1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com> 4 * 5 * Uses a block device as cache for other block devices; optimized for SSDs. 6 * All allocation is done in buckets, which should match the erase block size 7 * of the device. 8 * 9 * Buckets containing cached data are kept on a heap sorted by priority; 10 * bucket priority is increased on cache hit, and periodically all the buckets 11 * on the heap have their priority scaled down. This currently is just used as 12 * an LRU but in the future should allow for more intelligent heuristics. 13 * 14 * Buckets have an 8 bit counter; freeing is accomplished by incrementing the 15 * counter. Garbage collection is used to remove stale pointers. 16 * 17 * Indexing is done via a btree; nodes are not necessarily fully sorted, rather 18 * as keys are inserted we only sort the pages that have not yet been written. 19 * When garbage collection is run, we resort the entire node. 20 * 21 * All configuration is done via sysfs; see Documentation/admin-guide/bcache.rst. 22 */ 23 24 #include "bcache.h" 25 #include "btree.h" 26 #include "debug.h" 27 #include "extents.h" 28 29 #include <linux/slab.h> 30 #include <linux/bitops.h> 31 #include <linux/hash.h> 32 #include <linux/kthread.h> 33 #include <linux/prefetch.h> 34 #include <linux/random.h> 35 #include <linux/rcupdate.h> 36 #include <linux/sched/clock.h> 37 #include <linux/rculist.h> 38 #include <linux/delay.h> 39 #include <trace/events/bcache.h> 40 41 /* 42 * Todo: 43 * register_bcache: Return errors out to userspace correctly 44 * 45 * Writeback: don't undirty key until after a cache flush 46 * 47 * Create an iterator for key pointers 48 * 49 * On btree write error, mark bucket such that it won't be freed from the cache 50 * 51 * Journalling: 52 * Check for bad keys in replay 53 * Propagate barriers 54 * Refcount journal entries in journal_replay 55 * 56 * Garbage collection: 57 * Finish incremental gc 58 * Gc should free old UUIDs, data for invalid UUIDs 59 * 60 * Provide a way to list backing device UUIDs we have data cached for, and 61 * probably how long it's been since we've seen them, and a way to invalidate 62 * dirty data for devices that will never be attached again 63 * 64 * Keep 1 min/5 min/15 min statistics of how busy a block device has been, so 65 * that based on that and how much dirty data we have we can keep writeback 66 * from being starved 67 * 68 * Add a tracepoint or somesuch to watch for writeback starvation 69 * 70 * When btree depth > 1 and splitting an interior node, we have to make sure 71 * alloc_bucket() cannot fail. This should be true but is not completely 72 * obvious. 73 * 74 * Plugging? 75 * 76 * If data write is less than hard sector size of ssd, round up offset in open 77 * bucket to the next whole sector 78 * 79 * Superblock needs to be fleshed out for multiple cache devices 80 * 81 * Add a sysfs tunable for the number of writeback IOs in flight 82 * 83 * Add a sysfs tunable for the number of open data buckets 84 * 85 * IO tracking: Can we track when one process is doing io on behalf of another? 86 * IO tracking: Don't use just an average, weigh more recent stuff higher 87 * 88 * Test module load/unload 89 */ 90 91 #define MAX_NEED_GC 64 92 #define MAX_SAVE_PRIO 72 93 #define MAX_GC_TIMES 100 94 #define MIN_GC_NODES 100 95 #define GC_SLEEP_MS 100 96 97 #define PTR_DIRTY_BIT (((uint64_t) 1 << 36)) 98 99 #define PTR_HASH(c, k) \ 100 (((k)->ptr[0] >> c->bucket_bits) | PTR_GEN(k, 0)) 101 102 static struct workqueue_struct *btree_io_wq; 103 104 #define insert_lock(s, b) ((b)->level <= (s)->lock) 105 106 107 static inline struct bset *write_block(struct btree *b) 108 { 109 return ((void *) btree_bset_first(b)) + b->written * block_bytes(b->c->cache); 110 } 111 112 static void bch_btree_init_next(struct btree *b) 113 { 114 /* If not a leaf node, always sort */ 115 if (b->level && b->keys.nsets) 116 bch_btree_sort(&b->keys, &b->c->sort); 117 else 118 bch_btree_sort_lazy(&b->keys, &b->c->sort); 119 120 if (b->written < btree_blocks(b)) 121 bch_bset_init_next(&b->keys, write_block(b), 122 bset_magic(&b->c->cache->sb)); 123 124 } 125 126 /* Btree key manipulation */ 127 128 void bkey_put(struct cache_set *c, struct bkey *k) 129 { 130 unsigned int i; 131 132 for (i = 0; i < KEY_PTRS(k); i++) 133 if (ptr_available(c, k, i)) 134 atomic_dec_bug(&PTR_BUCKET(c, k, i)->pin); 135 } 136 137 /* Btree IO */ 138 139 static uint64_t btree_csum_set(struct btree *b, struct bset *i) 140 { 141 uint64_t crc = b->key.ptr[0]; 142 void *data = (void *) i + 8, *end = bset_bkey_last(i); 143 144 crc = crc64_be(crc, data, end - data); 145 return crc ^ 0xffffffffffffffffULL; 146 } 147 148 void bch_btree_node_read_done(struct btree *b) 149 { 150 const char *err = "bad btree header"; 151 struct bset *i = btree_bset_first(b); 152 struct btree_iter *iter; 153 154 /* 155 * c->fill_iter can allocate an iterator with more memory space 156 * than static MAX_BSETS. 157 * See the comment arount cache_set->fill_iter. 158 */ 159 iter = mempool_alloc(&b->c->fill_iter, GFP_NOIO); 160 iter->size = b->c->cache->sb.bucket_size / b->c->cache->sb.block_size; 161 iter->used = 0; 162 163 #ifdef CONFIG_BCACHE_DEBUG 164 iter->b = &b->keys; 165 #endif 166 167 if (!i->seq) 168 goto err; 169 170 for (; 171 b->written < btree_blocks(b) && i->seq == b->keys.set[0].data->seq; 172 i = write_block(b)) { 173 err = "unsupported bset version"; 174 if (i->version > BCACHE_BSET_VERSION) 175 goto err; 176 177 err = "bad btree header"; 178 if (b->written + set_blocks(i, block_bytes(b->c->cache)) > 179 btree_blocks(b)) 180 goto err; 181 182 err = "bad magic"; 183 if (i->magic != bset_magic(&b->c->cache->sb)) 184 goto err; 185 186 err = "bad checksum"; 187 switch (i->version) { 188 case 0: 189 if (i->csum != csum_set(i)) 190 goto err; 191 break; 192 case BCACHE_BSET_VERSION: 193 if (i->csum != btree_csum_set(b, i)) 194 goto err; 195 break; 196 } 197 198 err = "empty set"; 199 if (i != b->keys.set[0].data && !i->keys) 200 goto err; 201 202 bch_btree_iter_push(iter, i->start, bset_bkey_last(i)); 203 204 b->written += set_blocks(i, block_bytes(b->c->cache)); 205 } 206 207 err = "corrupted btree"; 208 for (i = write_block(b); 209 bset_sector_offset(&b->keys, i) < KEY_SIZE(&b->key); 210 i = ((void *) i) + block_bytes(b->c->cache)) 211 if (i->seq == b->keys.set[0].data->seq) 212 goto err; 213 214 bch_btree_sort_and_fix_extents(&b->keys, iter, &b->c->sort); 215 216 i = b->keys.set[0].data; 217 err = "short btree key"; 218 if (b->keys.set[0].size && 219 bkey_cmp(&b->key, &b->keys.set[0].end) < 0) 220 goto err; 221 222 if (b->written < btree_blocks(b)) 223 bch_bset_init_next(&b->keys, write_block(b), 224 bset_magic(&b->c->cache->sb)); 225 out: 226 mempool_free(iter, &b->c->fill_iter); 227 return; 228 err: 229 set_btree_node_io_error(b); 230 bch_cache_set_error(b->c, "%s at bucket %zu, block %u, %u keys", 231 err, PTR_BUCKET_NR(b->c, &b->key, 0), 232 bset_block_offset(b, i), i->keys); 233 goto out; 234 } 235 236 static void btree_node_read_endio(struct bio *bio) 237 { 238 struct closure *cl = bio->bi_private; 239 240 closure_put(cl); 241 } 242 243 static void bch_btree_node_read(struct btree *b) 244 { 245 uint64_t start_time = local_clock(); 246 struct closure cl; 247 struct bio *bio; 248 249 trace_bcache_btree_read(b); 250 251 closure_init_stack(&cl); 252 253 bio = bch_bbio_alloc(b->c); 254 bio->bi_iter.bi_size = KEY_SIZE(&b->key) << 9; 255 bio->bi_end_io = btree_node_read_endio; 256 bio->bi_private = &cl; 257 bio->bi_opf = REQ_OP_READ | REQ_META; 258 259 bch_bio_map(bio, b->keys.set[0].data); 260 261 bch_submit_bbio(bio, b->c, &b->key, 0); 262 closure_sync(&cl); 263 264 if (bio->bi_status) 265 set_btree_node_io_error(b); 266 267 bch_bbio_free(bio, b->c); 268 269 if (btree_node_io_error(b)) 270 goto err; 271 272 bch_btree_node_read_done(b); 273 bch_time_stats_update(&b->c->btree_read_time, start_time); 274 275 return; 276 err: 277 bch_cache_set_error(b->c, "io error reading bucket %zu", 278 PTR_BUCKET_NR(b->c, &b->key, 0)); 279 } 280 281 static void btree_complete_write(struct btree *b, struct btree_write *w) 282 { 283 if (w->prio_blocked && 284 !atomic_sub_return(w->prio_blocked, &b->c->prio_blocked)) 285 wake_up_allocators(b->c); 286 287 if (w->journal) { 288 atomic_dec_bug(w->journal); 289 __closure_wake_up(&b->c->journal.wait); 290 } 291 292 w->prio_blocked = 0; 293 w->journal = NULL; 294 } 295 296 static void btree_node_write_unlock(struct closure *cl) 297 { 298 struct btree *b = container_of(cl, struct btree, io); 299 300 up(&b->io_mutex); 301 } 302 303 static void __btree_node_write_done(struct closure *cl) 304 { 305 struct btree *b = container_of(cl, struct btree, io); 306 struct btree_write *w = btree_prev_write(b); 307 308 bch_bbio_free(b->bio, b->c); 309 b->bio = NULL; 310 btree_complete_write(b, w); 311 312 if (btree_node_dirty(b)) 313 queue_delayed_work(btree_io_wq, &b->work, 30 * HZ); 314 315 closure_return_with_destructor(cl, btree_node_write_unlock); 316 } 317 318 static void btree_node_write_done(struct closure *cl) 319 { 320 struct btree *b = container_of(cl, struct btree, io); 321 322 bio_free_pages(b->bio); 323 __btree_node_write_done(cl); 324 } 325 326 static void btree_node_write_endio(struct bio *bio) 327 { 328 struct closure *cl = bio->bi_private; 329 struct btree *b = container_of(cl, struct btree, io); 330 331 if (bio->bi_status) 332 set_btree_node_io_error(b); 333 334 bch_bbio_count_io_errors(b->c, bio, bio->bi_status, "writing btree"); 335 closure_put(cl); 336 } 337 338 static void do_btree_node_write(struct btree *b) 339 { 340 struct closure *cl = &b->io; 341 struct bset *i = btree_bset_last(b); 342 BKEY_PADDED(key) k; 343 344 i->version = BCACHE_BSET_VERSION; 345 i->csum = btree_csum_set(b, i); 346 347 BUG_ON(b->bio); 348 b->bio = bch_bbio_alloc(b->c); 349 350 b->bio->bi_end_io = btree_node_write_endio; 351 b->bio->bi_private = cl; 352 b->bio->bi_iter.bi_size = roundup(set_bytes(i), block_bytes(b->c->cache)); 353 b->bio->bi_opf = REQ_OP_WRITE | REQ_META | REQ_FUA; 354 bch_bio_map(b->bio, i); 355 356 /* 357 * If we're appending to a leaf node, we don't technically need FUA - 358 * this write just needs to be persisted before the next journal write, 359 * which will be marked FLUSH|FUA. 360 * 361 * Similarly if we're writing a new btree root - the pointer is going to 362 * be in the next journal entry. 