1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com> 4 * 5 * Uses a block device as cache for other block devices; optimized for SSDs. 6 * All allocation is done in buckets, which should match the erase block size 7 * of the device. 8 * 9 * Buckets containing cached data are kept on a heap sorted by priority; 10 * bucket priority is increased on cache hit, and periodically all the buckets 11 * on the heap have their priority scaled down. This currently is just used as 12 * an LRU but in the future should allow for more intelligent heuristics. 13 * 14 * Buckets have an 8 bit counter; freeing is accomplished by incrementing the 15 * counter. Garbage collection is used to remove stale pointers. 16 * 17 * Indexing is done via a btree; nodes are not necessarily fully sorted, rather 18 * as keys are inserted we only sort the pages that have not yet been written. 19 * When garbage collection is run, we resort the entire node. 20 * 21 * All configuration is done via sysfs; see Documentation/admin-guide/bcache.rst. 22 */ 23 24 #include "bcache.h" 25 #include "btree.h" 26 #include "debug.h" 27 #include "extents.h" 28 29 #include <linux/slab.h> 30 #include <linux/bitops.h> 31 #include <linux/hash.h> 32 #include <linux/kthread.h> 33 #include <linux/prefetch.h> 34 #include <linux/random.h> 35 #include <linux/rcupdate.h> 36 #include <linux/sched/clock.h> 37 #include <linux/rculist.h> 38 39 #include <trace/events/bcache.h> 40 41 /* 42 * Todo: 43 * register_bcache: Return errors out to userspace correctly 44 * 45 * Writeback: don't undirty key until after a cache flush 46 * 47 * Create an iterator for key pointers 48 * 49 * On btree write error, mark bucket such that it won't be freed from the cache 50 * 51 * Journalling: 52 * Check for bad keys in replay 53 * Propagate barriers 54 * Refcount journal entries in journal_replay 55 * 56 * Garbage collection: 57 * Finish incremental gc 58 * Gc should free old UUIDs, data for invalid UUIDs 59 * 60 * Provide a way to list backing device UUIDs we have data cached for, and 61 * probably how long it's been since we've seen them, and a way to invalidate 62 * dirty data for devices that will never be attached again 63 * 64 * Keep 1 min/5 min/15 min statistics of how busy a block device has been, so 65 * that based on that and how much dirty data we have we can keep writeback 66 * from being starved 67 * 68 * Add a tracepoint or somesuch to watch for writeback starvation 69 * 70 * When btree depth > 1 and splitting an interior node, we have to make sure 71 * alloc_bucket() cannot fail. This should be true but is not completely 72 * obvious. 73 * 74 * Plugging? 75 * 76 * If data write is less than hard sector size of ssd, round up offset in open 77 * bucket to the next whole sector 78 * 79 * Superblock needs to be fleshed out for multiple cache devices 80 * 81 * Add a sysfs tunable for the number of writeback IOs in flight 82 * 83 * Add a sysfs tunable for the number of open data buckets 84 * 85 * IO tracking: Can we track when one process is doing io on behalf of another? 86 * IO tracking: Don't use just an average, weigh more recent stuff higher 87 * 88 * Test module load/unload 89 */ 90 91 #define MAX_NEED_GC 64 92 #define MAX_SAVE_PRIO 72 93 #define MAX_GC_TIMES 100 94 #define MIN_GC_NODES 100 95 #define GC_SLEEP_MS 100 96 97 #define PTR_DIRTY_BIT (((uint64_t) 1 << 36)) 98 99 #define PTR_HASH(c, k) \ 100 (((k)->ptr[0] >> c->bucket_bits) | PTR_GEN(k, 0)) 101 102 #define insert_lock(s, b) ((b)->level <= (s)->lock) 103 104 /* 105 * These macros are for recursing down the btree - they handle the details of 106 * locking and looking up nodes in the cache for you. They're best treated as 107 * mere syntax when reading code that uses them. 108 * 109 * op->lock determines whether we take a read or a write lock at a given depth. 110 * If you've got a read lock and find that you need a write lock (i.e. you're 111 * going to have to split), set op->lock and return -EINTR; btree_root() will 112 * call you again and you'll have the correct lock. 113 */ 114 115 /** 116 * btree - recurse down the btree on a specified key 117 * @fn: function to call, which will be passed the child node 118 * @key: key to recurse on 119 * @b: parent btree node 120 * @op: pointer to struct btree_op 121 */ 122 #define btree(fn, key, b, op, ...) \ 123 ({ \ 124 int _r, l = (b)->level - 1; \ 125 bool _w = l <= (op)->lock; \ 126 struct btree *_child = bch_btree_node_get((b)->c, op, key, l, \ 127 _w, b); \ 128 if (!IS_ERR(_child)) { \ 129 _r = bch_btree_ ## fn(_child, op, ##__VA_ARGS__); \ 130 rw_unlock(_w, _child); \ 131 } else \ 132 _r = PTR_ERR(_child); \ 133 _r; \ 134 }) 135 136 /** 137 * btree_root - call a function on the root of the btree 138 * @fn: function to call, which will be passed the child node 139 * @c: cache set 140 * @op: pointer to struct btree_op 141 */ 142 #define btree_root(fn, c, op, ...) \ 143 ({ \ 144 int _r = -EINTR; \ 145 do { \ 146 struct btree *_b = (c)->root; \ 147 bool _w = insert_lock(op, _b); \ 148 rw_lock(_w, _b, _b->level); \ 149 if (_b == (c)->root && \ 150 _w == insert_lock(op, _b)) { \ 151 _r = bch_btree_ ## fn(_b, op, ##__VA_ARGS__); \ 152 } \ 153 rw_unlock(_w, _b); \ 154 bch_cannibalize_unlock(c); \ 155 if (_r == -EINTR) \ 156 schedule(); \ 157 } while (_r == -EINTR); \ 158 \ 159 finish_wait(&(c)->btree_cache_wait, &(op)->wait); \ 160 _r; \ 161 }) 162 163 static inline struct bset *write_block(struct btree *b) 164 { 165 return ((void *) btree_bset_first(b)) + b->written * block_bytes(b->c); 166 } 167 168 static void bch_btree_init_next(struct btree *b) 169 { 170 /* If not a leaf node, always sort */ 171 if (b->level && b->keys.nsets) 172 bch_btree_sort(&b->keys, &b->c->sort); 173 else 174 bch_btree_sort_lazy(&b->keys, &b->c->sort); 175 176 if (b->written < btree_blocks(b)) 177 bch_bset_init_next(&b->keys, write_block(b), 178 bset_magic(&b->c->sb)); 179 180 } 181 182 /* Btree key manipulation */ 183 184 void bkey_put(struct cache_set *c, struct bkey *k) 185 { 186 unsigned int i; 187 188 for (i = 0; i < KEY_PTRS(k); i++) 189 if (ptr_available(c, k, i)) 190 atomic_dec_bug(&PTR_BUCKET(c, k, i)->pin); 191 } 192 193 /* Btree IO */ 194 195 static uint64_t btree_csum_set(struct btree *b, struct bset *i) 196 { 197 uint64_t crc = b->key.ptr[0]; 198 void *data = (void *) i + 8, *end = bset_bkey_last(i); 199 200 crc = bch_crc64_update(crc, data, end - data); 201 return crc ^ 0xffffffffffffffffULL; 202 } 203 204 void bch_btree_node_read_done(struct btree *b) 205 { 206 const char *err = "bad btree header"; 207 struct bset *i = btree_bset_first(b); 208 struct btree_iter *iter; 209 210 /* 211 * c->fill_iter can allocate an iterator with more memory space 212 * than static MAX_BSETS. 213 * See the comment arount cache_set->fill_iter. 214 */ 215 iter = mempool_alloc(&b->c->fill_iter, GFP_NOIO); 216 iter->size = b->c->sb.bucket_size / b->c->sb.block_size; 217 iter->used = 0; 218 219 #ifdef CONFIG_BCACHE_DEBUG 220 iter->b = &b->keys; 221 #endif 222 223 if (!i->seq) 224 goto err; 225 226 for (; 227 b->written < btree_blocks(b) && i->seq == b->keys.set[0].data->seq; 228 i = write_block(b)) { 229 err = "unsupported bset version"; 230 if (i->version > BCACHE_BSET_VERSION) 231 goto err; 232 233 err = "bad btree header"; 234 if (b->written + set_blocks(i, block_bytes(b->c)) > 235 btree_blocks(b)) 236 goto err; 237 238 err = "bad magic"; 239 if (i->magic != bset_magic(&b->c->sb)) 240 goto err; 241 242 err = "bad checksum"; 243 switch (i->version) { 244 case 0: 245 if (i->csum != csum_set(i)) 246 goto err; 247 break; 248 case BCACHE_BSET_VERSION: 249 if (i->csum != btree_csum_set(b, i)) 250 goto err; 251 break; 252 } 253 254 err = "empty set"; 255 if (i != b->keys.set[0].data && !i->keys) 256 goto err; 257 258 bch_btree_iter_push(iter, i->start, bset_bkey_last(i)); 259 260 b->written += set_blocks(i, block_bytes(b->c)); 261 } 262 263 err = "corrupted btree"; 264 for (i = write_block(b); 265 bset_sector_offset(&b->keys, i) < KEY_SIZE(&b->key); 266 i = ((void *) i) + block_bytes(b->c)) 267 if (i->seq == b->keys.set[0].data->seq) 268 goto err; 269 270 bch_btree_sort_and_fix_extents(&b->keys, iter, &b->c->sort); 271 272 i = b->keys.set[0].data; 273 err = "short btree key"; 274 if (b->keys.set[0].size && 275 bkey_cmp(&b->key, &b->keys.set[0].end) < 0) 276 goto err; 277 278 if (b->written < btree_blocks(b)) 279 bch_bset_init_next(&b->keys, write_block(b), 280 bset_magic(&b->c->sb)); 281 out: 282 mempool_free(iter, &b->c->fill_iter); 283 return; 