1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com> 4 * 5 * Uses a block device as cache for other block devices; optimized for SSDs. 6 * All allocation is done in buckets, which should match the erase block size 7 * of the device. 8 * 9 * Buckets containing cached data are kept on a heap sorted by priority; 10 * bucket priority is increased on cache hit, and periodically all the buckets 11 * on the heap have their priority scaled down. This currently is just used as 12 * an LRU but in the future should allow for more intelligent heuristics. 13 * 14 * Buckets have an 8 bit counter; freeing is accomplished by incrementing the 15 * counter. Garbage collection is used to remove stale pointers. 16 * 17 * Indexing is done via a btree; nodes are not necessarily fully sorted, rather 18 * as keys are inserted we only sort the pages that have not yet been written. 19 * When garbage collection is run, we resort the entire node. 20 * 21 * All configuration is done via sysfs; see Documentation/admin-guide/bcache.rst. 22 */ 23 24 #include "bcache.h" 25 #include "btree.h" 26 #include "debug.h" 27 #include "extents.h" 28 29 #include <linux/slab.h> 30 #include <linux/bitops.h> 31 #include <linux/hash.h> 32 #include <linux/kthread.h> 33 #include <linux/prefetch.h> 34 #include <linux/random.h> 35 #include <linux/rcupdate.h> 36 #include <linux/sched/clock.h> 37 #include <linux/rculist.h> 38 #include <linux/delay.h> 39 #include <trace/events/bcache.h> 40 41 /* 42 * Todo: 43 * register_bcache: Return errors out to userspace correctly 44 * 45 * Writeback: don't undirty key until after a cache flush 46 * 47 * Create an iterator for key pointers 48 * 49 * On btree write error, mark bucket such that it won't be freed from the cache 50 * 51 * Journalling: 52 * Check for bad keys in replay 53 * Propagate barriers 54 * Refcount journal entries in journal_replay 55 * 56 * Garbage collection: 57 * Finish incremental gc 58 * Gc should free old UUIDs, data for invalid UUIDs 59 * 60 * Provide a way to list backing device UUIDs we have data cached for, and 61 * probably how long it's been since we've seen them, and a way to invalidate 62 * dirty data for devices that will never be attached again 63 * 64 * Keep 1 min/5 min/15 min statistics of how busy a block device has been, so 65 * that based on that and how much dirty data we have we can keep writeback 66 * from being starved 67 * 68 * Add a tracepoint or somesuch to watch for writeback starvation 69 * 70 * When btree depth > 1 and splitting an interior node, we have to make sure 71 * alloc_bucket() cannot fail. This should be true but is not completely 72 * obvious. 73 * 74 * Plugging? 75 * 76 * If data write is less than hard sector size of ssd, round up offset in open 77 * bucket to the next whole sector 78 * 79 * Superblock needs to be fleshed out for multiple cache devices 80 * 81 * Add a sysfs tunable for the number of writeback IOs in flight 82 * 83 * Add a sysfs tunable for the number of open data buckets 84 * 85 * IO tracking: Can we track when one process is doing io on behalf of another? 86 * IO tracking: Don't use just an average, weigh more recent stuff higher 87 * 88 * Test module load/unload 89 */ 90 91 #define MAX_NEED_GC 64 92 #define MAX_SAVE_PRIO 72 93 #define MAX_GC_TIMES 100 94 #define MIN_GC_NODES 100 95 #define GC_SLEEP_MS 100 96 97 #define PTR_DIRTY_BIT (((uint64_t) 1 << 36)) 98 99 #define PTR_HASH(c, k) \ 100 (((k)->ptr[0] >> c->bucket_bits) | PTR_GEN(k, 0)) 101 102 static struct workqueue_struct *btree_io_wq; 103 104 #define insert_lock(s, b) ((b)->level <= (s)->lock) 105 106 107 static inline struct bset *write_block(struct btree *b) 108 { 109 return ((void *) btree_bset_first(b)) + b->written * block_bytes(b->c->cache); 110 } 111 112 static void bch_btree_init_next(struct btree *b) 113 { 114 /* If not a leaf node, always sort */ 115 if (b->level && b->keys.nsets) 116 bch_btree_sort(&b->keys, &b->c->sort); 117 else 118 bch_btree_sort_lazy(&b->keys, &b->c->sort); 119 120 if (b->written < btree_blocks(b)) 121 bch_bset_init_next(&b->keys, write_block(b), 122 bset_magic(&b->c->cache->sb)); 123 124 } 125 126 /* Btree key manipulation */ 127 128 void bkey_put(struct cache_set *c, struct bkey *k) 129 { 130 unsigned int i; 131 132 for (i = 0; i < KEY_PTRS(k); i++) 133 if (ptr_available(c, k, i)) 134 atomic_dec_bug(&PTR_BUCKET(c, k, i)->pin); 135 } 136 137 /* Btree IO */ 138 139 static uint64_t btree_csum_set(struct btree *b, struct bset *i) 140 { 141 uint64_t crc = b->key.ptr[0]; 142 void *data = (void *) i + 8, *end = bset_bkey_last(i); 143 144 crc = crc64_be(crc, data, end - data); 145 return crc ^ 0xffffffffffffffffULL; 146 } 147 148 void bch_btree_node_read_done(struct btree *b) 149 { 150 const char *err = "bad btree header"; 151 struct bset *i = btree_bset_first(b); 152 struct btree_iter *iter; 153 154 /* 155 * c->fill_iter can allocate an iterator with more memory space 156 * than static MAX_BSETS. 