363 * 364 * But if we're writing a new btree node (that isn't a root) or 365 * appending to a non leaf btree node, we need either FUA or a flush 366 * when we write the parent with the new pointer. FUA is cheaper than a 367 * flush, and writes appending to leaf nodes aren't blocking anything so 368 * just make all btree node writes FUA to keep things sane. 369 */ 370 371 bkey_copy(&k.key, &b->key); 372 SET_PTR_OFFSET(&k.key, 0, PTR_OFFSET(&k.key, 0) + 373 bset_sector_offset(&b->keys, i)); 374 375 if (!bch_bio_alloc_pages(b->bio, __GFP_NOWARN|GFP_NOWAIT)) { 376 struct bio_vec *bv; 377 void *addr = (void *) ((unsigned long) i & ~(PAGE_SIZE - 1)); 378 struct bvec_iter_all iter_all; 379 380 bio_for_each_segment_all(bv, b->bio, iter_all) { 381 memcpy(page_address(bv->bv_page), addr, PAGE_SIZE); 382 addr += PAGE_SIZE; 383 } 384 385 bch_submit_bbio(b->bio, b->c, &k.key, 0); 386 387 continue_at(cl, btree_node_write_done, NULL); 388 } else { 389 /* 390 * No problem for multipage bvec since the bio is 391 * just allocated 392 */ 393 b->bio->bi_vcnt = 0; 394 bch_bio_map(b->bio, i); 395 396 bch_submit_bbio(b->bio, b->c, &k.key, 0); 397 398 closure_sync(cl); 399 continue_at_nobarrier(cl, __btree_node_write_done, NULL); 400 } 401 } 402 403 void __bch_btree_node_write(struct btree *b, struct closure *parent) 404 { 405 struct bset *i = btree_bset_last(b); 406 407 lockdep_assert_held(&b->write_lock); 408 409 trace_bcache_btree_write(b); 410 411 BUG_ON(current->bio_list); 412 BUG_ON(b->written >= btree_blocks(b)); 413 BUG_ON(b->written && !i->keys); 414 BUG_ON(btree_bset_first(b)->seq != i->seq); 415 bch_check_keys(&b->keys, "writing"); 416 417 cancel_delayed_work(&b->work); 418 419 /* If caller isn't waiting for write, parent refcount is cache set */ 420 down(&b->io_mutex); 421 closure_init(&b->io, parent ?: &b->c->cl); 422 423 clear_bit(BTREE_NODE_dirty, &b->flags); 424 change_bit(BTREE_NODE_write_idx, &b->flags); 425 426 do_btree_node_write(b); 427 428 atomic_long_add(set_blocks(i, block_bytes(b->c->cache)) * b->c->cache->sb.block_size, 429 &b->c->cache->btree_sectors_written); 430 431 b->written += set_blocks(i, block_bytes(b->c->cache)); 432 } 433 434 void bch_btree_node_write(struct btree *b, struct closure *parent) 435 { 436 unsigned int nsets = b->keys.nsets; 437 438 lockdep_assert_held(&b->lock); 439 440 __bch_btree_node_write(b, parent); 441 442 /* 443 * do verify if there was more than one set initially (i.e. we did a 444 * sort) and we sorted down to a single set: 445 */ 446 if (nsets && !b->keys.nsets) 447 bch_btree_verify(b); 448 449 bch_btree_init_next(b); 450 } 451 452 static void bch_btree_node_write_sync(struct btree *b) 453 { 454 struct closure cl; 455 456 closure_init_stack(&cl); 457 458 mutex_lock(&b->write_lock); 459 bch_btree_node_write(b, &cl); 460 mutex_unlock(&b->write_lock); 461 462 closure_sync(&cl); 463 } 464 465 static void btree_node_write_work(struct work_struct *w) 466 { 467 struct btree *b = container_of(to_delayed_work(w), struct btree, work); 468 469 mutex_lock(&b->write_lock); 470 if (btree_node_dirty(b)) 471 __bch_btree_node_write(b, NULL); 472 mutex_unlock(&b->write_lock); 473 } 474 475 static void bch_btree_leaf_dirty(struct btree *b, atomic_t *journal_ref) 476 { 477 struct bset *i = btree_bset_last(b); 478 struct btree_write *w = btree_current_write(b); 479 480 lockdep_assert_held(&b->write_lock); 481 482 BUG_ON(!b->written); 483 BUG_ON(!i->keys); 484 485 if (!btree_node_dirty(b)) 486 queue_delayed_work(btree_io_wq, &b->work, 30 * HZ); 487 488 set_btree_node_dirty(b); 489 490 /* 491 * w->journal is always the oldest journal pin of all bkeys 492 * in the leaf node, to make sure the oldest jset seq won't 493 * be increased before this btree node is flushed. 494 */ 495 if (journal_ref) { 496 if (w->journal && 497 journal_pin_cmp(b->c, w->journal, journal_ref)) { 498 atomic_dec_bug(w->journal); 499 w->journal = NULL; 500 } 501 502 if (!w->journal) { 503 w->journal = journal_ref; 504 atomic_inc(w->journal); 505 } 506 } 507 508 /* Force write if set is too big */ 509 if (set_bytes(i) > PAGE_SIZE - 48 && 510 !current->bio_list) 511 bch_btree_node_write(b, NULL); 512 } 513 514 /* 515 * Btree in memory cache - allocation/freeing 516 * mca -> memory cache 517 */ 518 519 #define mca_reserve(c) (((!IS_ERR_OR_NULL(c->root) && c->root->level) \ 520 ? c->root->level : 1) * 8 + 16) 521 #define mca_can_free(c) \ 522 max_t(int, 0, c->btree_cache_used - mca_reserve(c)) 523 524 static void mca_data_free(struct btree *b) 525 { 526 BUG_ON(b->io_mutex.count != 1); 527 528 bch_btree_keys_free(&b->keys); 529 530 b->c->btree_cache_used--; 531 list_move(&b->list, &b->c->btree_cache_freed); 532 } 533 534 static void mca_bucket_free(struct btree *b) 535 { 536 BUG_ON(btree_node_dirty(b)); 537 538 b->key.ptr[0] = 0; 539 hlist_del_init_rcu(&b->hash); 540 list_move(&b->list, &b->c->btree_cache_freeable); 541 } 542 543 static unsigned int btree_order(struct bkey *k) 544 { 545 return ilog2(KEY_SIZE(k) / PAGE_SECTORS ?: 1); 546 } 547 548 static void mca_data_alloc(struct btree *b, struct bkey *k, gfp_t gfp) 549 { 550 if (!bch_btree_keys_alloc(&b->keys, 551 max_t(unsigned int, 552 ilog2(b->c->btree_pages), 553 btree_order(k)), 554 gfp)) { 555 b->c->btree_cache_used++; 556 list_move(&b->list, &b->c->btree_cache); 557 } else { 558 list_move(&b->list, &b->c->btree_cache_freed); 559 } 560 } 561 562 #define cmp_int(l, r) ((l > r) - (l < r)) 563 564 #ifdef CONFIG_PROVE_LOCKING 565 static int btree_lock_cmp_fn(const struct lockdep_map *_a, 566 const struct lockdep_map *_b) 567 { 568 const struct btree *a = container_of(_a, struct btree, lock.dep_map); 569 const struct btree *b = container_of(_b, struct btree, lock.dep_map); 570 571 return -cmp_int(a->level, b->level) ?: bkey_cmp(&a->key, &b->key); 572 } 573 574 static void btree_lock_print_fn(const struct lockdep_map *map) 575 { 576 const struct btree *b = container_of(map, struct btree, lock.dep_map); 577 578 printk(KERN_CONT " l=%u %llu:%llu", b->level, 579 KEY_INODE(&b->key), KEY_OFFSET(&b->key)); 580 } 581 #endif 582 583 static struct btree *mca_bucket_alloc(struct cache_set *c, 584 struct bkey *k, gfp_t gfp) 585 { 586 /* 587 * kzalloc() is necessary here for initialization, 588 * see code comments in bch_btree_keys_init(). 589 */ 590 struct btree *b = kzalloc(sizeof(struct btree), gfp); 591 592 if (!b) 593 return NULL; 594 595 init_rwsem(&b->lock); 596 lock_set_cmp_fn(&b->lock, btree_lock_cmp_fn, btree_lock_print_fn); 597 mutex_init(&b->write_lock); 598 lockdep_set_novalidate_class(&b->write_lock); 599 INIT_LIST_HEAD(&b->list); 600 INIT_DELAYED_WORK(&b->work, btree_node_write_work); 601 b->c = c; 602 sema_init(&b->io_mutex, 1); 603 604 mca_data_alloc(b, k, gfp); 605 return b; 606 } 607 608 static int mca_reap(struct btree *b, unsigned int min_order, bool flush) 609 { 610 struct closure cl; 611 612 closure_init_stack(&cl); 613 lockdep_assert_held(&b->c->bucket_lock); 614 615 if (!down_write_trylock(&b->lock)) 616 return -ENOMEM; 617 618 BUG_ON(btree_node_dirty(b) && !b->keys.set[0].data); 619 620 if (b->keys.page_order < min_order) 621 goto out_unlock; 622 623 if (!flush) { 624 if (btree_node_dirty(b)) 625 goto out_unlock; 626 627 if (down_trylock(&b->io_mutex)) 628 goto out_unlock; 629 up(&b->io_mutex); 630 } 631 632 retry: 633 /* 634 * BTREE_NODE_dirty might be cleared in btree_flush_btree() by 635 * __bch_btree_node_write(). To avoid an extra flush, acquire 636 * b->write_lock before checking BTREE_NODE_dirty bit. 637 */ 638 mutex_lock(&b->write_lock); 639 /* 640 * If this btree node is selected in btree_flush_write() by journal 641 * code, delay and retry until the node is flushed by journal code 642 * and BTREE_NODE_journal_flush bit cleared by btree_flush_write(). 