1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com> 4 * 5 * Uses a block device as cache for other block devices; optimized for SSDs. 6 * All allocation is done in buckets, which should match the erase block size 7 * of the device. 8 * 9 * Buckets containing cached data are kept on a heap sorted by priority; 10 * bucket priority is increased on cache hit, and periodically all the buckets 11 * on the heap have their priority scaled down. This currently is just used as 12 * an LRU but in the future should allow for more intelligent heuristics. 13 * 14 * Buckets have an 8 bit counter; freeing is accomplished by incrementing the 15 * counter. Garbage collection is used to remove stale pointers. 16 * 17 * Indexing is done via a btree; nodes are not necessarily fully sorted, rather 18 * as keys are inserted we only sort the pages that have not yet been written. 19 * When garbage collection is run, we resort the entire node. 20 * 21 * All configuration is done via sysfs; see Documentation/admin-guide/bcache.rst. 22 */ 23 24 #include "bcache.h" 25 #include "btree.h" 26 #include "debug.h" 27 #include "extents.h" 28 29 #include <linux/slab.h> 30 #include <linux/bitops.h> 31 #include <linux/hash.h> 32 #include <linux/kthread.h> 33 #include <linux/prefetch.h> 34 #include <linux/random.h> 35 #include <linux/rcupdate.h> 36 #include <linux/sched/clock.h> 37 #include <linux/rculist.h> 38 #include <linux/delay.h> 39 #include <trace/events/bcache.h> 40 41 /* 42 * Todo: 43 * register_bcache: Return errors out to userspace correctly 44 * 45 * Writeback: don't undirty key until after a cache flush 46 * 47 * Create an iterator for key pointers 48 * 49 * On btree write error, mark bucket such that it won't be freed from the cache 50 * 51 * Journalling: 52 * Check for bad keys in replay 53 * Propagate barriers 54 * Refcount journal entries in journal_replay 55 * 56 * Garbage collection: 57 * Finish incremental gc 58 * Gc should free old UUIDs, data for invalid UUIDs 59 * 60 * Provide a way to list backing device UUIDs we have data cached for, and 61 * probably how long it's been since we've seen them, and a way to invalidate 62 * dirty data for devices that will never be attached again 63 * 64 * Keep 1 min/5 min/15 min statistics of how busy a block device has been, so 65 * that based on that and how much dirty data we have we can keep writeback 66 * from being starved 67 * 68 * Add a tracepoint or somesuch to watch for writeback starvation 69 * 70 * When btree depth > 1 and splitting an interior node, we have to make sure 71 * alloc_bucket() cannot fail. This should be true but is not completely 72 * obvious. 73 * 74 * Plugging? 75 * 76 * If data write is less than hard sector size of ssd, round up offset in open 77 * bucket to the next whole sector 78 * 79 * Superblock needs to be fleshed out for multiple cache devices 80 * 81 * Add a sysfs tunable for the number of writeback IOs in flight 82 * 83 * Add a sysfs tunable for the number of open data buckets 84 * 85 * IO tracking: Can we track when one process is doing io on behalf of another? 86 * IO tracking: Don't use just an average, weigh more recent stuff higher 87 * 88 * Test module load/unload 89 */ 90 91 #define MAX_NEED_GC 64 92 #define MAX_SAVE_PRIO 72 93 #define MAX_GC_TIMES 100 94 #define MIN_GC_NODES 100 95 #define GC_SLEEP_MS 100 96 97 #define PTR_DIRTY_BIT (((uint64_t) 1 << 36)) 98 99 #define PTR_HASH(c, k) \ 100 (((k)->ptr[0] >> c->bucket_bits) | PTR_GEN(k, 0)) 101 102 #define insert_lock(s, b) ((b)->level <= (s)->lock) 103 104 105 static inline struct bset *write_block(struct btree *b) 106 { 107 return ((void *) btree_bset_first(b)) + b->written * block_bytes(b->c); 108 } 109 110 static void bch_btree_init_next(struct btree *b) 111 { 112 /* If not a leaf node, always sort */ 113 if (b->level && b->keys.nsets) 114 bch_btree_sort(&b->keys, &b->c->sort); 115 else 116 bch_btree_sort_lazy(&b->keys, &b->c->sort); 117 118 if (b->written < btree_blocks(b)) 119 bch_bset_init_next(&b->keys, write_block(b), 120 bset_magic(&b->c->sb)); 121 122 } 123 124 /* Btree key manipulation */ 125 126 void bkey_put(struct cache_set *c, struct bkey *k) 127 { 128 unsigned int i; 129 130 for (i = 0; i < KEY_PTRS(k); i++) 131 if (ptr_available(c, k, i)) 132 atomic_dec_bug(&PTR_BUCKET(c, k, i)->pin); 133 } 134 135 /* Btree IO */ 136 137 static uint64_t btree_csum_set(struct btree *b, struct bset *i) 138 { 139 uint64_t crc = b->key.ptr[0]; 140 void *data = (void *) i + 8, *end = bset_bkey_last(i); 141 142 crc = bch_crc64_update(crc, data, end - data); 143 return crc ^ 0xffffffffffffffffULL; 144 } 145 146 void bch_btree_node_read_done(struct btree *b) 147 { 148 const char *err = "bad btree header"; 149 struct bset *i = btree_bset_first(b); 150 struct btree_iter *iter; 151 152 /* 153 * c->fill_iter can allocate an iterator with more memory space 154 * than static MAX_BSETS. 155 * See the comment arount cache_set->fill_iter. 156 */ 157 iter = mempool_alloc(&b->c->fill_iter, GFP_NOIO); 158 iter->size = b->c->sb.bucket_size / b->c->sb.block_size; 159 iter->used = 0; 160 161 #ifdef CONFIG_BCACHE_DEBUG 162 iter->b = &b->keys; 163 #endif 164 165 if (!i->seq) 166 goto err; 167 168 for (; 169 b->written < btree_blocks(b) && i->seq == b->keys.set[0].data->seq; 170 i = write_block(b)) { 171 err = "unsupported bset version"; 172 if (i->version > BCACHE_BSET_VERSION) 173 goto err; 174 175 err = "bad btree header"; 176 if (b->written + set_blocks(i, block_bytes(b->c)) > 177 btree_blocks(b)) 178 goto err; 179 180 err = "bad magic"; 181 if (i->magic != bset_magic(&b->c->sb)) 182 goto err; 183 184 err = "bad checksum"; 185 switch (i->version) { 186 case 0: 187 if (i->csum != csum_set(i)) 188 goto err; 189 break; 190 case BCACHE_BSET_VERSION: 191 if (i->csum != btree_csum_set(b, i)) 192 goto err; 193 break; 194 } 195 196 err = "empty set"; 197 if (i != b->keys.set[0].data && !i->keys) 198 goto err; 199 200 bch_btree_iter_push(iter, i->start, bset_bkey_last(i)); 201 202 b->written += set_blocks(i, block_bytes(b->c)); 203 } 204 205 err = "corrupted btree"; 206 for (i = write_block(b); 207 bset_sector_offset(&b->keys, i) < KEY_SIZE(&b->key); 208 i = ((void *) i) + block_bytes(b->c)) 209 if (i->seq == b->keys.set[0].data->seq) 210 goto err; 211 212 bch_btree_sort_and_fix_extents(&b->keys, iter, &b->c->sort); 213 214 i = b->keys.set[0].data; 215 err = "short btree key"; 216 if (b->keys.set[0].size && 217 bkey_cmp(&b->key, &b->keys.set[0].end) < 0) 218 goto err; 219 220 if (b->written < btree_blocks(b)) 221 bch_bset_init_next(&b->keys, write_block(b), 222 bset_magic(&b->c->sb)); 223 out: 224 mempool_free(iter, &b->c->fill_iter); 225 return; 226 err: 227 set_btree_node_io_error(b); 228 bch_cache_set_error(b->c, "%s at bucket %zu, block %u, %u keys", 229 err, PTR_BUCKET_NR(b->c, &b->key, 0), 230 bset_block_offset(b, i), i->keys); 231 goto out; 232 } 233 234 static void btree_node_read_endio(struct bio *bio) 235 { 236 struct closure *cl = bio->bi_private; 237 238 closure_put(cl); 239 } 240 241 static void bch_btree_node_read(struct btree *b) 242 { 243 uint64_t start_time = local_clock(); 244 struct closure cl; 245 struct bio *bio; 246 247 trace_bcache_btree_read(b); 248 249 closure_init_stack(&cl); 250 251 bio = bch_bbio_alloc(b->c); 252 bio->bi_iter.bi_size = KEY_SIZE(&b->key) << 9; 253 bio->bi_end_io = btree_node_read_endio; 254 bio->bi_private = &cl; 255 bio->bi_opf = REQ_OP_READ | REQ_META; 256 257 bch_bio_map(bio, b->keys.set[0].data); 258 259 bch_submit_bbio(bio, b->c, &b->key, 0); 260 closure_sync(&cl); 261 262 if (bio->bi_status) 263 set_btree_node_io_error(b); 264 265 bch_bbio_free(bio, b->c); 266 267 if (btree_node_io_error(b)) 268 goto err; 269 270 bch_btree_node_read_done(b); 271 bch_time_stats_update(&b->c->btree_read_time, start_time); 272 273 return; 274 err: 275 bch_cache_set_error(b->c, "io error reading bucket %zu", 276 PTR_BUCKET_NR(b->c, &b->key, 0)); 277 } 278 279 static void btree_complete_write(struct btree *b, struct btree_write *w) 280 { 281 if (w->prio_blocked && 282 !atomic_sub_return(w->prio_blocked, &b->c->prio_blocked)) 283 wake_up_allocators(b->c); 284 285 if (w->journal) { 286 atomic_dec_bug(w->journal); 287 __closure_wake_up(&b->c->journal.wait); 288 } 289 290 w->prio_blocked = 0; 291 w->journal = NULL; 292 } 293 294 static void btree_node_write_unlock(struct closure *cl) 295 { 296 struct btree *b = container_of(cl, struct btree, io); 297 298 up(&b->io_mutex); 299 } 300 301 static void __btree_node_write_done(struct closure *cl) 302 { 303 struct btree *b = container_of(cl, struct btree, io); 304 struct btree_write *w = btree_prev_write(b); 305 306 bch_bbio_free(b->bio, b->c); 307 b->bio = NULL; 308 btree_complete_write(b, w); 309 310 if (btree_node_dirty(b)) 311 schedule_delayed_work(&b->work, 30 * HZ); 312 313 closure_return_with_destructor(cl, btree_node_write_unlock); 314 } 315 316 static void btree_node_write_done(struct closure *cl) 317 { 318 struct btree *b = container_of(cl, struct btree, io); 319 320 bio_free_pages(b->bio); 321 __btree_node_write_done(cl); 322 } 323 324 static void btree_node_write_endio(struct bio *bio) 325 { 326 struct closure *cl = bio->bi_private; 327 struct btree *b = container_of(cl, struct btree, io); 328 329 if (bio->bi_status) 330 set_btree_node_io_error(b); 331 332 bch_bbio_count_io_errors(b->c, bio, bio->bi_status, "writing btree"); 333 closure_put(cl); 334 } 335 336 static void do_btree_node_write(struct btree *b) 337 { 338 struct closure *cl = &b->io; 339 struct bset *i = btree_bset_last(b); 340 BKEY_PADDED(key) k; 341 342 i->version = BCACHE_BSET_VERSION; 343 i->csum = btree_csum_set(b, i); 344 345 BUG_ON(b->bio); 346 b->bio = bch_bbio_alloc(b->c); 347 348 b->bio->bi_end_io = btree_node_write_endio; 349 b->bio->bi_private = cl; 350 b->bio->bi_iter.bi_size = roundup(set_bytes(i), block_bytes(b->c)); 351 b->bio->bi_opf = REQ_OP_WRITE | REQ_META | REQ_FUA; 352 bch_bio_map(b->bio, i); 353 354 /* 355 * If we're appending to a leaf node, we don't technically need FUA - 356 * this write just needs to be persisted before the next journal write, 357 * which will be marked FLUSH|FUA. 358 * 359 * Similarly if we're writing a new btree root - the pointer is going to 360 * be in the next journal entry. 