157 * See the comment arount cache_set->fill_iter. 158 */ 159 iter = mempool_alloc(&b->c->fill_iter, GFP_NOIO); 160 iter->size = b->c->cache->sb.bucket_size / b->c->cache->sb.block_size; 161 iter->used = 0; 162 163 #ifdef CONFIG_BCACHE_DEBUG 164 iter->b = &b->keys; 165 #endif 166 167 if (!i->seq) 168 goto err; 169 170 for (; 171 b->written < btree_blocks(b) && i->seq == b->keys.set[0].data->seq; 172 i = write_block(b)) { 173 err = "unsupported bset version"; 174 if (i->version > BCACHE_BSET_VERSION) 175 goto err; 176 177 err = "bad btree header"; 178 if (b->written + set_blocks(i, block_bytes(b->c->cache)) > 179 btree_blocks(b)) 180 goto err; 181 182 err = "bad magic"; 183 if (i->magic != bset_magic(&b->c->cache->sb)) 184 goto err; 185 186 err = "bad checksum"; 187 switch (i->version) { 188 case 0: 189 if (i->csum != csum_set(i)) 190 goto err; 191 break; 192 case BCACHE_BSET_VERSION: 193 if (i->csum != btree_csum_set(b, i)) 194 goto err; 195 break; 196 } 197 198 err = "empty set"; 199 if (i != b->keys.set[0].data && !i->keys) 200 goto err; 201 202 bch_btree_iter_push(iter, i->start, bset_bkey_last(i)); 203 204 b->written += set_blocks(i, block_bytes(b->c->cache)); 205 } 206 207 err = "corrupted btree"; 208 for (i = write_block(b); 209 bset_sector_offset(&b->keys, i) < KEY_SIZE(&b->key); 210 i = ((void *) i) + block_bytes(b->c->cache)) 211 if (i->seq == b->keys.set[0].data->seq) 212 goto err; 213 214 bch_btree_sort_and_fix_extents(&b->keys, iter, &b->c->sort); 215 216 i = b->keys.set[0].data; 217 err = "short btree key"; 218 if (b->keys.set[0].size && 219 bkey_cmp(&b->key, &b->keys.set[0].end) < 0) 220 goto err; 221 222 if (b->written < btree_blocks(b)) 223 bch_bset_init_next(&b->keys, write_block(b), 224 bset_magic(&b->c->cache->sb)); 225 out: 226 mempool_free(iter, &b->c->fill_iter); 227 return; 228 err: 229 set_btree_node_io_error(b); 230 bch_cache_set_error(b->c, "%s at bucket %zu, block %u, %u keys", 231 err, PTR_BUCKET_NR(b->c, &b->key, 0), 232 bset_block_offset(b, i), i->keys); 233 goto out; 234 } 235 236 static void btree_node_read_endio(struct bio *bio) 237 { 238 struct closure *cl = bio->bi_private; 239 240 closure_put(cl); 241 } 242 243 static void bch_btree_node_read(struct btree *b) 244 { 245 uint64_t start_time = local_clock(); 246 struct closure cl; 247 struct bio *bio; 248 249 trace_bcache_btree_read(b); 250 251 closure_init_stack(&cl); 252 253 bio = bch_bbio_alloc(b->c); 254 bio->bi_iter.bi_size = KEY_SIZE(&b->key) << 9; 255 bio->bi_end_io = btree_node_read_endio; 256 bio->bi_private = &cl; 257 bio->bi_opf = REQ_OP_READ | REQ_META; 258 259 bch_bio_map(bio, b->keys.set[0].data); 260 261 bch_submit_bbio(bio, b->c, &b->key, 0); 262 closure_sync(&cl); 263 264 if (bio->bi_status) 265 set_btree_node_io_error(b); 266 267 bch_bbio_free(bio, b->c); 268 269 if (btree_node_io_error(b)) 270 goto err; 271 272 bch_btree_node_read_done(b); 273 bch_time_stats_update(&b->c->btree_read_time, start_time); 274 275 return; 276 err: 277 bch_cache_set_error(b->c, "io error reading bucket %zu", 278 PTR_BUCKET_NR(b->c, &b->key, 0)); 279 } 280 281 static void btree_complete_write(struct btree *b, struct btree_write *w) 282 { 283 if (w->prio_blocked && 284 !atomic_sub_return(w->prio_blocked, &b->c->prio_blocked)) 285 wake_up_allocators(b->c); 286 287 if (w->journal) { 288 atomic_dec_bug(w->journal); 289 __closure_wake_up(&b->c->journal.wait); 290 } 291 292 w->prio_blocked = 0; 293 w->journal = NULL; 294 } 295 296 static void btree_node_write_unlock(struct closure *cl) 297 { 298 struct btree *b = container_of(cl, struct btree, io); 299 300 up(&b->io_mutex); 301 } 302 303 static void __btree_node_write_done(struct closure *cl) 304 { 305 struct btree *b = container_of(cl, struct btree, io); 306 struct btree_write *w = btree_prev_write(b); 307 308 bch_bbio_free(b->bio, b->c); 309 b->bio = NULL; 310 btree_complete_write(b, w); 311 312 if (btree_node_dirty(b)) 313 queue_delayed_work(btree_io_wq, &b->work, 30 * HZ); 314 315 closure_return_with_destructor(cl, btree_node_write_unlock); 316 } 317 318 static void btree_node_write_done(struct closure *cl) 319 { 320 struct btree *b = container_of(cl, struct btree, io); 321 322 bio_free_pages(b->bio); 323 __btree_node_write_done(cl); 324 } 325 326 static void btree_node_write_endio(struct bio *bio) 327 { 328 struct closure *cl = bio->bi_private; 329 struct btree *b = container_of(cl, struct btree, io); 330 331 if (bio->bi_status) 332 set_btree_node_io_error(b); 333 334 bch_bbio_count_io_errors(b->c, bio, bio->bi_status, "writing btree"); 335 closure_put(cl); 336 } 337 338 static void do_btree_node_write(struct btree *b) 339 { 340 struct closure *cl = &b->io; 341 struct bset *i = btree_bset_last(b); 342 BKEY_PADDED(key) k; 343 344 i->version = BCACHE_BSET_VERSION; 345 i->csum = btree_csum_set(b, i); 346 347 BUG_ON(b->bio); 348 b->bio = bch_bbio_alloc(b->c); 349 350 b->bio->bi_end_io = btree_node_write_endio; 351 b->bio->bi_private = cl; 352 b->bio->bi_iter.bi_size = roundup(set_bytes(i), block_bytes(b->c->cache)); 353 b->bio->bi_opf = REQ_OP_WRITE | REQ_META | REQ_FUA; 354 bch_bio_map(b->bio, i); 355 356 /* 357 * If we're appending to a leaf node, we don't technically need FUA - 358 * this write just needs to be persisted before the next journal write, 359 * which will be marked FLUSH|FUA. 360 * 361 * Similarly if we're writing a new btree root - the pointer is going to 362 * be in the next journal entry. 363 * 364 * But if we're writing a new btree node (that isn't a root) or 365 * appending to a non leaf btree node, we need either FUA or a flush 366 * when we write the parent with the new pointer. FUA is cheaper than a 367 * flush, and writes appending to leaf nodes aren't blocking anything so 368 * just make all btree node writes FUA to keep things sane. 369 */ 370 371 bkey_copy(&k.key, &b->key); 372 SET_PTR_OFFSET(&k.key, 0, PTR_OFFSET(&k.key, 0) + 373 bset_sector_offset(&b->keys, i)); 374 375 if (!bch_bio_alloc_pages(b->bio, __GFP_NOWARN|GFP_NOWAIT)) { 376 struct bio_vec *bv; 377 void *addr = (void *) ((unsigned long) i & ~(PAGE_SIZE - 1)); 378 struct bvec_iter_all iter_all; 379 380 bio_for_each_segment_all(bv, b->bio, iter_all) { 381 memcpy(page_address(bv->bv_page), addr, PAGE_SIZE); 382 addr += PAGE_SIZE; 383 } 384 385 bch_submit_bbio(b->bio, b->c, &k.key, 0); 386 387 continue_at(cl, btree_node_write_done, NULL); 388 } else { 389 /* 390 * No problem for multipage bvec