643 */ 644 if (btree_node_journal_flush(b)) { 645 pr_debug("bnode %p is flushing by journal, retry\n", b); 646 mutex_unlock(&b->write_lock); 647 udelay(1); 648 goto retry; 649 } 650 651 if (btree_node_dirty(b)) 652 __bch_btree_node_write(b, &cl); 653 mutex_unlock(&b->write_lock); 654 655 closure_sync(&cl); 656 657 /* wait for any in flight btree write */ 658 down(&b->io_mutex); 659 up(&b->io_mutex); 660 661 return 0; 662 out_unlock: 663 rw_unlock(true, b); 664 return -ENOMEM; 665 } 666 667 static unsigned long bch_mca_scan(struct shrinker *shrink, 668 struct shrink_control *sc) 669 { 670 struct cache_set *c = container_of(shrink, struct cache_set, shrink); 671 struct btree *b, *t; 672 unsigned long i, nr = sc->nr_to_scan; 673 unsigned long freed = 0; 674 unsigned int btree_cache_used; 675 676 if (c->shrinker_disabled) 677 return SHRINK_STOP; 678 679 if (c->btree_cache_alloc_lock) 680 return SHRINK_STOP; 681 682 /* Return -1 if we can't do anything right now */ 683 if (sc->gfp_mask & __GFP_IO) 684 mutex_lock(&c->bucket_lock); 685 else if (!mutex_trylock(&c->bucket_lock)) 686 return -1; 687 688 /* 689 * It's _really_ critical that we don't free too many btree nodes - we 690 * have to always leave ourselves a reserve. The reserve is how we 691 * guarantee that allocating memory for a new btree node can always 692 * succeed, so that inserting keys into the btree can always succeed and 693 * IO can always make forward progress: 694 */ 695 nr /= c->btree_pages; 696 if (nr == 0) 697 nr = 1; 698 nr = min_t(unsigned long, nr, mca_can_free(c)); 699 700 i = 0; 701 btree_cache_used = c->btree_cache_used; 702 list_for_each_entry_safe_reverse(b, t, &c->btree_cache_freeable, list) { 703 if (nr <= 0) 704 goto out; 705 706 if (!mca_reap(b, 0, false)) { 707 mca_data_free(b); 708 rw_unlock(true, b); 709 freed++; 710 } 711 nr--; 712 i++; 713 } 714 715 list_for_each_entry_safe_reverse(b, t, &c->btree_cache, list) { 716 if (nr <= 0 || i >= btree_cache_used) 717 goto out; 718 719 if (!mca_reap(b, 0, false)) { 720 mca_bucket_free(b); 721 mca_data_free(b); 722 rw_unlock(true, b); 723 freed++; 724 } 725 726 nr--; 727 i++; 728 } 729 out: 730 mutex_unlock(&c->bucket_lock); 731 return freed * c->btree_pages; 732 } 733 734 static unsigned long bch_mca_count(struct shrinker *shrink, 735 struct shrink_control *sc) 736 { 737 struct cache_set *c = container_of(shrink, struct cache_set, shrink); 738 739 if (c->shrinker_disabled) 740 return 0; 741 742 if (c->btree_cache_alloc_lock) 743 return 0; 744 745 return mca_can_free(c) * c->btree_pages; 746 } 747 748 void bch_btree_cache_free(struct cache_set *c) 749 { 750 struct btree *b; 751 struct closure cl; 752 753 closure_init_stack(&cl); 754 755 if (c->shrink.list.next) 756 unregister_shrinker(&c->shrink); 757 758 mutex_lock(&c->bucket_lock); 759 760 #ifdef CONFIG_BCACHE_DEBUG 761 if (c->verify_data) 762 list_move(&c->verify_data->list, &c->btree_cache); 763 764 free_pages((unsigned long) c->verify_ondisk, ilog2(meta_bucket_pages(&c->cache->sb))); 765 #endif 766 767 list_splice(&c->btree_cache_freeable, 768 &c->btree_cache); 769 770 while (!list_empty(&c->btree_cache)) { 771 b = list_first_entry(&c->btree_cache, struct btree, list); 772 773 /* 774 * This function is called by cache_set_free(), no I/O 775 * request on cache now, it is unnecessary to acquire 776 * b->write_lock before clearing BTREE_NODE_dirty anymore. 777 */ 778 if (btree_node_dirty(b)) { 779 btree_complete_write(b, btree_current_write(b)); 780 clear_bit(BTREE_NODE_dirty, &b->flags); 781 } 782 mca_data_free(b); 783 } 784 785 while (!list_empty(&c->btree_cache_freed)) { 786 b = list_first_entry(&c->btree_cache_freed, 787 struct btree, list); 788 list_del(&b->list); 789 cancel_delayed_work_sync(&b->work); 790 kfree(b); 791 } 792 793 mutex_unlock(&c->bucket_lock); 794 } 795 796 int bch_btree_cache_alloc(struct cache_set *c) 797 { 798 unsigned int i; 799 800 for (i = 0; i < mca_reserve(c); i++) 801 if (!mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL)) 802 return -ENOMEM; 803 804 list_splice_init(&c->btree_cache, 805 &c->btree_cache_freeable); 806 807 #ifdef CONFIG_BCACHE_DEBUG 808 mutex_init(&c->verify_lock); 809 810 c->verify_ondisk = (void *) 811 __get_free_pages(GFP_KERNEL|__GFP_COMP, 812 ilog2(meta_bucket_pages(&c->cache->sb))); 813 if (!c->verify_ondisk) { 814 /* 815 * Don't worry about the mca_rereserve buckets 816 * allocated in previous for-loop, they will be 817 * handled properly in bch_cache_set_unregister(). 818 */ 819 return -ENOMEM; 820 } 821 822 c->verify_data = mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL); 823 824 if (c->verify_data && 825 c->verify_data->keys.set->data) 826 list_del_init(&c->verify_data->list); 827 else 828 c->verify_data = NULL; 829 #endif 830 831 c->shrink.count_objects = bch_mca_count; 832 c->shrink.scan_objects = bch_mca_scan; 833 c->shrink.seeks = 4; 834 c->shrink.batch = c->btree_pages * 2; 835 836 if (register_shrinker(&c->shrink, "md-bcache:%pU", c->set_uuid)) 837 pr_warn("bcache: %s: could not register shrinker\n", 838 __func__); 839 840 return 0; 841 } 842 843 /* Btree in memory cache - hash table */ 844 845 static struct hlist_head *mca_hash(struct cache_set *c, struct bkey *k) 846 { 847 return &c->bucket_hash[hash_32(PTR_HASH(c, k), BUCKET_HASH_BITS)]; 848 } 849 850 static struct btree *mca_find(struct cache_set *c, struct bkey *k) 851 { 852 struct btree *b; 853 854 rcu_read_lock(); 855 hlist_for_each_entry_rcu(b, mca_hash(c, k), hash) 856 if (PTR_HASH(c, &b->key) == PTR_HASH(c, k)) 857 goto out; 858 b = NULL; 859 out: 860 rcu_read_unlock(); 861 return b; 862 } 863 864 static int mca_cannibalize_lock(struct cache_set *c, struct btree_op *op) 865 { 866 spin_lock(&c->btree_cannibalize_lock); 867 if (likely(c->btree_cache_alloc_lock == NULL)) { 868 c->btree_cache_alloc_lock = current; 869 } else if (c->btree_cache_alloc_lock != current) { 870 if (op) 871 prepare_to_wait(&c->btree_cache_wait, &op->wait, 872 TASK_UNINTERRUPTIBLE); 873 spin_unlock(&c->btree_cannibalize_lock); 874 return -EINTR; 875 } 876 spin_unlock(&c->btree_cannibalize_lock); 877 878 return 0; 879 } 880 881 static struct btree *mca_cannibalize(struct cache_set *c, struct btree_op *op, 882 struct bkey *k) 883 { 884 struct btree *b; 885 886 trace_bcache_btree_cache_cannibalize(c); 887 888 if (mca_cannibalize_lock(c, op)) 889 return ERR_PTR(-EINTR); 890 891 list_for_each_entry_reverse(b, &c->btree_cache, list) 892 if (!mca_reap(b, btree_order(k), false)) 893 return b; 894 895 list_for_each_entry_reverse(b, &c->btree_cache, list) 896 if (!mca_reap(b, btree_order(k), true)) 897 return b; 898 899 WARN(1, "btree cache cannibalize failed\n"); 900 return ERR_PTR(-ENOMEM); 901 } 902 903 /* 904 * We can only have one thread cannibalizing other cached btree nodes at a time, 905 * or we'll deadlock. We use an open coded mutex to ensure that, which a 906 * cannibalize_bucket() will take. This means every time we unlock the root of 907 * the btree, we need to release this lock if we have it held. 908 */ 909 void bch_cannibalize_unlock(struct cache_set *c) 910 { 911 spin_lock(&c->btree_cannibalize_lock); 912 if (c->btree_cache_alloc_lock == current) { 913 c->btree_cache_alloc_lock = NULL; 914 wake_up(&c->btree_cache_wait); 915 } 916 spin_unlock(&c->btree_cannibalize_lock); 917 } 918 919 static struct btree *mca_alloc(struct cache_set *c, struct btree_op *op, 920 struct bkey *k, int level) 921 { 922 struct btree *b; 923 924 BUG_ON(current->bio_list); 925 926 lockdep_assert_held(&c->bucket_lock); 927 928 if (mca_find(c, k)) 929 return NULL; 930 931 /* btree_free() doesn't free memory; it sticks the node on the end of 932 * the list. Check if there's any freed nodes there: 933 */ 934 list_for_each_entry(b, &c->btree_cache_freeable, list) 935 if (!mca_reap(b, btree_order(k), false)) 936 goto out; 937 938 /* We never free struct btree itself, just the memory that holds the on 939 * disk node. Check the freed list before allocating a new one: 940 */ 941 list_for_each_entry(b, &c->btree_cache_freed, list) 942 if (!mca_reap(b, 0, false)) { 943 mca_data_alloc(b, k, __GFP_NOWARN|GFP_NOIO); 944 if (!b->keys.set[0].data) 945 goto err; 946 else 947 goto out; 948 } 949 950 b = mca_bucket_alloc(c, k, __GFP_NOWARN|GFP_NOIO); 951 if (!b) 952 goto err; 953 954 BUG_ON(!down_write_trylock(&b->lock)); 955 if (!b->keys.set->data) 956 goto err; 957 out: 958 BUG_ON(b->io_mutex.count != 1); 959 960 bkey_copy(&b->key, k); 961 list_move(&b->list, &c->btree_cache); 962 hlist_del_init_rcu(&b->hash); 963 hlist_add_head_rcu(&b->hash, mca_hash(c, k)); 964 965 lock_set_subclass(&b->lock.dep_map, level + 1, _THIS_IP_); 966 b->parent = (void *) ~0UL; 967 b->flags = 0; 968 b->written = 0; 969 b->level = level; 970 971 if (!b->level) 972 bch_btree_keys_init(&b->keys, &bch_extent_keys_ops, 973 &b->c->expensive_debug_checks); 974 else 975 bch_btree_keys_init(&b->keys, &bch_btree_keys_ops, 976 &b->c->expensive_debug_checks); 977 978 return b; 979 err: 980 if (b) 981 rw_unlock(true, b); 982 983 b = mca_cannibalize(c, op, k); 984 if (!IS_ERR(b)) 985 goto out; 986 987 return b; 988 } 989 990 /* 991 * bch_btree_node_get - find a btree node in the cache and lock it, reading it 992 * in from disk if necessary. 993 * 994 * If IO is necessary and running under submit_bio_noacct, returns -EAGAIN. 