284 err: 285 set_btree_node_io_error(b); 286 bch_cache_set_error(b->c, "%s at bucket %zu, block %u, %u keys", 287 err, PTR_BUCKET_NR(b->c, &b->key, 0), 288 bset_block_offset(b, i), i->keys); 289 goto out; 290 } 291 292 static void btree_node_read_endio(struct bio *bio) 293 { 294 struct closure *cl = bio->bi_private; 295 296 closure_put(cl); 297 } 298 299 static void bch_btree_node_read(struct btree *b) 300 { 301 uint64_t start_time = local_clock(); 302 struct closure cl; 303 struct bio *bio; 304 305 trace_bcache_btree_read(b); 306 307 closure_init_stack(&cl); 308 309 bio = bch_bbio_alloc(b->c); 310 bio->bi_iter.bi_size = KEY_SIZE(&b->key) << 9; 311 bio->bi_end_io = btree_node_read_endio; 312 bio->bi_private = &cl; 313 bio->bi_opf = REQ_OP_READ | REQ_META; 314 315 bch_bio_map(bio, b->keys.set[0].data); 316 317 bch_submit_bbio(bio, b->c, &b->key, 0); 318 closure_sync(&cl); 319 320 if (bio->bi_status) 321 set_btree_node_io_error(b); 322 323 bch_bbio_free(bio, b->c); 324 325 if (btree_node_io_error(b)) 326 goto err; 327 328 bch_btree_node_read_done(b); 329 bch_time_stats_update(&b->c->btree_read_time, start_time); 330 331 return; 332 err: 333 bch_cache_set_error(b->c, "io error reading bucket %zu", 334 PTR_BUCKET_NR(b->c, &b->key, 0)); 335 } 336 337 static void btree_complete_write(struct btree *b, struct btree_write *w) 338 { 339 if (w->prio_blocked && 340 !atomic_sub_return(w->prio_blocked, &b->c->prio_blocked)) 341 wake_up_allocators(b->c); 342 343 if (w->journal) { 344 atomic_dec_bug(w->journal); 345 __closure_wake_up(&b->c->journal.wait); 346 } 347 348 w->prio_blocked = 0; 349 w->journal = NULL; 350 } 351 352 static void btree_node_write_unlock(struct closure *cl) 353 { 354 struct btree *b = container_of(cl, struct btree, io); 355 356 up(&b->io_mutex); 357 } 358 359 static void __btree_node_write_done(struct closure *cl) 360 { 361 struct btree *b = container_of(cl, struct btree, io); 362 struct btree_write *w = btree_prev_write(b); 363 364 bch_bbio_free(b->bio, b->c); 365 b->bio = NULL; 366 btree_complete_write(b, w); 367 368 if (btree_node_dirty(b)) 369 schedule_delayed_work(&b->work, 30 * HZ); 370 371 closure_return_with_destructor(cl, btree_node_write_unlock); 372 } 373 374 static void btree_node_write_done(struct closure *cl) 375 { 376 struct btree *b = container_of(cl, struct btree, io); 377 378 bio_free_pages(b->bio); 379 __btree_node_write_done(cl); 380 } 381 382 static void btree_node_write_endio(struct bio *bio) 383 { 384 struct closure *cl = bio->bi_private; 385 struct btree *b = container_of(cl, struct btree, io); 386 387 if (bio->bi_status) 388 set_btree_node_io_error(b); 389 390 bch_bbio_count_io_errors(b->c, bio, bio->bi_status, "writing btree"); 391 closure_put(cl); 392 } 393 394 static void do_btree_node_write(struct btree *b) 395 { 396 struct closure *cl = &b->io; 397 struct bset *i = btree_bset_last(b); 398 BKEY_PADDED(key) k; 399 400 i->version = BCACHE_BSET_VERSION; 401 i->csum = btree_csum_set(b, i); 402 403 BUG_ON(b->bio); 404 b->bio = bch_bbio_alloc(b->c); 405 406 b->bio->bi_end_io = btree_node_write_endio; 407 b->bio->bi_private = cl; 408 b->bio->bi_iter.bi_size = roundup(set_bytes(i), block_bytes(b->c)); 409 b->bio->bi_opf = REQ_OP_WRITE | REQ_META | REQ_FUA; 410 bch_bio_map(b->bio, i); 411 412 /* 413 * If we're appending to a leaf node, we don't technically need FUA - 414 * this write just needs to be persisted before the next journal write, 415 * which will be marked FLUSH|FUA. 416 * 417 * Similarly if we're writing a new btree root - the pointer is going to 418 * be in the next journal entry. 419 * 420 * But if we're writing a new btree node (that isn't a root) or 421 * appending to a non leaf btree node, we need either FUA or a flush 422 * when we write the parent with the new pointer. FUA is cheaper than a 423 * flush, and writes appending to leaf nodes aren't blocking anything so 424 * just make all btree node writes FUA to keep things sane. 425 */ 426 427 bkey_copy(&k.key, &b->key); 428 SET_PTR_OFFSET(&k.key, 0, PTR_OFFSET(&k.key, 0) + 429 bset_sector_offset(&b->keys, i)); 430 431 if (!bch_bio_alloc_pages(b->bio, __GFP_NOWARN|GFP_NOWAIT)) { 432 int j; 433 struct bio_vec *bv; 434 void *base = (void *) ((unsigned long) i & ~(PAGE_SIZE - 1)); 435 struct bvec_iter_all iter_all; 436 437 bio_for_each_segment_all(bv, b->bio, j, iter_all) 438 memcpy(page_address(bv->bv_page), 439 base + j * PAGE_SIZE, PAGE_SIZE); 440 441 bch_submit_bbio(b->bio, b->c, &k.key, 0); 442 443 continue_at(cl, btree_node_write_done, NULL); 444 } else { 445 /* 446 * No problem for multipage bvec since the bio is 447 * just allocated 448 */ 449 b->bio->bi_vcnt = 0; 450 bch_bio_map(b->bio, i); 451 452 bch_submit_bbio(b->bio, b->c, &k.key, 0); 453 454 closure_sync(cl); 455 continue_at_nobarrier(cl, __btree_node_write_done, NULL); 456 } 457 } 458 459 void __bch_btree_node_write(struct btree *b, struct closure *parent) 460 { 461 struct bset *i = btree_bset_last(b); 462 463 lockdep_assert_held(&b->write_lock); 464 465 trace_bcache_btree_write(b); 466 467 BUG_ON(current->bio_list); 468 BUG_ON(b->written >= btree_blocks(b)); 469 BUG_ON(b->written && !i->keys); 470 BUG_ON(btree_bset_first(b)->seq != i->seq); 471 bch_check_keys(&b->keys, "writing"); 472 473 cancel_delayed_work(&b->work); 474 475 /* If caller isn't waiting for write, parent refcount is cache set */ 476 down(&b->io_mutex); 477 closure_init(&b->io, parent ?: &b->c->cl); 478 479 clear_bit(BTREE_NODE_dirty, &b->flags); 480 change_bit(BTREE_NODE_write_idx, &b->flags); 481 482 do_btree_node_write(b); 483 484 atomic_long_add(set_blocks(i, block_bytes(b->c)) * b->c->sb.block_size, 485 &PTR_CACHE(b->c, &b->key, 0)->btree_sectors_written); 486 487 b->written += set_blocks(i, block_bytes(b->c)); 488 } 489 490 void bch_btree_node_write(struct btree *b, struct closure *parent) 491 { 492 unsigned int nsets = b->keys.nsets; 493 494 lockdep_assert_held(&b->lock); 495 496 __bch_btree_node_write(b, parent); 497 498 /* 499 * do verify if there was more than one set initially (i.e. we did a 500 * sort) and we sorted down to a single set: 501 */ 502 if (nsets && !b->keys.nsets) 503 bch_btree_verify(b); 504 505 bch_btree_init_next(b); 506 } 507 508 static void bch_btree_node_write_sync(struct btree *b) 509 { 510 struct closure cl; 511 512 closure_init_stack(&cl); 513 514 mutex_lock(&b->write_lock); 515 bch_btree_node_write(b, &cl); 516 mutex_unlock(&b->write_lock); 517 518 closure_sync(&cl); 519 } 520 521 static void btree_node_write_work(struct work_struct *w) 522 { 523 struct btree *b = container_of(to_delayed_work(w), struct btree, work); 524 525 mutex_lock(&b->write_lock); 526 if (btree_node_dirty(b)) 527 __bch_btree_node_write(b, NULL); 528 mutex_unlock(&b->write_lock); 529 } 530 531 static void bch_btree_leaf_dirty(struct btree *b, atomic_t *journal_ref) 532 { 533 struct bset *i = btree_bset_last(b); 534 struct btree_write *w = btree_current_write(b); 535 536 lockdep_assert_held(&b->write_lock); 537 538 BUG_ON(!b->written); 539 BUG_ON(!i->keys); 540 541 if (!btree_node_dirty(b)) 542 schedule_delayed_work(&b->work, 30 * HZ); 543 544 set_btree_node_dirty(b); 545 546 if (journal_ref) { 547 if (w->journal && 548 journal_pin_cmp(b->c, w->journal, journal_ref)) { 549 atomic_dec_bug(w->journal); 550 w->journal = NULL; 551 } 552 553 if (!w->journal) { 554 w->journal = journal_ref; 555 atomic_inc(w->journal); 556 } 557 } 558 559 /* Force write if set is too big */ 560 if (set_bytes(i) > PAGE_SIZE - 48 && 561 !current->bio_list) 562 bch_btree_node_write(b, NULL); 563 } 564 565 /* 566 * Btree in memory cache - allocation/freeing 567 * mca -> memory cache 568 */ 569 570 #define mca_reserve(c) (((c->root && c->root->level) \ 571 ? c->root->level : 1) * 8 + 16) 572 #define mca_can_free(c) \ 573 max_t(int, 0, c->btree_cache_used - mca_reserve(c)) 574 575 static void mca_data_free(struct btree *b) 576 { 577 BUG_ON(b->io_mutex.count != 1); 578 579 bch_btree_keys_free(&b->keys); 580 581 b->c->btree_cache_used--; 582 list_move(&b->list, &b->c->btree_cache_freed); 583 } 584 585 static void mca_bucket_free(struct btree *b) 586 { 587 BUG_ON(btree_node_dirty(b)); 588 589 b->key.ptr[0] = 0; 590 hlist_del_init_rcu(&b->hash); 591 list_move(&b->list, &b->c->btree_cache_freeable); 592 } 593 594 static unsigned int btree_order(struct bkey *k) 595 { 596 return ilog2(KEY_SIZE(k) / PAGE_SECTORS ?: 1); 597 } 598 599 static void mca_data_alloc(struct btree *b, struct bkey *k, gfp_t gfp) 600 { 601 if (!bch_btree_keys_alloc(&b->keys, 602 