361 * 362 * But if we're writing a new btree node (that isn't a root) or 363 * appending to a non leaf btree node, we need either FUA or a flush 364 * when we write the parent with the new pointer. FUA is cheaper than a 365 * flush, and writes appending to leaf nodes aren't blocking anything so 366 * just make all btree node writes FUA to keep things sane. 367 */ 368 369 bkey_copy(&k.key, &b->key); 370 SET_PTR_OFFSET(&k.key, 0, PTR_OFFSET(&k.key, 0) + 371 bset_sector_offset(&b->keys, i)); 372 373 if (!bch_bio_alloc_pages(b->bio, __GFP_NOWARN|GFP_NOWAIT)) { 374 struct bio_vec *bv; 375 void *addr = (void *) ((unsigned long) i & ~(PAGE_SIZE - 1)); 376 struct bvec_iter_all iter_all; 377 378 bio_for_each_segment_all(bv, b->bio, iter_all) { 379 memcpy(page_address(bv->bv_page), addr, PAGE_SIZE); 380 addr += PAGE_SIZE; 381 } 382 383 bch_submit_bbio(b->bio, b->c, &k.key, 0); 384 385 continue_at(cl, btree_node_write_done, NULL); 386 } else { 387 /* 388 * No problem for multipage bvec since the bio is 389 * just allocated 390 */ 391 b->bio->bi_vcnt = 0; 392 bch_bio_map(b->bio, i); 393 394 bch_submit_bbio(b->bio, b->c, &k.key, 0); 395 396 closure_sync(cl); 397 continue_at_nobarrier(cl, __btree_node_write_done, NULL); 398 } 399 } 400 401 void __bch_btree_node_write(struct btree *b, struct closure *parent) 402 { 403 struct bset *i = btree_bset_last(b); 404 405 lockdep_assert_held(&b->write_lock); 406 407 trace_bcache_btree_write(b); 408 409 BUG_ON(current->bio_list); 410 BUG_ON(b->written >= btree_blocks(b)); 411 BUG_ON(b->written && !i->keys); 412 BUG_ON(btree_bset_first(b)->seq != i->seq); 413 bch_check_keys(&b->keys, "writing"); 414 415 cancel_delayed_work(&b->work); 416 417 /* If caller isn't waiting for write, parent refcount is cache set */ 418 down(&b->io_mutex); 419 closure_init(&b->io, parent ?: &b->c->cl); 420 421 clear_bit(BTREE_NODE_dirty, &b->flags); 422 change_bit(BTREE_NODE_write_idx, &b->flags); 423 424 do_btree_node_write(b); 425 426 atomic_long_add(set_blocks(i, block_bytes(b->c)) * b->c->sb.block_size, 427 &PTR_CACHE(b->c, &b->key, 0)->btree_sectors_written); 428 429 b->written += set_blocks(i, block_bytes(b->c)); 430 } 431 432 void bch_btree_node_write(struct btree *b, struct closure *parent) 433 { 434 unsigned int nsets = b->keys.nsets; 435 436 lockdep_assert_held(&b->lock); 437 438 __bch_btree_node_write(b, parent); 439 440 /* 441 * do verify if there was more than one set initially (i.e. we did a 442 * sort) and we sorted down to a single set: 443 */ 444 if (nsets && !b->keys.nsets) 445 bch_btree_verify(b); 446 447 bch_btree_init_next(b); 448 } 449 450 static void bch_btree_node_write_sync(struct btree *b) 451 { 452 struct closure cl; 453 454 closure_init_stack(&cl); 455 456 mutex_lock(&b->write_lock); 457 bch_btree_node_write(b, &cl); 458 mutex_unlock(&b->write_lock); 459 460 closure_sync(&cl); 461 } 462 463 static void btree_node_write_work(struct work_struct *w) 464 { 465 struct btree *b = container_of(to_delayed_work(w), struct btree, work); 466 467 mutex_lock(&b->write_lock); 468 if (btree_node_dirty(b)) 469 __bch_btree_node_write(b, NULL); 470 mutex_unlock(&b->write_lock); 471 } 472 473 static void bch_btree_leaf_dirty(struct btree *b, atomic_t *journal_ref) 474 { 475 struct bset *i = btree_bset_last(b); 476 struct btree_write *w = btree_current_write(b); 477 478 lockdep_assert_held(&b->write_lock); 479 480 BUG_ON(!b->written); 481 BUG_ON(!i->keys); 482 483 if (!btree_node_dirty(b)) 484 schedule_delayed_work(&b->work, 30 * HZ); 485 486 set_btree_node_dirty(b); 487 488 /* 489 * w->journal is always the oldest journal pin of all bkeys 490 * in the leaf node, to make sure the oldest jset seq won't 491 * be increased before this btree node is flushed. 492 */ 493 if (journal_ref) { 494 if (w->journal && 495 journal_pin_cmp(b->c, w->journal, journal_ref)) { 496 atomic_dec_bug(w->journal); 497 w->journal = NULL; 498 } 499 500 if (!w->journal) { 501 w->journal = journal_ref; 502 atomic_inc(w->journal); 503 } 504 } 505 506 /* Force write if set is too big */ 507 if (set_bytes(i) > PAGE_SIZE - 48 && 508 !current->bio_list) 509 bch_btree_node_write(b, NULL); 510 } 511 512 /* 513 * Btree in memory cache - allocation/freeing 514 * mca -> memory cache 515 */ 516 517 #define mca_reserve(c) (((c->root && c->root->level) \ 518 ? c->root->level : 1) * 8 + 16) 519 #define mca_can_free(c) \ 520 max_t(int, 0, c->btree_cache_used - mca_reserve(c)) 521 522 static void mca_data_free(struct btree *b) 523 { 524 BUG_ON(b->io_mutex.count != 1); 525 526 bch_btree_keys_free(&b->keys); 527 528 b->c->btree_cache_used--; 529 list_move(&b->list, &b->c->btree_cache_freed); 530 } 531 532 static void mca_bucket_free(struct btree *b) 533 { 534 BUG_ON(btree_node_dirty(b)); 535 536 b->key.ptr[0] = 0; 537 hlist_del_init_rcu(&b->hash); 538 list_move(&b->list, &b->c->btree_cache_freeable); 539 } 540 541 static unsigned int btree_order(struct bkey *k) 542 { 543 return ilog2(KEY_SIZE(k) / PAGE_SECTORS ?: 1); 544 } 545 546 static void mca_data_alloc(struct btree *b, struct bkey *k, gfp_t gfp) 547 { 548 if (!bch_btree_keys_alloc(&b->keys, 549 max_t(unsigned int, 550 ilog2(b->c->btree_pages), 551 btree_order(k)), 552 gfp)) { 553 b->c->btree_cache_used++; 554 list_move(&b->list, &b->c->btree_cache); 555 } else { 556 list_move(&b->list, &b->c->btree_cache_freed); 557 } 558 } 559 560 static struct btree *mca_bucket_alloc(struct cache_set *c, 561 struct bkey *k, gfp_t gfp) 562 { 563 /* 564 * kzalloc() is necessary here for initialization, 565 * see code comments in bch_btree_keys_init(). 566 */ 567 struct btree *b = kzalloc(sizeof(struct btree), gfp); 568 569 if (!b) 570 return NULL; 571 572 init_rwsem(&b->lock); 573 lockdep_set_novalidate_class(&b->lock); 574 mutex_init(&b->write_lock); 575 lockdep_set_novalidate_class(&b->write_lock); 576 INIT_LIST_HEAD(&b->list); 577 INIT_DELAYED_WORK(&b->work, btree_node_write_work); 578 b->c = c; 579 sema_init(&b->io_mutex, 1); 580 581 mca_data_alloc(b, k, gfp); 582 return b; 583 } 584 585 static int mca_reap(struct btree *b, unsigned int min_order, bool flush) 586 { 587 struct closure cl; 588 589 closure_init_stack(&cl); 590 lockdep_assert_held(&b->c->bucket_lock); 591 592 if (!down_write_trylock(&b->lock)) 593 return -ENOMEM; 594 595 BUG_ON(btree_node_dirty(b) && !b->keys.set[0].data); 596 597 if (b->keys.page_order < min_order) 598 goto out_unlock; 599 600 if (!flush) { 601 if (btree_node_dirty(b)) 602 goto out_unlock; 603 604 if (down_trylock(&b->io_mutex)) 605 goto out_unlock; 606 up(&b->io_mutex); 607 } 608 609 retry: 610 /* 611 * BTREE_NODE_dirty might be cleared in btree_flush_btree() by 612 * __bch_btree_node_write(). To avoid an extra flush, acquire 613 * b->write_lock before checking BTREE_NODE_dirty bit. 614 */ 615 mutex_lock(&b->write_lock); 616 /* 617 * If this btree node is selected in btree_flush_write() by journal 618 * code, delay and retry until the node is flushed by journal code 619 * and BTREE_NODE_journal_flush bit cleared by btree_flush_write(). 