since the bio is 391 * just allocated 392 */ 393 b->bio->bi_vcnt = 0; 394 bch_bio_map(b->bio, i); 395 396 bch_submit_bbio(b->bio, b->c, &k.key, 0); 397 398 closure_sync(cl); 399 continue_at_nobarrier(cl, __btree_node_write_done, NULL); 400 } 401 } 402 403 void __bch_btree_node_write(struct btree *b, struct closure *parent) 404 { 405 struct bset *i = btree_bset_last(b); 406 407 lockdep_assert_held(&b->write_lock); 408 409 trace_bcache_btree_write(b); 410 411 BUG_ON(current->bio_list); 412 BUG_ON(b->written >= btree_blocks(b)); 413 BUG_ON(b->written && !i->keys); 414 BUG_ON(btree_bset_first(b)->seq != i->seq); 415 bch_check_keys(&b->keys, "writing"); 416 417 cancel_delayed_work(&b->work); 418 419 /* If caller isn't waiting for write, parent refcount is cache set */ 420 down(&b->io_mutex); 421 closure_init(&b->io, parent ?: &b->c->cl); 422 423 clear_bit(BTREE_NODE_dirty, &b->flags); 424 change_bit(BTREE_NODE_write_idx, &b->flags); 425 426 do_btree_node_write(b); 427 428 atomic_long_add(set_blocks(i, block_bytes(b->c->cache)) * b->c->cache->sb.block_size, 429 &b->c->cache->btree_sectors_written); 430 431 b->written += set_blocks(i, block_bytes(b->c->cache)); 432 } 433 434 void bch_btree_node_write(struct btree *b, struct closure *parent) 435 { 436 unsigned int nsets = b->keys.nsets; 437 438 lockdep_assert_held(&b->lock); 439 440 __bch_btree_node_write(b, parent); 441 442 /* 443 * do verify if there was more than one set initially (i.e. we did a 444 * sort) and we sorted down to a single set: 445 */ 446 if (nsets && !b->keys.nsets) 447 bch_btree_verify(b); 448 449 bch_btree_init_next(b); 450 } 451 452 static void bch_btree_node_write_sync(struct btree *b) 453 { 454 struct closure cl; 455 456 closure_init_stack(&cl); 457 458 mutex_lock(&b->write_lock); 459 bch_btree_node_write(b, &cl); 460 mutex_unlock(&b->write_lock); 461 462 closure_sync(&cl); 463 } 464 465 static void btree_node_write_work(struct work_struct *w) 466 { 467 struct btree *b = container_of(to_delayed_work(w), struct btree, work); 468 469 mutex_lock(&b->write_lock); 470 if (btree_node_dirty(b)) 471 __bch_btree_node_write(b, NULL); 472 mutex_unlock(&b->write_lock); 473 } 474 475 static void bch_btree_leaf_dirty(struct btree *b, atomic_t *journal_ref) 476 { 477 struct bset *i = btree_bset_last(b); 478 struct btree_write *w = btree_current_write(b); 479 480 lockdep_assert_held(&b->write_lock); 481 482 BUG_ON(!b->written); 483 BUG_ON(!i->keys); 484 485 if (!btree_node_dirty(b)) 486 queue_delayed_work(btree_io_wq, &b->work, 30 * HZ); 487 488 set_btree_node_dirty(b); 489 490 /* 491 * w->journal is always the oldest journal pin of all bkeys 492 * in the leaf node, to make sure the oldest jset seq won't 493 * be increased before this btree node is flushed. 494 */ 495 if (journal_ref) { 496 if (w->journal && 497 journal_pin_cmp(b->c, w->journal, journal_ref)) { 498 atomic_dec_bug(w->journal); 499 w->journal = NULL; 500 } 501 502 if (!w->journal) { 503 w->journal = journal_ref; 504 atomic_inc(w->journal); 505 } 506 } 507 508 /* Force write if set is too big */ 509 if (set_bytes(i) > PAGE_SIZE - 48 && 510 !current->bio_list) 511 bch_btree_node_write(b, NULL); 512 } 513 514 /* 515 * Btree in memory cache - allocation/freeing 516 * mca -> memory cache 517 */ 518 519 #define mca_reserve(c) (((!IS_ERR_OR_NULL(c->root) && c->root->level) \ 520 ? c->root->level : 1) * 8 + 16) 521 #define mca_can_free(c) \ 522 max_t(int, 0, c->btree_cache_used - mca_reserve(c)) 523 524 static void mca_data_free(struct btree *b) 525 { 526 BUG_ON(b->io_mutex.count != 1); 527 528 bch_btree_keys_free(&b->keys); 529 530 b->c->btree_cache_used--; 531 list_move(&b->list, &b->c->btree_cache_freed); 532 } 533 534 static void mca_bucket_free(struct btree *b) 535 { 536 BUG_ON(btree_node_dirty(b)); 537 538 b->key.ptr[0] = 0; 539 hlist_del_init_rcu(&b->hash); 540 list_move(&b->list, &b->c->btree_cache_freeable); 541 } 542 543 static unsigned int btree_order(struct bkey *k) 544 { 545 return ilog2(KEY_SIZE(k) / PAGE_SECTORS ?: 1); 546 } 547 548 static void mca_data_alloc(struct btree *b, struct bkey *k, gfp_t gfp) 549 { 550 if (!bch_btree_keys_alloc(&b->keys, 551 max_t(unsigned int, 552 ilog2(b->c->btree_pages), 553 btree_order(k)), 554 gfp)) { 555 b->c->btree_cache_used++; 556 list_move(&b->list, &b->c->btree_cache); 557 } else { 558 list_move(&b->list, &b->c->btree_cache_freed); 559 } 560 } 561 562 static struct btree *mca_bucket_alloc(struct cache_set *c, 563 struct bkey *k, gfp_t gfp) 564 { 565 /* 566 * kzalloc() is necessary here for initialization, 567 * see code comments in bch_btree_keys_init(). 568 */ 569 struct btree *b = kzalloc(sizeof(struct btree), gfp); 570 571 if (!b) 572 return NULL; 573 574 init_rwsem(&b->lock); 575 lockdep_set_novalidate_class(&b->lock); 576 mutex_init(&b->write_lock); 577 lockdep_set_novalidate_class(&b->write_lock); 578 INIT_LIST_HEAD(&b->list); 579 INIT_DELAYED_WORK(&b->work, btree_node_write_work); 580 b->c = c; 581 sema_init(&b->io_mutex, 1); 582 583 mca_data_alloc(b, k, gfp); 584 return b; 585 } 586 587 static int mca_reap(struct btree *b, unsigned int min_order, bool flush) 588 { 589 struct closure cl; 590 591 closure_init_stack(&cl); 592 lockdep_assert_held(&b->c->bucket_lock); 593 594 if (!down_write_trylock(&b->lock)) 595 return -ENOMEM; 596 597 BUG_ON(btree_node_dirty(b) && !b->keys.set[0].data); 598 599 if (b->keys.page_order < min_order) 600 goto out_unlock; 601 602 if (!flush) { 603 if (btree_node_dirty(b)) 604 goto out_unlock; 605 606 if (down_trylock(&b->io_mutex)) 607 goto out_unlock; 608 up(&b->io_mutex); 609 } 610 611 retry: 612 /* 613 * BTREE_NODE_dirty might be cleared in btree_flush_btree() by 614 * __bch_btree_node_write(). To avoid an extra flush, acquire 615 * b->write_lock before checking BTREE_NODE_dirty bit. 616 */ 617 mutex_lock(&b->write_lock); 618 /* 619 * If this btree node is selected in btree_flush_write() by journal 620 * code, delay and retry until the node is flushed by journal code 621 * and BTREE_NODE_journal_flush bit cleared by btree_flush_write(). 