max_t(unsigned int, 603 ilog2(b->c->btree_pages), 604 btree_order(k)), 605 gfp)) { 606 b->c->btree_cache_used++; 607 list_move(&b->list, &b->c->btree_cache); 608 } else { 609 list_move(&b->list, &b->c->btree_cache_freed); 610 } 611 } 612 613 static struct btree *mca_bucket_alloc(struct cache_set *c, 614 struct bkey *k, gfp_t gfp) 615 { 616 struct btree *b = kzalloc(sizeof(struct btree), gfp); 617 618 if (!b) 619 return NULL; 620 621 init_rwsem(&b->lock); 622 lockdep_set_novalidate_class(&b->lock); 623 mutex_init(&b->write_lock); 624 lockdep_set_novalidate_class(&b->write_lock); 625 INIT_LIST_HEAD(&b->list); 626 INIT_DELAYED_WORK(&b->work, btree_node_write_work); 627 b->c = c; 628 sema_init(&b->io_mutex, 1); 629 630 mca_data_alloc(b, k, gfp); 631 return b; 632 } 633 634 static int mca_reap(struct btree *b, unsigned int min_order, bool flush) 635 { 636 struct closure cl; 637 638 closure_init_stack(&cl); 639 lockdep_assert_held(&b->c->bucket_lock); 640 641 if (!down_write_trylock(&b->lock)) 642 return -ENOMEM; 643 644 BUG_ON(btree_node_dirty(b) && !b->keys.set[0].data); 645 646 if (b->keys.page_order < min_order) 647 goto out_unlock; 648 649 if (!flush) { 650 if (btree_node_dirty(b)) 651 goto out_unlock; 652 653 if (down_trylock(&b->io_mutex)) 654 goto out_unlock; 655 up(&b->io_mutex); 656 } 657 658 mutex_lock(&b->write_lock); 659 if (btree_node_dirty(b)) 660 __bch_btree_node_write(b, &cl); 661 mutex_unlock(&b->write_lock); 662 663 closure_sync(&cl); 664 665 /* wait for any in flight btree write */ 666 down(&b->io_mutex); 667 up(&b->io_mutex); 668 669 return 0; 670 out_unlock: 671 rw_unlock(true, b); 672 return -ENOMEM; 673 } 674 675 static unsigned long bch_mca_scan(struct shrinker *shrink, 676 struct shrink_control *sc) 677 { 678 struct cache_set *c = container_of(shrink, struct cache_set, shrink); 679 struct btree *b, *t; 680 unsigned long i, nr = sc->nr_to_scan; 681 unsigned long freed = 0; 682 unsigned int btree_cache_used; 683 684 if (c->shrinker_disabled) 685 return SHRINK_STOP; 686 687 if (c->btree_cache_alloc_lock) 688 return SHRINK_STOP; 689 690 /* Return -1 if we can't do anything right now */ 691 if (sc->gfp_mask & __GFP_IO) 692 mutex_lock(&c->bucket_lock); 693 else if (!mutex_trylock(&c->bucket_lock)) 694 return -1; 695 696 /* 697 * It's _really_ critical that we don't free too many btree nodes - we 698 * have to always leave ourselves a reserve. The reserve is how we 699 * guarantee that allocating memory for a new btree node can always 700 * succeed, so that inserting keys into the btree can always succeed and 701 * IO can always make forward progress: 702 */ 703 nr /= c->btree_pages; 704 nr = min_t(unsigned long, nr, mca_can_free(c)); 705 706 i = 0; 707 btree_cache_used = c->btree_cache_used; 708 list_for_each_entry_safe(b, t, &c->btree_cache_freeable, list) { 709 if (nr <= 0) 710 goto out; 711 712 if (++i > 3 && 713 !mca_reap(b, 0, false)) { 714 mca_data_free(b); 715 rw_unlock(true, b); 716 freed++; 717 } 718 nr--; 719 } 720 721 for (; (nr--) && i < btree_cache_used; i++) { 722 if (list_empty(&c->btree_cache)) 723 goto out; 724 725 b = list_first_entry(&c->btree_cache, struct btree, list); 726 list_rotate_left(&c->btree_cache); 727 728 if (!b->accessed && 729 !mca_reap(b, 0, false)) { 730 mca_bucket_free(b); 731 mca_data_free(b); 732 rw_unlock(true, b); 733 freed++; 734 } else 735 b->accessed = 0; 736 } 737 out: 738 mutex_unlock(&c->bucket_lock); 739 return freed * c->btree_pages; 740 } 741 742 static unsigned long bch_mca_count(struct shrinker *shrink, 743 struct shrink_control *sc) 744 { 745 struct cache_set *c = container_of(shrink, struct cache_set, shrink); 746 747 if (c->shrinker_disabled) 748 return 0; 749 750 if (c->btree_cache_alloc_lock) 751 return 0; 752 753 return mca_can_free(c) * c->btree_pages; 754 } 755 756 void bch_btree_cache_free(struct cache_set *c) 757 { 758 struct btree *b; 759 struct closure cl; 760 761 closure_init_stack(&cl); 762 763 if (c->shrink.list.next) 764 unregister_shrinker(&c->shrink); 765 766 mutex_lock(&c->bucket_lock); 767 768 #ifdef CONFIG_BCACHE_DEBUG 769 if (c->verify_data) 770 list_move(&c->verify_data->list, &c->btree_cache); 771 772 free_pages((unsigned long) c->verify_ondisk, ilog2(bucket_pages(c))); 773 #endif 774 775 list_splice(&c->btree_cache_freeable, 776 &c->btree_cache); 777 778 while (!list_empty(&c->btree_cache)) { 779 b = list_first_entry(&c->btree_cache, struct btree, list); 780 781 if (btree_node_dirty(b)) 782 btree_complete_write(b, btree_current_write(b)); 783 clear_bit(BTREE_NODE_dirty, &b->flags); 784 785 mca_data_free(b); 786 } 787 788 while (!list_empty(&c->btree_cache_freed)) { 789 b = list_first_entry(&c->btree_cache_freed, 790 struct btree, list); 791 list_del(&b->list); 792 cancel_delayed_work_sync(&b->work); 793 kfree(b); 794 } 795 796 mutex_unlock(&c->bucket_lock); 797 } 798 799 int bch_btree_cache_alloc(struct cache_set *c) 800 { 801 unsigned int i; 802 803 for (i = 0; i < mca_reserve(c); i++) 804 if (!mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL)) 805 return -ENOMEM; 806 807 list_splice_init(&c->btree_cache, 808 &c->btree_cache_freeable); 809 810 #ifdef CONFIG_BCACHE_DEBUG 811 mutex_init(&c->verify_lock); 812 813 c->verify_ondisk = (void *) 814 __get_free_pages(GFP_KERNEL, ilog2(bucket_pages(c))); 815 816 c->verify_data = mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL); 817 818 if (c->verify_data && 819 c->verify_data->keys.set->data) 820 list_del_init(&c->verify_data->list); 821 else 822 c->verify_data = NULL; 823 #endif 824 825 c->shrink.count_objects = bch_mca_count; 826 c->shrink.scan_objects = bch_mca_scan; 827 c->shrink.seeks = 4; 828 c->shrink.batch = c->btree_pages * 2; 829 830 if (register_shrinker(&c->shrink)) 831 pr_warn("bcache: %s: could not register shrinker", 832 __func__); 833 834 return 0; 835 } 836 837 /* Btree in memory cache - hash table */ 838 839 static struct hlist_head *mca_hash(struct cache_set *c, struct bkey *k) 840 { 841 return &c->bucket_hash[hash_32(PTR_HASH(c, k), BUCKET_HASH_BITS)]; 842 } 843 844 static struct btree *mca_find(struct cache_set *c, struct bkey *k) 845 { 846 struct btree *b; 847 848 rcu_read_lock(); 849 hlist_for_each_entry_rcu(b, mca_hash(c, k), hash) 850 if (PTR_HASH(c, &b->key) == PTR_HASH(c, k)) 851 goto out; 852 b = NULL; 853 out: 854 rcu_read_unlock(); 855 return b; 856 } 857 858 static int mca_cannibalize_lock(struct cache_set *c, struct btree_op *op) 859 { 860 struct task_struct *old; 861 862 old = cmpxchg(&c->btree_cache_alloc_lock, NULL, current); 863 if (old && old != current) { 864 if (op) 865 prepare_to_wait(&c->btree_cache_wait, &op->wait, 866 TASK_UNINTERRUPTIBLE); 867 return -EINTR; 868 } 869 870 return 0; 871 } 872 873 static struct btree *mca_cannibalize(struct cache_set *c, struct btree_op *op, 874 struct bkey *k) 875 { 876 struct btree *b; 877 878 trace_bcache_btree_cache_cannibalize(c); 879 880 if (mca_cannibalize_lock(c, op)) 881 return ERR_PTR(-EINTR); 882 883 list_for_each_entry_reverse(b, &c->btree_cache, list) 884 if (!mca_reap(b, btree_order(k), false)) 885 return b; 886 887 list_for_each_entry_reverse(b, &c->btree_cache, list) 888 if (!mca_reap(b, btree_order(k), true)) 889 return b; 890 891 WARN(1, "btree cache cannibalize failed\n"); 892 return ERR_PTR(-ENOMEM); 893 } 894 895 /* 896 * We can only have one thread cannibalizing other cached btree nodes at a time, 897 * or we'll deadlock. We use an open coded mutex to ensure that, which a 898 * cannibalize_bucket() will take. This means every time we unlock the root of 899 * the btree, we need to release this lock if we have it held. 900 */ 901 static void bch_cannibalize_unlock(struct cache_set *c) 902 { 903 if (c->btree_cache_alloc_lock == current) { 904 c->btree_cache_alloc_lock = NULL; 905 wake_up(&c->btree_cache_wait); 906 } 907 } 908 909 static struct btree *mca_alloc(struct cache_set *c, struct btree_op *op, 910 struct bkey *k, int level) 911 { 912 struct btree *b; 913 914 BUG_ON(current->bio_list); 915 916 lockdep_assert_held(&c->bucket_lock); 917 918 if (mca_find(c, k)) 919 return NULL; 920 921 /* btree_free() doesn't free memory; it sticks the node on the end of 922 * the list. Check if there's any freed nodes there: 923 */ 924 list_for_each_entry(b, &c->btree_cache_freeable, list) 925 if (!mca_reap(b, btree_order(k), false)) 926 goto out; 927 928 /* We never free struct btree itself, just the memory that holds the on 929 * disk node. Check the freed list before allocating a new one: 930 */ 931 list_for_each_entry(b, &c->btree_cache_freed, list) 932 if (!mca_reap(b, 0, false)) { 933 mca_data_alloc(b, k, __GFP_NOWARN|GFP_NOIO); 934 if (!b->keys.set[0].data) 935 goto err; 936 else 937 goto out; 938 } 939 940 b = mca_bucket_alloc(c, k, __GFP_NOWARN|GFP_NOIO); 941 if (!b) 942 goto err; 943 944 BUG_ON(!down_write_trylock(&b->lock)); 945 if (!b->keys.set->data) 946 goto err; 947 out: 948 BUG_ON(b->io_mutex.count != 1); 949 950 bkey_copy(&b->key, k); 951 list_move(&b->list, &c->btree_cache); 952 hlist_del_init_rcu(&b->hash); 953 hlist_add_head_rcu(&b->hash, mca_hash(c, k)); 954 955 lock_set_subclass(&b->lock.dep_map, level + 1, _THIS_IP_); 956 b->parent = (void *) ~0UL; 957 b->flags = 0; 958 b->written = 0; 959 b->level = level; 960 961 if (!b->level) 962 bch_btree_keys_init(&b->keys, &bch_extent_keys_ops, 963 &b->c->expensive_debug_checks); 964 else 965 bch_btree_keys_init(&b->keys, &bch_btree_keys_ops, 966 &b->c->expensive_debug_checks); 967 968 return b; 969 err: 970 if (b) 971 rw_unlock(true, b); 972 973 b = mca_cannibalize(c, op, k); 974 if (!IS_ERR(b)) 975 goto out; 976 977 return b; 978 } 979 980 /* 981 * bch_btree_node_get - find a btree node in the cache and lock it, reading it 982 * in from disk if necessary. 