620 */ 621 if (btree_node_journal_flush(b)) { 622 pr_debug("bnode %p is flushing by journal, retry\n", b); 623 mutex_unlock(&b->write_lock); 624 udelay(1); 625 goto retry; 626 } 627 628 if (btree_node_dirty(b)) 629 __bch_btree_node_write(b, &cl); 630 mutex_unlock(&b->write_lock); 631 632 closure_sync(&cl); 633 634 /* wait for any in flight btree write */ 635 down(&b->io_mutex); 636 up(&b->io_mutex); 637 638 return 0; 639 out_unlock: 640 rw_unlock(true, b); 641 return -ENOMEM; 642 } 643 644 static unsigned long bch_mca_scan(struct shrinker *shrink, 645 struct shrink_control *sc) 646 { 647 struct cache_set *c = container_of(shrink, struct cache_set, shrink); 648 struct btree *b, *t; 649 unsigned long i, nr = sc->nr_to_scan; 650 unsigned long freed = 0; 651 unsigned int btree_cache_used; 652 653 if (c->shrinker_disabled) 654 return SHRINK_STOP; 655 656 if (c->btree_cache_alloc_lock) 657 return SHRINK_STOP; 658 659 /* Return -1 if we can't do anything right now */ 660 if (sc->gfp_mask & __GFP_IO) 661 mutex_lock(&c->bucket_lock); 662 else if (!mutex_trylock(&c->bucket_lock)) 663 return -1; 664 665 /* 666 * It's _really_ critical that we don't free too many btree nodes - we 667 * have to always leave ourselves a reserve. The reserve is how we 668 * guarantee that allocating memory for a new btree node can always 669 * succeed, so that inserting keys into the btree can always succeed and 670 * IO can always make forward progress: 671 */ 672 nr /= c->btree_pages; 673 if (nr == 0) 674 nr = 1; 675 nr = min_t(unsigned long, nr, mca_can_free(c)); 676 677 i = 0; 678 btree_cache_used = c->btree_cache_used; 679 list_for_each_entry_safe_reverse(b, t, &c->btree_cache_freeable, list) { 680 if (nr <= 0) 681 goto out; 682 683 if (!mca_reap(b, 0, false)) { 684 mca_data_free(b); 685 rw_unlock(true, b); 686 freed++; 687 } 688 nr--; 689 i++; 690 } 691 692 list_for_each_entry_safe_reverse(b, t, &c->btree_cache, list) { 693 if (nr <= 0 || i >= btree_cache_used) 694 goto out; 695 696 if (!mca_reap(b, 0, false)) { 697 mca_bucket_free(b); 698 mca_data_free(b); 699 rw_unlock(true, b); 700 freed++; 701 } 702 703 nr--; 704 i++; 705 } 706 out: 707 mutex_unlock(&c->bucket_lock); 708 return freed * c->btree_pages; 709 } 710 711 static unsigned long bch_mca_count(struct shrinker *shrink, 712 struct shrink_control *sc) 713 { 714 struct cache_set *c = container_of(shrink, struct cache_set, shrink); 715 716 if (c->shrinker_disabled) 717 return 0; 718 719 if (c->btree_cache_alloc_lock) 720 return 0; 721 722 return mca_can_free(c) * c->btree_pages; 723 } 724 725 void bch_btree_cache_free(struct cache_set *c) 726 { 727 struct btree *b; 728 struct closure cl; 729 730 closure_init_stack(&cl); 731 732 if (c->shrink.list.next) 733 unregister_shrinker(&c->shrink); 734 735 mutex_lock(&c->bucket_lock); 736 737 #ifdef CONFIG_BCACHE_DEBUG 738 if (c->verify_data) 739 list_move(&c->verify_data->list, &c->btree_cache); 740 741 free_pages((unsigned long) c->verify_ondisk, ilog2(bucket_pages(c))); 742 #endif 743 744 list_splice(&c->btree_cache_freeable, 745 &c->btree_cache); 746 747 while (!list_empty(&c->btree_cache)) { 748 b = list_first_entry(&c->btree_cache, struct btree, list); 749 750 /* 751 * This function is called by cache_set_free(), no I/O 752 * request on cache now, it is unnecessary to acquire 753 * b->write_lock before clearing BTREE_NODE_dirty anymore. 754 */ 755 if (btree_node_dirty(b)) { 756 btree_complete_write(b, btree_current_write(b)); 757 clear_bit(BTREE_NODE_dirty, &b->flags); 758 } 759 mca_data_free(b); 760 } 761 762 while (!list_empty(&c->btree_cache_freed)) { 763 b = list_first_entry(&c->btree_cache_freed, 764 struct btree, list); 765 list_del(&b->list); 766 cancel_delayed_work_sync(&b->work); 767 kfree(b); 768 } 769 770 mutex_unlock(&c->bucket_lock); 771 } 772 773 int bch_btree_cache_alloc(struct cache_set *c) 774 { 775 unsigned int i; 776 777 for (i = 0; i < mca_reserve(c); i++) 778 if (!mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL)) 779 return -ENOMEM; 780 781 list_splice_init(&c->btree_cache, 782 &c->btree_cache_freeable); 783 784 #ifdef CONFIG_BCACHE_DEBUG 785 mutex_init(&c->verify_lock); 786 787 c->verify_ondisk = (void *) 788 __get_free_pages(GFP_KERNEL, ilog2(bucket_pages(c))); 789 790 c->verify_data = mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL); 791 792 if (c->verify_data && 793 c->verify_data->keys.set->data) 794 list_del_init(&c->verify_data->list); 795 else 796 c->verify_data = NULL; 797 #endif 798 799 c->shrink.count_objects = bch_mca_count; 800 c->shrink.scan_objects = bch_mca_scan; 801 c->shrink.seeks = 4; 802 c->shrink.batch = c->btree_pages * 2; 803 804 if (register_shrinker(&c->shrink)) 805 pr_warn("bcache: %s: could not register shrinker\n", 806 __func__); 807 808 return 0; 809 } 810 811 /* Btree in memory cache - hash table */ 812 813 static struct hlist_head *mca_hash(struct cache_set *c, struct bkey *k) 814 { 815 return &c->bucket_hash[hash_32(PTR_HASH(c, k), BUCKET_HASH_BITS)]; 816 } 817 818 static struct btree *mca_find(struct cache_set *c, struct bkey *k) 819 { 820 struct btree *b; 821 822 rcu_read_lock(); 823 hlist_for_each_entry_rcu(b, mca_hash(c, k), hash) 824 if (PTR_HASH(c, &b->key) == PTR_HASH(c, k)) 825 goto out; 826 b = NULL; 827 out: 828 rcu_read_unlock(); 829 return b; 830 } 831 832 static int mca_cannibalize_lock(struct cache_set *c, struct btree_op *op) 833 { 834 spin_lock(&c->btree_cannibalize_lock); 835 if (likely(c->btree_cache_alloc_lock == NULL)) { 836 c->btree_cache_alloc_lock = current; 837 } else if (c->btree_cache_alloc_lock != current) { 838 if (op) 839 prepare_to_wait(&c->btree_cache_wait, &op->wait, 840 TASK_UNINTERRUPTIBLE); 841 spin_unlock(&c->btree_cannibalize_lock); 842 return -EINTR; 843 } 844 spin_unlock(&c->btree_cannibalize_lock); 845 846 return 0; 847 } 848 849 static struct btree *mca_cannibalize(struct cache_set *c, struct btree_op *op, 850 struct bkey *k) 851 { 852 struct btree *b; 853 854 trace_bcache_btree_cache_cannibalize(c); 855 856 if (mca_cannibalize_lock(c, op)) 857 return ERR_PTR(-EINTR); 858 859 list_for_each_entry_reverse(b, &c->btree_cache, list) 860 if (!mca_reap(b, btree_order(k), false)) 861 return b; 862 863 list_for_each_entry_reverse(b, &c->btree_cache, list) 864 if (!mca_reap(b, btree_order(k), true)) 865 return b; 866 867 WARN(1, "btree cache cannibalize failed\n"); 868 return ERR_PTR(-ENOMEM); 869 } 870 871 /* 872 * We can only have one thread cannibalizing other cached btree nodes at a time, 873 * or we'll deadlock. We use an open coded mutex to ensure that, which a 874 * cannibalize_bucket() will take. This means every time we unlock the root of 875 * the btree, we need to release this lock if we have it held. 876 */ 877 static void bch_cannibalize_unlock(struct cache_set *c) 878 { 879 spin_lock(&c->btree_cannibalize_lock); 880 if (c->btree_cache_alloc_lock == current) { 881 c->btree_cache_alloc_lock = NULL; 882 wake_up(&c->btree_cache_wait); 883 } 884 spin_unlock(&c->btree_cannibalize_lock); 885 } 886 887 static struct btree *mca_alloc(struct cache_set *c, struct btree_op *op, 888 struct bkey *k, int level) 889 { 890 struct btree *b; 891 892 BUG_ON(current->bio_list); 893 894 lockdep_assert_held(&c->bucket_lock); 895 896 if (mca_find(c, k)) 897 return NULL; 898 899 /* btree_free() doesn't free memory; it sticks the node on the end of 900 * the list. Check if there's any freed nodes there: 901 */ 902 list_for_each_entry(b, &c->btree_cache_freeable, list) 903 if (!mca_reap(b, btree_order(k), false)) 904 goto out; 905 906 /* We never free struct btree itself, just the memory that holds the on 907 * disk node. Check the freed list before allocating a new one: 908 */ 909 list_for_each_entry(b, &c->btree_cache_freed, list) 910 if (!mca_reap(b, 0, false)) { 911 mca_data_alloc(b, k, __GFP_NOWARN|GFP_NOIO); 912 if (!b->keys.set[0].data) 913 goto err; 914 else 915 goto out; 916 } 917 918 b = mca_bucket_alloc(c, k, __GFP_NOWARN|GFP_NOIO); 919 if (!b) 920 goto err; 921 922 BUG_ON(!down_write_trylock(&b->lock)); 923 if (!b->keys.set->data) 924 goto err; 925 out: 926 BUG_ON(b->io_mutex.count != 1); 927 928 bkey_copy(&b->key, k); 929 list_move(&b->list, &c->btree_cache); 930 hlist_del_init_rcu(&b->hash); 931 hlist_add_head_rcu(&b->hash, mca_hash(c, k)); 932 933 lock_set_subclass(&b->lock.dep_map, level + 1, _THIS_IP_); 934 b->parent = (void *) ~0UL; 935 b->flags = 0; 936 b->written = 0; 937 b->level = level; 938 939 if (!b->level) 940 bch_btree_keys_init(&b->keys, &bch_extent_keys_ops, 941 &b->c->expensive_debug_checks); 942 else 943 bch_btree_keys_init(&b->keys, &bch_btree_keys_ops, 944 &b->c->expensive_debug_checks); 945 946 return b; 947 err: 948 if (b) 949 rw_unlock(true, b); 950 951 b = mca_cannibalize(c, op, k); 952 if (!IS_ERR(b)) 953 goto out; 954 955 return b; 956 } 957 958 /* 959 * bch_btree_node_get - find a btree node in the cache and lock it, reading it 960 * in from disk if necessary. 961 * 962 * If IO is necessary and running under generic_make_request, returns -EAGAIN. 