct btree_op *op, 2083 struct keylist *insert_keys, 2084 struct bkey *replace_key) 2085 { 2086 bool split; 2087 struct btree *n1, *n2 = NULL, *n3 = NULL; 2088 uint64_t start_time = local_clock(); 2089 struct closure cl; 2090 struct keylist parent_keys; 2091 2092 closure_init_stack(&cl); 2093 bch_keylist_init(&parent_keys); 2094 2095 if (btree_check_reserve(b, op)) { 2096 if (!b->level) 2097 return -EINTR; 2098 else 2099 WARN(1, "insufficient reserve for split\n"); 2100 } 2101 2102 n1 = btree_node_alloc_replacement(b, op); 2103 if (IS_ERR(n1)) 2104 goto err; 2105 2106 split = set_blocks(btree_bset_first(n1), 2107 block_bytes(n1->c)) > (btree_blocks(b) * 4) / 5; 2108 2109 if (split) { 2110 unsigned int keys = 0; 2111 2112 trace_bcache_btree_node_split(b, btree_bset_first(n1)->keys); 2113 2114 n2 = bch_btree_node_alloc(b->c, op, b->level, b->parent); 2115 if (IS_ERR(n2)) 2116 goto err_free1; 2117 2118 if (!b->parent) { 2119 n3 = bch_btree_node_alloc(b->c, op, b->level + 1, NULL); 2120 if (IS_ERR(n3)) 2121 goto err_free2; 2122 } 2123 2124 mutex_lock(&n1->write_lock); 2125 mutex_lock(&n2->write_lock); 2126 2127 bch_btree_insert_keys(n1, op, insert_keys, replace_key); 2128 2129 /* 2130 * Has to be a linear search because we don't have an auxiliary 2131 * search tree yet 2132 */ 2133 2134 while (keys < (btree_bset_first(n1)->keys * 3) / 5) 2135 keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1), 2136 keys)); 2137 2138 bkey_copy_key(&n1->key, 2139 bset_bkey_idx(btree_bset_first(n1), keys)); 2140 keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1), keys)); 2141 2142 btree_bset_first(n2)->keys = btree_bset_first(n1)->keys - keys; 2143 btree_bset_first(n1)->keys = keys; 2144 2145 memcpy(btree_bset_first(n2)->start, 2146 bset_bkey_last(btree_bset_first(n1)), 2147 btree_bset_first(n2)->keys * sizeof(uint64_t)); 2148 2149 bkey_copy_key(&n2->key, &b->key); 2150 2151 bch_keylist_add(&parent_keys, &n2->key); 2152 bch_btree_node_write(n2, &cl); 2153 mutex_unlock(&n2->write_lock); 2154 rw_unlock(true, n2); 2155 } else { 2156 trace_bcache_btree_node_compact(b, btree_bset_first(n1)->keys); 2157 2158 mutex_lock(&n1->write_lock); 2159 bch_btree_insert_keys(n1, op, insert_keys, replace_key); 2160 } 2161 2162 bch_keylist_add(&parent_keys, &n1->key); 2163 bch_btree_node_write(n1, &cl); 2164 mutex_unlock(&n1->write_lock); 2165 2166 if (n3) { 2167 /* Depth increases, make a new root */ 2168 mutex_lock(&n3->write_lock); 2169 bkey_copy_key(&n3->key, &MAX_KEY); 2170 bch_btree_insert_keys(n3, op, &parent_keys, NULL); 2171 bch_btree_node_write(n3, &cl); 2172 mutex_unlock(&n3->write_lock); 2173 2174 closure_sync(&cl); 2175 bch_btree_set_root(n3); 2176 rw_unlock(true, n3); 2177 } else if (!b->parent) { 2178 /* Root filled up but didn't need to be split */ 2179 closure_sync(&cl); 2180 bch_btree_set_root(n1); 2181 } else { 2182 /* Split a non root node */ 2183 