983 * 984 * If IO is necessary and running under generic_make_request, returns -EAGAIN. 985 * 986 * The btree node will have either a read or a write lock held, depending on 987 * level and op->lock. 988 */ 989 struct btree *bch_btree_node_get(struct cache_set *c, struct btree_op *op, 990 struct bkey *k, int level, bool write, 991 struct btree *parent) 992 { 993 int i = 0; 994 struct btree *b; 995 996 BUG_ON(level < 0); 997 retry: 998 b = mca_find(c, k); 999 1000 if (!b) { 1001 if (current->bio_list) 1002 return ERR_PTR(-EAGAIN); 1003 1004 mutex_lock(&c->bucket_lock); 1005 b = mca_alloc(c, op, k, level); 1006 mutex_unlock(&c->bucket_lock); 1007 1008 if (!b) 1009 goto retry; 1010 if (IS_ERR(b)) 1011 return b; 1012 1013 bch_btree_node_read(b); 1014 1015 if (!write) 1016 downgrade_write(&b->lock); 1017 } else { 1018 rw_lock(write, b, level); 1019 if (PTR_HASH(c, &b->key) != PTR_HASH(c, k)) { 1020 rw_unlock(write, b); 1021 goto retry; 1022 } 1023 BUG_ON(b->level != level); 1024 } 1025 1026 if (btree_node_io_error(b)) { 1027 rw_unlock(write, b); 1028 return ERR_PTR(-EIO); 1029 } 1030 1031 BUG_ON(!b->written); 1032 1033 b->parent = parent; 1034 b->accessed = 1; 1035 1036 for (; i <= b->keys.nsets && b->keys.set[i].size; i++) { 1037 prefetch(b->keys.set[i].tree); 1038 prefetch(b->keys.set[i].data); 1039 } 1040 1041 for (; i <= b->keys.nsets; i++) 1042 prefetch(b->keys.set[i].data); 1043 1044 return b; 1045 } 1046 1047 static void btree_node_prefetch(struct btree *parent, struct bkey *k) 1048 { 1049 struct btree *b; 1050 1051 mutex_lock(&parent->c->bucket_lock); 1052 b = mca_alloc(parent->c, NULL, k, parent->level - 1); 1053 mutex_unlock(&parent->c->bucket_lock); 1054 1055 if (!IS_ERR_OR_NULL(b)) { 1056 b->parent = parent; 1057 bch_btree_node_read(b); 1058 rw_unlock(true, b); 1059 } 1060 } 1061 1062 /* Btree alloc */ 1063 1064 static void btree_node_free(struct btree *b) 1065 { 1066 trace_bcache_btree_node_free(b); 1067 1068 BUG_ON(b == b->c->root); 1069 1070 mutex_lock(&b->write_lock); 1071 1072 if (btree_node_dirty(b)) 1073 btree_complete_write(b, btree_current_write(b)); 1074 clear_bit(BTREE_NODE_dirty, &b->flags); 1075 1076 mutex_unlock(&b->write_lock); 1077 1078 cancel_delayed_work(&b->work); 1079 1080 mutex_lock(&b->c->bucket_lock); 1081 bch_bucket_free(b->c, &b->key); 1082 mca_bucket_free(b); 1083 mutex_unlock(&b->c->bucket_lock); 1084 } 1085 1086 struct btree *__bch_btree_node_alloc(struct cache_set *c, struct btree_op *op, 1087 int level, bool wait, 1088 struct btree *parent) 1089 { 1090 BKEY_PADDED(key) k; 1091 struct btree *b = ERR_PTR(-EAGAIN); 1092 1093 mutex_lock(&c->bucket_lock); 1094 retry: 1095 if (__bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, 1, wait)) 1096 goto err; 1097 1098 bkey_put(c, &k.key); 1099 SET_KEY_SIZE(&k.key, c->btree_pages * PAGE_SECTORS); 1100 1101 b = mca_alloc(c, op, &k.key, level); 1102 if (IS_ERR(b)) 1103 goto err_free; 1104 1105 if (!b) { 1106 cache_bug(c, 1107 "Tried to allocate bucket that was in btree cache"); 1108 goto retry; 1109 } 1110 1111 b->accessed = 1; 1112 b->parent = parent; 1113 bch_bset_init_next(&b->keys, b->keys.set->data, bset_magic(&b->c->sb)); 1114 1115 mutex_unlock(&c->bucket_lock); 1116 1117 trace_bcache_btree_node_alloc(b); 1118 return b; 1119 err_free: 1120 bch_bucket_free(c, &k.key); 1121 err: 1122 mutex_unlock(&c->bucket_lock); 1123 1124 trace_bcache_btree_node_alloc_fail(c); 1125 return b; 1126 } 1127 1128 static struct btree *bch_btree_node_alloc(struct cache_set *c, 1129 struct btree_op *op, int level, 1130 struct btree *parent) 1131 { 1132 return __bch_btree_node_alloc(c, op, level, op != NULL, parent); 1133 } 1134 1135 static struct btree *btree_node_alloc_replacement(struct btree *b, 1136 struct btree_op *op) 1137 { 1138 struct btree *n = bch_btree_node_alloc(b->c, op, b->level, b->parent); 1139 1140 if (!IS_ERR_OR_NULL(n)) { 1141 mutex_lock(&n->write_lock); 1142 bch_btree_sort_into(&b->keys, &n->keys, &b->c->sort); 1143 bkey_copy_key(&n->key, &b->key); 1144 mutex_unlock(&n->write_lock); 1145 } 1146 1147 return n; 1148 } 1149 1150 static void make_btree_freeing_key(struct btree *b, struct bkey *k) 1151 { 1152 unsigned int i; 1153 1154 mutex_lock(&b->c->bucket_lock); 1155 1156 atomic_inc(&b->c->prio_blocked); 1157 1158 bkey_copy(k, &b->key); 1159 bkey_copy_key(k, &ZERO_KEY); 1160 1161 for (i = 0; i < KEY_PTRS(k); i++) 1162 SET_PTR_GEN(k, i, 1163 bch_inc_gen(PTR_CACHE(b->c, &b->key, i), 1164 PTR_BUCKET(b->c, &b->key, i))); 1165 1166 mutex_unlock(&b->c->bucket_lock); 1167 } 1168 1169 static int btree_check_reserve(struct btree *b, struct btree_op *op) 1170 { 1171 struct cache_set *c = b->c; 1172 struct cache *ca; 1173 unsigned int i, reserve = (c->root->level - b->level) * 2 + 1; 1174 1175 mutex_lock(&c->bucket_lock); 1176 1177 for_each_cache(ca, c, i) 1178 if (fifo_used(&ca->free[RESERVE_BTREE]) < reserve) { 1179 if (op) 1180 prepare_to_wait(&c->btree_cache_wait, &op->wait, 1181 TASK_UNINTERRUPTIBLE); 1182 mutex_unlock(&c->bucket_lock); 1183 return -EINTR; 1184 } 1185 1186 mutex_unlock(&c->bucket_lock); 1187 1188 return mca_cannibalize_lock(b->c, op); 1189 } 1190 1191 /* Garbage collection */ 1192 1193 static uint8_t __bch_btree_mark_key(struct cache_set *c, int level, 1194 struct bkey *k) 1195 { 1196 uint8_t stale = 0; 1197 unsigned int i; 1198 struct bucket *g; 1199 1200 /* 1201 * ptr_invalid() can't return true for the keys that mark btree nodes as 1202 * freed, but since ptr_bad() returns true we'll never actually use them 1203 * for anything and thus we don't want mark their pointers here 1204 */ 1205 if (!bkey_cmp(k, &ZERO_KEY)) 1206 return stale; 1207 1208 for (i = 0; i < KEY_PTRS(k); i++) { 1209 if (!ptr_available(c, k, i)) 1210 continue; 1211 1212 g = PTR_BUCKET(c, k, i); 1213 1214 if (gen_after(g->last_gc, PTR_GEN(k, i))) 1215 g->last_gc = PTR_GEN(k, i); 1216 1217 if (ptr_stale(c, k, i)) { 1218 stale = max(stale, ptr_stale(c, k, i)); 1219 continue; 1220 } 1221 1222 cache_bug_on(GC_MARK(g) && 1223 (GC_MARK(g) == GC_MARK_METADATA) != (level != 0), 1224 c, "inconsistent ptrs: mark = %llu, level = %i", 1225 GC_MARK(g), level); 1226 1227 if (level) 1228 SET_GC_MARK(g, GC_MARK_METADATA); 1229 else if (KEY_DIRTY(k)) 1230 SET_GC_MARK(g, GC_MARK_DIRTY); 1231 else if (!GC_MARK(g)) 1232 SET_GC_MARK(g, GC_MARK_RECLAIMABLE); 1233 1234 /* guard against overflow */ 1235 SET_GC_SECTORS_USED(g, min_t(unsigned int, 1236 GC_SECTORS_USED(g) + KEY_SIZE(k), 1237 MAX_GC_SECTORS_USED)); 1238 1239 BUG_ON(!GC_SECTORS_USED(g)); 1240 } 1241 1242 return stale; 1243 } 1244 1245 #define btree_mark_key(b, k) __bch_btree_mark_key(b->c, b->level, k) 1246 1247 void bch_initial_mark_key(struct cache_set *c, int level, struct bkey *k) 1248 { 1249 unsigned int i; 1250 1251 for (i = 0; i < KEY_PTRS(k); i++) 1252 if (ptr_available(c, k, i) && 1253 !ptr_stale(c, k, i)) { 1254 struct bucket *b = PTR_BUCKET(c, k, i); 1255 1256 b->gen = PTR_GEN(k, i); 1257 1258 if (level && bkey_cmp(k, &ZERO_KEY)) 1259 b->prio = BTREE_PRIO; 1260 else if (!level && b->prio == BTREE_PRIO) 1261 b->prio = INITIAL_PRIO; 1262 } 1263 1264 __bch_btree_mark_key(c, level, k); 1265 } 1266 1267 void bch_update_bucket_in_use(struct cache_set *c, struct gc_stat *stats) 1268 { 1269 stats->in_use = (c->nbuckets - c->avail_nbuckets) * 