963 * 964 * The btree node will have either a read or a write lock held, depending on 965 * level and op->lock. 966 */ 967 struct btree *bch_btree_node_get(struct cache_set *c, struct btree_op *op, 968 struct bkey *k, int level, bool write, 969 struct btree *parent) 970 { 971 int i = 0; 972 struct btree *b; 973 974 BUG_ON(level < 0); 975 retry: 976 b = mca_find(c, k); 977 978 if (!b) { 979 if (current->bio_list) 980 return ERR_PTR(-EAGAIN); 981 982 mutex_lock(&c->bucket_lock); 983 b = mca_alloc(c, op, k, level); 984 mutex_unlock(&c->bucket_lock); 985 986 if (!b) 987 goto retry; 988 if (IS_ERR(b)) 989 return b; 990 991 bch_btree_node_read(b); 992 993 if (!write) 994 downgrade_write(&b->lock); 995 } else { 996 rw_lock(write, b, level); 997 if (PTR_HASH(c, &b->key) != PTR_HASH(c, k)) { 998 rw_unlock(write, b); 999 goto retry; 1000 } 1001 BUG_ON(b->level != level); 1002 } 1003 1004 if (btree_node_io_error(b)) { 1005 rw_unlock(write, b); 1006 return ERR_PTR(-EIO); 1007 } 1008 1009 BUG_ON(!b->written); 1010 1011 b->parent = parent; 1012 1013 for (; i <= b->keys.nsets && b->keys.set[i].size; i++) { 1014 prefetch(b->keys.set[i].tree); 1015 prefetch(b->keys.set[i].data); 1016 } 1017 1018 for (; i <= b->keys.nsets; i++) 1019 prefetch(b->keys.set[i].data); 1020 1021 return b; 1022 } 1023 1024 static void btree_node_prefetch(struct btree *parent, struct bkey *k) 1025 { 1026 struct btree *b; 1027 1028 mutex_lock(&parent->c->bucket_lock); 1029 b = mca_alloc(parent->c, NULL, k, parent->level - 1); 1030 mutex_unlock(&parent->c->bucket_lock); 1031 1032 if (!IS_ERR_OR_NULL(b)) { 1033 b->parent = parent; 1034 bch_btree_node_read(b); 1035 rw_unlock(true, b); 1036 } 1037 } 1038 1039 /* Btree alloc */ 1040 1041 static void btree_node_free(struct btree *b) 1042 { 1043 trace_bcache_btree_node_free(b); 1044 1045 BUG_ON(b == b->c->root); 1046 1047 retry: 1048 mutex_lock(&b->write_lock); 1049 /* 1050 * If the btree node is selected and flushing in btree_flush_write(), 1051 * delay and retry until the BTREE_NODE_journal_flush bit cleared, 1052 * then it is safe to free the btree node here. Otherwise this btree 1053 * node will be in race condition. 1054 */ 1055 if (btree_node_journal_flush(b)) { 1056 mutex_unlock(&b->write_lock); 1057 pr_debug("bnode %p journal_flush set, retry\n", b); 1058 udelay(1); 1059 goto retry; 1060 } 1061 1062 if (btree_node_dirty(b)) { 1063 btree_complete_write(b, btree_current_write(b)); 1064 clear_bit(BTREE_NODE_dirty, &b->flags); 1065 } 1066 1067 mutex_unlock(&b->write_lock); 1068 1069 cancel_delayed_work(&b->work); 1070 1071 mutex_lock(&b->c->bucket_lock); 1072 bch_bucket_free(b->c, &b->key); 1073 mca_bucket_free(b); 1074 mutex_unlock(&b->c->bucket_lock); 1075 } 1076 1077 struct btree *__bch_btree_node_alloc(struct cache_set *c, struct btree_op *op, 1078 int level, bool wait, 1079 struct btree *parent) 1080 { 1081 BKEY_PADDED(key) k; 1082 struct btree *b = ERR_PTR(-EAGAIN); 1083 1084 mutex_lock(&c->bucket_lock); 1085 retry: 1086 if (__bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, 1, wait)) 1087 goto err; 1088 1089 bkey_put(c, &k.key); 1090 SET_KEY_SIZE(&k.key, c->btree_pages * PAGE_SECTORS); 1091 1092 b = mca_alloc(c, op, &k.key, level); 1093 if (IS_ERR(b)) 1094 goto err_free; 1095 1096 if (!b) { 1097 cache_bug(c, 1098 "Tried to allocate bucket that was in btree cache"); 1099 goto retry; 1100 } 1101 1102 b->parent = parent; 1103 bch_bset_init_next(&b->keys, b->keys.set->data, bset_magic(&b->c->sb)); 1104 1105 mutex_unlock(&c->bucket_lock); 1106 1107 trace_bcache_btree_node_alloc(b); 1108 return b; 1109 err_free: 1110 bch_bucket_free(c, &k.key); 1111 err: 1112 mutex_unlock(&c->bucket_lock); 1113 1114 trace_bcache_btree_node_alloc_fail(c); 1115 return b; 1116 } 1117 1118 static struct btree *bch_btree_node_alloc(struct cache_set *c, 1119 struct btree_op *op, int level, 1120 struct btree *parent) 1121 { 1122 return __bch_btree_node_alloc(c, op, level, op != NULL, parent); 1123 } 1124 1125 static struct btree *btree_node_alloc_replacement(struct btree *b, 1126 struct btree_op *op) 1127 { 1128 struct btree *n = bch_btree_node_alloc(b->c, op, b->level, b->parent); 1129 1130 if (!IS_ERR_OR_NULL(n)) { 1131 mutex_lock(&n->write_lock); 1132 bch_btree_sort_into(&b->keys, &n->keys, &b->c->sort); 1133 bkey_copy_key(&n->key, &b->key); 1134 mutex_unlock(&n->write_lock); 1135 } 1136 1137 return n; 1138 } 1139 1140 static void make_btree_freeing_key(struct btree *b, struct bkey *k) 1141 { 1142 unsigned int i; 1143 1144 mutex_lock(&b->c->bucket_lock); 1145 1146 atomic_inc(&b->c->prio_blocked); 1147 1148 bkey_copy(k, &b->key); 1149 bkey_copy_key(k, &ZERO_KEY); 1150 1151 for (i = 0; i < KEY_PTRS(k); i++) 1152 SET_PTR_GEN(k, i, 1153 bch_inc_gen(PTR_CACHE(b->c, &b->key, i), 1154 PTR_BUCKET(b->c, &b->key, i))); 1155 1156 mutex_unlock(&b->c->bucket_lock); 1157 } 1158 1159 static int btree_check_reserve(struct btree *b, struct btree_op *op) 1160 { 1161 struct cache_set *c = b->c; 1162 struct cache *ca; 1163 unsigned int i, reserve = (c->root->level - b->level) * 2 + 1; 1164 1165 mutex_lock(&c->bucket_lock); 1166 1167 for_each_cache(ca, c, i) 1168 if (fifo_used(&ca->free[RESERVE_BTREE]) < reserve) { 1169 if (op) 1170 prepare_to_wait(&c->btree_cache_wait, &op->wait, 1171 TASK_UNINTERRUPTIBLE); 1172 mutex_unlock(&c->bucket_lock); 1173 return -EINTR; 1174 } 1175 1176 mutex_unlock(&c->bucket_lock); 1177 1178 return mca_cannibalize_lock(b->c, op); 1179 } 1180 1181 /* Garbage collection */ 1182 1183 static uint8_t __bch_btree_mark_key(struct cache_set *c, int level, 1184 struct bkey *k) 1185 { 1186 uint8_t stale = 0; 1187 unsigned int i; 1188 struct bucket *g; 1189 1190 /* 1191 * ptr_invalid() can't return true for the keys that mark btree nodes as 1192 * freed, but since ptr_bad() returns true we'll never actually use them 1193 * for anything and thus we don't want mark their pointers here 1194 */ 1195 if (!bkey_cmp(k, &ZERO_KEY)) 1196 return stale; 1197 1198 for (i = 0; i < KEY_PTRS(k); i++) { 1199 if (!ptr_available(c, k, i)) 1200 continue; 1201 1202 g = PTR_BUCKET(c, k, i); 1203 1204 if (gen_after(g->last_gc, PTR_GEN(k, i))) 1205 g->last_gc = PTR_GEN(k, i); 1206 1207 if (ptr_stale(c, k, i)) { 1208 stale = max(stale, ptr_stale(c, k, i)); 1209 continue; 1210 } 1211 1212 cache_bug_on(GC_MARK(g) && 1213 (GC_MARK(g) == GC_MARK_METADATA) != (level != 0), 1214 c, "inconsistent ptrs: mark = %llu, level = %i", 1215 GC_MARK(g), level); 1216 1217 if (level) 1218 SET_GC_MARK(g, GC_MARK_METADATA); 1219 else if (KEY_DIRTY(k)) 1220 SET_GC_MARK(g, GC_MARK_DIRTY); 1221 else if (!GC_MARK(g)) 1222 SET_GC_MARK(g, GC_MARK_RECLAIMABLE); 1223 1224 /* guard against overflow */ 1225 SET_GC_SECTORS_USED(g, min_t(unsigned int, 1226 GC_SECTORS_USED(g) + KEY_SIZE(k), 1227 MAX_GC_SECTORS_USED)); 1228 1229 BUG_ON(!GC_SECTORS_USED(g)); 1230 } 1231 1232 return stale; 1233 } 1234 1235 #define btree_mark_key(b, k) __bch_btree_mark_key(b->c, b->level, k) 1236 1237 void bch_initial_mark_key(struct cache_set *c, int level, struct bkey *k) 1238 { 1239 unsigned int i; 1240 1241 for (i = 0; i < KEY_PTRS(k); i++) 1242 if (ptr_available(c, k, i) && 1243 !ptr_stale(c, k, i)) { 1244 struct bucket *b = PTR_BUCKET(c, k, i); 1245 1246 b->gen = PTR_GEN(k, i); 1247 1248 if (level && bkey_cmp(k, &ZERO_KEY)) 1249 b->prio = BTREE_PRIO; 1250 else if (!level && b->prio == BTREE_PRIO) 1251 b->prio = INITIAL_PRIO; 1252 } 1253 1254 __bch_btree_mark_key(c, level, k); 1255 } 1256 1257 void bch_update_bucket_in_use(struct cache_set *c, struct gc_stat *stats) 1258 { 1259 stats->in_use = (c->nbuckets - c->avail_nbuckets) * 100 / c->nbuckets; 1260 } 1261 1262 static bool btree_gc_mark_node(struct btree *b, struct gc_stat *gc) 1263 { 1264 uint8_t stale = 0; 1265 unsigned int keys = 0, good_keys = 0; 1266 struct bkey *k; 1267 struct btree_iter iter; 1268 struct bset_tree *t; 1269 1270 gc->nodes++; 1271 1272 for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid) { 1273 stale = max(stale, btree_mark_key(b, k)); 1274 keys++; 1275 1276 if (bch_ptr_bad(&b->keys, k)) 1277 continue; 1278 1279 gc->key_bytes += bkey_u64s(k); 1280 gc->nkeys++; 1281 good_keys++; 1282 1283 gc->data += KEY_SIZE(k); 1284 } 1285 1286 for (t = b->keys.set; t <= &b->keys.set[b->keys.nsets]; t++) 1287 btree_bug_on(t->size && 1288 bset_written(&b->keys, t) && 1289 bkey_cmp(&b->key, &t->end) < 0, 1290 b, "found short btree key in gc"); 1291 1292 if (b->c->gc_always_rewrite) 1293 return true; 1294 1295 if (stale > 10) 1296 return true; 1297 1298 if ((keys - good_keys) * 2 > keys) 1299 return true; 1300 1301 return false; 1302 } 1303 1304 #define GC_MERGE_NODES 4U 1305 1306 struct gc_merge_info { 1307 struct btree *b; 1308 unsigned int keys; 1309 }; 1310 1311 static int bch_btree_insert_node(struct btree *b, struct btree_op *op, 1312 struct keylist *insert_keys, 1313 atomic_t *journal_ref, 1314 struct bkey *replace_key); 1315 1316 static int btree_gc_coalesce(struct btree *b, struct btree_op *op, 1317 struct gc_stat *gc, struct gc_merge_info *r) 1318 { 1319 unsigned int i, nodes = 0, keys = 0, blocks; 1320 struct btree *new_nodes[GC_MERGE_NODES]; 1321 struct keylist keylist; 1322 struct closure cl; 1323 struct bkey *k; 1324 1325 bch_keylist_init(&keylist); 1326 1327 if (btree_check_reserve(b, NULL)) 1328 return 0; 1329 1330 memset(new_nodes, 0, sizeof(new_nodes)); 1331 closure_init_stack(&cl); 1332 1333 while (nodes < GC_MERGE_NODES && !IS_ERR_OR_NULL(r[nodes].b)) 1334 keys += r[nodes++].keys; 1335 1336 blocks = btree_default_blocks(b->c) * 2 / 3; 1337 1338 if (nodes < 2 || 1339 __set_blocks(b->keys.set[0].data, keys, 1340 block_bytes(b->c)) > blocks * (nodes - 1)) 1341 return 0; 1342 1343 for (i = 0; i < nodes; i++) { 1344 new_nodes[i] = btree_node_alloc_replacement(r[i].b, NULL); 1345 if (IS_ERR_OR_NULL(new_nodes[i])) 1346 goto out_nocoalesce; 1347 } 1348 1349 /* 1350 * We have to check the reserve here, after we've allocated