closure_sync(&cl); 2184 make_btree_freeing_key(b, parent_keys.top); 2185 bch_keylist_push(&parent_keys); 2186 2187 bch_btree_insert_node(b->parent, op, &parent_keys, NULL, NULL); 2188 BUG_ON(!bch_keylist_empty(&parent_keys)); 2189 } 2190 2191 btree_node_free(b); 2192 rw_unlock(true, n1); 2193 2194 bch_time_stats_update(&b->c->btree_split_time, start_time); 2195 2196 return 0; 2197 err_free2: 2198 bkey_put(b->c, &n2->key); 2199 btree_node_free(n2); 2200 rw_unlock(true, n2); 2201 err_free1: 2202 bkey_put(b->c, &n1->key); 2203 btree_node_free(n1); 2204 rw_unlock(true, n1); 2205 err: 2206 WARN(1, "bcache: btree split failed (level %u)", b->level); 2207 2208 if (n3 == ERR_PTR(-EAGAIN) || 2209 n2 == ERR_PTR(-EAGAIN) || 2210 n1 == ERR_PTR(-EAGAIN)) 2211 return -EAGAIN; 2212 2213 return -ENOMEM; 2214 } 2215 2216 static int bch_btree_insert_node(struct btree *b, struct btree_op *op, 2217 struct keylist *insert_keys, 2218 atomic_t *journal_ref, 2219 struct bkey *replace_key) 2220 { 2221 struct closure cl; 2222 2223 BUG_ON(b->level && replace_key); 2224 2225 closure_init_stack(&cl); 2226 2227 mutex_lock(&b->write_lock); 2228 2229 if (write_block(b) != btree_bset_last(b) && 2230 b->keys.last_set_unwritten) 2231 bch_btree_init_next(b); /* just wrote a set */ 2232 2233 if (bch_keylist_nkeys(insert_keys) > insert_u64s_remaining(b)) { 2234 mutex_unlock(&b->write_lock); 2235 goto split; 2236 } 2237 2238 BUG_ON(write_block(b) != btree_bset_last(b)); 2239 2240 if (bch_btree_insert_keys(b, op, insert_keys, replace_key)) { 2241 if (!b->level) 2242 bch_btree_leaf_dirty(b, journal_ref); 2243 else 2244 bch_btree_node_write(b, &cl); 2245 } 2246 2247 mutex_unlock(&b->write_lock); 2248 2249 /* wait for btree node write if necessary, after unlock */ 2250 closure_sync(&cl); 2251 2252 return 0; 2253 split: 2254 if (current->bio_list) { 2255 op->lock = b->c->root->level + 1; 2256 return -EAGAIN; 2257 } else if (op->lock <= b->c->root->level) { 2258 op->lock = b->c->root->level + 1; 2259 return -EINTR; 2260 } else { 2261 /* Invalidated all iterators */ 2262 int ret = btree_split(b, op, insert_keys, replace_key); 2263 2264 if (bch_keylist_empty(insert_keys)) 2265 return 0; 2266 else if (!ret) 2267 return -EINTR; 2268 return ret; 2269 } 2270 } 2271 2272 int bch_btree_insert_check_key(struct btree *b, struct btree_op *op, 2273 struct bkey *check_key) 2274 { 2275 int ret = -EINTR; 2276 uint64_t btree_ptr = b->key.ptr[0]; 2277 unsigned long seq = b->seq; 2278 struct keylist insert; 2279 bool upgrade = op->lock == -1; 2280 2281 bch_keylist_init(&insert); 2282 2283 if (upgrade) { 2284 rw_unlock(false, b); 2285 rw_lock(true, b, b->level); 2286 2287 if (b->key.ptr[0] != btree_ptr || 2288 b->seq != seq + 1) { 2289 op->lock = b->level; 2290 goto out; 2291 } 2292 } 2293 2294 SET_KEY_PTRS(check_key, 1); 2295 get_random_bytes(&check_key->ptr[0], sizeof(uint64_t)); 2296 2297 SET_PTR_DEV(check_key, 