100 / c->nbuckets; 1270 } 1271 1272 static bool btree_gc_mark_node(struct btree *b, struct gc_stat *gc) 1273 { 1274 uint8_t stale = 0; 1275 unsigned int keys = 0, good_keys = 0; 1276 struct bkey *k; 1277 struct btree_iter iter; 1278 struct bset_tree *t; 1279 1280 gc->nodes++; 1281 1282 for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid) { 1283 stale = max(stale, btree_mark_key(b, k)); 1284 keys++; 1285 1286 if (bch_ptr_bad(&b->keys, k)) 1287 continue; 1288 1289 gc->key_bytes += bkey_u64s(k); 1290 gc->nkeys++; 1291 good_keys++; 1292 1293 gc->data += KEY_SIZE(k); 1294 } 1295 1296 for (t = b->keys.set; t <= &b->keys.set[b->keys.nsets]; t++) 1297 btree_bug_on(t->size && 1298 bset_written(&b->keys, t) && 1299 bkey_cmp(&b->key, &t->end) < 0, 1300 b, "found short btree key in gc"); 1301 1302 if (b->c->gc_always_rewrite) 1303 return true; 1304 1305 if (stale > 10) 1306 return true; 1307 1308 if ((keys - good_keys) * 2 > keys) 1309 return true; 1310 1311 return false; 1312 } 1313 1314 #define GC_MERGE_NODES 4U 1315 1316 struct gc_merge_info { 1317 struct btree *b; 1318 unsigned int keys; 1319 }; 1320 1321 static int bch_btree_insert_node(struct btree *b, struct btree_op *op, 1322 struct keylist *insert_keys, 1323 atomic_t *journal_ref, 1324 struct bkey *replace_key); 1325 1326 static int btree_gc_coalesce(struct btree *b, struct btree_op *op, 1327 struct gc_stat *gc, struct gc_merge_info *r) 1328 { 1329 unsigned int i, nodes = 0, keys = 0, blocks; 1330 struct btree *new_nodes[GC_MERGE_NODES]; 1331 struct keylist keylist; 1332 struct closure cl; 1333 struct bkey *k; 1334 1335 bch_keylist_init(&keylist); 1336 1337 if (btree_check_reserve(b, NULL)) 1338 return 0; 1339 1340 memset(new_nodes, 0, sizeof(new_nodes)); 1341 closure_init_stack(&cl); 1342 1343 while (nodes < GC_MERGE_NODES && !IS_ERR_OR_NULL(r[nodes].b)) 1344 keys += r[nodes++].keys; 1345 1346 blocks = btree_default_blocks(b->c) * 2 / 3; 1347 1348 if (nodes < 2 || 1349 __set_blocks(b->keys.set[0].data, keys, 1350 block_bytes(b->c)) > blocks * (nodes - 1)) 1351 return 0; 1352 1353 for (i = 0; i < nodes; i++) { 1354 new_nodes[i] = btree_node_alloc_replacement(r[i].b, NULL); 1355 if (IS_ERR_OR_NULL(new_nodes[i])) 1356 goto out_nocoalesce; 1357 } 1358 1359 /* 1360 * We have to check the reserve here, after we've allocated our new 1361 * nodes, to make sure the insert below will succeed - we also check 1362 * before as an optimization to potentially avoid a bunch of expensive 1363 * allocs/sorts 1364 */ 1365 if (btree_check_reserve(b, NULL)) 1366 goto out_nocoalesce; 1367 1368 for (i = 0; i < nodes; i++) 1369 mutex_lock(&new_nodes[i]->write_lock); 1370 1371 for (i = nodes - 1; i > 0; --i) { 1372 struct bset *n1 = btree_bset_first(new_nodes[i]); 1373 struct bset *n2 = btree_bset_first(new_nodes[i - 1]); 1374 struct bkey *k, *last = NULL; 1375 1376 keys = 0; 1377 1378 if (i > 1) { 1379 for (k = n2->start; 1380 k < bset_bkey_last(n2); 1381 k = bkey_next(k)) { 1382 if (__set_blocks(n1, n1->keys + keys + 1383 bkey_u64s(k), 1384 block_bytes(b->c)) > blocks) 1385 break; 1386 1387 last = k; 1388 keys += bkey_u64s(k); 1389 } 1390 } else { 1391 /* 1392 * Last node we're not getting rid of - we're getting 1393 * rid of the node at r[0]. Have to try and fit all of 1394 * the remaining keys into this node; we can't ensure 1395 * they will always fit due to rounding and variable 1396 * length keys (shouldn't be possible in practice, 1397 * though) 1398 */ 1399 if (__set_blocks(n1, n1->keys + n2->keys, 1400 block_bytes(b->c)) > 1401 btree_blocks(new_nodes[i])) 1402 goto out_nocoalesce; 1403 1404 keys = n2->keys; 1405 /* Take the key of the node we're getting rid of */ 1406 last = &r->b->key; 1407 } 1408 1409 BUG_ON(__set_blocks(n1, n1->keys + keys, block_bytes(b->c)) > 1410 btree_blocks(new_nodes[i])); 1411 1412 if (last) 1413 bkey_copy_key(&new_nodes[i]->key, last); 1414 1415 memcpy(bset_bkey_last(n1), 1416 n2->start, 1417 (void *) bset_bkey_idx(n2, keys) - (void *) n2->start); 1418 1419 n1->keys += keys; 1420 r[i].keys = n1->keys; 1421 1422 memmove(n2->start, 1423 bset_bkey_idx(n2, keys), 1424 (void *) bset_bkey_last(n2) - 1425 (void *) bset_bkey_idx(n2, keys)); 1426 1427 n2->keys -= keys; 1428 1429 if (__bch_keylist_realloc(&keylist, 1430 bkey_u64s(&new_nodes[i]->key))) 1431 goto out_nocoalesce; 1432 1433 bch_btree_node_write(new_nodes[i], &cl); 1434 bch_keylist_add(&keylist, &new_nodes[i]->key); 1435 } 1436 1437 for (i = 0; i < nodes; i++) 1438 mutex_unlock(&new_nodes[i]->write_lock); 1439 1440 closure_sync(&cl); 1441 1442 /* We emptied out this node */ 1443 BUG_ON(btree_bset_first(new_nodes[0])->keys); 1444 btree_node_free(new_nodes[0]); 1445 rw_unlock(true, new_nodes[0]); 1446 new_nodes[0] = NULL; 1447 1448 for (i = 0; i < nodes; i++) { 1449 if (__bch_keylist_realloc(&keylist, bkey_u64s(&r[i].b->key))) 1450 goto out_nocoalesce; 1451 1452 make_btree_freeing_key(r[i].b, keylist.top); 1453 bch_keylist_push(&keylist); 1454 } 1455 1456 bch_btree_insert_node(b, op, &keylist, NULL, NULL); 1457 BUG_ON(!bch_keylist_empty(&keylist)); 1458 1459 for (i = 0; i < nodes; i++) { 1460 btree_node_free(r[i].b); 1461 rw_unlock(true, r[i].b); 1462 1463 r[i].b = new_nodes[i]; 1464 } 1465 1466 memmove(r, r + 1, sizeof(r[0]) * (nodes - 1)); 1467 r[nodes - 1].b = ERR_PTR(-EINTR); 1468 1469 trace_bcache_btree_gc_coalesce(nodes); 1470 gc->nodes--; 1471 1472 bch_keylist_free(&keylist); 1473 1474 /* Invalidated our iterator */ 1475 return -EINTR; 1476 1477 out_nocoalesce: 1478 closure_sync(&cl); 1479 bch_keylist_free(&keylist); 1480 1481 while ((k = bch_keylist_pop(&keylist))) 1482 if (!bkey_cmp(k, &ZERO_KEY)) 1483 atomic_dec(&b->c->prio_blocked); 1484 1485 for (i = 0; i < nodes; i++) 1486 if (!IS_ERR_OR_NULL(new_nodes[i])) { 1487 btree_node_free(new_nodes[i]); 1488 rw_unlock(true, new_nodes[i]); 1489 } 1490 return 0; 1491 } 1492 1493 static int btree_gc_rewrite_node(struct btree *b, struct btree_op *op, 1494 struct btree *replace) 1495 { 1496 struct keylist keys; 1497 struct btree *n; 1498 1499 if (btree_check_reserve(b, NULL)) 1500 return 0; 1501 1502 n = btree_node_alloc_replacement(replace, NULL); 1503 1504 /* recheck reserve after allocating replacement node */ 1505 if (btree_check_reserve(b, NULL)) { 1506 btree_node_free(n); 1507 rw_unlock(true, n); 1508 return 0; 1509 } 1510 1511 bch_btree_node_write_sync(n); 1512 1513 bch_keylist_init(&keys); 1514 bch_keylist_add(&keys, &n->key); 1515 1516 make_btree_freeing_key(replace, keys.top); 1517 bch_keylist_push(&keys); 1518 1519 bch_btree_insert_node(b, op, &keys, NULL, NULL); 1520 BUG_ON(!bch_keylist_empty(&keys)); 1521 1522 btree_node_free(replace); 1523 rw_unlock(true, n); 1524 1525 /* Invalidated our iterator */ 1526 return -EINTR; 1527 } 1528 1529 static unsigned int btree_gc_count_keys(struct btree *b) 1530 { 1531 struct bkey *k; 1532 struct btree_iter iter; 1533 unsigned int ret = 0; 1534 1535 for_each_key_filter(&b->keys, k, &iter, bch_ptr_bad) 1536 ret += bkey_u64s(k); 1537 1538 return ret; 1539 } 1540 1541 static size_t btree_gc_min_nodes(struct cache_set *c) 1542 { 1543 size_t min_nodes; 1544 1545 /* 1546 * Since incremental GC would stop 100ms when front 1547 * side I/O comes, so when there are many btree nodes, 1548 * if GC only processes constant (100) nodes each time, 1549 * GC would last a long time, and the front side I/Os 1550 * would run out of the buckets (since no new bucket 1551 * can be allocated during GC), and be blocked again. 