our new 1351 * nodes, to make sure the insert below will succeed - we also check 1352 * before as an optimization to potentially avoid a bunch of expensive 1353 * allocs/sorts 1354 */ 1355 if (btree_check_reserve(b, NULL)) 1356 goto out_nocoalesce; 1357 1358 for (i = 0; i < nodes; i++) 1359 mutex_lock(&new_nodes[i]->write_lock); 1360 1361 for (i = nodes - 1; i > 0; --i) { 1362 struct bset *n1 = btree_bset_first(new_nodes[i]); 1363 struct bset *n2 = btree_bset_first(new_nodes[i - 1]); 1364 struct bkey *k, *last = NULL; 1365 1366 keys = 0; 1367 1368 if (i > 1) { 1369 for (k = n2->start; 1370 k < bset_bkey_last(n2); 1371 k = bkey_next(k)) { 1372 if (__set_blocks(n1, n1->keys + keys + 1373 bkey_u64s(k), 1374 block_bytes(b->c)) > blocks) 1375 break; 1376 1377 last = k; 1378 keys += bkey_u64s(k); 1379 } 1380 } else { 1381 /* 1382 * Last node we're not getting rid of - we're getting 1383 * rid of the node at r[0]. Have to try and fit all of 1384 * the remaining keys into this node; we can't ensure 1385 * they will always fit due to rounding and variable 1386 * length keys (shouldn't be possible in practice, 1387 * though) 1388 */ 1389 if (__set_blocks(n1, n1->keys + n2->keys, 1390 block_bytes(b->c)) > 1391 btree_blocks(new_nodes[i])) 1392 goto out_unlock_nocoalesce; 1393 1394 keys = n2->keys; 1395 /* Take the key of the node we're getting rid of */ 1396 last = &r->b->key; 1397 } 1398 1399 BUG_ON(__set_blocks(n1, n1->keys + keys, block_bytes(b->c)) > 1400 btree_blocks(new_nodes[i])); 1401 1402 if (last) 1403 bkey_copy_key(&new_nodes[i]->key, last); 1404 1405 memcpy(bset_bkey_last(n1), 1406 n2->start, 1407 (void *) bset_bkey_idx(n2, keys) - (void *) n2->start); 1408 1409 n1->keys += keys; 1410 r[i].keys = n1->keys; 1411 1412 memmove(n2->start, 1413 bset_bkey_idx(n2, keys), 1414 (void *) bset_bkey_last(n2) - 1415 (void *) bset_bkey_idx(n2, keys)); 1416 1417 n2->keys -= keys; 1418 1419 if (__bch_keylist_realloc(&keylist, 1420 bkey_u64s(&new_nodes[i]->key))) 1421 goto out_unlock_nocoalesce; 1422 1423 bch_btree_node_write(new_nodes[i], &cl); 1424 bch_keylist_add(&keylist, &new_nodes[i]->key); 1425 } 1426 1427 for (i = 0; i < nodes; i++) 1428 mutex_unlock(&new_nodes[i]->write_lock); 1429 1430 closure_sync(&cl); 1431 1432 /* We emptied out this node */ 1433 BUG_ON(btree_bset_first(new_nodes[0])->keys); 1434 btree_node_free(new_nodes[0]); 1435 rw_unlock(true, new_nodes[0]); 1436 new_nodes[0] = NULL; 1437 1438 for (i = 0; i < nodes; i++) { 1439 if (__bch_keylist_realloc(&keylist, bkey_u64s(&r[i].b->key))) 1440 goto out_nocoalesce; 1441 1442 make_btree_freeing_key(r[i].b, keylist.top); 1443 bch_keylist_push(&keylist); 1444 } 1445 1446 bch_btree_insert_node(b, op, &keylist, NULL, NULL); 1447 BUG_ON(!bch_keylist_empty(&keylist)); 1448 1449 for (i = 0; i < nodes; i++) { 1450 btree_node_free(r[i].b); 1451 rw_unlock(true, r[i].b); 1452 1453 r[i].b = new_nodes[i]; 1454 } 1455 1456 memmove(r, r + 1, sizeof(r[0]) * (nodes - 1)); 1457 r[nodes - 1].b = ERR_PTR(-EINTR); 1458 1459 trace_bcache_btree_gc_coalesce(nodes); 1460 gc->nodes--; 1461 1462 bch_keylist_free(&keylist); 1463 1464 /* Invalidated our iterator */ 1465 return -EINTR; 1466 1467 out_unlock_nocoalesce: 1468 for (i = 0; i < nodes; i++) 1469 mutex_unlock(&new_nodes[i]->write_lock); 1470 1471 out_nocoalesce: 1472 closure_sync(&cl); 1473 1474 while ((k = bch_keylist_pop(&keylist))) 1475 if (!bkey_cmp(k, &ZERO_KEY)) 1476 atomic_dec(&b->c->prio_blocked); 1477 bch_keylist_free(&keylist); 1478 1479 for (i = 0; i < nodes; i++) 1480 if (!IS_ERR_OR_NULL(new_nodes[i])) { 1481 btree_node_free(new_nodes[i]); 1482 rw_unlock(true, new_nodes[i]); 1483 } 1484 return 0; 1485 } 1486 1487 static int btree_gc_rewrite_node(struct btree *b, struct btree_op *op, 1488 struct btree *replace) 1489 { 1490 struct keylist keys; 1491 struct btree *n; 1492 1493 if (btree_check_reserve(b, NULL)) 1494 return 0; 1495 1496 n = btree_node_alloc_replacement(replace, NULL); 1497 1498 /* recheck reserve after allocating replacement node */ 1499 if (btree_check_reserve(b, NULL)) { 1500 btree_node_free(n); 1501 rw_unlock(true, n); 1502 return 0; 1503 } 1504 1505 bch_btree_node_write_sync(n); 1506 1507 bch_keylist_init(&keys); 1508 bch_keylist_add(&keys, &n->key); 1509 1510 make_btree_freeing_key(replace, keys.top); 1511 bch_keylist_push(&keys); 1512 1513 bch_btree_insert_node(b, op, &keys, NULL, NULL); 1514 BUG_ON(!bch_keylist_empty(&keys)); 1515 1516 btree_node_free(replace); 1517 rw_unlock(true, n); 1518 1519 /* Invalidated our iterator */ 1520 return -EINTR; 1521 } 1522 1523 static unsigned int btree_gc_count_keys(struct btree *b) 1524 { 1525 struct bkey *k; 1526 struct btree_iter iter; 1527 unsigned int ret = 0; 1528 1529 for_each_key_filter(&b->keys, k, &iter, bch_ptr_bad) 1530 ret += bkey_u64s(k); 1531 1532 return ret; 1533 } 1534 1535 static size_t btree_gc_min_nodes(struct cache_set *c) 1536 { 1537 size_t min_nodes; 1538 1539 /* 1540 * Since incremental GC would stop 100ms when front 1541 * side I/O comes, so when there are many btree nodes, 1542 * if GC only processes constant (100) nodes each time, 1543 * GC would last a long time, and the front side I/Os 1544 * would run out of the buckets (since no new bucket 1545 * can be allocated during GC), and be blocked again. 1546 * So GC should not process constant nodes, but varied 1547 * nodes according to the number of btree nodes, which 1548 * realized by dividing GC into constant(100) times, 1549 * so when there are many btree nodes, GC can process 1550 * more nodes each time, otherwise, GC will process less 1551 * nodes each time (but no less than MIN_GC_NODES) 1552 */ 1553 min_nodes = c->gc_stats.nodes / MAX_GC_TIMES; 1554 if (min_nodes < MIN_GC_NODES) 1555 min_nodes = MIN_GC_NODES; 1556 1557 return min_nodes; 1558 } 1559 1560 1561 static int btree_gc_recurse(struct btree *b, struct btree_op *op, 1562 struct closure *writes, struct gc_stat *gc) 1563 { 1564 int ret = 0; 1565 bool should_rewrite; 1566 struct bkey *k; 1567 struct btree_iter iter; 1568 struct gc_merge_info r[GC_MERGE_NODES]; 1569 struct gc_merge_info *i, *last = r + ARRAY_SIZE(r) - 1; 1570 1571 bch_btree_iter_init(&b->keys, &iter, &b->c->gc_done); 1572 1573 for (i = r; i < r + ARRAY_SIZE(r); i++) 1574 i->b = ERR_PTR(-EINTR); 1575 1576 while (1) { 1577 k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad); 1578 if (k) { 1579 r->b = bch_btree_node_get(b->c, op, k, b->level - 1, 1580 true, b); 1581 if (IS_ERR(r->b)) { 1582 ret = PTR_ERR(r->b); 1583 break; 1584 } 1585 1586 r->keys = btree_gc_count_keys(r->b); 1587 1588 ret = btree_gc_coalesce(b, op, gc, r); 1589 if (ret) 1590 break; 1591 } 1592 1593 if (!last->b) 1594 break; 1595 1596 if (!IS_ERR(last->b)) { 1597 should_rewrite = btree_gc_mark_node(last->b, gc); 1598 if (should_rewrite) { 1599 ret = btree_gc_rewrite_node(b, op, last->b); 1600 if (ret) 1601 break; 1602 } 1603 1604 if (last->b->level) { 1605 ret = btree_gc_recurse(last->b, op, writes, gc); 1606 if (ret) 1607 break; 1608 } 1609 1610 bkey_copy_key(&b->c->gc_done, &last->b->key); 1611 1612 /* 1613 * Must flush leaf nodes before gc ends, since replace 1614 * operations aren't journalled 1615 */ 1616 mutex_lock(&last->b->write_lock); 1617 if (btree_node_dirty(last->b)) 1618 bch_btree_node_write(last->b, writes); 1619 mutex_unlock(&last->b->write_lock); 1620 rw_unlock(true, last->b); 1621 } 1622 1623 memmove(r + 1, r, sizeof(r[0]) * (GC_MERGE_NODES - 1)); 1624 r->b = NULL; 1625 1626 if (atomic_read(&b->c->search_inflight) && 1627 gc->nodes >= gc->nodes_pre + btree_gc_min_nodes(b->c)) { 1628 gc->nodes_pre = gc->nodes; 1629 ret = -EAGAIN; 1630 break; 1631 } 1632 1633 if (need_resched()) { 1634 ret = -EAGAIN; 1635 break; 1636 } 1637 } 1638 1639 for (i = r; i < r + ARRAY_SIZE(r); i++) 1640 if (!IS_ERR_OR_NULL(i->b)) { 1641 mutex_lock(&i->b->write_lock); 1642 if (btree_node_dirty(i->b)) 1643 bch_btree_node_write(i->b, writes); 1644 mutex_unlock(&i->b->write_lock); 1645 rw_unlock(true, i->b); 1646 } 1647 1648 return ret; 1649 } 1650 1651 static int bch_btree_gc_root(struct btree *b, struct btree_op *op, 1652 struct closure *writes, struct gc_stat *gc) 1653 { 1654 struct btree *n = NULL; 1655 int ret = 0; 1656 bool should_rewrite; 1657 1658 should_rewrite = btree_gc_mark_node(b, gc); 1659 if (should_rewrite) { 1660 n = btree_node_alloc_replacement(b, NULL); 1661 1662 if (!IS_ERR_OR_NULL(n)) { 1663 bch_btree_node_write_sync(n); 1664 1665 bch_btree_set_root(n); 1666 btree_node_free(b); 1667 rw_unlock(true, n); 1668 1669 return -EINTR; 1670 } 1671 } 1672 1673 __bch_btree_mark_key(b->c, b->level + 1, &b->key); 1674 1675 if (b->level) { 1676 ret = btree_gc_recurse(b, op, writes, gc); 1677 if (ret) 1678 return ret; 1679 } 1680 1681 bkey_copy_key(&b->c->gc_done, &b->key); 1682 1683 return ret; 1684 } 1685 1686 static void btree_gc_start(struct cache_set *c) 1687 { 1688 struct cache *ca; 1689 struct bucket *b; 1690 unsigned int i; 1691 1692 if (!c->gc_mark_valid) 1693 return; 1694 1695 mutex_lock(&c->bucket_lock); 1696 1697 c->gc_mark_valid = 0; 1698 c->gc_done = ZERO_KEY; 1699 1700 for_each_cache(ca, c, i) 1701 for_each_bucket(b, ca) { 1702 b->last_gc = b->gen; 1703 if (!atomic_read(&b->pin)) { 1704 SET_GC_MARK(b, 0); 1705 SET_GC_SECTORS_USED(b, 0); 1706 } 1707 } 1708 1709 mutex_unlock(&c->bucket_lock); 1710 } 1711 1712 static void bch_btree_gc_finish(struct cache_set *c) 1713 { 1714 struct bucket *b; 1715 struct cache *ca; 1716 unsigned int i; 1717 1718 mutex_lock(&c->bucket_lock); 1719 1720 set_gc_sectors(c); 1721 c->gc_mark_valid = 1; 1722 c->need_gc = 0; 1723 1724 for (i = 0; i < KEY_PTRS(&c->uuid_bucket); i++) 1725 SET_GC_MARK(PTR_BUCKET(c, &c->uuid_bucket, i), 1726 GC_MARK_METADATA); 1727 1728 /* don't reclaim buckets to which writeback keys point */ 1729 rcu_read_lock(); 1730 for (i = 0; i < c->devices_max_used; i++) { 1731 struct bcache_device *d = c->devices[i]; 1732 struct cached_dev *dc; 1733 struct keybuf_key *w, *n; 1734 unsigned int j; 1735 1736 if (!d || UUID_FLASH_ONLY(&c->uuids[i])) 1737 continue; 1738 dc = container_of(d, struct cached_dev, disk); 1739 1740 spin_lock(&dc->writeback_keys.lock); 1741 rbtree_postorder_for_each_entry_safe(w, n, 1742 &dc->writeback_keys.keys, node) 1743 for (j = 0; j < KEY_PTRS(&w->key); j++) 1744 SET_GC_MARK(PTR_BUCKET(c, &w->key, j), 1745 GC_MARK_DIRTY); 1746 spin_unlock(&dc->writeback_keys.lock); 1747 } 1748 rcu_read_unlock(); 1749 1750 c->avail_nbuckets = 0; 1751 for_each_cache(ca, c, i) { 1752 uint64_t *i; 1753 1754 ca->invalidate_needs_gc = 0; 1755 1756 for (i = ca->sb.d; i < ca->sb.d + ca->sb.keys; i++) 1757 SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA); 1758 1759 for (i = ca->prio_buckets; 1760 i < ca->prio_buckets + prio_buckets(ca) * 2; i++) 1761 SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA); 1762 1763 for_each_bucket(b, ca) { 1764 c->need_gc = max(c->need_gc, bucket_gc_gen(b)); 1765 1766 if (atomic_read(&b->pin)) 1767 continue; 1768 1769 BUG_ON(!GC_MARK(b) && GC_SECTORS_USED(b)); 1770 1771 if (!GC_MARK(b) || GC_MARK(b) == GC_MARK_RECLAIMABLE) 1772 c->avail_nbuckets++; 1773 } 1774 } 1775 1776 mutex_unlock(&c->bucket_lock); 1777 } 1778 1779 static void bch_btree_gc(struct cache_set *c) 1780 { 1781 int ret; 1782 struct gc_stat stats; 1783 struct closure writes; 1784 struct btree_op op; 1785 uint64_t start_time = local_clock(); 1786 1787 trace_bcache_gc_start(c); 1788 1789 memset(&stats, 0, sizeof(struct gc_stat)); 1790 closure_init_stack(&writes); 1791 bch_btree_op_init(&op, SHRT_MAX); 1792 1793 btree_gc_start(c); 1794 1795 /* if CACHE_SET_IO_DISABLE set, gc thread should stop too */ 1796 do { 1797 ret = bcache_btree_root(gc_root, c, &op, &writes, &stats); 1798 closure_sync(&writes); 1799 cond_resched(); 1800 1801 if (ret == -EAGAIN) 1802 schedule_timeout_interruptible(msecs_to_jiffies 1803 (GC_SLEEP_MS)); 1804 else if (ret) 1805 pr_warn("gc failed!\n"); 1806 } while (ret && !test_bit(CACHE_SET_IO_DISABLE, &c->flags)); 1807 1808 bch_btree_gc_finish(c); 1809 wake_up_allocators(c); 1810 1811 bch_time_stats_update(&c->btree_gc_time, start_time); 1812 1813 stats.key_bytes *= sizeof(uint64_t); 1814 stats.data <<= 9; 1815 bch_update_bucket_in_use(c, &stats); 1816 memcpy(&c->gc_stats, &stats, sizeof(struct gc_stat)); 1817 1818 trace_bcache_gc_end(c); 1819 1820 bch_moving_gc(c); 1821 } 1822 1823 static bool gc_should_run(struct cache_set *c) 1824 { 1825 struct cache *ca; 1826 unsigned int i; 1827 1828 for_each_cache(ca, c, i) 1829 if (ca->invalidate_needs_gc) 1830 return true; 1831 1832 if (atomic_read(&c->sectors_to_gc) < 0) 1833 return true; 1834 1835 return false; 1836 } 1837 1838 static int bch_gc_thread(void *arg) 1839 { 1840 struct cache_set *c = arg; 1841 1842 while (1) { 1843 wait_event_interruptible(c->gc_wait, 1844 kthread_should_stop() || 1845 test_bit(CACHE_SET_IO_DISABLE, &c->flags) || 1846 gc_should_run(c)); 1847 1848 if (kthread_should_stop() || 1849 test_bit(CACHE_SET_IO_DISABLE, &c->flags)) 1850 break; 1851 1852 set_gc_sectors(c); 1853 bch_btree_gc(c); 1854 } 1855 1856 wait_for_kthread_stop(); 1857 return 0; 1858 } 1859 1860 int bch_gc_thread_start(struct cache_set *c) 1861 { 1862 c->gc_thread = kthread_run(bch_gc_thread, c, "bcache_gc"); 1863 return PTR_ERR_OR_ZERO(c->gc_thread); 1864 } 1865 1866 /* Initial partial gc */ 1867 1868 static int bch_btree_check_recurse(struct btree *b, struct btree_op *op) 1869 { 1870 int ret = 0; 1871 struct bkey *k, *p = NULL; 1872 struct btree_iter iter; 1873 1874 for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid) 1875 bch_initial_mark_key(b->c, b->level, k); 1876 1877 bch_initial_mark_key(b->c, b->level + 1, &b->key); 1878 1879 if (b->level) { 1880 bch_btree_iter_init(&b->keys, &iter, NULL); 1881 1882 do { 1883 k = bch_btree_iter_next_filter(&iter, &b->keys, 1884 bch_ptr_bad); 1885 if (k) { 1886 btree_node_prefetch(b, k); 1887 /* 1888 * initiallize c->gc_stats.nodes 1889 * for incremental GC 1890 */ 1891 b->c->gc_stats.nodes++; 1892 } 1893 1894 if (p) 1895 ret = bcache_btree(check_recurse, p, b, op); 1896 1897 p = k; 1898 } while (p && !ret); 1899 } 1900 1901 return ret; 1902 } 1903 1904 1905 static int bch_btree_check_thread(void *arg) 1906 { 1907 int ret; 1908 struct btree_check_info *info = arg; 1909 struct btree_check_state *check_state = info->state; 1910 struct cache_set *c = check_state->c; 1911 struct btree_iter iter; 1912 struct bkey *k, *p; 1913 int cur_idx, prev_idx, skip_nr; 1914 1915 k = p = NULL; 1916 cur_idx = prev_idx = 0; 1917 ret = 0; 1918 1919 /* root node keys are checked before thread created */ 1920 bch_btree_iter_init(&c->root->keys, &iter, NULL); 1921 k = bch_btree_iter_next_filter(&iter, &c->root->keys, bch_ptr_bad); 1922 BUG_ON(!k); 1923 1924 p = k; 1925 while (k) { 1926 /* 1927 * Fetch a root node key index, skip the keys which 1928 * should be fetched by other threads, then check the 1929 * sub-tree indexed by the fetched key. 1930 */ 1931 spin_lock(&check_state->idx_lock); 1932 cur_idx = check_state->key_idx; 1933 check_state->key_idx++; 1934 spin_unlock(&check_state->idx_lock); 1935 1936 skip_nr = cur_idx - prev_idx; 1937 1938 while (skip_nr) { 1939 k = bch_btree_iter_next_filter(&iter, 1940 &c->root->keys, 1941 bch_ptr_bad); 1942 if (k) 1943 p = k; 1944 else { 1945 /* 1946 * No more keys to check in root node, 1947 * current checking threads are enough, 1948 * stop creating more. 1949 */ 1950 atomic_set(&check_state->enough, 1); 1951 /* Update check_state->enough earlier */ 1952 smp_mb__after_atomic(); 1953 goto out; 1954 } 1955 skip_nr--; 1956 cond_resched(); 1957 } 1958 1959 if (p) { 1960 struct btree_op op; 1961 1962 btree_node_prefetch(c->root, p); 1963 c->gc_stats.nodes++; 1964 bch_btree_op_init(&op, 0); 1965 ret = bcache_btree(check_recurse, p, c->root, &op); 1966 if (ret) 1967 goto out; 1968 } 1969 p = NULL; 1970 prev_idx = cur_idx; 1971 cond_resched(); 1972 } 1973 1974 out: 1975 info->result = ret; 1976 /* update check_state->started among all CPUs */ 1977 smp_mb__before_atomic(); 1978 if (atomic_dec_and_test(&check_state->started)) 1979 wake_up(&check_state->wait); 1980 1981 return ret; 1982 } 1983 1984 1985 1986 static int bch_btree_chkthread_nr(void) 1987 { 1988 int n = num_online_cpus()/2; 1989 1990 if (n == 0) 1991 n = 1; 1992 else if (n > BCH_BTR_CHKTHREAD_MAX) 1993 n = BCH_BTR_CHKTHREAD_MAX; 1994 1995 return n; 1996 } 1997 1998 int bch_btree_check(struct cache_set *c) 1999 { 2000 int ret = 0; 2001 int i; 2002 struct bkey *k = NULL; 2003 struct btree_iter iter; 2004 struct btree_check_state *check_state; 2005 char name[32]; 2006 2007 /* check and mark root node keys */ 2008 for_each_key_filter(&c->root->keys, k, &iter, bch_ptr_invalid) 2009 bch_initial_mark_key(c, c->root->level, k); 2010 2011 bch_initial_mark_key(c, c->root->level + 1, &c->root->key); 2012 2013 if (c->root->level == 0) 2014 return 0; 2015 2016 check_state = kzalloc(sizeof(struct btree_check_state), GFP_KERNEL); 2017 if (!check_state) 2018 return -ENOMEM; 2019 2020 check_state->c = c; 2021 check_state->total_threads = bch_btree_chkthread_nr(); 2022 check_state->key_idx = 0; 2023 spin_lock_init(&check_state->idx_lock); 2024 atomic_set(&check_state->started, 0); 2025 atomic_set(&check_state->enough, 0); 2026 init_waitqueue_head(&check_state->wait); 2027 2028 /* 2029 * Run multiple threads to check btree nodes in parallel, 2030 * if check_state->enough is non-zero, it means current 2031 * running check threads are enough, unncessary to create 2032 * more. 2033 */ 2034 for (i = 0; i < check_state->total_threads; i++) { 2035 /* fetch latest check_state->enough earlier */ 2036 smp_mb__before_atomic(); 2037 if (atomic_read(&check_state->enough)) 2038 break; 2039 2040 check_state->infos[i].result = 0; 2041 check_state->infos[i].state = check_state; 2042 snprintf(name, sizeof(name), "bch_btrchk[%u]", i); 2043 atomic_inc(&check_state->started); 2044 2045 check_state->infos[i].thread = 2046 kthread_run(bch_btree_check_thread, 2047 &check_state->infos[i], 2048 name); 2049 if (IS_ERR(check_state->infos[i].thread)) { 2050 pr_err("fails to run thread bch_btrchk[%d]\n", i); 2051 for (--i; i >= 0; i--) 2052 kthread_stop(check_state->infos[i].thread); 2053 ret = -ENOMEM; 2054 goto out; 2055 } 2056 } 2057 2058 wait_event_interruptible(check_state->wait, 2059 atomic_read(&check_state->started) == 0 || 2060 test_bit(CACHE_SET_IO_DISABLE, &c->flags)); 2061 2062 for (i = 0; i < check_state->total_threads; i++) { 2063 if (check_state->infos[i].result) { 2064 ret = check_state->infos[i].result; 2065 goto out; 2066 } 2067 } 2068 2069 out: 2070 kfree(check_state); 2071 return ret; 2072 } 2073 2074 void bch_initial_gc_finish(struct cache_set *c) 2075 { 2076 struct cache *ca; 2077 struct bucket *b; 2078 unsigned int i; 2079 2080 bch_btree_gc_finish(c); 2081 2082 mutex_lock(&c->bucket_lock); 2083 2084 /* 2085 * We need to put some unused buckets directly on the prio freelist in 2086 * order to get the allocator thread started - it needs freed buckets in 2087 * order to rewrite the prios and gens, and it needs to rewrite prios 2088 * and gens in order to free buckets. 