622 */ 623 if (btree_node_journal_flush(b)) { 624 pr_debug("bnode %p is flushing by journal, retry\n", b); 625 mutex_unlock(&b->write_lock); 626 udelay(1); 627 goto retry; 628 } 629 630 if (btree_node_dirty(b)) 631 __bch_btree_node_write(b, &cl); 632 mutex_unlock(&b->write_lock); 633 634 closure_sync(&cl); 635 636 /* wait for any in flight btree write */ 637 down(&b->io_mutex); 638 up(&b->io_mutex); 639 640 return 0; 641 out_unlock: 642 rw_unlock(true, b); 643 return -ENOMEM; 644 } 645 646 static unsigned long bch_mca_scan(struct shrinker *shrink, 647 struct shrink_control *sc) 648 { 649 struct cache_set *c = container_of(shrink, struct cache_set, shrink); 650 struct btree *b, *t; 651 unsigned long i, nr = sc->nr_to_scan; 652 unsigned long freed = 0; 653 unsigned int btree_cache_used; 654 655 if (c->shrinker_disabled) 656 return SHRINK_STOP; 657 658 if (c->btree_cache_alloc_lock) 659 return SHRINK_STOP; 660 661 /* Return -1 if we can't do anything right now */ 662 if (sc->gfp_mask & __GFP_IO) 663 mutex_lock(&c->bucket_lock); 664 else if (!mutex_trylock(&c->bucket_lock)) 665 return -1; 666 667 /* 668 * It's _really_ critical that we don't free too many btree nodes - we 669 * have to always leave ourselves a reserve. The reserve is how we 670 * guarantee that allocating memory for a new btree node can always 671 * succeed, so that inserting keys into the btree can always succeed and 672 * IO can always make forward progress: 673 */ 674 nr /= c->btree_pages; 675 if (nr == 0) 676 nr = 1; 677 nr = min_t(unsigned long, nr, mca_can_free(c)); 678 679 i = 0; 680 btree_cache_used = c->btree_cache_used; 681 list_for_each_entry_safe_reverse(b, t, &c->btree_cache_freeable, list) { 682 if (nr <= 0) 683 goto out; 684 685 if (!mca_reap(b, 0, false)) { 686 mca_data_free(b); 687 rw_unlock(true, b); 688 freed++; 689 } 690 nr--; 691 i++; 692 } 693 694 list_for_each_entry_safe_reverse(b, t, &c->btree_cache, list) { 695 if (nr <= 0 || i >= btree_cache_used) 696 goto out; 697 698 if (!mca_reap(b, 0, false)) { 699 mca_bucket_free(b); 700 mca_data_free(b); 701 rw_unlock(true, b); 702 freed++; 703 } 704 705 nr--; 706 i++; 707 } 708 out: 709 mutex_unlock(&c->bucket_lock); 710 return freed * c->btree_pages; 711 } 712 713 static unsigned long bch_mca_count(struct shrinker *shrink, 714 struct shrink_control *sc) 715 { 716 struct cache_set *c = container_of(shrink, struct cache_set, shrink); 717 718 if (c->shrinker_disabled) 719 return 0; 720 721 if (c->btree_cache_alloc_lock) 722 return 0; 723 724 return mca_can_free(c) * c->btree_pages; 725 } 726 727 void bch_btree_cache_free(struct cache_set *c) 728 { 729 struct btree *b; 730 struct closure cl; 731 732 closure_init_stack(&cl); 733 734 if (c->shrink.list.next) 735 unregister_shrinker(&c->shrink); 736 737 mutex_lock(&c->bucket_lock); 738 739 #ifdef CONFIG_BCACHE_DEBUG 740 if (c->verify_data) 741 list_move(&c->verify_data->list, &c->btree_cache); 742 743 free_pages((unsigned long) c->verify_ondisk, ilog2(meta_bucket_pages(&c->cache->sb))); 744 #endif 745 746 list_splice(&c->btree_cache_freeable, 747 &c->btree_cache); 748 749 while (!list_empty(&c->btree_cache)) { 750 b = list_first_entry(&c->btree_cache, struct btree, list); 751 752 /* 753 * This function is called by cache_set_free(), no I/O 754 * request on cache now, it is unnecessary to acquire 755 * b->write_lock before clearing BTREE_NODE_dirty anymore. 756 */ 757 if (btree_node_dirty(b)) { 758 btree_complete_write(b, btree_current_write(b)); 759 clear_bit(BTREE_NODE_dirty, &b->flags); 760 } 761 mca_data_free(b); 762 } 763 764 while (!list_empty(&c->btree_cache_freed)) { 765 b = list_first_entry(&c->btree_cache_freed, 766 struct btree, list); 767 list_del(&b->list); 768 cancel_delayed_work_sync(&b->work); 769 kfree(b); 770 } 771 772 mutex_unlock(&c->bucket_lock); 773 } 774 775 int bch_btree_cache_alloc(struct cache_set *c) 776 { 777 unsigned int i; 778 779 for (i = 0; i < mca_reserve(c); i++) 780 if (!mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL)) 781 return -ENOMEM; 782 783 list_splice_init(&c->btree_cache, 784 &c->btree_cache_freeable); 785 786 #ifdef CONFIG_BCACHE_DEBUG 787 mutex_init(&c->verify_lock); 788 789 c->verify_ondisk = (void *) 790 __get_free_pages(GFP_KERNEL|__GFP_COMP, 791 ilog2(meta_bucket_pages(&c->cache->sb))); 792 if (!c->verify_ondisk) { 793 /* 794 * Don't worry about the mca_rereserve buckets 795 * allocated in previous for-loop, they will be 796 * handled properly in bch_cache_set_unregister(). 