995 * 996 * The btree node will have either a read or a write lock held, depending on 997 * level and op->lock. 998 */ 999 struct btree *bch_btree_node_get(struct cache_set *c, struct btree_op *op, 1000 struct bkey *k, int level, bool write, 1001 struct btree *parent) 1002 { 1003 int i = 0; 1004 struct btree *b; 1005 1006 BUG_ON(level < 0); 1007 retry: 1008 b = mca_find(c, k); 1009 1010 if (!b) { 1011 if (current->bio_list) 1012 return ERR_PTR(-EAGAIN); 1013 1014 mutex_lock(&c->bucket_lock); 1015 b = mca_alloc(c, op, k, level); 1016 mutex_unlock(&c->bucket_lock); 1017 1018 if (!b) 1019 goto retry; 1020 if (IS_ERR(b)) 1021 return b; 1022 1023 bch_btree_node_read(b); 1024 1025 if (!write) 1026 downgrade_write(&b->lock); 1027 } else { 1028 rw_lock(write, b, level); 1029 if (PTR_HASH(c, &b->key) != PTR_HASH(c, k)) { 1030 rw_unlock(write, b); 1031 goto retry; 1032 } 1033 BUG_ON(b->level != level); 1034 } 1035 1036 if (btree_node_io_error(b)) { 1037 rw_unlock(write, b); 1038 return ERR_PTR(-EIO); 1039 } 1040 1041 BUG_ON(!b->written); 1042 1043 b->parent = parent; 1044 1045 for (; i <= b->keys.nsets && b->keys.set[i].size; i++) { 1046 prefetch(b->keys.set[i].tree); 1047 prefetch(b->keys.set[i].data); 1048 } 1049 1050 for (; i <= b->keys.nsets; i++) 1051 prefetch(b->keys.set[i].data); 1052 1053 return b; 1054 } 1055 1056 static void btree_node_prefetch(struct btree *parent, struct bkey *k) 1057 { 1058 struct btree *b; 1059 1060 mutex_lock(&parent->c->bucket_lock); 1061 b = mca_alloc(parent->c, NULL, k, parent->level - 1); 1062 mutex_unlock(&parent->c->bucket_lock); 1063 1064 if (!IS_ERR_OR_NULL(b)) { 1065 b->parent = parent; 1066 bch_btree_node_read(b); 1067 rw_unlock(true, b); 1068 } 1069 } 1070 1071 /* Btree alloc */ 1072 1073 static void btree_node_free(struct btree *b) 1074 { 1075 trace_bcache_btree_node_free(b); 1076 1077 BUG_ON(b == b->c->root); 1078 1079 retry: 1080 mutex_lock(&b->write_lock); 1081 /* 1082 * If the btree node is selected and flushing in btree_flush_write(), 1083 * delay and retry until the BTREE_NODE_journal_flush bit cleared, 1084 * then it is safe to free the btree node here. Otherwise this btree 1085 * node will be in race condition. 1086 */ 1087 if (btree_node_journal_flush(b)) { 1088 mutex_unlock(&b->write_lock); 1089 pr_debug("bnode %p journal_flush set, retry\n", b); 1090 udelay(1); 1091 goto retry; 1092 } 1093 1094 if (btree_node_dirty(b)) { 1095 btree_complete_write(b, btree_current_write(b)); 1096 clear_bit(BTREE_NODE_dirty, &b->flags); 1097 } 1098 1099 mutex_unlock(&b->write_lock); 1100 1101 cancel_delayed_work(&b->work); 1102 1103 mutex_lock(&b->c->bucket_lock); 1104 bch_bucket_free(b->c, &b->key); 1105 mca_bucket_free(b); 1106 mutex_unlock(&b->c->bucket_lock); 1107 } 1108 1109 struct btree *__bch_btree_node_alloc(struct cache_set *c, struct btree_op *op, 1110 int level, bool wait, 1111 struct btree *parent) 1112 { 1113 BKEY_PADDED(key) k; 1114 struct btree *b; 1115 1116 mutex_lock(&c->bucket_lock); 1117 retry: 1118 /* return ERR_PTR(-EAGAIN) when it fails */ 1119 b = ERR_PTR(-EAGAIN); 1120 if (__bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, wait)) 1121 goto err; 1122 1123 bkey_put(c, &k.key); 1124 SET_KEY_SIZE(&k.key, c->btree_pages * PAGE_SECTORS); 1125 1126 b = mca_alloc(c, op, &k.key, level); 1127 if (IS_ERR(b)) 1128 goto err_free; 1129 1130 if (!b) { 1131 cache_bug(c, 1132 "Tried to allocate bucket that was in btree cache"); 1133 goto retry; 1134 } 1135 1136 b->parent = parent; 1137 bch_bset_init_next(&b->keys, b->keys.set->data, bset_magic(&b->c->cache->sb)); 1138 1139 mutex_unlock(&c->bucket_lock); 1140 1141 trace_bcache_btree_node_alloc(b); 1142 return b; 1143 err_free: 1144 bch_bucket_free(c, &k.key); 1145 err: 1146 mutex_unlock(&c->bucket_lock); 1147 1148 trace_bcache_btree_node_alloc_fail(c); 1149 return b; 1150 } 1151 1152 static struct btree *bch_btree_node_alloc(struct cache_set *c, 1153 struct btree_op *op, int level, 1154 struct btree *parent) 1155 { 1156 return __bch_btree_node_alloc(c, op, level, op != NULL, parent); 1157 } 1158 1159 static struct btree *btree_node_alloc_replacement(struct btree *b, 1160 struct btree_op *op) 1161 { 1162 struct btree *n = bch_btree_node_alloc(b->c, op, b->level, b->parent); 1163 1164 if (!IS_ERR(n)) { 1165 mutex_lock(&n->write_lock); 1166 bch_btree_sort_into(&b->keys, &n->keys, &b->c->sort); 1167 bkey_copy_key(&n->key, &b->key); 1168 mutex_unlock(&n->write_lock); 1169 } 1170 1171 return n; 1172 } 1173 1174 static void make_btree_freeing_key(struct btree *b, struct bkey *k) 1175 { 1176 unsigned int i; 1177 1178 mutex_lock(&b->c->bucket_lock); 1179 1180 atomic_inc(&b->c->prio_blocked); 1181 1182 bkey_copy(k, &b->key); 1183 bkey_copy_key(k, &ZERO_KEY); 1184 1185 for (i = 0; i < KEY_PTRS(k); i++) 1186 SET_PTR_GEN(k, i, 1187 bch_inc_gen(b->c->cache, 1188 PTR_BUCKET(b->c, &b->key, i))); 1189 1190 mutex_unlock(&b->c->bucket_lock); 1191 } 1192 1193 static int btree_check_reserve(struct btree *b, struct btree_op *op) 1194 { 1195 struct cache_set *c = b->c; 1196 struct cache *ca = c->cache; 1197 unsigned int reserve = (c->root->level - b->level) * 2 + 1; 1198 1199 mutex_lock(&c->bucket_lock); 1200 1201 if (fifo_used(&ca->free[RESERVE_BTREE]) < reserve) { 1202 if (op) 1203 prepare_to_wait(&c->btree_cache_wait, &op->wait, 1204 TASK_UNINTERRUPTIBLE); 1205 mutex_unlock(&c->bucket_lock); 1206 return -EINTR; 1207 } 1208 1209 mutex_unlock(&c->bucket_lock); 1210 1211 return mca_cannibalize_lock(b->c, op); 1212 } 1213 1214 /* Garbage collection */ 1215 1216 static uint8_t __bch_btree_mark_key(struct cache_set *c, int level, 1217 struct bkey *k) 1218 { 1219 uint8_t stale = 0; 1220 unsigned int i; 1221 struct bucket *g; 1222 1223 /* 1224 * ptr_invalid() can't return true for the keys that mark btree nodes as 1225 * freed, but since ptr_bad() returns true we'll never actually use them 1226 * for anything and thus we don't want mark their pointers here 1227 */ 1228 if (!bkey_cmp(k, &ZERO_KEY)) 1229 return stale; 1230 1231 for (i = 0; i < KEY_PTRS(k); i++) { 1232 if (!ptr_available(c, k, i)) 1233 continue; 1234 1235 g = PTR_BUCKET(c, k, i); 1236 1237 if (gen_after(g->last_gc, PTR_GEN(k, i))) 1238 g->last_gc = PTR_GEN(k, i); 1239 1240 if (ptr_stale(c, k, i)) { 1241 stale = max(stale, ptr_stale(c, k, i)); 1242 continue; 1243 } 1244 1245 cache_bug_on(GC_MARK(g) && 1246 (GC_MARK(g) == GC_MARK_METADATA) != (level != 0), 1247 c, "inconsistent ptrs: mark = %llu, level = %i", 1248 GC_MARK(g), level); 1249 1250 if (level) 1251 SET_GC_MARK(g, GC_MARK_METADATA); 1252 else if (KEY_DIRTY(k)) 1253 SET_GC_MARK(g, GC_MARK_DIRTY); 1254 else if (!GC_MARK(g)) 1255 SET_GC_MARK(g, GC_MARK_RECLAIMABLE); 1256 1257 /* guard against overflow */ 1258 SET_GC_SECTORS_USED(g, min_t(unsigned int, 1259 GC_SECTORS_USED(g) + KEY_SIZE(k), 1260 MAX_GC_SECTORS_USED)); 1261 1262 BUG_ON(!GC_SECTORS_USED(g)); 1263 } 1264 1265 return stale; 1266 } 1267 1268 #define btree_mark_key(b, k) __bch_btree_mark_key(b->c, b->level, k) 1269 1270 void bch_initial_mark_key(struct cache_set *c, int level, struct bkey *k) 1271 { 1272 unsigned int i; 1273 1274 for (i = 0; i < KEY_PTRS(k); i++) 1275 if (ptr_available(c, k, i) && 1276 !ptr_stale(c, k, i)) { 1277 struct bucket *b = PTR_BUCKET(c, k, i); 1278 1279 b->gen = PTR_GEN(k, i); 1280 1281 if (level && bkey_cmp(k, &ZERO_KEY)) 1282 b->prio = BTREE_PRIO; 1283 else if (!level && b->prio == BTREE_PRIO) 1284 b->prio = INITIAL_PRIO; 1285 } 1286 1287 __bch_btree_mark_key(c, level, k); 1288 } 1289 1290 void bch_update_bucket_in_use(struct cache_set *c, struct gc_stat *stats) 1291 { 1292 stats->in_use = (c->nbuckets - c->avail_nbuckets) * 100 / c->nbuckets; 1293 } 1294 1295 static bool btree_gc_mark_node(struct btree *b, struct gc_stat *gc) 1296 { 1297 uint8_t stale = 0; 1298 unsigned int keys = 0, good_keys = 0; 1299 struct bkey *k; 1300 struct btree_iter iter; 1301 struct bset_tree *t; 1302 1303 gc->nodes++; 1304 1305 for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid) { 1306 stale = max(stale, btree_mark_key(b, k)); 1307 keys++; 1308 1309 if (bch_ptr_bad(&b->keys, k)) 1310 continue; 1311 1312 gc->key_bytes += bkey_u64s(k); 1313 gc->nkeys++; 1314 good_keys++; 1315 1316 gc->data += KEY_SIZE(k); 1317 } 1318 1319 for (t = b->keys.set; t <= &b->keys.set[b->keys.nsets]; t++) 1320 btree_bug_on(t->size && 1321 bset_written(&b->keys, t) && 1322 bkey_cmp(&b->key, &t->end) < 0, 1323 b, "found short btree key in gc"); 1324 1325 if (b->c->gc_always_rewrite) 1326 return true; 1327 1328 if (stale > 10) 1329 return true; 1330 1331 if ((keys - good_keys) * 2 > keys) 1332 return true; 1333 1334 return false; 1335 } 1336 1337 #define GC_MERGE_NODES 4U 1338 1339 struct gc_merge_info { 1340 struct btree *b; 1341 unsigned int keys; 1342 }; 1343 1344 static int bch_btree_insert_node(struct btree *b, struct btree_op *op, 1345 struct keylist *insert_keys, 1346 atomic_t *journal_ref, 1347 struct bkey *replace_key); 1348 1349 static int btree_gc_coalesce(struct btree *b, struct btree_op *op, 1350 struct gc_stat *gc, struct gc_merge_info *r) 1351 { 1352 unsigned int i, nodes = 0, keys = 0, blocks; 1353 struct btree *new_nodes[GC_MERGE_NODES]; 1354 struct keylist keylist; 1355 struct closure cl; 1356 struct bkey *k; 1357 1358 bch_keylist_init(&keylist); 1359 1360 if (btree_check_reserve(b, NULL)) 1361 return 0; 1362 1363 memset(new_nodes, 0, sizeof(new_nodes)); 1364 closure_init_stack(&cl); 1365 1366 while (nodes < GC_MERGE_NODES && !IS_ERR(r[nodes].b)) 1367 keys += r[nodes++].keys; 1368 1369 blocks = btree_default_blocks(b->c) * 2 / 3; 1370 1371 if (nodes < 2 || 1372 __set_blocks(b->keys.set[0].data, keys, 1373 block_bytes(b->c->cache)) > blocks * (nodes - 1)) 1374 return 0; 1375 1376 for (i = 0; i < nodes; i++) { 1377 new_nodes[i] = btree_node_alloc_replacement(r[i].b, NULL); 1378 if (IS_ERR(new_nodes[i])) 1379 goto out_nocoalesce; 1380 } 1381 1382 /* 1383 * We have to check the reserve here, after we've allocated our new 1384 * nodes, to make sure the insert below will succeed - we also check 1385 * before as an optimization to potentially avoid a bunch of expensive 1386 * allocs/sorts 1387 */ 1388 if (btree_check_reserve(b, NULL)) 1389 goto out_nocoalesce; 1390 1391 for (i = 0; i < nodes; i++) 1392 mutex_lock(&new_nodes[i]->write_lock); 1393 1394 for (i = nodes - 1; i > 0; --i) { 1395 struct bset *n1 = btree_bset_first(new_nodes[i]); 1396 struct bset *n2 = btree_bset_first(new_nodes[i - 1]); 1397 struct bkey *k, *last = NULL; 1398 1399 keys = 0; 1400 1401 if (i > 1) { 1402 for (k = n2->start; 1403 k < bset_bkey_last(n2); 1404 k = bkey_next(k)) { 1405 if (__set_blocks(n1, n1->keys + keys + 1406 bkey_u64s(k), 1407 block_bytes(b->c->cache)) > blocks) 1408 break; 1409 1410 last = k; 1411 keys += bkey_u64s(k); 1412 } 1413 } else { 1414 /* 1415 * Last node we're not getting rid of - we're getting 1416 * rid of the node at r[0]. Have to try and fit all of 1417 * the remaining keys into this node; we can't ensure 1418 * they will always fit due to rounding and variable 1419 * length keys (shouldn't be possible in practice, 1420 * though) 1421 */ 1422 if (__set_blocks(n1, n1->keys + n2->keys, 1423 block_bytes(b->c->cache)) > 1424 btree_blocks(new_nodes[i])) 1425 goto out_unlock_nocoalesce; 1426 1427 keys = n2->keys; 1428 /* Take the key of the node we're getting rid of */ 1429 last = &r->b->key; 1430 } 1431 1432 BUG_ON(__set_blocks(n1, n1->keys + keys, block_bytes(b->c->cache)) > 1433 btree_blocks(new_nodes[i])); 1434 1435 if (last) 1436 bkey_copy_key(&new_nodes[i]->key, last); 1437 1438 memcpy(bset_bkey_last(n1), 1439 n2->start, 1440 (void *) bset_bkey_idx(n2, keys) - (void *) n2->start); 1441 1442 n1->keys += keys; 1443 r[i].keys = n1->keys; 1444 1445 memmove(n2->start, 1446 bset_bkey_idx(n2, keys), 1447 (void *) bset_bkey_last(n2) - 1448 (void *) bset_bkey_idx(n2, keys)); 1449 1450 n2->keys -= keys; 1451 1452 if (__bch_keylist_realloc(&keylist, 1453 bkey_u64s(&new_nodes[i]->key))) 1454 goto out_unlock_nocoalesce; 1455 1456 bch_btree_node_write(new_nodes[i], &cl); 1457 bch_keylist_add(&keylist, &new_nodes[i]->key); 1458 } 1459 1460 for (i = 0; i < nodes; i++) 1461 mutex_unlock(&new_nodes[i]->write_lock); 1462 1463 closure_sync(&cl); 1464 1465 /* We emptied out this node */ 1466 BUG_ON(btree_bset_first(new_nodes[0])->keys); 1467 btree_node_free(new_nodes[0]); 1468 rw_unlock(true, new_nodes[0]); 1469 new_nodes[0] = NULL; 1470 1471 for (i = 0; i < nodes; i++) { 1472 if (__bch_keylist_realloc(&keylist, bkey_u64s(&r[i].b->key))) 1473 goto out_nocoalesce; 1474 1475 make_btree_freeing_key(r[i].b, keylist.top); 1476 bch_keylist_push(&keylist); 1477 } 1478 1479 bch_btree_insert_node(b, op, &keylist, NULL, NULL); 1480 BUG_ON(!bch_keylist_empty(&keylist)); 1481 1482 for (i = 0; i < nodes; i++) { 1483 btree_node_free(r[i].b); 1484 rw_unlock(true, r[i].b); 1485 1486 r[i].b = new_nodes[i]; 1487 } 1488 1489 memmove(r, r + 1, sizeof(r[0]) * (nodes - 1)); 1490 r[nodes - 1].b = ERR_PTR(-EINTR); 1491 1492 trace_bcache_btree_gc_coalesce(nodes); 1493 gc->nodes--; 1494 1495 bch_keylist_free(&keylist); 1496 1497 /* Invalidated our iterator */ 1498 return -EINTR; 1499 1500 out_unlock_nocoalesce: 1501 for (i = 0; i < nodes; i++) 1502 mutex_unlock(&new_nodes[i]->write_lock); 1503 1504 out_nocoalesce: 1505 closure_sync(&cl); 1506 1507 while ((k = bch_keylist_pop(&keylist))) 1508 if (!bkey_cmp(k, &ZERO_KEY)) 1509 atomic_dec(&b->c->prio_blocked); 1510 bch_keylist_free(&keylist); 1511 1512 for (i = 0; i < nodes; i++) 1513 if (!IS_ERR(new_nodes[i])) { 1514 btree_node_free(new_nodes[i]); 1515 rw_unlock(true, new_nodes[i]); 1516 } 1517 return 0; 1518 } 1519 1520 static int btree_gc_rewrite_node(struct btree *b, struct btree_op *op, 1521 struct btree *replace) 1522 { 1523 struct keylist keys; 1524 struct btree *n; 1525 1526 if (btree_check_reserve(b, NULL)) 1527 return 0; 1528 1529 n = btree_node_alloc_replacement(replace, NULL); 1530 1531 /* recheck reserve after allocating replacement node */ 1532 if (btree_check_reserve(b, NULL)) { 1533 btree_node_free(n); 1534 rw_unlock(true, n); 1535 return 0; 1536 } 1537 1538 bch_btree_node_write_sync(n); 1539 1540 bch_keylist_init(&keys); 1541 bch_keylist_add(&keys, &n->key); 1542 1543 make_btree_freeing_key(replace, keys.top); 1544 bch_keylist_push(&keys); 1545 1546 bch_btree_insert_node(b, op, &keys, NULL, NULL); 1547 BUG_ON(!bch_keylist_empty(&keys)); 1548 1549 btree_node_free(replace); 1550 rw_unlock(true, n); 1551 1552 /* Invalidated our iterator */ 1553 return -EINTR; 1554 } 1555 1556 static unsigned int btree_gc_count_keys(struct btree *b) 1557 { 1558 struct bkey *k; 1559 struct btree_iter iter; 1560 unsigned int ret = 0; 1561 1562 for_each_key_filter(&b->keys, k, &iter, bch_ptr_bad) 1563 ret += bkey_u64s(k); 1564 1565 return ret; 1566 } 1567 1568 static size_t btree_gc_min_nodes(struct cache_set *c) 1569 { 1570 size_t min_nodes; 1571 1572 /* 1573 * Since incremental GC would stop 100ms when front 1574 * side I/O comes, so when there are many btree nodes, 1575 * if GC only processes constant (100) nodes each time, 1576 * GC would last a long time, and the front side I/Os 1577 * would run out of the buckets (since no new bucket 1578 * can be allocated during GC), and be blocked again. 1579 * So GC should not process constant nodes, but varied 1580 * nodes according to the number of btree nodes, which 1581 * realized by dividing GC into constant(100) times, 1582 * so when there are many btree nodes, GC can process 1583 * more nodes each time, otherwise, GC will process less 1584 * nodes each time (but no less than MIN_GC_NODES) 1585 */ 1586 min_nodes = c->gc_stats.nodes / MAX_GC_TIMES; 1587 if (min_nodes < MIN_GC_NODES) 1588 min_nodes = MIN_GC_NODES; 1589 1590 return min_nodes; 1591 } 1592 1593 1594 static int btree_gc_recurse(struct btree *b, struct btree_op *op, 1595 struct closure *writes, struct gc_stat *gc) 1596 { 1597 int ret = 0; 1598 bool should_rewrite; 1599 struct bkey *k; 1600 struct btree_iter iter; 1601 struct gc_merge_info r[GC_MERGE_NODES]; 1602 struct gc_merge_info *i, *last = r + ARRAY_SIZE(r) - 1; 1603 1604 bch_btree_iter_init(&b->keys, &iter, &b->c->gc_done); 1605 1606 for (i = r; i < r + ARRAY_SIZE(r); i++) 1607 i->b = ERR_PTR(-EINTR); 1608 1609 while (1) { 1610 k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad); 1611 if (k) { 1612 r->b = bch_btree_node_get(b->c, op, k, b->level - 1, 1613 true, b); 1614 if (IS_ERR(r->b)) { 1615 ret = PTR_ERR(r->b); 1616 break; 1617 } 1618 1619 r->keys = btree_gc_count_keys(r->b); 1620 1621 ret = btree_gc_coalesce(b, op, gc, r); 1622 if (ret) 1623 break; 1624 } 1625 1626 if (!last->b) 1627 break; 1628 1629 if (!IS_ERR(last->b)) { 1630 should_rewrite = btree_gc_mark_node(last->b, gc); 1631 if (should_rewrite) { 1632 ret = btree_gc_rewrite_node(b, op, last->b); 1633 if (ret) 1634 break; 1635 } 1636 1637 if (last->b->level) { 1638 ret = btree_gc_recurse(last->b, op, writes, gc); 1639 if (ret) 1640 break; 1641 } 1642 1643 bkey_copy_key(&b->c->gc_done, &last->b->key); 1644 1645 /* 1646 * Must flush leaf nodes before gc ends, since replace 1647 * operations aren't journalled 1648 */ 1649 mutex_lock(&last->b->write_lock); 1650 if (btree_node_dirty(last->b)) 1651 bch_btree_node_write(last->b, writes); 1652 mutex_unlock(&last->b->write_lock); 1653 rw_unlock(true, last->b); 1654 } 1655 1656 memmove(r + 1, r, sizeof(r[0]) * (GC_MERGE_NODES - 1)); 1657 r->b = NULL; 1658 1659 if (atomic_read(&b->c->search_inflight) && 1660 gc->nodes >= gc->nodes_pre + btree_gc_min_nodes(b->c)) { 1661 gc->nodes_pre = gc->nodes; 1662 ret = -EAGAIN; 1663 break; 1664 } 1665 1666 if (need_resched()) { 1667 ret = -EAGAIN; 1668 break; 1669 } 1670 } 1671 1672 for (i = r; i < r + ARRAY_SIZE(r); i++) 1673 if (!IS_ERR_OR_NULL(i->b)) { 1674 mutex_lock(&i->b->write_lock); 1675 if (btree_node_dirty(i->b)) 1676 bch_btree_node_write(i->b, writes); 1677 mutex_unlock(&i->b->write_lock); 1678 rw_unlock(true, i->b); 1679 } 1680 1681 return ret; 1682 } 1683 1684 static int bch_btree_gc_root(struct btree *b, struct btree_op *op, 1685 struct closure *writes, struct gc_stat *gc) 1686 { 1687 struct btree *n = NULL; 1688 int ret = 0; 1689 bool should_rewrite; 1690 1691 should_rewrite = btree_gc_mark_node(b, gc); 1692 if (should_rewrite) { 1693 n = btree_node_alloc_replacement(b, NULL); 1694 1695 if (!IS_ERR(n)) { 1696 bch_btree_node_write_sync(n); 1697 1698 bch_btree_set_root(n); 1699 btree_node_free(b); 1700 rw_unlock(true, n); 1701 1702 return -EINTR; 1703 } 1704 } 1705 1706 __bch_btree_mark_key(b->c, b->level + 1, &b->key); 1707 1708 if (b->level) { 1709 ret = btree_gc_recurse(b, op, writes, gc); 1710 if (ret) 1711 return ret; 1712 } 1713 1714 bkey_copy_key(&b->c->gc_done, &b->key); 1715 1716 return ret; 1717 } 1718 1719 static void btree_gc_start(struct cache_set *c) 1720 { 1721 struct cache *ca; 1722 struct bucket *b; 1723 1724 if (!c->gc_mark_valid) 1725 return; 1726 1727 mutex_lock(&c->bucket_lock); 1728 1729 c->gc_mark_valid = 0; 1730 c->gc_done = ZERO_KEY; 1731 1732 ca = c->cache; 1733 for_each_bucket(b, ca) { 1734 b->last_gc = b->gen; 1735 if (!atomic_read(&b->pin)) { 1736 SET_GC_MARK(b, 0); 1737 SET_GC_SECTORS_USED(b, 0); 1738 } 1739 } 1740 1741 mutex_unlock(&c->bucket_lock); 1742 } 1743 1744 static void bch_btree_gc_finish(struct cache_set *c) 1745 { 1746 struct bucket *b; 1747 struct cache *ca; 1748 unsigned int i, j; 1749 uint64_t *k; 1750 1751 mutex_lock(&c->bucket_lock); 1752 1753 set_gc_sectors(c); 1754 c->gc_mark_valid = 1; 1755 c->need_gc = 0; 1756 1757 for (i = 0; i < KEY_PTRS(&c->uuid_bucket); i++) 1758 SET_GC_MARK(PTR_BUCKET(c, &c->uuid_bucket, i), 1759 GC_MARK_METADATA); 1760 1761 /* don't reclaim buckets to which writeback keys point */ 1762 rcu_read_lock(); 1763 for (i = 0; i < c->devices_max_used; i++) { 1764 struct bcache_device *d = c->devices[i]; 1765 struct cached_dev *dc; 1766 struct keybuf_key *w, *n; 1767 1768 if (!d || UUID_FLASH_ONLY(&c->uuids[i])) 1769 continue; 1770 dc = container_of(d, struct cached_dev, disk); 1771 1772 spin_lock(&dc->writeback_keys.lock); 1773 rbtree_postorder_for_each_entry_safe(w, n, 1774 &dc->writeback_keys.keys, node) 1775 for (j = 0; j < KEY_PTRS(&w->key); j++) 1776 SET_GC_MARK(PTR_BUCKET(c, &w->key, j), 1777 GC_MARK_DIRTY); 1778 spin_unlock(&dc->writeback_keys.lock); 1779 } 1780 rcu_read_unlock(); 1781 1782 c->avail_nbuckets = 0; 1783 1784 ca = c->cache; 1785 ca->invalidate_needs_gc = 0; 1786 1787 for (k = ca->sb.d; k < ca->sb.d + ca->sb.keys; k++) 1788 SET_GC_MARK(ca->buckets + *k, GC_MARK_METADATA); 1789 1790 for (k = ca->prio_buckets; 1791 k < ca->prio_buckets + prio_buckets(ca) * 2; k++) 1792 SET_GC_MARK(ca->buckets + *k, GC_MARK_METADATA); 1793 1794 for_each_bucket(b, ca) { 1795 c->need_gc = max(c->need_gc, bucket_gc_gen(b)); 1796 1797 if (atomic_read(&b->pin)) 1798 continue; 1799 1800 BUG_ON(!GC_MARK(b) && GC_SECTORS_USED(b)); 1801 1802 if (!GC_MARK(b) || GC_MARK(b) == GC_MARK_RECLAIMABLE) 1803 c->avail_nbuckets++; 1804 } 1805 1806 mutex_unlock(&c->bucket_lock); 1807 } 1808 1809 static void bch_btree_gc(struct cache_set *c) 1810 { 1811 int ret; 1812 struct gc_stat stats; 1813 struct closure writes; 1814 struct btree_op op; 1815 uint64_t start_time = local_clock(); 1816 1817 trace_bcache_gc_start(c); 1818 1819 memset(&stats, 0, sizeof(struct gc_stat)); 1820 closure_init_stack(&writes); 1821 bch_btree_op_init(&op, SHRT_MAX); 1822 1823 btree_gc_start(c); 1824 1825 /* if CACHE_SET_IO_DISABLE set, gc thread should stop too */ 1826 do { 1827 ret = bcache_btree_root(gc_root, c, &op, &writes, &stats); 1828 closure_sync(&writes); 1829 cond_resched(); 1830 1831 if (ret == -EAGAIN) 1832 schedule_timeout_interruptible(msecs_to_jiffies 1833 (GC_SLEEP_MS)); 1834 else if (ret) 1835 pr_warn("gc failed!\n"); 1836 } while (ret && !test_bit(CACHE_SET_IO_DISABLE, &c->flags)); 1837 1838 bch_btree_gc_finish(c); 1839 wake_up_allocators(c); 1840 1841 bch_time_stats_update(&c->btree_gc_time, start_time); 1842 1843 stats.key_bytes *= sizeof(uint64_t); 1844 stats.data <<= 9; 1845 bch_update_bucket_in_use(c, &stats); 1846 memcpy(&c->gc_stats, &stats, sizeof(struct gc_stat)); 1847 1848 trace_bcache_gc_end(c); 1849 1850 bch_moving_gc(c); 1851 } 1852 1853 static bool gc_should_run(struct cache_set *c) 1854 { 1855 struct cache *ca = c->cache; 1856 1857 if (ca->invalidate_needs_gc) 1858 return true; 1859 1860 if (atomic_read(&c->sectors_to_gc) < 0) 1861 return true; 1862 1863 return false; 1864 } 1865 1866 static int bch_gc_thread(void *arg) 1867 { 1868 struct cache_set *c = arg; 1869 1870 while (1) { 1871 wait_event_interruptible(c->gc_wait, 1872 kthread_should_stop() || 1873 test_bit(CACHE_SET_IO_DISABLE, &c->flags) || 1874 gc_should_run(c)); 1875 1876 if (kthread_should_stop() || 1877 test_bit(CACHE_SET_IO_DISABLE, &c->flags)) 1878 break; 1879 1880 set_gc_sectors(c); 1881 bch_btree_gc(c); 1882 } 1883 1884 wait_for_kthread_stop(); 1885 return 0; 1886 } 1887 1888 int bch_gc_thread_start(struct cache_set *c) 1889 { 1890 c->gc_thread = kthread_run(bch_gc_thread, c, "bcache_gc"); 1891 return PTR_ERR_OR_ZERO(c->gc_thread); 1892 } 1893 1894 /* Initial partial gc */ 1895 1896 static int bch_btree_check_recurse(struct btree *b, struct btree_op *op) 1897 { 1898 int ret = 0; 1899 struct bkey *k, *p = NULL; 1900 struct btree_iter iter; 1901 1902 for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid) 1903 bch_initial_mark_key(b->c, b->level, k); 1904 1905 bch_initial_mark_key(b->c, b->level + 1, &b->key); 1906 1907 if (b->level) { 1908 bch_btree_iter_init(&b->keys, &iter, NULL); 1909 1910 do { 1911 k = bch_btree_iter_next_filter(&iter, &b->keys, 1912 bch_ptr_bad); 1913 if (k) { 1914 btree_node_prefetch(b, k); 1915 /* 1916 * initiallize c->gc_stats.nodes 1917 * for incremental GC 1918 */ 1919 b->c->gc_stats.nodes++; 1920 } 1921 1922 if (p) 1923 ret = bcache_btree(check_recurse, p, b, op); 1924 1925 p = k; 1926 } while (p && !ret); 1927 } 1928 1929 return ret; 1930 } 1931 1932 1933 static int bch_btree_check_thread(void *arg) 1934 { 1935 int ret; 1936 struct btree_check_info *info = arg; 1937 struct btree_check_state *check_state = info->state; 1938 struct cache_set *c = check_state->c; 1939 struct btree_iter iter; 1940 struct bkey *k, *p; 1941 int cur_idx, prev_idx, skip_nr; 1942 1943 k = p = NULL; 1944 cur_idx = prev_idx = 0; 1945 ret = 0; 1946 1947 /* root node keys are checked before thread created */ 1948 bch_btree_iter_init(&c->root->keys, &iter, NULL); 1949 k = bch_btree_iter_next_filter(&iter, &c->root->keys, bch_ptr_bad); 1950 BUG_ON(!k); 1951 1952 p = k; 1953 while (k) { 1954 /* 1955 * Fetch a root node key index, skip the keys which 1956 * should be fetched by other threads, then check the 1957 * sub-tree indexed by the fetched key. 1958 */ 1959 spin_lock(&check_state->idx_lock); 1960 cur_idx = check_state->key_idx; 1961 check_state->key_idx++; 1962 spin_unlock(&check_state->idx_lock); 1963 1964 skip_nr = cur_idx - prev_idx; 1965 1966 while (skip_nr) { 1967 k = bch_btree_iter_next_filter(&iter, 1968 &c->root->keys, 1969 bch_ptr_bad); 1970 if (k) 1971 p = k; 1972 else { 1973 /* 1974 * No more keys to check in root node, 1975 * current checking threads are enough, 1976 * stop creating more. 1977 */ 1978 atomic_set(&check_state->enough, 1); 1979 /* Update check_state->enough earlier */ 1980 smp_mb__after_atomic(); 1981 goto out; 1982 } 1983 skip_nr--; 1984 cond_resched(); 1985 } 1986 1987 if (p) { 1988 struct btree_op op; 1989 1990 btree_node_prefetch(c->root, p); 1991 c->gc_stats.nodes++; 1992 bch_btree_op_init(&op, 0); 1993 ret = bcache_btree(check_recurse, p, c->root, &op); 1994 /* 1995 * The op may be added to cache_set's btree_cache_wait 1996 * in mca_cannibalize(), must ensure it is removed from 1997 * the list and release btree_cache_alloc_lock before 1998 * free op memory. 1999 * Otherwise, the btree_cache_wait will be damaged. 2000 */ 2001 bch_cannibalize_unlock(c); 2002 finish_wait(&c->btree_cache_wait, &(&op)->wait); 2003 if (ret) 2004 goto out; 2005 } 2006 p = NULL; 2007 prev_idx = cur_idx; 2008 cond_resched(); 2009 } 2010 2011 out: 2012 info->result = ret; 2013 /* update check_state->started among all CPUs */ 2014 smp_mb__before_atomic(); 2015 if (atomic_dec_and_test(&check_state->started)) 2016 wake_up(&check_state->wait); 2017 2018 return ret; 2019 } 2020 2021 2022 2023 static int bch_btree_chkthread_nr(void) 2024 { 2025 int n = num_online_cpus()/2; 2026 2027 if (n == 0) 2028 n = 1; 2029 else if (n > BCH_BTR_CHKTHREAD_MAX) 2030 n = BCH_BTR_CHKTHREAD_MAX; 2031 2032 return n; 2033 } 2034 2035 int bch_btree_check(struct cache_set *c) 2036 { 2037 int ret = 0; 2038 int i; 2039 struct bkey *k = NULL; 2040 struct btree_iter iter; 2041 struct btree_check_state check_state; 2042 2043 /* check and mark root node keys */ 2044 for_each_key_filter(&c->root->keys, k, &iter, bch_ptr_invalid) 2045 bch_initial_mark_key(c, c->root->level, k); 2046 2047 bch_initial_mark_key(c, c->root->level + 1, &c->root->key); 2048 2049 if (c->root->level == 0) 2050 return 0; 2051 2052 memset(&check_state, 0, sizeof(struct btree_check_state)); 2053 check_state.c = c; 2054 check_state.total_threads = bch_btree_chkthread_nr(); 2055 check_state.key_idx = 0; 2056 spin_lock_init(&check_state.idx_lock); 2057 atomic_set(&check_state.started, 0); 2058 atomic_set(&check_state.enough, 0); 2059 init_waitqueue_head(&check_state.wait); 2060 2061 rw_lock(0, c->root, c->root->level); 2062 /* 2063 * Run multiple threads to check btree nodes in parallel, 2064 * if check_state.enough is non-zero, it means current 2065 * running check threads are enough, unncessary to create 2066 * more. 2067 */ 2068 for (i = 0; i < check_state.total_threads; i++) { 2069 /* fetch latest check_state.enough earlier */ 2070 smp_mb__before_atomic(); 2071 if (atomic_read(&check_state.enough)) 2072 break; 2073 2074 check_state.infos[i].result = 0; 2075 check_state.infos[i].state = &check_state; 2076 2077 check_state.infos[i].thread = 2078 kthread_run(bch_btree_check_thread, 2079 &check_state.infos[i], 2080 "bch_btrchk[%d]", i); 2081 if (IS_ERR(check_state.infos[i].thread)) { 2082 pr_err("fails to run thread bch_btrchk[%d]\n", i); 2083 for (--i; i >= 0; i--) 2084 kthread_stop(check_state.infos[i].thread); 2085 ret = -ENOMEM; 2086 goto out; 2087 } 2088 atomic_inc(&check_state.started); 2089 } 2090 2091 /* 2092 * Must wait for all threads to stop. 2093 */ 2094 wait_event(check_state.wait, atomic_read(&check_state.started) == 0); 2095 2096 for (i = 0; i < check_state.total_threads; i++) { 2097 if (check_state.infos[i].result) { 2098 ret = check_state.infos[i].result; 2099 goto out; 2100 } 2101 } 2102 2103 out: 2104 rw_unlock(0, c->root); 2105 return ret; 2106 } 2107 2108 void bch_initial_gc_finish(struct cache_set *c) 2109 { 2110 struct cache *ca = c->cache; 2111 struct bucket *b; 2112 2113 bch_btree_gc_finish(c); 2114 2115 mutex_lock(&c->bucket_lock); 2116 2117 /* 2118 * We need to put some unused buckets directly on the prio freelist in 2119 * order to get the allocator thread started - it needs freed buckets in 2120 * order to rewrite the prios and gens, and it needs to rewrite prios 2121 * and gens in order to free buckets. 