2089 * 2090 * This is only safe for buckets that have no live data in them, which 2091 * there should always be some of. 2092 */ 2093 for_each_cache(ca, c, i) { 2094 for_each_bucket(b, ca) { 2095 if (fifo_full(&ca->free[RESERVE_PRIO]) && 2096 fifo_full(&ca->free[RESERVE_BTREE])) 2097 break; 2098 2099 if (bch_can_invalidate_bucket(ca, b) && 2100 !GC_MARK(b)) { 2101 __bch_invalidate_one_bucket(ca, b); 2102 if (!fifo_push(&ca->free[RESERVE_PRIO], 2103 b - ca->buckets)) 2104 fifo_push(&ca->free[RESERVE_BTREE], 2105 b - ca->buckets); 2106 } 2107 } 2108 } 2109 2110 mutex_unlock(&c->bucket_lock); 2111 } 2112 2113 /* Btree insertion */ 2114 2115 static bool btree_insert_key(struct btree *b, struct bkey *k, 2116 struct bkey *replace_key) 2117 { 2118 unsigned int status; 2119 2120 BUG_ON(bkey_cmp(k, &b->key) > 0); 2121 2122 status = bch_btree_insert_key(&b->keys, k, replace_key); 2123 if (status != BTREE_INSERT_STATUS_NO_INSERT) { 2124 bch_check_keys(&b->keys, "%u for %s", status, 2125 replace_key ? "replace" : "insert"); 2126 2127 trace_bcache_btree_insert_key(b, k, replace_key != NULL, 2128 status); 2129 return true; 2130 } else 2131 return false; 2132 } 2133 2134 static size_t insert_u64s_remaining(struct btree *b) 2135 { 2136 long ret = bch_btree_keys_u64s_remaining(&b->keys); 2137 2138 /* 2139 * Might land in the middle of an existing extent and have to split it 2140 */ 2141 if (b->keys.ops->is_extents) 2142 ret -= KEY_MAX_U64S; 2143 2144 return max(ret, 0L); 2145 } 2146 2147 static bool bch_btree_insert_keys(struct btree *b, struct btree_op *op, 2148 struct keylist *insert_keys, 2149 struct bkey *replace_key) 2150 { 2151 bool ret = false; 2152 int oldsize = bch_count_data(&b->keys); 2153 2154 while (!bch_keylist_empty(insert_keys)) { 2155 struct bkey *k = insert_keys->keys; 2156 2157 if (bkey_u64s(k) > insert_u64s_remaining(b)) 2158 break; 2159 2160 if (bkey_cmp(k, &b->key) <= 0) { 2161 if (!b->level) 2162 bkey_put(b->c, k); 2163 2164 ret |= btree_insert_key(b, k, replace_key); 2165 bch_keylist_pop_front(insert_keys); 2166 } else if (bkey_cmp(&START_KEY(k), &b->key) < 0) { 2167 BKEY_PADDED(key) temp; 2168 bkey_copy(&temp.key, insert_keys->keys); 2169 2170 bch_cut_back(&b->key, &temp.key); 2171 bch_cut_front(&b->key, insert_keys->keys); 2172 2173 ret |= btree_insert_key(b, &temp.key, replace_key); 2174 break; 2175 } else { 2176 break; 2177 } 2178 } 2179 2180 if (!ret) 2181 op->insert_collision = true; 2182 2183 BUG_ON(!bch_keylist_empty(insert_keys) && b->level); 2184 2185 BUG_ON(bch_count_data(&b->keys) < oldsize); 2186 return ret; 2187 } 2188 2189 static int btree_split(struct btree *b, struct btree_op *op, 2190 struct keylist *insert_keys, 2191 struct bkey *replace_key) 2192 { 2193 bool split; 2194 struct btree *n1, *n2 = NULL, *n3 = NULL; 2195 uint64_t start_time = local_clock(); 2196 struct closure cl; 2197 struct keylist parent_keys; 2198 2199 closure_init_stack(&cl); 2200 bch_keylist_init(&parent_keys); 2201 2202 if (btree_check_reserve(b, op)) { 2203 if (!b->level) 2204 return -EINTR; 2205 else 2206 WARN(1, "insufficient reserve for split\n"); 2207 } 2208 2209 n1 = btree_node_alloc_replacement(b, op); 2210 if (IS_ERR(n1)) 2211 goto err; 2212 2213 split = set_blocks(btree_bset_first(n1), 2214 block_bytes(n1->c)) > (btree_blocks(b) * 4) / 5; 2215 2216 if (split) { 2217 unsigned int keys = 0; 2218 2219 trace_bcache_btree_node_split(b, btree_bset_first(n1)->keys); 2220 2221 n2 = bch_btree_node_alloc(b->c, op, b->level, b->parent); 2222 if (IS_ERR(n2)) 2223 goto err_free1; 2224 2225 if (!b->parent) { 2226 n3 = bch_btree_node_alloc(b->c, op, b->level + 1, NULL); 2227 if (IS_ERR(n3)) 2228 goto err_free2; 2229 } 2230 2231 mutex_lock(&n1->write_lock); 2232 mutex_lock(&n2->write_lock); 2233 2234 bch_btree_insert_keys(n1, op, insert_keys, replace_key); 2235 2236 /* 2237 * Has to be a linear search because we don't have an auxiliary 2238 * search tree yet 2239 */ 2240 2241 while (keys < (btree_bset_first(n1)->keys * 3) / 5) 2242 keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1), 2243 keys)); 2244 2245 bkey_copy_key(&n1->key, 2246 bset_bkey_idx(btree_bset_first(n1), keys)); 2247 keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1), keys)); 2248 2249 btree_bset_first(n2)->keys = btree_bset_first(n1)->keys - keys; 2250 btree_bset_first(n1)->keys = keys; 2251 2252 memcpy(btree_bset_first(n2)->start, 2253 bset_bkey_last(btree_bset_first(n1)), 2254 btree_bset_first(n2)->keys * sizeof(uint64_t)); 2255 2256 bkey_copy_key(&n2->key, &b->key); 2257 2258 bch_keylist_add(&parent_keys, &n2->key); 2259 bch_btree_node_write(n2, &cl); 2260 mutex_unlock(&n2->write_lock); 2261 rw_unlock(true, n2); 2262 } else { 2263 trace_bcache_btree_node_compact(b, btree_bset_first(n1)->keys); 2264 2265 mutex_lock(&n1->write_lock); 2266 bch_btree_insert_keys(n1, op, insert_keys, replace_key); 2267 } 2268 2269 bch_keylist_add(&parent_keys, &n1->key); 2270 bch_btree_node_write(n1, &cl); 2271 mutex_unlock(&n1->write_lock); 2272 2273 if (n3) { 2274 /* Depth increases, make a new root */ 2275 mutex_lock(&n3->write_lock); 2276 bkey_copy_key(&n3->key, &MAX_KEY); 2277 bch_btree_insert_keys(n3, op, &parent_keys, NULL); 2278 bch_btree_node_write(n3, &cl); 2279 mutex_unlock(&n3->write_lock); 2280 2281 closure_sync(&cl); 2282 bch_btree_set_root(n3); 2283 rw_unlock(true, n3); 2284 } else if (!b->parent) { 2285 /* Root filled up but didn't need to be split */ 2286 closure_sync(&cl); 2287 bch_btree_set_root(n1); 2288 } else { 2289 /* Split a non root node */ 2290 closure_sync(&cl); 2291 make_btree_freeing_key(b, parent_keys.top); 2292 bch_keylist_push(&parent_keys); 2293 2294 bch_btree_insert_node(b->parent, op, &parent_keys, NULL, NULL); 2295 BUG_ON(!bch_keylist_empty(&parent_keys)); 2296 } 2297 2298 btree_node_free(b); 2299 rw_unlock(true, n1); 2300 2301 bch_time_stats_update(&b->c->btree_split_time, start_time); 2302 2303 return 0; 2304 err_free2: 2305 bkey_put(b->c, &n2->key); 2306 btree_node_free(n2); 2307 rw_unlock(true, n2); 2308 err_free1: 2309 bkey_put(b->c, &n1->key); 2310 btree_node_free(n1); 2311 rw_unlock(true, n1); 2312 err: 2313 WARN(1, "bcache: btree split failed (level %u)", b->level); 2314 2315 if (n3 == ERR_PTR(-EAGAIN) || 2316 n2 == ERR_PTR(-EAGAIN) || 2317 n1 == ERR_PTR(-EAGAIN)) 2318 return -EAGAIN; 2319 2320 return -ENOMEM; 2321 } 2322 2323 static int bch_btree_insert_node(struct btree *b, struct btree_op *op, 2324 struct keylist *insert_keys, 2325 atomic_t *journal_ref, 2326 struct bkey *replace_key) 2327 { 2328 struct closure cl; 2329 2330 BUG_ON(b->level && replace_key); 2331 2332 closure_init_stack(&cl); 2333 2334 mutex_lock(&b->write_lock); 2335 2336 if (write_block(b) != btree_bset_last(b) && 2337 b->keys.last_set_unwritten) 2338 bch_btree_init_next(b); /* just wrote a set */ 2339 2340 if (bch_keylist_nkeys(insert_keys) > insert_u64s_remaining(b)) { 2341 mutex_unlock(&b->write_lock); 2342 goto split; 2343 } 2344 2345 BUG_ON(write_block(b) != btree_bset_last(b)); 2346 2347 if (bch_btree_insert_keys(b, op, insert_keys, replace_key)) { 2348 if (!b->level) 2349 bch_btree_leaf_dirty(b, journal_ref); 2350 else 2351 bch_btree_node_write(b, &cl); 2352 } 2353 2354 mutex_unlock(&b->write_lock); 2355 2356 /* wait for btree node write if necessary, after unlock */ 2357 closure_sync(&cl); 2358 2359 return 0; 2360 split: 2361 if (current->bio_list) { 2362 op->lock = b->c->root->level + 1; 2363 return -EAGAIN; 2364 } else if (op->lock <= b->c->root->level) { 2365 op->lock = b->c->root->level + 1; 2366 return -EINTR; 2367 } else { 2368 /* Invalidated all iterators */ 2369 int ret = btree_split(b, op, insert_keys, replace_key); 2370 2371 if (bch_keylist_empty(insert_keys)) 2372 return 0; 2373 else if (!ret) 2374 return -EINTR; 2375 return ret; 2376 } 2377 } 2378 2379 int bch_btree_insert_check_key(struct btree *b, struct btree_op *op, 2380 struct bkey *check_key) 2381 { 2382 int ret = -EINTR; 2383 uint64_t btree_ptr = b->key.ptr[0]; 2384 unsigned long seq = b->seq; 2385 struct keylist insert; 2386 bool upgrade = op->lock == -1; 2387 2388 bch_keylist_init(&insert); 