797 */ 798 return -ENOMEM; 799 } 800 801 c->verify_data = mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL); 802 803 if (c->verify_data && 804 c->verify_data->keys.set->data) 805 list_del_init(&c->verify_data->list); 806 else 807 c->verify_data = NULL; 808 #endif 809 810 c->shrink.count_objects = bch_mca_count; 811 c->shrink.scan_objects = bch_mca_scan; 812 c->shrink.seeks = 4; 813 c->shrink.batch = c->btree_pages * 2; 814 815 if (register_shrinker(&c->shrink)) 816 pr_warn("bcache: %s: could not register shrinker\n", 817 __func__); 818 819 return 0; 820 } 821 822 /* Btree in memory cache - hash table */ 823 824 static struct hlist_head *mca_hash(struct cache_set *c, struct bkey *k) 825 { 826 return &c->bucket_hash[hash_32(PTR_HASH(c, k), BUCKET_HASH_BITS)]; 827 } 828 829 static struct btree *mca_find(struct cache_set *c, struct bkey *k) 830 { 831 struct btree *b; 832 833 rcu_read_lock(); 834 hlist_for_each_entry_rcu(b, mca_hash(c, k), hash) 835 if (PTR_HASH(c, &b->key) == PTR_HASH(c, k)) 836 goto out; 837 b = NULL; 838 out: 839 rcu_read_unlock(); 840 return b; 841 } 842 843 static int mca_cannibalize_lock(struct cache_set *c, struct btree_op *op) 844 { 845 spin_lock(&c->btree_cannibalize_lock); 846 if (likely(c->btree_cache_alloc_lock == NULL)) { 847 c->btree_cache_alloc_lock = current; 848 } else if (c->btree_cache_alloc_lock != current) { 849 if (op) 850 prepare_to_wait(&c->btree_cache_wait, &op->wait, 851 TASK_UNINTERRUPTIBLE); 852 spin_unlock(&c->btree_cannibalize_lock); 853 return -EINTR; 854 } 855 spin_unlock(&c->btree_cannibalize_lock); 856 857 return 0; 858 } 859 860 static struct btree *mca_cannibalize(struct cache_set *c, struct btree_op *op, 861 struct bkey *k) 862 { 863 struct btree *b; 864 865 trace_bcache_btree_cache_cannibalize(c); 866 867 if (mca_cannibalize_lock(c, op)) 868 return ERR_PTR(-EINTR); 869 870 list_for_each_entry_reverse(b, &c->btree_cache, list) 871 if (!mca_reap(b, btree_order(k), false)) 872 return b; 873 874 list_for_each_entry_reverse(b, &c->btree_cache, list) 875 if (!mca_reap(b, btree_order(k), true)) 876 return b; 877 878 WARN(1, "btree cache cannibalize failed\n"); 879 return ERR_PTR(-ENOMEM); 880 } 881 882 /* 883 * We can only have one thread cannibalizing other cached btree nodes at a time, 884 * or we'll deadlock. We use an open coded mutex to ensure that, which a 885 * cannibalize_bucket() will take. This means every time we unlock the root of 886 * the btree, we need to release this lock if we have it held. 887 */ 888 static void bch_cannibalize_unlock(struct cache_set *c) 889 { 890 spin_lock(&c->btree_cannibalize_lock); 891 if (c->btree_cache_alloc_lock == current) { 892 c->btree_cache_alloc_lock = NULL; 893 wake_up(&c->btree_cache_wait); 894 } 895 spin_unlock(&c->btree_cannibalize_lock); 896 } 897 898 static struct btree *mca_alloc(struct cache_set *c, struct btree_op *op, 899 struct bkey *k, int level) 900 { 901 struct btree *b; 902 903 BUG_ON(current->bio_list); 904 905 lockdep_assert_held(&c->bucket_lock); 906 907 if (mca_find(c, k)) 908 return NULL; 909 910 /* btree_free() doesn't free memory; it sticks the node on the end of 911 * the list. Check if there's any freed nodes there: 912 */ 913 list_for_each_entry(b, &c->btree_cache_freeable, list) 914 if (!mca_reap(b, btree_order(k), false)) 915 goto out; 916 917 /* We never free struct btree itself, just the memory that holds the on 918 * disk node. Check the freed list before allocating a new one: 919 */ 920 list_for_each_entry(b, &c->btree_cache_freed, list) 921 if (!mca_reap(b, 0, false)) { 922 mca_data_alloc(b, k, __GFP_NOWARN|GFP_NOIO); 923 if (!b->keys.set[0].data) 924 goto err; 925 else 926 goto out; 927 } 928 929 b = mca_bucket_alloc(c, k, __GFP_NOWARN|GFP_NOIO); 930 if (!b) 931 goto err; 932 933 BUG_ON(!down_write_trylock(&b->lock)); 934 if (!b->keys.set->data) 935 goto err; 936 out: 937 BUG_ON(b->io_mutex.count != 1); 938 939 bkey_copy(&b->key, k); 940 list_move(&b->list, &c->btree_cache); 941 hlist_del_init_rcu(&b->hash); 942 hlist_add_head_rcu(&b->hash, mca_hash(c, k)); 943 944 lock_set_subclass(&b->lock.dep_map, level + 1, _THIS_IP_); 945 b->parent = (void *) ~0UL; 946 b->flags = 0; 947 b->written = 0; 948 b->level = level; 949 950 if (!b->level) 951 bch_btree_keys_init(&b->keys, &bch_extent_keys_ops, 952 &b->c->expensive_debug_checks); 953 else 954 bch_btree_keys_init(&b->keys, &bch_btree_keys_ops, 955 &b->c->expensive_debug_checks); 956 957 return b; 958 err: 959 if (b) 960 rw_unlock(true, b); 961 962 b = mca_cannibalize(c, op, k); 963 if (!IS_ERR(b)) 964 goto out; 965 966 return b; 967 } 968 969 /* 970 * bch_btree_node_get - find a btree node in the cache and lock it, reading it 971 * in from disk if necessary. 972 * 973 * If IO is necessary and running under submit_bio_noacct, returns -EAGAIN. 974 * 975 * The btree node will have either a read or a write lock held, depending on 976 * level and op->lock. 977 */ 978 struct btree *bch_btree_node_get(struct cache_set *c, struct btree_op *op, 979 struct bkey *k, int level, bool write, 980 struct btree *parent) 981 { 982 int i = 0; 983 struct btree *b; 984 985 BUG_ON(level < 0); 986 retry: 987 b = mca_find(c, k); 988 989 if (!b) { 990 if (current->bio_list) 991 return ERR_PTR(-EAGAIN); 992 993 mutex_lock(&c->bucket_lock); 994 b = mca_alloc(c, op, k, level); 995 mutex_unlock(&c->bucket_lock); 996 997 if (!b) 998 goto retry; 999 if (IS_ERR(b)) 1000 return b; 1001 1002 bch_btree_node_read(b); 1003 1004 if (!write) 1005 downgrade_write(&b->lock); 1006 } else { 1007 rw_lock(write, b, level); 1008 if (PTR_HASH(c, &b->key) != PTR_HASH(c, k)) { 1009 rw_unlock(write, b); 1010 goto retry; 1011 } 1012 BUG_ON(b->level != level); 1013 } 1014 1015 if (btree_node_io_error(b)) { 1016 rw_unlock(write, b); 1017 return ERR_PTR(-EIO); 1018 } 1019 1020 BUG_ON(!b->written); 1021 1022 b->parent = parent; 1023 1024 for (; i <= b->keys.nsets && b->keys.set[i].size; i++) { 1025 prefetch(b->keys.set[i].tree); 1026 prefetch(b->keys.set[i].data); 1027 } 1028 1029 for (; i <= b->keys.nsets; i++) 1030 prefetch(b->keys.set[i].data); 1031 1032 return b; 1033 } 1034 1035 static void btree_node_prefetch(struct btree *parent, struct bkey *k) 1036 { 1037 struct btree *b; 1038 1039 mutex_lock(&parent->c->bucket_lock); 1040 b = mca_alloc(parent->c, NULL, k, parent->level - 1); 1041 mutex_unlock(&parent->c->bucket_lock); 1042 1043 if (!IS_ERR_OR_NULL(b)) { 1044 b->parent = parent; 1045 bch_btree_node_read(b); 1046 rw_unlock(true, b); 1047 } 1048 } 1049 1050 /* Btree alloc */ 1051 1052 static void btree_node_free(struct btree *b) 1053 { 1054 trace_bcache_btree_node_free(b); 1055 1056 BUG_ON(b == b->c->root); 1057 1058 retry: 1059 mutex_lock(&b->write_lock); 1060 /* 1061 * If the btree node is selected and flushing in btree_flush_write(), 1062 * delay and retry until the BTREE_NODE_journal_flush bit cleared, 1063 * then it is safe to free the btree node here. Otherwise this btree 1064 * node will be in race condition. 