0, PTR_CHECK_DEV); 2298 2299 bch_keylist_add(&insert, check_key); 2300 2301 ret = bch_btree_insert_node(b, op, &insert, NULL, NULL); 2302 2303 BUG_ON(!ret && !bch_keylist_empty(&insert)); 2304 out: 2305 if (upgrade) 2306 downgrade_write(&b->lock); 2307 return ret; 2308 } 2309 2310 struct btree_insert_op { 2311 struct btree_op op; 2312 struct keylist *keys; 2313 atomic_t *journal_ref; 2314 struct bkey *replace_key; 2315 }; 2316 2317 static int btree_insert_fn(struct btree_op *b_op, struct btree *b) 2318 { 2319 struct btree_insert_op *op = container_of(b_op, 2320 struct btree_insert_op, op); 2321 2322 int ret = bch_btree_insert_node(b, &op->op, op->keys, 2323 op->journal_ref, op->replace_key); 2324 if (ret && !bch_keylist_empty(op->keys)) 2325 return ret; 2326 else 2327 return MAP_DONE; 2328 } 2329 2330 int bch_btree_insert(struct cache_set *c, struct keylist *keys, 2331 atomic_t *journal_ref, struct bkey *replace_key) 2332 { 2333 struct btree_insert_op op; 2334 int ret = 0; 2335 2336 BUG_ON(current->bio_list); 2337 BUG_ON(bch_keylist_empty(keys)); 2338 2339 bch_btree_op_init(&op.op, 0); 2340 op.keys = keys; 2341 op.journal_ref = journal_ref; 2342 op.replace_key = replace_key; 2343 2344 while (!ret && !bch_keylist_empty(keys)) { 2345 op.op.lock = 0; 2346 ret = bch_btree_map_leaf_nodes(&op.op, c, 2347 &START_KEY(keys->keys), 2348 btree_insert_fn); 2349 } 2350 2351 if (ret) { 2352 struct bkey *k; 2353 2354 pr_err("error %i", ret); 2355 2356 while ((k = bch_keylist_pop(keys))) 2357 bkey_put(c, k); 2358 } else if (op.op.insert_collision) 2359 ret = -ESRCH; 2360 2361 return ret; 2362 } 2363 2364 void bch_btree_set_root(struct btree *b) 2365 { 2366 unsigned int i; 2367 struct closure cl; 2368 2369 closure_init_stack(&cl); 2370 2371 trace_bcache_btree_set_root(b); 2372 2373 BUG_ON(!b->written); 2374 2375 for (i = 0; i < KEY_PTRS(&b->key); i++) 2376 BUG_ON(PTR_BUCKET(b->c, &b->key, i)->prio != BTREE_PRIO); 2377 2378 mutex_lock(&b->c->bucket_lock); 2379 list_del_init(&b->list); 2380 mutex_unlock(&b->c->bucket_lock); 2381 2382 b->c->root = b; 2383 2384 bch_journal_meta(b->c, &cl); 2385 closure_sync(&cl); 2386 } 2387 2388 /* Map across nodes or keys */ 2389 2390 static int bch_btree_map_nodes_recurse(struct btree *b, struct btree_op *op, 2391 struct bkey *from, 2392 btree_map_nodes_fn *fn, int flags) 2393 { 2394 int ret = MAP_CONTINUE; 2395 2396 if (b->level) { 2397 struct bkey *k; 2398 struct btree_iter iter; 2399 2400 bch_btree_iter_init(&b->keys, &iter, from); 2401 2402 while ((k = bch_btree_iter_next_filter(&iter, &b->keys, 2403 bch_ptr_bad))) { 2404 ret = btree(map_nodes_recurse, k, b, 2405 op, from, fn, flags); 2406 from = NULL; 2407 2408 if (ret != MAP_CONTINUE) 2409 return ret; 2410 } 2411 } 2412 2413 if (!b->level || flags == MAP_ALL_NODES) 2414 ret = fn(op, b); 2415 2416 return ret; 2417 } 2418 2419 int __bch_btree_map_nodes(struct