2122 * 2123 * This is only safe for buckets that have no live data in them, which 2124 * there should always be some of. 2125 */ 2126 for_each_bucket(b, ca) { 2127 if (fifo_full(&ca->free[RESERVE_PRIO]) && 2128 fifo_full(&ca->free[RESERVE_BTREE])) 2129 break; 2130 2131 if (bch_can_invalidate_bucket(ca, b) && 2132 !GC_MARK(b)) { 2133 __bch_invalidate_one_bucket(ca, b); 2134 if (!fifo_push(&ca->free[RESERVE_PRIO], 2135 b - ca->buckets)) 2136 fifo_push(&ca->free[RESERVE_BTREE], 2137 b - ca->buckets); 2138 } 2139 } 2140 2141 mutex_unlock(&c->bucket_lock); 2142 } 2143 2144 /* Btree insertion */ 2145 2146 static bool btree_insert_key(struct btree *b, struct bkey *k, 2147 struct bkey *replace_key) 2148 { 2149 unsigned int status; 2150 2151 BUG_ON(bkey_cmp(k, &b->key) > 0); 2152 2153 status = bch_btree_insert_key(&b->keys, k, replace_key); 2154 if (status != BTREE_INSERT_STATUS_NO_INSERT) { 2155 bch_check_keys(&b->keys, "%u for %s", status, 2156 replace_key ? "replace" : "insert"); 2157 2158 trace_bcache_btree_insert_key(b, k, replace_key != NULL, 2159 status); 2160 return true; 2161 } else 2162 return false; 2163 } 2164 2165 static size_t insert_u64s_remaining(struct btree *b) 2166 { 2167 long ret = bch_btree_keys_u64s_remaining(&b->keys); 2168 2169 /* 2170 * Might land in the middle of an existing extent and have to split it 2171 */ 2172 if (b->keys.ops->is_extents) 2173 ret -= KEY_MAX_U64S; 2174 2175 return max(ret, 0L); 2176 } 2177 2178 static bool bch_btree_insert_keys(struct btree *b, struct btree_op *op, 2179 struct keylist *insert_keys, 2180 struct bkey *replace_key) 2181 { 2182 bool ret = false; 2183 int oldsize = bch_count_data(&b->keys); 2184 2185 while (!bch_keylist_empty(insert_keys)) { 2186 struct bkey *k = insert_keys->keys; 2187 2188 if (bkey_u64s(k) > insert_u64s_remaining(b)) 2189 break; 2190 2191 if (bkey_cmp(k, &b->key) <= 0) { 2192 if (!b->level) 2193 bkey_put(b->c, k); 2194 2195 ret |= btree_insert_key(b, k, replace_key); 2196 bch_keylist_pop_front(insert_keys); 2197 } else if (bkey_cmp(&START_KEY(k), &b->key) < 0) { 2198 BKEY_PADDED(key) temp; 2199 bkey_copy(&temp.key, insert_keys->keys); 2200 2201 bch_cut_back(&b->key, &temp.key); 2202 bch_cut_front(&b->key, insert_keys->keys); 2203 2204 ret |= btree_insert_key(b, &temp.key, replace_key); 2205 break; 2206 } else { 2207 break; 2208 } 2209 } 2210 2211 if (!ret) 2212 op->insert_collision = true; 2213 2214 BUG_ON(!bch_keylist_empty(insert_keys) && b->level); 2215 2216 BUG_ON(bch_count_data(&b->keys) < oldsize); 2217 return ret; 2218 } 2219 2220 static int btree_split(struct btree *b, struct btree_op *op, 2221 struct keylist *insert_keys, 2222 struct bkey *replace_key) 2223 { 2224 bool split; 2225 struct btree *n1, *n2 = NULL, *n3 = NULL; 2226 uint64_t start_time = local_clock(); 2227 struct closure cl; 2228 struct keylist parent_keys; 2229 2230 closure_init_stack(&cl); 2231 bch_keylist_init(&parent_keys); 2232 2233 if (btree_check_reserve(b, op)) { 2234 if (!b->level) 2235 return -EINTR; 2236 else 2237 WARN(1, "insufficient reserve for split\n"); 2238 } 2239 2240 n1 = btree_node_alloc_replacement(b, op); 2241 if (IS_ERR(n1)) 2242 goto err; 2243 2244 split = set_blocks(btree_bset_first(n1), 2245 block_bytes(n1->c->cache)) > (btree_blocks(b) * 4) / 5; 2246 2247 if (split) { 2248 unsigned int keys = 0; 2249 2250 trace_bcache_btree_node_split(b, btree_bset_first(n1)->keys); 2251 2252 n2 = bch_btree_node_alloc(b->c, op, b->level, b->parent); 2253 if (IS_ERR(n2)) 2254 goto err_free1; 2255 2256 if (!b->parent) { 2257 n3 = bch_btree_node_alloc(b->c, op, b->level + 1, NULL); 2258 if (IS_ERR(n3)) 2259 goto err_free2; 2260 } 2261 2262 mutex_lock(&n1->write_lock); 2263 mutex_lock(&n2->write_lock); 2264 2265 bch_btree_insert_keys(n1, op, insert_keys, replace_key); 2266 2267 /* 2268 * Has to be a linear search because we don't have an auxiliary 2269 * search tree yet 2270 */ 2271 2272 while (keys < (btree_bset_first(n1)->keys * 3) / 5) 2273 keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1), 2274 keys)); 2275 2276 bkey_copy_key(&n1->key, 2277 bset_bkey_idx(btree_bset_first(n1), keys)); 2278 keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1), keys)); 2279 2280 btree_bset_first(n2)->keys = btree_bset_first(n1)->keys - keys; 2281 btree_bset_first(n1)->keys = keys; 2282 2283 memcpy(btree_bset_first(n2)->start, 2284 bset_bkey_last(btree_bset_first(n1)), 2285 btree_bset_first(n2)->keys * sizeof(uint64_t)); 2286 2287 bkey_copy_key(&n2->key, &b->key); 2288 2289 bch_keylist_add(&parent_keys, &n2->key); 2290 bch_btree_node_write(n2, &cl); 2291 mutex_unlock(&n2->write_lock); 2292 rw_unlock(true, n2); 2293 } else { 2294 trace_bcache_btree_node_compact(b, btree_bset_first(n1)->keys); 2295 2296 mutex_lock(&n1->write_lock); 2297 bch_btree_insert_keys(n1, op, insert_keys, replace_key); 2298 } 2299 2300 bch_keylist_add(&parent_keys, &n1->key); 2301 bch_btree_node_write(n1, &cl); 2302 mutex_unlock(&n1->write_lock); 2303 2304 if (n3) { 2305 /* Depth increases, make a new root */ 2306 mutex_lock(&n3->write_lock); 2307 bkey_copy_key(&n3->key, &MAX_KEY); 2308 bch_btree_insert_keys(n3, op, &parent_keys, NULL); 2309 bch_btree_node_write(n3, &cl); 2310 mutex_unlock(&n3->write_lock); 2311 2312 closure_sync(&cl); 2313 bch_btree_set_root(n3); 2314 rw_unlock(true, n3); 2315 } else if (!b->parent) { 2316 /* Root filled up but didn't need to be split */ 2317 closure_sync(&cl); 2318 bch_btree_set_root(n1); 2319 } else { 2320 /* Split a non root node */ 2321 closure_sync(&cl); 2322 make_btree_freeing_key(b, parent_keys.top); 2323 bch_keylist_push(&parent_keys); 2324 2325 bch_btree_insert_node(b->parent, op, &parent_keys, NULL, NULL); 2326 BUG_ON(!bch_keylist_empty(&parent_keys)); 2327 } 2328 2329 btree_node_free(b); 2330 rw_unlock(true, n1); 2331 2332 bch_time_stats_update(&b->c->btree_split_time, start_time); 2333 2334 return 0; 2335 err_free2: 2336 bkey_put(b->c, &n2->key); 2337 btree_node_free(n2); 2338 rw_unlock(true, n2); 2339 err_free1: 2340 bkey_put(b->c, &n1->key); 2341 btree_node_free(n1); 2342 rw_unlock(true, n1); 2343 err: 2344 WARN(1, "bcache: btree split failed (level %u)", b->level); 2345 2346 if (n3 == ERR_PTR(-EAGAIN) || 2347 n2 == ERR_PTR(-EAGAIN) || 2348 n1 == ERR_PTR(-EAGAIN)) 2349 return -EAGAIN; 2350 2351 return -ENOMEM; 2352 } 2353 2354 static int bch_btree_insert_node(struct btree *b, struct btree_op *op, 2355 struct keylist *insert_keys, 2356 atomic_t *journal_ref, 2357 struct bkey *replace_key) 2358 { 2359 struct closure cl; 2360 2361 BUG_ON(b->level && replace_key); 2362 2363 closure_init_stack(&cl); 2364 2365 mutex_lock(&b->write_lock); 2366 2367 if (write_block(b) != btree_bset_last(b) && 2368 b->keys.last_set_unwritten) 2369 bch_btree_init_next(b); /* just wrote a set */ 2370 2371 if (bch_keylist_nkeys(insert_keys) > insert_u64s_remaining(b)) { 2372 mutex_unlock(&b->write_lock); 2373 goto split; 2374 } 2375 2376 BUG_ON(write_block(b) != btree_bset_last(b)); 2377 2378 if (bch_btree_insert_keys(b, op, insert_keys, replace_key)) { 2379 if (!b->level) 2380 bch_btree_leaf_dirty(b, journal_ref); 2381 else 2382 bch_btree_node_write(b, &cl); 2383 } 2384 2385 mutex_unlock(&b->write_lock); 2386 2387 /* wait for btree node write if necessary, after unlock */ 2388 closure_sync(&cl); 2389 2390 return 0; 2391 split: 2392 if (current->bio_list) { 2393 op->lock = b->c->root->level + 1; 2394 return -EAGAIN; 2395 } else if (op->lock <= b->c->root->level) { 2396 op->lock = b->c->root->level + 1; 2397 return -EINTR; 2398 } else { 2399 /* Invalidated all iterators */ 2400 int ret = btree_split(b, op, insert_keys, replace_key); 2401 2402 if (bch_keylist_empty(insert_keys)) 2403 return 0; 2404 else if (!ret) 2405 return -EINTR; 2406 return ret; 2407 } 2408 } 2409 2410 int bch_btree_insert_check_key(struct btree *b, struct btree_op *op, 2411 struct bkey *check_key) 2412 { 2413 int ret = -EINTR; 2414 uint64_t btree_ptr = b->key.ptr[0]; 2415 unsigned long seq = b->seq; 2416 struct keylist insert; 2417 bool upgrade = op->lock == -1; 2418 2419 bch_keylist_init(&insert); 2420 2421 if (upgrade) { 2422 rw_unlock(false, b); 2423 rw_lock(true, b, b->level); 2424 