1065 */ 1066 if (btree_node_journal_flush(b)) { 1067 mutex_unlock(&b->write_lock); 1068 pr_debug("bnode %p journal_flush set, retry\n", b); 1069 udelay(1); 1070 goto retry; 1071 } 1072 1073 if (btree_node_dirty(b)) { 1074 btree_complete_write(b, btree_current_write(b)); 1075 clear_bit(BTREE_NODE_dirty, &b->flags); 1076 } 1077 1078 mutex_unlock(&b->write_lock); 1079 1080 cancel_delayed_work(&b->work); 1081 1082 mutex_lock(&b->c->bucket_lock); 1083 bch_bucket_free(b->c, &b->key); 1084 mca_bucket_free(b); 1085 mutex_unlock(&b->c->bucket_lock); 1086 } 1087 1088 struct btree *__bch_btree_node_alloc(struct cache_set *c, struct btree_op *op, 1089 int level, bool wait, 1090 struct btree *parent) 1091 { 1092 BKEY_PADDED(key) k; 1093 struct btree *b = ERR_PTR(-EAGAIN); 1094 1095 mutex_lock(&c->bucket_lock); 1096 retry: 1097 if (__bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, wait)) 1098 goto err; 1099 1100 bkey_put(c, &k.key); 1101 SET_KEY_SIZE(&k.key, c->btree_pages * PAGE_SECTORS); 1102 1103 b = mca_alloc(c, op, &k.key, level); 1104 if (IS_ERR(b)) 1105 goto err_free; 1106 1107 if (!b) { 1108 cache_bug(c, 1109 "Tried to allocate bucket that was in btree cache"); 1110 goto retry; 1111 } 1112 1113 b->parent = parent; 1114 bch_bset_init_next(&b->keys, b->keys.set->data, bset_magic(&b->c->cache->sb)); 1115 1116 mutex_unlock(&c->bucket_lock); 1117 1118 trace_bcache_btree_node_alloc(b); 1119 return b; 1120 err_free: 1121 bch_bucket_free(c, &k.key); 1122 err: 1123 mutex_unlock(&c->bucket_lock); 1124 1125 trace_bcache_btree_node_alloc_fail(c); 1126 return b; 1127 } 1128 1129 static struct btree *bch_btree_node_alloc(struct cache_set *c, 1130 struct btree_op *op, int level, 1131 struct btree *parent) 1132 { 1133 return __bch_btree_node_alloc(c, op, level, op != NULL, parent); 1134 } 1135 1136 static struct btree *btree_node_alloc_replacement(struct btree *b, 1137 struct btree_op *op) 1138 { 1139 struct btree *n = bch_btree_node_alloc(b->c, op, b->level, b->parent); 1140 1141 if (!IS_ERR_OR_NULL(n)) { 1142 mutex_lock(&n->write_lock); 1143 bch_btree_sort_into(&b->keys, &n->keys, &b->c->sort); 1144 bkey_copy_key(&n->key, &b->key); 1145 mutex_unlock(&n->write_lock); 1146 } 1147 1148 return n; 1149 } 1150 1151 static void make_btree_freeing_key(struct btree *b, struct bkey *k) 1152 { 1153 unsigned int i; 1154 1155 mutex_lock(&b->c->bucket_lock); 1156 1157 atomic_inc(&b->c->prio_blocked); 1158 1159 bkey_copy(k, &b->key); 1160 bkey_copy_key(k, &ZERO_KEY); 1161 1162 for (i = 0; i < KEY_PTRS(k); i++) 1163 SET_PTR_GEN(k, i, 1164 bch_inc_gen(b->c->cache, 1165 PTR_BUCKET(b->c, &b->key, i))); 1166 1167 mutex_unlock(&b->c->bucket_lock); 1168 } 1169 1170 static int btree_check_reserve(struct btree *b, struct btree_op *op) 1171 { 1172 struct cache_set *c = b->c; 1173 struct cache *ca = c->cache; 1174 unsigned int reserve = (c->root->level - b->level) * 2 + 1; 1175 1176 mutex_lock(&c->bucket_lock); 1177 1178 if (fifo_used(&ca->free[RESERVE_BTREE]) < reserve) { 1179 if (op) 1180 prepare_to_wait(&c->btree_cache_wait, &op->wait, 1181 TASK_UNINTERRUPTIBLE); 1182 mutex_unlock(&c->bucket_lock); 1183 return -EINTR; 1184 } 1185 1186 mutex_unlock(&c->bucket_lock); 1187 1188 return mca_cannibalize_lock(b->c, op); 1189 } 1190 1191 /* Garbage collection */ 1192 1193 static uint8_t __bch_btree_mark_key(struct cache_set *c, int level, 1194 struct bkey *k) 1195 { 1196 uint8_t stale = 0; 1197 unsigned int i; 1198 struct bucket *g; 1199 1200 /* 1201 * ptr_invalid() can't return true for the keys that mark btree nodes as 1202 * freed, but since ptr_bad() returns true we'll never actually use them 1203 * for anything and thus we don't want mark their pointers here 1204 */ 1205 if (!bkey_cmp(k, &ZERO_KEY)) 1206 return stale; 1207 1208 for (i = 0; i < KEY_PTRS(k); i++) { 1209 if (!ptr_available(c, k, i)) 1210 continue; 1211 1212 g = PTR_BUCKET(c, k, i); 1213 1214 if (gen_after(g->last_gc, PTR_GEN(k, i))) 1215 g->last_gc = PTR_GEN(k, i); 1216 1217 if (ptr_stale(c, k, i)) { 1218 stale = max(stale, ptr_stale(c, k, i)); 1219 continue; 1220 } 1221 1222 cache_bug_on(GC_MARK(g) && 1223 (GC_MARK(g) == GC_MARK_METADATA) != (level != 0), 1224 c, "inconsistent ptrs: mark = %llu, level = %i", 1225 GC_MARK(g), level); 1226 1227 if (level) 1228 SET_GC_MARK(g, GC_MARK_METADATA); 1229 else if (KEY_DIRTY(k)) 1230 SET_GC_MARK(g, GC_MARK_DIRTY); 1231 else if (!GC_MARK(g)) 1232 SET_GC_MARK(g, GC_MARK_RECLAIMABLE); 1233 1234 /* guard against overflow */ 1235 SET_GC_SECTORS_USED(g, min_t(unsigned int, 1236 GC_SECTORS_USED(g) + KEY_SIZE(k), 1237 MAX_GC_SECTORS_USED)); 1238 1239 BUG_ON(!GC_SECTORS_USED(g)); 1240 } 1241 1242 return stale; 1243 } 1244 1245 #define btree_mark_key(b, k) __bch_btree_mark_key(b->c, b->level, k) 1246 1247 void bch_initial_mark_key(struct cache_set *c, int level, struct bkey *k) 1248 { 1249 unsigned int i; 1250 1251 for (i = 0; i < KEY_PTRS(k); i++) 1252 if (ptr_available(c, k, i) && 1253 !ptr_stale(c, k, i)) { 1254 struct bucket *b = PTR_BUCKET(c, k, i); 1255 1256 b->gen = PTR_GEN(k, i); 1257 1258 if (level && bkey_cmp(k, &ZERO_KEY)) 1259 b->prio = BTREE_PRIO; 1260 else if (!level && b->prio == BTREE_PRIO) 1261 b->prio = INITIAL_PRIO; 1262 } 1263 1264 __bch_btree_mark_key(c, level, k); 1265 } 1266 1267 void bch_update_bucket_in_use(struct cache_set *c, struct gc_stat *stats) 1268 { 1269 stats->in_use = (c->nbuckets - c->avail_nbuckets) * 100 / c->nbuckets; 1270 } 1271 1272 static bool btree_gc_mark_node(struct btree *b, struct gc_stat *gc) 1273 { 1274 uint8_t stale = 0; 1275 unsigned int keys = 0, good_keys = 0; 1276 struct bkey *k; 1277 struct btree_iter iter; 1278 struct bset_tree *t; 1279 1280 gc->nodes++; 1281 1282 for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid) { 1283 stale = max(stale, btree_mark_key(b, k)); 1284 keys++; 1285 1286 if (bch_ptr_bad(&b->keys, k)) 1287 continue; 1288 1289 gc->key_bytes += bkey_u64s(k); 1290 gc->nkeys++; 1291 good_keys++; 1292 1293 gc->data += KEY_SIZE(k); 1294 } 1295 1296 for (t = b->keys.set; t <= &b->keys.set[b->keys.nsets]; t++) 1297 btree_bug_on(t->size && 1298 bset_written(&b->keys, t) && 1299 bkey_cmp(&b->key, &t->end) < 0, 1300 b, "found short btree key in gc"); 1301 1302 if (b->c->gc_always_rewrite) 1303 return true; 1304 1305 if (stale > 10) 1306 return true; 1307 1308 if ((keys - good_keys) * 2 > keys) 1309 return true; 1310 1311 return false; 1312 } 1313 1314 #define GC_MERGE_NODES 4U 1315 1316 struct gc_merge_info { 1317 struct btree *b; 1318 unsigned int keys; 1319 }; 1320 1321 static int bch_btree_insert_node(struct btree *b, struct btree_op *op, 1322 struct keylist *insert_keys, 1323 atomic_t *journal_ref, 1324 struct bkey *replace_key); 1325 1326 static int btree_gc_coalesce(struct btree *b, struct btree_op *op, 1327 struct gc_stat *gc, struct gc_merge_info *r) 1328 { 1329 unsigned int i, nodes = 0, keys = 0, blocks; 1330 struct btree *new_nodes[GC_MERGE_NODES]; 1331 struct keylist keylist; 1332 struct closure cl; 1333 struct bkey *k; 1334 1335 bch_keylist_init(&keylist); 1336 1337 if (btree_check_reserve(b, NULL)) 1338 return 0; 1339 1340 memset(new_nodes, 0, sizeof(new_nodes)); 1341 closure_init_stack(&cl); 1342 1343 while (nodes < GC_MERGE_NODES && !IS_ERR_OR_NULL(r[nodes].b)) 1344 keys += r[nodes++].keys; 1345 1346 blocks = btree_default_blocks(b->c) * 2 / 3; 1347 1348 if (nodes < 2 || 1349 __set_blocks(b->keys.set[0].data, keys, 1350 block_bytes(b->c->cache)) > blocks * (nodes - 1)) 1351 return 0; 1352 1353 for (i = 0; i < nodes; i++) { 1354 new_nodes[i] = btree_node_alloc_replacement(r[i].b, NULL); 1355 if (IS_ERR_OR_NULL(new_nodes[i])) 1356 goto out_nocoalesce; 1357 } 1358 1359 /* 1360 * We have to check the reserve here, after we've allocated our new 1361 * nodes, to make sure the insert below will succeed - we also check 1362 * before as an optimization to potentially avoid a bunch of expensive 1363 * allocs/sorts 1364 */ 1365 if (btree_check_reserve(b, NULL)) 1366 goto out_nocoalesce; 1367 1368 for (i = 0; i < nodes; i++) 1369 mutex_lock(&new_nodes[i]->write_lock); 1370 1371 for (i = nodes - 1; i > 0; --i) { 1372 struct bset *n1 = btree_bset_first(new_nodes[i]); 1373 struct bset *n2 = btree_bset_first(new_nodes[i - 1]); 1374 struct bkey *k, *last = NULL; 1375 1376 keys = 0; 1377 1378 if (i > 1) { 1379 for (k = n2->start; 1380 k < bset_bkey_last(n2); 1381 k = bkey_next(k)) { 1382 if (__set_blocks(n1, n1->keys + keys + 1383 bkey_u64s(k), 1384 block_bytes(b->c->cache)) > blocks) 1385 break; 1386 1387 last = k; 1388 keys += bkey_u64s(k); 1389 } 1390 } else { 1391 /* 1392 * Last node we're not getting rid of - we're getting 1393 * rid of the node at r[0]. Have to try and fit all of 1394 * the remaining keys into this node; we can't ensure 1395 * they will always fit due to rounding and variable 1396 * length keys (shouldn't be possible in practice, 1397 * though) 1398 */ 1399 if (__set_blocks(n1, n1->keys + n2->keys, 1400 block_bytes(b->c->cache)) > 1401 btree_blocks(new_nodes[i])) 1402 goto out_unlock_nocoalesce; 1403 1404 keys = n2->keys; 1405 /* Take the key of the node we're getting rid of */ 1406 last = &r->b->key; 1407 } 1408 1409 BUG_ON(__set_blocks(n1, n1->keys + keys, block_bytes(b->c->cache)) > 1410 btree_blocks(new_nodes[i])); 1411 1412 if (last) 1413 bkey_copy_key(&new_nodes[i]->key, last); 1414 1415 memcpy(bset_bkey_last(n1), 1416 n2->start, 1417 (void *) bset_bkey_idx(n2, keys) - (void *) n2->start); 1418 1419 n1->keys += keys; 1420 r[i].keys = n1->keys; 1421 1422 memmove(n2->start, 1423 bset_bkey_idx(n2, keys), 1424 (void *) bset_bkey_last(n2) - 1425 (void *) bset_bkey_idx(n2, keys)); 1426 1427 n2->keys -= keys; 1428 1429 if (__bch_keylist_realloc(&keylist, 1430 bkey_u64s(&new_nodes[i]->key))) 1431 goto out_unlock_nocoalesce; 1432 1433 bch_btree_node_write(new_nodes[i], &cl); 1434 bch_keylist_add(&keylist, &new_nodes[i]->key); 1435 } 1436 1437 for (i = 0; i < nodes; i++) 1438 mutex_unlock(&new_nodes[i]->write_lock); 1439 1440 closure_sync(&cl); 1441 1442 /* We emptied out this node */ 1443 BUG_ON(btree_bset_first(new_nodes[0])->keys); 1444 btree_node_free(new_nodes[0]); 1445 rw_unlock(true, new_nodes[0]); 1446 new_nodes[0] = NULL; 1447 1448 for (i = 0; i < nodes; i++) { 1449 if (__bch_keylist_realloc(&keylist, bkey_u64s(&r[i].b->key))) 1450 goto out_nocoalesce; 1451 1452 make_btree_freeing_key(r[i].b, keylist.top); 1453 bch_keylist_push(&keylist); 1454 } 1455 1456 bch_btree_insert_node(b, op, &keylist, NULL, NULL); 1457 BUG_ON(!bch_keylist_empty(&keylist)); 1458 1459 for (i = 0; i < nodes; i++) { 1460 btree_node_free(r[i].b); 1461 rw_unlock(true, r[i].b); 1462 1463 r[i].b = new_nodes[i]; 1464 } 1465 1466 memmove(r, r + 1, sizeof(r[0]) * (nodes - 1)); 1467 r[nodes - 1].b = ERR_PTR(-EINTR); 1468 1469 trace_bcache_btree_gc_coalesce(nodes); 1470 gc->nodes--; 1471 1472 bch_keylist_free(&keylist); 1473 1474 /* Invalidated our iterator */ 1475 return -EINTR; 