btree_op *op, struct cache_set *c, 2420 struct bkey *from, btree_map_nodes_fn *fn, int flags) 2421 { 2422 return btree_root(map_nodes_recurse, c, op, from, fn, flags); 2423 } 2424 2425 static int bch_btree_map_keys_recurse(struct btree *b, struct btree_op *op, 2426 struct bkey *from, btree_map_keys_fn *fn, 2427 int flags) 2428 { 2429 int ret = MAP_CONTINUE; 2430 struct bkey *k; 2431 struct btree_iter iter; 2432 2433 bch_btree_iter_init(&b->keys, &iter, from); 2434 2435 while ((k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad))) { 2436 ret = !b->level 2437 ? fn(op, b, k) 2438 : btree(map_keys_recurse, k, b, op, from, fn, flags); 2439 from = NULL; 2440 2441 if (ret != MAP_CONTINUE) 2442 return ret; 2443 } 2444 2445 if (!b->level && (flags & MAP_END_KEY)) 2446 ret = fn(op, b, &KEY(KEY_INODE(&b->key), 2447 KEY_OFFSET(&b->key), 0)); 2448 2449 return ret; 2450 } 2451 2452 int bch_btree_map_keys(struct btree_op *op, struct cache_set *c, 2453 struct bkey *from, btree_map_keys_fn *fn, int flags) 2454 { 2455 return btree_root(map_keys_recurse, c, op, from, fn, flags); 2456 } 2457 2458 /* Keybuf code */ 2459 2460 static inline int keybuf_cmp(struct keybuf_key *l, struct keybuf_key *r) 2461 { 2462 /* Overlapping keys compare equal */ 2463 if (bkey_cmp(&l->key, &START_KEY(&r->key)) <= 0) 2464 return -1; 2465 if (bkey_cmp(&START_KEY(&l->key), &r->key) >= 0) 2466 return 1; 2467 return 0; 2468 } 2469 2470 static inline int keybuf_nonoverlapping_cmp(struct keybuf_key *l, 2471 struct keybuf_key *r) 2472 { 2473 return clamp_t(int64_t, bkey_cmp(&l->key, &r->key), -1, 1); 2474 } 2475 2476 struct refill { 2477 struct btree_op op; 2478 unsigned int nr_found; 2479 struct keybuf *buf; 2480 struct bkey *end; 2481 keybuf_pred_fn *pred; 2482 }; 2483 2484 static int refill_keybuf_fn(struct btree_op *op, struct btree *b, 2485 struct bkey *k) 2486 { 2487 struct refill *refill = container_of(op, struct refill, op); 2488 struct keybuf *buf = refill->buf; 2489 int ret = MAP_CONTINUE; 2490 2491 if (bkey_cmp(k, refill->end) > 0) { 2492 ret = MAP_DONE; 2493 goto out; 2494 } 2495 2496 if (!KEY_SIZE(k)) /* end key */ 2497 goto out; 2498 2499 if (refill->pred(buf, k)) { 2500 struct keybuf_key *w; 2501 2502 spin_lock(&buf->lock); 2503 2504 w = array_alloc(&buf->freelist); 2505 if (!w) { 2506 spin_unlock(&buf->lock); 2507 return MAP_DONE; 2508 } 2509 2510 w->private = NULL; 2511 bkey_copy(&w->key, k); 2512 2513 if (RB_INSERT(&buf->keys, w, node, keybuf_cmp)) 2514 array_free(&buf->freelist, w); 2515 else 2516 refill->nr_found++; 2517 2518 if (array_freelist_empty(&buf->freelist)) 2519 ret = MAP_DONE; 2520 2521 spin_unlock(&buf->lock); 2522 } 2523 out: 2524 buf->last_scanned = *k; 2525 return ret; 2526 } 2527 2528 void bch_refill_keybuf(struct cache_set *c, struct keybuf *buf, 2529 struct bkey *end, keybuf_pred_fn *pred) 2530 { 2531 struct bkey start = buf->last_scanned; 2532 