2389 2390 if (upgrade) { 2391 rw_unlock(false, b); 2392 rw_lock(true, b, b->level); 2393 2394 if (b->key.ptr[0] != btree_ptr || 2395 b->seq != seq + 1) { 2396 op->lock = b->level; 2397 goto out; 2398 } 2399 } 2400 2401 SET_KEY_PTRS(check_key, 1); 2402 get_random_bytes(&check_key->ptr[0], sizeof(uint64_t)); 2403 2404 SET_PTR_DEV(check_key, 0, PTR_CHECK_DEV); 2405 2406 bch_keylist_add(&insert, check_key); 2407 2408 ret = bch_btree_insert_node(b, op, &insert, NULL, NULL); 2409 2410 BUG_ON(!ret && !bch_keylist_empty(&insert)); 2411 out: 2412 if (upgrade) 2413 downgrade_write(&b->lock); 2414 return ret; 2415 } 2416 2417 struct btree_insert_op { 2418 struct btree_op op; 2419 struct keylist *keys; 2420 atomic_t *journal_ref; 2421 struct bkey *replace_key; 2422 }; 2423 2424 static int btree_insert_fn(struct btree_op *b_op, struct btree *b) 2425 { 2426 struct btree_insert_op *op = container_of(b_op, 2427 struct btree_insert_op, op); 2428 2429 int ret = bch_btree_insert_node(b, &op->op, op->keys, 2430 op->journal_ref, op->replace_key); 2431 if (ret && !bch_keylist_empty(op->keys)) 2432 return ret; 2433 else 2434 return MAP_DONE; 2435 } 2436 2437 int bch_btree_insert(struct cache_set *c, struct keylist *keys, 2438 atomic_t *journal_ref, struct bkey *replace_key) 2439 { 2440 struct btree_insert_op op; 2441 int ret = 0; 2442 2443 BUG_ON(current->bio_list); 2444 BUG_ON(bch_keylist_empty(keys)); 2445 2446 bch_btree_op_init(&op.op, 0); 2447 op.keys = keys; 2448 op.journal_ref = journal_ref; 2449 op.replace_key = replace_key; 2450 2451 while (!ret && !bch_keylist_empty(keys)) { 2452 op.op.lock = 0; 2453 ret = bch_btree_map_leaf_nodes(&op.op, c, 2454 &START_KEY(keys->keys), 2455 btree_insert_fn); 2456 } 2457 2458 if (ret) { 2459 struct bkey *k; 2460 2461 pr_err("error %i\n", ret); 2462 2463 while ((k = bch_keylist_pop(keys))) 2464 bkey_put(c, k); 2465 } else if (op.op.insert_collision) 2466 ret = -ESRCH; 2467 2468 return ret; 2469 } 2470 2471 void bch_btree_set_root(struct btree *b) 2472 { 2473 unsigned int i; 2474 struct closure cl; 2475 2476 closure_init_stack(&cl); 2477 2478 trace_bcache_btree_set_root(b); 2479 2480 BUG_ON(!b->written); 2481 2482 for (i = 0; i < KEY_PTRS(&b->key); i++) 2483 BUG_ON(PTR_BUCKET(b->c, &b->key, i)->prio != BTREE_PRIO); 2484 2485 mutex_lock(&b->c->bucket_lock); 2486 list_del_init(&b->list); 2487 mutex_unlock(&b->c->bucket_lock); 2488 2489 b->c->root = b; 2490 2491 bch_journal_meta(b->c, &cl); 2492 closure_sync(&cl); 2493 } 2494 2495 /* Map across nodes or keys */ 2496 2497 static int bch_btree_map_nodes_recurse(struct btree *b, struct btree_op *op, 2498 struct bkey *from, 2499 btree_map_nodes_fn *fn, int flags) 2500 { 2501 int ret = MAP_CONTINUE; 2502 2503 if (b->level) { 2504 struct bkey *k; 2505 struct btree_iter iter; 2506 2507 bch_btree_iter_init(&b->keys, &iter, from); 2508 2509 while ((k = bch_btree_iter_next_filter(&iter, &b->keys, 2510 bch_ptr_bad))) { 2511 ret = bcache_btree(map_nodes_recurse, k, b, 2512 op, from, fn, flags); 2513 from = NULL; 2514 2515 if (ret != MAP_CONTINUE) 2516 return ret; 2517 } 2518 } 2519 2520 if (!b->level || flags == MAP_ALL_NODES) 2521 ret = fn(op, b); 2522 2523 return ret; 2524 } 2525 2526 int __bch_btree_map_nodes(struct btree_op *op, struct cache_set *c, 2527 struct bkey *from, btree_map_nodes_fn *fn, int flags) 2528 { 2529 return bcache_btree_root(map_nodes_recurse, c, op, from, fn, flags); 2530 } 2531 2532 int bch_btree_map_keys_recurse(struct btree *b, struct btree_op *op, 2533 struct bkey *from, btree_map_keys_fn *fn, 2534 int flags) 2535 { 2536 int ret = MAP_CONTINUE; 2537 struct bkey *k; 2538 struct btree_iter iter; 2539 2540 bch_btree_iter_init(&b->keys, &iter, from); 2541 2542 while ((k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad))) { 2543 ret = !b->level 2544 ? fn(op, b, k) 2545 : bcache_btree(map_keys_recurse, k, 2546 b, op, from, fn, flags); 2547 from = NULL; 2548 2549 if (ret != MAP_CONTINUE) 2550 return ret; 2551 } 2552 2553 if (!b->level && (flags & MAP_END_KEY)) 2554 ret = fn(op, b, &KEY(KEY_INODE(&b->key), 2555 KEY_OFFSET(&b->key), 0)); 2556 2557 return ret; 2558 } 2559 2560 int bch_btree_map_keys(struct btree_op *op, struct cache_set *c, 2561 struct bkey *from, btree_map_keys_fn *fn, int flags) 2562 { 2563 return bcache_btree_root(map_keys_recurse, c, op, from, fn, flags); 2564 } 2565 2566 /* Keybuf code */ 2567 2568 static inline int keybuf_cmp(struct keybuf_key *l, struct keybuf_key *r) 2569 { 2570 /* Overlapping keys compare equal */ 2571 if (bkey_cmp(&l->key, &START_KEY(&r->key)) <= 0) 2572 return -1; 2573 if (bkey_cmp(&START_KEY(&l->key), &r->key) >= 0) 2574 return 1; 2575 return 0; 2576 } 2577 2578 static inline int keybuf_nonoverlapping_cmp(struct keybuf_key *l, 2579 struct keybuf_key *r) 2580 { 2581 return clamp_t(int64_t, bkey_cmp(&l->key, &r->key), -1, 1); 2582 } 2583 2584 struct refill { 2585 struct btree_op op; 2586 unsigned int nr_found; 2587 struct keybuf *buf; 2588 struct bkey *end; 2589 keybuf_pred_fn *pred; 2590 }; 2591 2592 static int refill_keybuf_fn(struct btree_op *op, struct btree *b, 2593 struct bkey *k) 2594 { 2595 struct refill *refill = container_of(op, struct refill, op); 2596 struct keybuf *buf = refill->buf; 2597 int ret = MAP_CONTINUE; 2598 2599 if (bkey_cmp(k, refill->end) > 0) { 2600 ret = MAP_DONE; 2601 goto out; 2602 } 2603 2604 if (!KEY_SIZE(k)) /* end key */ 2605 goto out; 2606 2607 if (refill->pred(buf, k)) { 2608 struct keybuf_key *w; 2609 2610 spin_lock(&buf->lock); 2611 2612 w = array_alloc(&buf->freelist); 2613 if (!w) { 2614 spin_unlock(&buf->lock); 2615 return MAP_DONE; 2616 } 2617 2618 w->private = NULL; 2619 bkey_copy(&w->key, k); 2620 2621 if (RB_INSERT(&buf->keys, w, node, keybuf_cmp)) 2622 array_free(&buf->freelist, w); 2623 else 2624 refill->nr_found++; 2625 2626 if (array_freelist_empty(&buf->freelist)) 2627 ret = MAP_DONE; 2628 2629 spin_unlock(&buf->lock); 2630 } 2631 out: 2632 buf->last_scanned = *k; 2633 return ret; 2634 } 2635 2636 void bch_refill_keybuf(struct cache_set *c, struct keybuf *buf, 2637 struct bkey *end, keybuf_pred_fn *pred) 2638 { 2639 struct bkey start = buf->last_scanned; 2640 struct refill refill; 2641 2642 cond_resched(); 2643 2644 bch_btree_op_init(&refill.op, -1); 2645 refill.nr_found = 0; 2646 refill.buf = buf; 2647 refill.end = end; 2648 refill.pred = pred; 2649 2650 bch_btree_map_keys(&refill.op, c, &buf->last_scanned, 2651 refill_keybuf_fn, MAP_END_KEY); 2652 2653 trace_bcache_keyscan(refill.nr_found, 2654 KEY_INODE(&start), KEY_OFFSET(&start), 2655 KEY_INODE(&buf->last_scanned), 2656 KEY_OFFSET(&buf->last_scanned)); 2657 2658 spin_lock(&buf->lock); 2659 2660 if (!RB_EMPTY_ROOT(&buf->keys)) { 2661 struct keybuf_key *w; 2662 2663 w = RB_FIRST(&buf->keys, struct keybuf_key, node); 2664 buf->start = START_KEY(&w->key); 2665 2666 w = RB_LAST(&buf->keys, struct keybuf_key, node); 2667 buf->end = w->key; 2668 } else { 2669 buf->start = MAX_KEY; 2670 buf->end = MAX_KEY; 2671 } 2672 2673 spin_unlock(&buf->lock); 2674 } 2675 2676 static void __bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w) 2677 { 2678 rb_erase(&w->node, &buf->keys); 2679 array_free(&buf->freelist, w); 2680 } 2681 2682 void bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w) 2683 { 2684 spin_lock(&buf->lock); 2685 __bch_keybuf_del(buf, w); 2686 spin_unlock(&buf->lock); 2687 } 2688 2689 bool bch_keybuf_check_overlapping(struct keybuf *buf, struct bkey *start, 2690 struct bkey *end) 2691 { 2692 bool ret = false; 2693 struct keybuf_key *p, *w, s; 2694 2695 s.key = *start; 2696 2697 if (bkey_cmp(end, &buf->start) <= 0 || 2698 bkey_cmp(start, &buf->end) >= 0) 2699 return false; 2700 2701 spin_lock(&buf->lock); 2702 w = RB_GREATER(&buf->keys, s, node, keybuf_nonoverlapping_cmp); 2703 2704 while (w && bkey_cmp(&START_KEY(&w->key), end) < 0) { 2705 p = w; 2706 w = RB_NEXT(w, node); 2707 2708 if (p->private) 2709 ret = true; 2710 else 2711 __bch_keybuf_del(buf, p); 2712 } 2713 2714 spin_unlock(&buf->lock); 2715 return ret; 2716 } 2717 2718 struct keybuf_key *bch_keybuf_next(struct keybuf *buf) 2719 { 2720 struct keybuf_key *w; 2721 2722 spin_lock(&buf->lock); 2723 2724 w = RB_FIRST(&buf->keys, struct keybuf_key, node); 2725 2726 while (w && w->private) 2727 w = RB_NEXT(w, node); 2728 2729 if (w) 2730 w->private = ERR_PTR(-EINTR); 2731 2732 spin_unlock(&buf->lock); 2733 return w; 2734 } 2735 2736 struct keybuf_key *bch_keybuf_next_rescan(struct cache_set *c, 2737 struct keybuf *buf, 2738 struct bkey *end, 2739 keybuf_pred_fn *pred) 2740 { 2741 struct keybuf_key *ret; 2742 2743 while (1) { 2744 ret = bch_keybuf_next(buf); 2745 if (ret) 2746 break; 2747 2748 if (bkey_cmp(&buf->last_scanned, end) >= 0) { 2749 pr_debug("scan finished\n"); 2750 break; 2751 } 2752 2753 bch_refill_keybuf(c, buf, end, pred); 2754 } 2755 2756 return ret; 2757 } 2758 2759 void bch_keybuf_init(struct keybuf *buf) 2760 { 2761 buf->last_scanned = MAX_KEY; 2762 buf->keys = RB_ROOT; 2763 2764 spin_lock_init(&buf->lock); 2765 array_allocator_init(&buf->freelist); 2766 } 2767