2425 if (b->key.ptr[0] != btree_ptr || 2426 b->seq != seq + 1) { 2427 op->lock = b->level; 2428 goto out; 2429 } 2430 } 2431 2432 SET_KEY_PTRS(check_key, 1); 2433 get_random_bytes(&check_key->ptr[0], sizeof(uint64_t)); 2434 2435 SET_PTR_DEV(check_key, 0, PTR_CHECK_DEV); 2436 2437 bch_keylist_add(&insert, check_key); 2438 2439 ret = bch_btree_insert_node(b, op, &insert, NULL, NULL); 2440 2441 BUG_ON(!ret && !bch_keylist_empty(&insert)); 2442 out: 2443 if (upgrade) 2444 downgrade_write(&b->lock); 2445 return ret; 2446 } 2447 2448 struct btree_insert_op { 2449 struct btree_op op; 2450 struct keylist *keys; 2451 atomic_t *journal_ref; 2452 struct bkey *replace_key; 2453 }; 2454 2455 static int btree_insert_fn(struct btree_op *b_op, struct btree *b) 2456 { 2457 struct btree_insert_op *op = container_of(b_op, 2458 struct btree_insert_op, op); 2459 2460 int ret = bch_btree_insert_node(b, &op->op, op->keys, 2461 op->journal_ref, op->replace_key); 2462 if (ret && !bch_keylist_empty(op->keys)) 2463 return ret; 2464 else 2465 return MAP_DONE; 2466 } 2467 2468 int bch_btree_insert(struct cache_set *c, struct keylist *keys, 2469 atomic_t *journal_ref, struct bkey *replace_key) 2470 { 2471 struct btree_insert_op op; 2472 int ret = 0; 2473 2474 BUG_ON(current->bio_list); 2475 BUG_ON(bch_keylist_empty(keys)); 2476 2477 bch_btree_op_init(&op.op, 0); 2478 op.keys = keys; 2479 op.journal_ref = journal_ref; 2480 op.replace_key = replace_key; 2481 2482 while (!ret && !bch_keylist_empty(keys)) { 2483 op.op.lock = 0; 2484 ret = bch_btree_map_leaf_nodes(&op.op, c, 2485 &START_KEY(keys->keys), 2486 btree_insert_fn); 2487 } 2488 2489 if (ret) { 2490 struct bkey *k; 2491 2492 pr_err("error %i\n", ret); 2493 2494 while ((k = bch_keylist_pop(keys))) 2495 bkey_put(c, k); 2496 } else if (op.op.insert_collision) 2497 ret = -ESRCH; 2498 2499 return ret; 2500 } 2501 2502 void bch_btree_set_root(struct btree *b) 2503 { 2504 unsigned int i; 2505 struct closure cl; 2506 2507 closure_init_stack(&cl); 2508 2509 trace_bcache_btree_set_root(b); 2510 2511 BUG_ON(!b->written); 2512 2513 for (i = 0; i < KEY_PTRS(&b->key); i++) 2514 BUG_ON(PTR_BUCKET(b->c, &b->key, i)->prio != BTREE_PRIO); 2515 2516 mutex_lock(&b->c->bucket_lock); 2517 list_del_init(&b->list); 2518 mutex_unlock(&b->c->bucket_lock); 2519 2520 b->c->root = b; 2521 2522 bch_journal_meta(b->c, &cl); 2523 closure_sync(&cl); 2524 } 2525 2526 /* Map across nodes or keys */ 2527 2528 static int bch_btree_map_nodes_recurse(struct btree *b, struct btree_op *op, 2529 struct bkey *from, 2530 btree_map_nodes_fn *fn, int flags) 2531 { 2532 int ret = MAP_CONTINUE; 2533 2534 if (b->level) { 2535 struct bkey *k; 2536 struct btree_iter iter; 2537 2538 bch_btree_iter_init(&b->keys, &iter, from); 2539 2540 while ((k = bch_btree_iter_next_filter(&iter, &b->keys, 2541 bch_ptr_bad))) { 2542 ret = bcache_btree(map_nodes_recurse, k, b, 2543 op, from, fn, flags); 2544 from = NULL; 2545 2546 if (ret != MAP_CONTINUE) 2547 return ret; 2548 } 2549 } 2550 2551 if (!b->level || flags == MAP_ALL_NODES) 2552 ret = fn(op, b); 2553 2554 return ret; 2555 } 2556 2557 int __bch_btree_map_nodes(struct btree_op *op, struct cache_set *c, 2558 struct bkey *from, btree_map_nodes_fn *fn, int flags) 2559 { 2560 return bcache_btree_root(map_nodes_recurse, c, op, from, fn, flags); 2561 } 2562 2563 int bch_btree_map_keys_recurse(struct btree *b, struct btree_op *op, 2564 struct bkey *from, btree_map_keys_fn *fn, 2565 int flags) 2566 { 2567 int ret = MAP_CONTINUE; 2568 struct bkey *k; 2569 struct btree_iter iter; 2570 2571 bch_btree_iter_init(&b->keys, &iter, from); 2572 2573 while ((k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad))) { 2574 ret = !b->level 2575 ? fn(op, b, k) 2576 : bcache_btree(map_keys_recurse, k, 2577 b, op, from, fn, flags); 2578 from = NULL; 2579 2580 if (ret != MAP_CONTINUE) 2581 return ret; 2582 } 2583 2584 if (!b->level && (flags & MAP_END_KEY)) 2585 ret = fn(op, b, &KEY(KEY_INODE(&b->key), 2586 KEY_OFFSET(&b->key), 0)); 2587 2588 return ret; 2589 } 2590 2591 int bch_btree_map_keys(struct btree_op *op, struct cache_set *c, 2592 struct bkey *from, btree_map_keys_fn *fn, int flags) 2593 { 2594 return bcache_btree_root(map_keys_recurse, c, op, from, fn, flags); 2595 } 2596 2597 /* Keybuf code */ 2598 2599 static inline int keybuf_cmp(struct keybuf_key *l, struct keybuf_key *r) 2600 { 2601 /* Overlapping keys compare equal */ 2602 if (bkey_cmp(&l->key, &START_KEY(&r->key)) <= 0) 2603 return -1; 2604 if (bkey_cmp(&START_KEY(&l->key), &r->key) >= 0) 2605 return 1; 2606 return 0; 2607 } 2608 2609 static inline int keybuf_nonoverlapping_cmp(struct keybuf_key *l, 2610 struct keybuf_key *r) 2611 { 2612 return clamp_t(int64_t, bkey_cmp(&l->key, &r->key), -1, 1); 2613 } 2614 2615 struct refill { 2616 struct btree_op op; 2617 unsigned int nr_found; 2618 struct keybuf *buf; 2619 struct bkey *end; 2620 keybuf_pred_fn *pred; 2621 }; 2622 2623 static int refill_keybuf_fn(struct btree_op *op, struct btree *b, 2624 struct bkey *k) 2625 { 2626 struct refill *refill = container_of(op, struct refill, op); 2627 struct keybuf *buf = refill->buf; 2628 int ret = MAP_CONTINUE; 2629 2630 if (bkey_cmp(k, refill->end) > 0) { 2631 ret = MAP_DONE; 2632 goto out; 2633 } 2634 2635 if (!KEY_SIZE(k)) /* end key */ 2636 goto out; 2637 2638 if (refill->pred(buf, k)) { 2639 struct keybuf_key *w; 2640 2641 spin_lock(&buf->lock); 2642 2643 w = array_alloc(&buf->freelist); 2644 if (!w) { 2645 spin_unlock(&buf->lock); 2646 return MAP_DONE; 2647 } 2648 2649 w->private = NULL; 2650 bkey_copy(&w->key, k); 2651 2652 if (RB_INSERT(&buf->keys, w, node, keybuf_cmp)) 2653 array_free(&buf->freelist, w); 2654 else 2655 refill->nr_found++; 2656 2657 if (array_freelist_empty(&buf->freelist)) 2658 ret = MAP_DONE; 2659 2660 spin_unlock(&buf->lock); 2661 } 2662 out: 2663 buf->last_scanned = *k; 2664 return ret; 2665 } 2666 2667 void bch_refill_keybuf(struct cache_set *c, struct keybuf *buf, 2668 struct bkey *end, keybuf_pred_fn *pred) 2669 { 2670 struct bkey start = buf->last_scanned; 2671 struct refill refill; 2672 2673 cond_resched(); 2674 2675 bch_btree_op_init(&refill.op, -1); 2676 refill.nr_found = 0; 2677 refill.buf = buf; 2678 refill.end = end; 2679 refill.pred = pred; 2680 2681 bch_btree_map_keys(&refill.op, c, &buf->last_scanned, 2682 refill_keybuf_fn, MAP_END_KEY); 2683 2684 trace_bcache_keyscan(refill.nr_found, 2685 KEY_INODE(&start), KEY_OFFSET(&start), 2686 KEY_INODE(&buf->last_scanned), 2687 KEY_OFFSET(&buf->last_scanned)); 2688 2689 spin_lock(&buf->lock); 2690 2691 if (!RB_EMPTY_ROOT(&buf->keys)) { 2692 struct keybuf_key *w; 2693 2694 w = RB_FIRST(&buf->keys, struct keybuf_key, node); 2695 buf->start = START_KEY(&w->key); 2696 2697 w = RB_LAST(&buf->keys, struct keybuf_key, node); 2698 buf->end = w->key; 2699 } else { 2700 buf->start = MAX_KEY; 2701 buf->end = MAX_KEY; 2702 } 2703 2704 spin_unlock(&buf->lock); 2705 } 2706 2707 static void __bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w) 2708 { 2709 rb_erase(&w->node, &buf->keys); 2710 array_free(&buf->freelist, w); 2711 } 2712 2713 void bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w) 2714 { 2715 spin_lock(&buf->lock); 2716 __bch_keybuf_del(buf, w); 2717 spin_unlock(&buf->lock); 2718 } 2719 2720 bool bch_keybuf_check_overlapping(struct keybuf *buf, struct bkey *start, 2721 struct bkey *end) 2722 { 2723 bool ret = false; 2724 struct keybuf_key *p, *w, s; 2725 2726 s.key = *start; 2727 2728 if (bkey_cmp(end, &buf->start) <= 0 || 2729 bkey_cmp(start, &buf->end) >= 0) 2730 return false; 2731 2732 spin_lock(&buf->lock); 2733 w = RB_GREATER(&buf->keys, s, node, keybuf_nonoverlapping_cmp); 2734 2735 while (w && bkey_cmp(&START_KEY(&w->key), end) < 0) { 2736 p = w; 2737 w = RB_NEXT(w, node); 2738 2739 if (p->private) 2740 ret = true; 2741 else 2742 __bch_keybuf_del(buf, p); 2743 } 2744 2745 spin_unlock(&buf->lock); 2746 return ret; 2747 } 2748 2749 struct keybuf_key *bch_keybuf_next(struct keybuf *buf) 2750 { 2751 struct keybuf_key *w; 2752 2753 spin_lock(&buf->lock); 2754 2755 w = RB_FIRST(&buf->keys, struct keybuf_key, node); 2756 2757 while (w && w->private) 2758 w = RB_NEXT(w, node); 2759 2760 if (w) 2761 w->private = ERR_PTR(-EINTR); 2762 2763 spin_unlock(&buf->lock); 2764 return w; 2765 } 2766 2767 struct keybuf_key *bch_keybuf_next_rescan(struct cache_set *c, 2768 struct keybuf *buf, 2769 struct bkey *end, 2770 keybuf_pred_fn *pred) 2771 { 2772 struct keybuf_key *ret; 2773 2774 while (1) { 2775 ret = bch_keybuf_next(buf); 2776 if (ret) 2777 break; 2778 2779 if (bkey_cmp(&buf->last_scanned, end) >= 0) { 2780 pr_debug("scan finished\n"); 2781 break; 2782 } 2783 2784 bch_refill_keybuf(c, buf, end, pred); 2785 } 2786 2787 return ret; 2788 } 2789 2790 void bch_keybuf_init(struct keybuf *buf) 2791 { 2792 buf->last_scanned = MAX_KEY; 2793 buf->keys = RB_ROOT; 2794 2795 spin_lock_init(&buf->lock); 2796 array_allocator_init(&buf->freelist); 2797 } 2798 2799 void bch_btree_exit(void) 2800 { 2801 if (btree_io_wq) 2802 destroy_workqueue(btree_io_wq); 2803 } 2804 2805 int __init bch_btree_init(void) 2806 { 2807 btree_io_wq = alloc_workqueue("bch_btree_io", WQ_MEM_RECLAIM, 0); 2808 if (!btree_io_wq) 2809 return -ENOMEM; 2810 2811 return 0; 2812 } 2813