struct refill refill; 2533 2534 cond_resched(); 2535 2536 bch_btree_op_init(&refill.op, -1); 2537 refill.nr_found = 0; 2538 refill.buf = buf; 2539 refill.end = end; 2540 refill.pred = pred; 2541 2542 bch_btree_map_keys(&refill.op, c, &buf->last_scanned, 2543 refill_keybuf_fn, MAP_END_KEY); 2544 2545 trace_bcache_keyscan(refill.nr_found, 2546 KEY_INODE(&start), KEY_OFFSET(&start), 2547 KEY_INODE(&buf->last_scanned), 2548 KEY_OFFSET(&buf->last_scanned)); 2549 2550 spin_lock(&buf->lock); 2551 2552 if (!RB_EMPTY_ROOT(&buf->keys)) { 2553 struct keybuf_key *w; 2554 2555 w = RB_FIRST(&buf->keys, struct keybuf_key, node); 2556 buf->start = START_KEY(&w->key); 2557 2558 w = RB_LAST(&buf->keys, struct keybuf_key, node); 2559 buf->end = w->key; 2560 } else { 2561 buf->start = MAX_KEY; 2562 buf->end = MAX_KEY; 2563 } 2564 2565 spin_unlock(&buf->lock); 2566 } 2567 2568 static void __bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w) 2569 { 2570 rb_erase(&w->node, &buf->keys); 2571 array_free(&buf->freelist, w); 2572 } 2573 2574 void bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w) 2575 { 2576 spin_lock(&buf->lock); 2577 __bch_keybuf_del(buf, w); 2578 spin_unlock(&buf->lock); 2579 } 2580 2581 bool bch_keybuf_check_overlapping(struct keybuf *buf, struct bkey *start, 2582 struct bkey *end) 2583 { 2584 bool ret = false; 2585 struct keybuf_key *p, *w, s; 2586 2587 s.key = *start; 2588 2589 if (bkey_cmp(end, &buf->start) <= 0 || 2590 bkey_cmp(start, &buf->end) >= 0) 2591 return false; 2592 2593 spin_lock(&buf->lock); 2594 w = RB_GREATER(&buf->keys, s, node, keybuf_nonoverlapping_cmp); 2595 2596 while (w && bkey_cmp(&START_KEY(&w->key), end) < 0) { 2597 p = w; 2598 w = RB_NEXT(w, node); 2599 2600 if (p->private) 2601 ret = true; 2602 else 2603 __bch_keybuf_del(buf, p); 2604 } 2605 2606 spin_unlock(&buf->lock); 2607 return ret; 2608 } 2609 2610 struct keybuf_key *bch_keybuf_next(struct keybuf *buf) 2611 { 2612 struct keybuf_key *w; 2613 2614 spin_lock(&buf->lock); 2615 2616 w = RB_FIRST(&buf->keys, struct keybuf_key, node); 2617 2618 while (w && w->private) 2619 w = RB_NEXT(w, node); 2620 2621 if (w) 2622 w->private = ERR_PTR(-EINTR); 2623 2624 spin_unlock(&buf->lock); 2625 return w; 2626 } 2627 2628 struct keybuf_key *bch_keybuf_next_rescan(struct cache_set *c, 2629 struct keybuf *buf, 2630 struct bkey *end, 2631 keybuf_pred_fn *pred) 2632 { 2633 struct keybuf_key *ret; 2634 2635 while (1) { 2636 ret = bch_keybuf_next(buf); 2637 if (ret) 2638 break; 2639 2640 if (bkey_cmp(&buf->last_scanned, end) >= 0) { 2641 pr_debug("scan finished"); 2642 break; 2643 } 2644 2645 bch_refill_keybuf(c, buf, end, pred); 2646 } 2647 2648 return ret; 2649 } 2650 2651 void bch_keybuf_init(struct keybuf *buf) 2652 { 2653 buf->last_scanned = MAX_KEY; 2654 buf->keys = RB_ROOT; 2655 2656 spin_lock_init(&buf->lock); 2657 array_allocator_init(&buf->freelist); 2658 } 2659