1552 * So GC should not process constant nodes, but varied 1553 * nodes according to the number of btree nodes, which 1554 * realized by dividing GC into constant(100) times, 1555 * so when there are many btree nodes, GC can process 1556 * more nodes each time, otherwise, GC will process less 1557 * nodes each time (but no less than MIN_GC_NODES) 1558 */ 1559 min_nodes = c->gc_stats.nodes / MAX_GC_TIMES; 1560 if (min_nodes < MIN_GC_NODES) 1561 min_nodes = MIN_GC_NODES; 1562 1563 return min_nodes; 1564 } 1565 1566 1567 static int btree_gc_recurse(struct btree *b, struct btree_op *op, 1568 struct closure *writes, struct gc_stat *gc) 1569 { 1570 int ret = 0; 1571 bool should_rewrite; 1572 struct bkey *k; 1573 struct btree_iter iter; 1574 struct gc_merge_info r[GC_MERGE_NODES]; 1575 struct gc_merge_info *i, *last = r + ARRAY_SIZE(r) - 1; 1576 1577 bch_btree_iter_init(&b->keys, &iter, &b->c->gc_done); 1578 1579 for (i = r; i < r + ARRAY_SIZE(r); i++) 1580 i->b = ERR_PTR(-EINTR); 1581 1582 while (1) { 1583 k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad); 1584 if (k) { 1585 r->b = bch_btree_node_get(b->c, op, k, b->level - 1, 1586 true, b); 1587 if (IS_ERR(r->b)) { 1588 ret = PTR_ERR(r->b); 1589 break; 1590 } 1591 1592 r->keys = btree_gc_count_keys(r->b); 1593 1594 ret = btree_gc_coalesce(b, op, gc, r); 1595 if (ret) 1596 break; 1597 } 1598 1599 if (!last->b) 1600 break; 1601 1602 if (!IS_ERR(last->b)) { 1603 should_rewrite = btree_gc_mark_node(last->b, gc); 1604 if (should_rewrite) { 1605 ret = btree_gc_rewrite_node(b, op, last->b); 1606 if (ret) 1607 break; 1608 } 1609 1610 if (last->b->level) { 1611 ret = btree_gc_recurse(last->b, op, writes, gc); 1612 if (ret) 1613 break; 1614 } 1615 1616 bkey_copy_key(&b->c->gc_done, &last->b->key); 1617 1618 /* 1619 * Must flush leaf nodes before gc ends, since replace 1620 * operations aren't journalled 1621 */ 1622 mutex_lock(&last->b->write_lock); 1623 if (btree_node_dirty(last->b)) 1624 bch_btree_node_write(last->b, writes); 1625 mutex_unlock(&last->b->write_lock); 1626 rw_unlock(true, last->b); 1627 } 1628 1629 memmove(r + 1, r, sizeof(r[0]) * (GC_MERGE_NODES - 1)); 1630 r->b = NULL; 1631 1632 if (atomic_read(&b->c->search_inflight) && 1633 gc->nodes >= gc->nodes_pre + btree_gc_min_nodes(b->c)) { 1634 gc->nodes_pre = gc->nodes; 1635 ret = -EAGAIN; 1636 break; 1637 } 1638 1639 if (need_resched()) { 1640 ret = -EAGAIN; 1641 break; 1642 } 1643 } 1644 1645 for (i = r; i < r + ARRAY_SIZE(r); i++) 1646 if (!IS_ERR_OR_NULL(i->b)) { 1647 mutex_lock(&i->b->write_lock); 1648 if (btree_node_dirty(i->b)) 1649 bch_btree_node_write(i->b, writes); 1650 mutex_unlock(&i->b->write_lock); 1651 rw_unlock(true, i->b); 1652 } 1653 1654 return ret; 1655 } 1656 1657 static int bch_btree_gc_root(struct btree *b, struct btree_op *op, 1658 struct closure *writes, struct gc_stat *gc) 1659 { 1660 struct btree *n = NULL; 1661 int ret = 0; 1662 bool should_rewrite; 1663 1664 should_rewrite = btree_gc_mark_node(b, gc); 1665 if (should_rewrite) { 1666 n = btree_node_alloc_replacement(b, NULL); 1667 1668 if (!IS_ERR_OR_NULL(n)) { 1669 bch_btree_node_write_sync(n); 1670 1671 bch_btree_set_root(n); 1672 btree_node_free(b); 1673 rw_unlock(true, n); 1674 1675 return -EINTR; 1676 } 1677 } 1678 1679 __bch_btree_mark_key(b->c, b->level + 1, &b->key); 1680 1681 if (b->level) { 1682 ret = btree_gc_recurse(b, op, writes, gc); 1683 if (ret) 1684 return ret; 1685 } 1686 1687 bkey_copy_key(&b->c->gc_done, &b->key); 1688 1689 return ret; 1690 } 1691 1692 static void btree_gc_start(struct cache_set *c) 1693 { 1694 struct cache *ca; 1695 struct bucket *b; 1696 unsigned int i; 1697 1698 if (!c->gc_mark_valid) 1699 return; 1700 1701 mutex_lock(&c->bucket_lock); 1702 1703 c->gc_mark_valid = 0; 1704 c->gc_done = ZERO_KEY; 1705 1706 for_each_cache(ca, c, i) 1707 for_each_bucket(b, ca) { 1708 b->last_gc = b->gen; 1709 if (!atomic_read(&b->pin)) { 1710 SET_GC_MARK(b, 0); 1711 SET_GC_SECTORS_USED(b, 0); 1712 } 1713 } 1714 1715 mutex_unlock(&c->bucket_lock); 1716 } 1717 1718 static void bch_btree_gc_finish(struct cache_set *c) 1719 { 1720 struct bucket *b; 1721 struct cache *ca; 1722 unsigned int i; 1723 1724 mutex_lock(&c->bucket_lock); 1725 1726 set_gc_sectors(c); 1727 c->gc_mark_valid = 1; 1728 c->need_gc = 0; 1729 1730 for (i = 0; i < KEY_PTRS(&c->uuid_bucket); i++) 1731 SET_GC_MARK(PTR_BUCKET(c, &c->uuid_bucket, i), 1732 GC_MARK_METADATA); 1733 1734 /* don't reclaim buckets to which writeback keys point */ 1735 rcu_read_lock(); 1736 for (i = 0; i < c->devices_max_used; i++) { 1737 struct bcache_device *d = c->devices[i]; 1738 struct cached_dev *dc; 1739 struct keybuf_key *w, *n; 1740 unsigned int j; 1741 1742 if (!d || UUID_FLASH_ONLY(&c->uuids[i])) 1743 continue; 1744 dc = container_of(d, struct cached_dev, disk); 1745 1746 spin_lock(&dc->writeback_keys.lock); 1747 rbtree_postorder_for_each_entry_safe(w, n, 1748 &dc->writeback_keys.keys, node) 1749 for (j = 0; j < KEY_PTRS(&w->key); j++) 1750 SET_GC_MARK(PTR_BUCKET(c, &w->key, j), 1751 GC_MARK_DIRTY); 1752 spin_unlock(&dc->writeback_keys.lock); 1753 } 1754 rcu_read_unlock(); 1755 1756 c->avail_nbuckets = 0; 1757 for_each_cache(ca, c, i) { 1758 uint64_t *i; 1759 1760 ca->invalidate_needs_gc = 0; 1761 1762 for (i = ca->sb.d; i < ca->sb.d + ca->sb.keys; i++) 1763 SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA); 1764 1765 for (i = ca->prio_buckets; 1766 i < ca->prio_buckets + prio_buckets(ca) * 2; i++) 1767 SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA); 1768 1769 for_each_bucket(b, ca) { 1770 c->need_gc = max(c->need_gc, bucket_gc_gen(b)); 1771 1772 if (atomic_read(&b->pin)) 1773 continue; 1774 1775 BUG_ON(!GC_MARK(b) && GC_SECTORS_USED(b)); 1776 1777 if (!GC_MARK(b) || GC_MARK(b) == GC_MARK_RECLAIMABLE) 1778 c->avail_nbuckets++; 1779 } 1780 } 1781 1782 mutex_unlock(&c->bucket_lock); 1783 } 1784 1785 static void bch_btree_gc(struct cache_set *c) 1786 { 1787 int ret; 1788 struct gc_stat stats; 1789 struct closure writes; 1790 struct btree_op op; 1791 uint64_t start_time = local_clock(); 1792 1793 trace_bcache_gc_start(c); 1794 1795 memset(&stats, 0, sizeof(struct gc_stat)); 1796 closure_init_stack(&writes); 1797 bch_btree_op_init(&op, SHRT_MAX); 1798 1799 btree_gc_start(c); 1800 1801 /* if CACHE_SET_IO_DISABLE set, gc thread should stop too */ 1802 do { 1803 ret = btree_root(gc_root, c, &op, &writes, &stats); 1804 closure_sync(&writes); 1805 cond_resched(); 1806 1807 if (ret == -EAGAIN) 1808 schedule_timeout_interruptible(msecs_to_jiffies 1809 (GC_SLEEP_MS)); 1810 else if (ret) 1811 pr_warn("gc failed!"); 1812 } while (ret && !test_bit(CACHE_SET_IO_DISABLE, &c->flags)); 1813 1814 bch_btree_gc_finish(c); 1815 wake_up_allocators(c); 1816 1817 bch_time_stats_update(&c->btree_gc_time, start_time); 1818 1819 stats.key_bytes *= sizeof(uint64_t); 1820 stats.data <<= 9; 1821 bch_update_bucket_in_use(c, &stats); 1822 memcpy(&c->gc_stats, &stats, sizeof(struct gc_stat)); 1823 1824 trace_bcache_gc_end(c); 1825 1826 bch_moving_gc(c); 1827 } 1828 1829 static bool gc_should_run(struct cache_set *c) 1830 { 1831 struct cache *ca; 1832 unsigned int i; 1833 1834 for_each_cache(ca, c, i) 1835 if (ca->invalidate_needs_gc) 1836 return true; 1837 1838 if (atomic_read(&c->sectors_to_gc) < 0) 1839 return true; 1840 1841 return false; 1842 } 1843 1844 static int bch_gc_thread(void *arg) 1845 { 1846 struct cache_set *c = arg; 1847 1848 while (1) { 1849 wait_event_interruptible(c->gc_wait, 1850 kthread_should_stop() || 1851 test_bit(CACHE_SET_IO_DISABLE, &c->flags) || 1852 gc_should_run(c)); 1853 1854 if (kthread_should_stop() || 1855 test_bit(CACHE_SET_IO_DISABLE, &c->flags)) 1856 break; 1857 1858 set_gc_sectors(c); 1859 bch_btree_gc(c); 1860 } 1861 1862 wait_for_kthread_stop(); 1863 return 0; 1864 } 1865 1866 int bch_gc_thread_start(struct cache_set *c) 1867 { 1868 c->gc_thread = kthread_run(bch_gc_thread, c, "bcache_gc"); 1869 return PTR_ERR_OR_ZERO(c->gc_thread); 1870 } 1871 1872 /* Initial partial gc */ 1873 1874 static int bch_btree_check_recurse(struct btree *b, struct btree_op *op) 1875 { 1876 int ret = 0; 1877 struct bkey *k, *p = NULL; 1878 struct btree_iter iter; 1879 1880 for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid) 1881 bch_initial_mark_key(b->c, b->level, k); 1882 1883 bch_initial_mark_key(b->c, b->level + 1, &b->key); 1884 1885 if (b->level) { 1886 bch_btree_iter_init(&b->keys, &iter, NULL); 1887 1888 do { 1889 k = bch_btree_iter_next_filter(&iter, &b->keys, 1890 bch_ptr_bad); 1891 if (k) { 1892 btree_node_prefetch(b, k); 1893 /* 1894 * initiallize c->gc_stats.nodes 1895 * for incremental GC 1896 */ 1897 b->c->gc_stats.nodes++; 1898 } 1899 1900 if (p) 1901 ret = btree(check_recurse, p, b, op); 1902 1903 p = k; 1904 } while (p && !ret); 1905 } 1906 1907 return ret; 1908 } 1909 1910 int bch_btree_check(struct cache_set *c) 1911 { 1912 struct btree_op op; 1913 1914 bch_btree_op_init(&op, SHRT_MAX); 1915 1916 return btree_root(check_recurse, c, &op); 1917 } 1918 1919 void bch_initial_gc_finish(struct cache_set *c) 1920 { 1921 struct cache *ca; 1922 struct bucket *b; 1923 unsigned int i; 1924 1925 bch_btree_gc_finish(c); 1926 1927 mutex_lock(&c->bucket_lock); 1928 1929 /* 1930 * We need to put some unused buckets directly on the prio freelist in 1931 * order to get the allocator thread started - it needs freed buckets in 1932 * order to rewrite the prios and gens, and it needs to rewrite prios 1933 * and gens in order to free buckets. 1934 * 1935 * This is only safe for buckets that have no live data in them, which 1936 * there should always be some of. 1937 */ 1938 for_each_cache(ca, c, i) { 1939 for_each_bucket(b, ca) { 1940 if (fifo_full(&ca->free[RESERVE_PRIO]) && 1941 fifo_full(&ca->free[RESERVE_BTREE])) 1942 break; 1943 1944 if (bch_can_invalidate_bucket(ca, b) && 1945 !GC_MARK(b)) { 1946 __bch_invalidate_one_bucket(ca, b); 1947 if (!fifo_push(&ca->free[RESERVE_PRIO], 1948 b - ca->buckets)) 1949 fifo_push(&ca->free[RESERVE_BTREE], 1950 b - ca->buckets); 1951 } 1952 } 1953 } 1954 1955 mutex_unlock(&c->bucket_lock); 1956 } 1957 1958 /* Btree insertion */ 1959 1960 static bool btree_insert_key(struct btree *b, struct bkey *k, 1961 struct bkey *replace_key) 1962 { 1963 unsigned int status; 1964 1965 BUG_ON(bkey_cmp(k, &b->key) > 0); 1966 1967 status = bch_btree_insert_key(&b->keys, k, replace_key); 1968 if (status != BTREE_INSERT_STATUS_NO_INSERT) { 1969 bch_check_keys(&b->keys, "%u for %s", status, 1970 replace_key ? "replace" : "insert"); 1971 1972 trace_bcache_btree_insert_key(b, k, replace_key != NULL, 1973 status); 1974 return true; 1975 } else 1976 return false; 1977 } 1978 1979 static size_t insert_u64s_remaining(struct btree *b) 1980 { 1981 long ret = bch_btree_keys_u64s_remaining(&b->keys); 1982 1983 /* 1984 * Might land in the middle of an existing extent and have to split it 1985 */ 1986 if (b->keys.ops->is_extents) 1987 ret -= KEY_MAX_U64S; 1988 1989 return max(ret, 0L); 1990 } 1991 1992 static bool bch_btree_insert_keys(struct btree *b, struct btree_op *op, 1993 struct keylist *insert_keys, 1994 struct bkey *replace_key) 1995 { 1996 bool ret = false; 1997 int oldsize = bch_count_data(&b->keys); 1998 1999 while (!bch_keylist_empty(insert_keys)) { 2000 struct bkey *k = insert_keys->keys; 2001 2002 if (bkey_u64s(k) > insert_u64s_remaining(b)) 2003 break; 2004 2005 if (bkey_cmp(k, &b->key) <= 0) { 2006 if (!b->level) 2007 bkey_put(b->c, k); 2008 2009 ret |= btree_insert_key(b, k, replace_key); 2010 bch_keylist_pop_front(insert_keys); 2011 } else if (bkey_cmp(&START_KEY(k), &b->key) < 0) { 2012 BKEY_PADDED(key) temp; 2013 bkey_copy(&temp.key, insert_keys->keys); 2014 2015 bch_cut_back(&b->key, &temp.key); 2016 bch_cut_front(&b->key, insert_keys->keys); 2017 2018 ret |= btree_insert_key(b, &temp.key, replace_key); 2019 break; 2020 } else { 2021 break; 2022 } 2023 } 2024 2025 if (!ret) 2026 op->insert_collision = true; 2027 2028 BUG_ON(!bch_keylist_empty(insert_keys) && b->level); 2029 2030 BUG_ON(bch_count_data(&b->keys) < oldsize); 2031 return ret; 2032 } 2033 2034 static int btree_split(struct btree *b, struct btree_op *op, 2035 struct keylist *insert_keys, 2036 struct bkey *replace_key) 2037 { 2038 bool split; 2039 struct btree *n1, *n2 = NULL, *n3 = NULL; 2040 uint64_t start_time = local_clock(); 2041 struct closure cl; 2042 struct keylist parent_keys; 2043 2044 closure_init_stack(&cl); 2045 bch_keylist_init(&parent_keys); 2046 2047 if (btree_check_reserve(b, op)) { 2048 if (!b->level) 2049 return -EINTR; 2050 else 2051 WARN(1, "insufficient reserve for split\n"); 2052 } 2053 2054 n1 = btree_node_alloc_replacement(b, op); 2055 if (IS_ERR(n1)) 2056 goto err; 2057 2058 split = set_blocks(btree_bset_first(n1), 2059 block_bytes(n1->c)) > (btree_blocks(b) * 4) / 5; 2060 2061 if (split) { 2062 unsigned int keys = 0; 2063 2064 trace_bcache_btree_node_split(b, btree_bset_first(n1)->keys); 2065 2066 n2 = bch_btree_node_alloc(b->c, op, b->level, b->parent); 2067 if (IS_ERR(n2)) 2068 goto err_free1; 2069 2070 if (!b->parent) { 2071 n3 = bch_btree_node_alloc(b->c, op, b->level + 1, NULL); 2072 if (IS_ERR(n3)) 2073 goto err_free2; 2074 } 2075 2076 mutex_lock(&n1->write_lock); 2077 mutex_lock(&n2->write_lock); 2078 2079 bch_btree_insert_keys(n1, op, insert_keys, replace_key); 2080 2081 /* 2082 * Has to be a linear search because we don't have an auxiliary 2083 * search tree yet 2084 */ 2085 2086 while (keys < (btree_bset_first(n1)->keys * 3) / 5) 2087 keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1), 2088 keys)); 2089 2090 bkey_copy_key(&n1->key, 2091 bset_bkey_idx(btree_bset_first(n1), keys)); 2092 keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1), keys)); 2093 2094 btree_bset_first(n2)->keys = btree_bset_first(n1)->keys - keys; 2095 btree_bset_first(n1)->keys = keys; 2096 2097 memcpy(btree_bset_first(n2)->start, 2098 bset_bkey_last(btree_bset_first(n1)), 2099 btree_bset_first(n2)->keys * sizeof(uint64_t)); 2100 2101 bkey_copy_key(&n2->key, &b->key); 2102 2103 bch_keylist_add(&parent_keys, &n2->key); 2104 bch_btree_node_write(n2, &cl); 2105 mutex_unlock(&n2->write_lock); 2106 rw_unlock(true, n2); 2107 } else { 2108 trace_bcache_btree_node_compact(b, btree_bset_first(n1)->keys); 2109 2110 mutex_lock(&n1->write_lock); 2111 bch_btree_insert_keys(n1, op, insert_keys, replace_key); 2112 } 2113 2114 bch_keylist_add(&parent_keys, &n1->key); 2115 bch_btree_node_write(n1, &cl); 2116 mutex_unlock(&n1->write_lock); 2117 2118 if (n3) { 2119 /* Depth increases, make a new root */ 2120 mutex_lock(&n3->write_lock); 2121 bkey_copy_key(&n3->key, &MAX_KEY); 2122 bch_btree_insert_keys(n3, op, &parent_keys, NULL); 2123 bch_btree_node_write(n3, &cl); 2124 mutex_unlock(&n3->write_lock); 2125 2126 closure_sync(&cl); 2127 bch_btree_set_root(n3); 2128 rw_unlock(true, n3); 2129 } else if (!b->parent) { 2130 /* Root filled up but didn't need to be split */ 2131 closure_sync(&cl); 2132 bch_btree_set_root(n1); 2133 } else { 2134 /* Split a non root node */ 2135 closure_sync(&cl); 2136 make_btree_freeing_key(b, parent_keys.top); 2137 bch_keylist_push(&parent_keys); 2138 2139 bch_btree_insert_node(b->parent, op, &parent_keys, NULL, NULL); 2140 BUG_ON(!bch_keylist_empty(&parent_keys)); 2141 } 2142 2143 btree_node_free(b); 2144 rw_unlock(true, n1); 2145 2146 bch_time_stats_update(&b->c->btree_split_time, start_time); 2147 2148 return 0; 2149 err_free2: 2150 bkey_put(b->c, &n2->key); 2151 btree_node_free(n2); 2152 rw_unlock(true, n2); 2153 err_free1: 2154 bkey_put(b->c, &n1->key); 2155 btree_node_free(n1); 2156 rw_unlock(true, n1); 2157 err: 2158 WARN(1, "bcache: btree split failed (level %u)", b->level); 2159 2160 if (n3 == ERR_PTR(-EAGAIN) || 2161 n2 == ERR_PTR(-EAGAIN) || 2162 n1 == ERR_PTR(-EAGAIN)) 2163 return -EAGAIN; 2164 2165 return -ENOMEM; 2166 } 2167 2168 static int bch_btree_insert_node(struct btree *b, struct btree_op *op, 2169 struct keylist *insert_keys, 2170 atomic_t *journal_ref, 2171 struct bkey *replace_key) 2172 { 2173 struct closure cl; 2174 2175 BUG_ON(b->level && replace_key); 2176 2177 closure_init_stack(&cl); 2178 2179 mutex_lock(&b->write_lock); 2180 2181 if (write_block(b) != btree_bset_last(b) && 2182 b->keys.last_set_unwritten) 2183 bch_btree_init_next(b); /* just wrote a set */ 2184 2185 if (bch_keylist_nkeys(insert_keys) > insert_u64s_remaining(b)) { 2186 mutex_unlock(&b->write_lock); 2187 goto split; 2188 } 2189 2190 BUG_ON(write_block(b) != btree_bset_last(b)); 2191 2192 if (bch_btree_insert_keys(b, op, insert_keys, replace_key)) { 2193 if (!b->level) 2194 bch_btree_leaf_dirty(b, journal_ref); 2195 else 2196 bch_btree_node_write(b, &cl); 2197 } 2198 2199 mutex_unlock(&b->write_lock); 2200 2201 /* wait for btree node write if necessary, after unlock */ 2202 closure_sync(&cl); 2203 2204 return 0; 2205 split: 2206 if (current->bio_list) { 2207 op->lock = b->c->root->level + 1; 2208 return -EAGAIN; 2209 } else if (op->lock <= b->c->root->level) { 2210 op->lock = b->c->root->level + 1; 2211 return -EINTR; 2212 } else { 2213 /* Invalidated all iterators */ 2214 int ret = btree_split(b, op, insert_keys, replace_key); 2215 2216 if (bch_keylist_empty(insert_keys)) 2217 return 0; 2218 else if (!ret) 2219 return -EINTR; 2220 return ret; 2221 } 2222 } 2223 2224 int bch_btree_insert_check_key(struct btree *b, struct btree_op *op, 2225 struct bkey *check_key) 2226 { 2227 int ret = -EINTR; 2228 uint64_t btree_ptr = b->key.ptr[0]; 2229 unsigned long seq = b->seq; 2230 struct keylist insert; 2231 bool upgrade = op->lock == -1; 2232 2233 bch_keylist_init(&insert); 2234 2235 if (upgrade) { 2236 rw_unlock(false, b); 2237 rw_lock(true, b, b->level); 2238 2239 if (b->key.ptr[0] != btree_ptr || 2240 b->seq != seq + 1) { 2241 op->lock = b->level; 2242 goto out; 2243 } 2244 } 2245 2246 SET_KEY_PTRS(check_key, 1); 2247 get_random_bytes(&check_key->ptr[0], sizeof(uint64_t)); 2248 2249 SET_PTR_DEV(check_key, 0, PTR_CHECK_DEV); 2250 2251 bch_keylist_add(&insert, check_key); 2252 2253 ret = bch_btree_insert_node(b, op, &insert, NULL, NULL); 2254 2255 BUG_ON(!ret && !bch_keylist_empty(&insert)); 2256 out: 2257 if (upgrade) 2258 downgrade_write(&b->lock); 2259 return ret; 2260 } 2261 2262 struct btree_insert_op { 2263 struct btree_op op; 2264 struct keylist *keys; 2265 atomic_t *journal_ref; 2266 struct bkey *replace_key; 2267 }; 2268 2269 static int btree_insert_fn(struct btree_op *b_op, struct btree *b) 2270 { 2271 struct btree_insert_op *op = container_of(b_op, 2272 struct btree_insert_op, op); 2273 2274 int ret = bch_btree_insert_node(b, &op->op, op->keys, 2275 op->journal_ref, op->replace_key); 2276 if (ret && !bch_keylist_empty(op->keys)) 2277 return ret; 2278 else 2279 return MAP_DONE; 2280 } 2281 2282 int bch_btree_insert(struct cache_set *c, struct keylist *keys, 2283 atomic_t *journal_ref, struct bkey *replace_key) 2284 { 2285 struct btree_insert_op op; 2286 int ret = 0; 2287 2288 BUG_ON(current->bio_list); 2289 BUG_ON(bch_keylist_empty(keys)); 2290 2291 bch_btree_op_init(&op.op, 0); 2292 op.keys = keys; 2293 op.journal_ref = journal_ref; 2294 op.replace_key = replace_key; 2295 2296 while (!ret && !bch_keylist_empty(keys)) { 2297 op.op.lock = 0; 2298 ret = bch_btree_map_leaf_nodes(&op.op, c, 2299 &START_KEY(keys->keys), 2300 btree_insert_fn); 2301 } 2302 2303 if (ret) { 2304 struct bkey *k; 2305 2306 pr_err("error %i", ret); 2307 2308 while ((k = bch_keylist_pop(keys))) 2309 bkey_put(c, k); 2310 } else if (op.op.insert_collision) 2311 ret = -ESRCH; 2312 2313 return ret; 2314 } 2315 2316 void bch_btree_set_root(struct btree *b) 2317 { 2318 unsigned int i; 2319 struct closure cl; 2320 2321 closure_init_stack(&cl); 2322 2323 trace_bcache_btree_set_root(b); 2324 2325 BUG_ON(!b->written); 2326 2327 for (i = 0; i < KEY_PTRS(&b->key); i++) 2328 BUG_ON(PTR_BUCKET(b->c, &b->key, i)->prio != BTREE_PRIO); 2329 2330 mutex_lock(&b->c->bucket_lock); 2331 list_del_init(&b->list); 2332 mutex_unlock(&b->c->bucket_lock); 2333 2334 b->c->root = b; 2335 2336 bch_journal_meta(b->c, &cl); 2337 closure_sync(&cl); 2338 } 2339 2340 /* Map across nodes or keys */ 2341 2342 static int bch_btree_map_nodes_recurse(struct btree *b, struct btree_op *op, 2343 struct bkey *from, 2344 btree_map_nodes_fn *fn, int flags) 2345 { 2346 int ret = MAP_CONTINUE; 2347 2348 if (b->level) { 2349 struct bkey *k; 2350 struct btree_iter iter; 2351 2352 bch_btree_iter_init(&b->keys, &iter, from); 2353 2354 while ((k = bch_btree_iter_next_filter(&iter, &b->keys, 2355 bch_ptr_bad))) { 2356 ret = btree(map_nodes_recurse, k, b, 2357 op, from, fn, flags); 2358 from = NULL; 2359 2360 if (ret != MAP_CONTINUE) 2361 return ret; 2362 } 2363 } 2364 2365 if (!b->level || flags == MAP_ALL_NODES) 2366 ret = fn(op, b); 2367 2368 return ret; 2369 } 2370 2371 int __bch_btree_map_nodes(struct btree_op *op, struct cache_set *c, 2372 struct bkey *from, btree_map_nodes_fn *fn, int flags) 2373 { 2374 return btree_root(map_nodes_recurse, c, op, from, fn, flags); 2375 } 2376 2377 static int bch_btree_map_keys_recurse(struct btree *b, struct btree_op *op, 2378 struct bkey *from, btree_map_keys_fn *fn, 2379 int flags) 2380 { 2381 int ret = MAP_CONTINUE; 2382 struct bkey *k; 2383 struct btree_iter iter; 2384 2385 bch_btree_iter_init(&b->keys, &iter, from); 2386 2387 while ((k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad))) { 2388 ret = !b->level 2389 ? fn(op, b, k) 2390 : btree(map_keys_recurse, k, b, op, from, fn, flags); 2391 from = NULL; 2392 2393 if (ret != MAP_CONTINUE) 2394 return ret; 2395 } 2396 2397 if (!b->level && (flags & MAP_END_KEY)) 2398 ret = fn(op, b, &KEY(KEY_INODE(&b->key), 2399 KEY_OFFSET(&b->key), 0)); 2400 2401 return ret; 2402 } 2403 2404 int bch_btree_map_keys(struct btree_op *op, struct cache_set *c, 2405 struct bkey *from, btree_map_keys_fn *fn, int flags) 2406 { 2407 return btree_root(map_keys_recurse, c, op, from, fn, flags); 2408 } 2409 2410 /* Keybuf code */ 2411 2412 static inline int keybuf_cmp(struct keybuf_key *l, struct keybuf_key *r) 2413 { 2414 /* Overlapping keys compare equal */ 2415 if (bkey_cmp(&l->key, &START_KEY(&r->key)) <= 0) 2416 return -1; 2417 if (bkey_cmp(&START_KEY(&l->key), &r->key) >= 0) 2418 return 1; 2419 return 0; 2420 } 2421 2422 static inline int keybuf_nonoverlapping_cmp(struct keybuf_key *l, 2423 struct keybuf_key *r) 2424 { 2425 return clamp_t(int64_t, bkey_cmp(&l->key, &r->key), -1, 1); 2426 } 2427 2428 struct refill { 2429 struct btree_op op; 2430 unsigned int nr_found; 2431 struct keybuf *buf; 2432 struct bkey *end; 2433 keybuf_pred_fn *pred; 2434 }; 2435 2436 static int refill_keybuf_fn(struct btree_op *op, struct btree *b, 2437 struct bkey *k) 2438 { 2439 struct refill *refill = container_of(op, struct refill, op); 2440 struct keybuf *buf = refill->buf; 2441 int ret = MAP_CONTINUE; 2442 2443 if (bkey_cmp(k, refill->end) > 0) { 2444 ret = MAP_DONE; 2445 goto out; 2446 } 2447 2448 if (!KEY_SIZE(k)) /* end key */ 2449 goto out; 2450 2451 if (refill->pred(buf, k)) { 2452 struct keybuf_key *w; 2453 2454 spin_lock(&buf->lock); 2455 2456 w = array_alloc(&buf->freelist); 2457 if (!w) { 2458 spin_unlock(&buf->lock); 2459 return MAP_DONE; 2460 } 2461 2462 w->private = NULL; 2463 bkey_copy(&w->key, k); 2464 2465 if (RB_INSERT(&buf->keys, w, node, keybuf_cmp)) 2466 array_free(&buf->freelist, w); 2467 else 2468 refill->nr_found++; 2469 2470 if (array_freelist_empty(&buf->freelist)) 2471 ret = MAP_DONE; 2472 2473 spin_unlock(&buf->lock); 2474 } 2475 out: 2476 buf->last_scanned = *k; 2477 return ret; 2478 } 2479 2480 void bch_refill_keybuf(struct cache_set *c, struct keybuf *buf, 2481 struct bkey *end, keybuf_pred_fn *pred) 2482 { 2483 struct bkey start = buf->last_scanned; 2484 struct refill refill; 2485 2486 cond_resched(); 2487 2488 bch_btree_op_init(&refill.op, -1); 2489 refill.nr_found = 0; 2490 refill.buf = buf; 2491 refill.end = end; 2492 refill.pred = pred; 2493 2494 bch_btree_map_keys(&refill.op, c, &buf->last_scanned, 2495 refill_keybuf_fn, MAP_END_KEY); 2496 2497 trace_bcache_keyscan(refill.nr_found, 2498 KEY_INODE(&start), KEY_OFFSET(&start), 2499 KEY_INODE(&buf->last_scanned), 2500 KEY_OFFSET(&buf->last_scanned)); 2501 2502 spin_lock(&buf->lock); 2503 2504 if (!RB_EMPTY_ROOT(&buf->keys)) { 2505 struct keybuf_key *w; 2506 2507 w = RB_FIRST(&buf->keys, struct keybuf_key, node); 2508 buf->start = START_KEY(&w->key); 2509 2510 w = RB_LAST(&buf->keys, struct keybuf_key, node); 2511 buf->end = w->key; 2512 } else { 2513 buf->start = MAX_KEY; 2514 buf->end = MAX_KEY; 2515 } 2516 2517 spin_unlock(&buf->lock); 2518 } 2519 2520 static void __bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w) 2521 { 2522 rb_erase(&w->node, &buf->keys); 2523 array_free(&buf->freelist, w); 2524 } 2525 2526 void bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w) 2527 { 2528 spin_lock(&buf->lock); 2529 __bch_keybuf_del(buf, w); 2530 spin_unlock(&buf->lock); 2531 } 2532 2533 bool bch_keybuf_check_overlapping(struct keybuf *buf, struct bkey *start, 2534 struct bkey *end) 2535 { 2536 bool ret = false; 2537 struct keybuf_key *p, *w, s; 2538 2539 s.key = *start; 2540 2541 if (bkey_cmp(end, &buf->start) <= 0 || 2542 bkey_cmp(start, &buf->end) >= 0) 2543 return false; 2544 2545 spin_lock(&buf->lock); 2546 w = RB_GREATER(&buf->keys, s, node, keybuf_nonoverlapping_cmp); 2547 2548 while (w && bkey_cmp(&START_KEY(&w->key), end) < 0) { 2549 p = w; 2550 w = RB_NEXT(w, node); 2551 2552 if (p->private) 2553 ret = true; 2554 else 2555 __bch_keybuf_del(buf, p); 2556 } 2557 2558 spin_unlock(&buf->lock); 2559 return ret; 2560 } 2561 2562 struct keybuf_key *bch_keybuf_next(struct keybuf *buf) 2563 { 2564 struct keybuf_key *w; 2565 2566 spin_lock(&buf->lock); 2567 2568 w = RB_FIRST(&buf->keys, struct keybuf_key, node); 2569 2570 while (w && w->private) 2571 w = RB_NEXT(w, node); 2572 2573 if (w) 2574 w->private = ERR_PTR(-EINTR); 2575 2576 spin_unlock(&buf->lock); 2577 return w; 2578 } 2579 2580 struct keybuf_key *bch_keybuf_next_rescan(struct cache_set *c, 2581 struct keybuf *buf, 2582 struct bkey *end, 2583 keybuf_pred_fn *pred) 2584 { 2585 struct keybuf_key *ret; 2586 2587 while (1) { 2588 ret = bch_keybuf_next(buf); 2589 if (ret) 2590 break; 2591 2592 if (bkey_cmp(&buf->last_scanned, end) >= 0) { 2593 pr_debug("scan finished"); 2594 break; 2595 } 2596 2597 bch_refill_keybuf(c, buf, end, pred); 2598 } 2599 2600 return ret; 2601 } 2602 2603 void bch_keybuf_init(struct keybuf *buf) 2604 { 2605 buf->last_scanned = MAX_KEY; 2606 buf->keys = RB_ROOT; 2607 2608 spin_lock_init(&buf->lock); 2609 array_allocator_init(&buf->freelist); 2610 } 2611