1476 1477 out_unlock_nocoalesce: 1478 for (i = 0; i < nodes; i++) 1479 mutex_unlock(&new_nodes[i]->write_lock); 1480 1481 out_nocoalesce: 1482 closure_sync(&cl); 1483 1484 while ((k = bch_keylist_pop(&keylist))) 1485 if (!bkey_cmp(k, &ZERO_KEY)) 1486 atomic_dec(&b->c->prio_blocked); 1487 bch_keylist_free(&keylist); 1488 1489 for (i = 0; i < nodes; i++) 1490 if (!IS_ERR_OR_NULL(new_nodes[i])) { 1491 btree_node_free(new_nodes[i]); 1492 rw_unlock(true, new_nodes[i]); 1493 } 1494 return 0; 1495 } 1496 1497 static int btree_gc_rewrite_node(struct btree *b, struct btree_op *op, 1498 struct btree *replace) 1499 { 1500 struct keylist keys; 1501 struct btree *n; 1502 1503 if (btree_check_reserve(b, NULL)) 1504 return 0; 1505 1506 n = btree_node_alloc_replacement(replace, NULL); 1507 1508 /* recheck reserve after allocating replacement node */ 1509 if (btree_check_reserve(b, NULL)) { 1510 btree_node_free(n); 1511 rw_unlock(true, n); 1512 return 0; 1513 } 1514 1515 bch_btree_node_write_sync(n); 1516 1517 bch_keylist_init(&keys); 1518 bch_keylist_add(&keys, &n->key); 1519 1520 make_btree_freeing_key(replace, keys.top); 1521 bch_keylist_push(&keys); 1522 1523 bch_btree_insert_node(b, op, &keys, NULL, NULL); 1524 BUG_ON(!bch_keylist_empty(&keys)); 1525 1526 btree_node_free(replace); 1527 rw_unlock(true, n); 1528 1529 /* Invalidated our iterator */ 1530 return -EINTR; 1531 } 1532 1533 static unsigned int btree_gc_count_keys(struct btree *b) 1534 { 1535 struct bkey *k; 1536 struct btree_iter iter; 1537 unsigned int ret = 0; 1538 1539 for_each_key_filter(&b->keys, k, &iter, bch_ptr_bad) 1540 ret += bkey_u64s(k); 1541 1542 return ret; 1543 } 1544 1545 static size_t btree_gc_min_nodes(struct cache_set *c) 1546 { 1547 size_t min_nodes; 1548 1549 /* 1550 * Since incremental GC would stop 100ms when front 1551 * side I/O comes, so when there are many btree nodes, 1552 * if GC only processes constant (100) nodes each time, 1553 * GC would last a long time, and the front side I/Os 1554 * would run out of the buckets (since no new bucket 1555 * can be allocated during GC), and be blocked again. 1556 * So GC should not process constant nodes, but varied 1557 * nodes according to the number of btree nodes, which 1558 * realized by dividing GC into constant(100) times, 1559 * so when there are many btree nodes, GC can process 1560 * more nodes each time, otherwise, GC will process less 1561 * nodes each time (but no less than MIN_GC_NODES) 1562 */ 1563 min_nodes = c->gc_stats.nodes / MAX_GC_TIMES; 1564 if (min_nodes < MIN_GC_NODES) 1565 min_nodes = MIN_GC_NODES; 1566 1567 return min_nodes; 1568 } 1569 1570 1571 static int btree_gc_recurse(struct btree *b, struct btree_op *op, 1572 struct closure *writes, struct gc_stat *gc) 1573 { 1574 int ret = 0; 1575 bool should_rewrite; 1576 struct bkey *k; 1577 struct btree_iter iter; 1578 struct gc_merge_info r[GC_MERGE_NODES]; 1579 struct gc_merge_info *i, *last = r + ARRAY_SIZE(r) - 1; 1580 1581 bch_btree_iter_init(&b->keys, &iter, &b->c->gc_done); 1582 1583 for (i = r; i < r + ARRAY_SIZE(r); i++) 1584 i->b = ERR_PTR(-EINTR); 1585 1586 while (1) { 1587 k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad); 1588 if (k) { 1589 r->b = bch_btree_node_get(b->c, op, k, b->level - 1, 1590 true, b); 1591 if (IS_ERR(r->b)) { 1592 ret = PTR_ERR(r->b); 1593 break; 1594 } 1595 1596 r->keys = btree_gc_count_keys(r->b); 1597 1598 ret = btree_gc_coalesce(b, op, gc, r); 1599 if (ret) 1600 break; 1601 } 1602 1603 if (!last->b) 1604 break; 1605 1606 if (!IS_ERR(last->b)) { 1607 should_rewrite = btree_gc_mark_node(last->b, gc); 1608 if (should_rewrite) { 1609 ret = btree_gc_rewrite_node(b, op, last->b); 1610 if (ret) 1611 break; 1612 } 1613 1614 if (last->b->level) { 1615 ret = btree_gc_recurse(last->b, op, writes, gc); 1616 if (ret) 1617 break; 1618 } 1619 1620 bkey_copy_key(&b->c->gc_done, &last->b->key); 1621 1622 /* 1623 * Must flush leaf nodes before gc ends, since replace 1624 * operations aren't journalled 1625 */ 1626 mutex_lock(&last->b->write_lock); 1627 if (btree_node_dirty(last->b)) 1628 bch_btree_node_write(last->b, writes); 1629 mutex_unlock(&last->b->write_lock); 1630 rw_unlock(true, last->b); 1631 } 1632 1633 memmove(r + 1, r, sizeof(r[0]) * (GC_MERGE_NODES - 1)); 1634 r->b = NULL; 1635 1636 if (atomic_read(&b->c->search_inflight) && 1637 gc->nodes >= gc->nodes_pre + btree_gc_min_nodes(b->c)) { 1638 gc->nodes_pre = gc->nodes; 1639 ret = -EAGAIN; 1640 break; 1641 } 1642 1643 if (need_resched()) { 1644 ret = -EAGAIN; 1645 break; 1646 } 1647 } 1648 1649 for (i = r; i < r + ARRAY_SIZE(r); i++) 1650 if (!IS_ERR_OR_NULL(i->b)) { 1651 mutex_lock(&i->b->write_lock); 1652 if (btree_node_dirty(i->b)) 1653 bch_btree_node_write(i->b, writes); 1654 mutex_unlock(&i->b->write_lock); 1655 rw_unlock(true, i->b); 1656 } 1657 1658 return ret; 1659 } 1660 1661 static int bch_btree_gc_root(struct btree *b, struct btree_op *op, 1662 struct closure *writes, struct gc_stat *gc) 1663 { 1664 struct btree *n = NULL; 1665 int ret = 0; 1666 bool should_rewrite; 1667 1668 should_rewrite = btree_gc_mark_node(b, gc); 1669 if (should_rewrite) { 1670 n = btree_node_alloc_replacement(b, NULL); 1671 1672 if (!IS_ERR_OR_NULL(n)) { 1673 bch_btree_node_write_sync(n); 1674 1675 bch_btree_set_root(n); 1676 btree_node_free(b); 1677 rw_unlock(true, n); 1678 1679 return -EINTR; 1680 } 1681 } 1682 1683 __bch_btree_mark_key(b->c, b->level + 1, &b->key); 1684 1685 if (b->level) { 1686 ret = btree_gc_recurse(b, op, writes, gc); 1687 if (ret) 1688 return ret; 1689 } 1690 1691 bkey_copy_key(&b->c->gc_done, &b->key); 1692 1693 return ret; 1694 } 1695 1696 static void btree_gc_start(struct cache_set *c) 1697 { 1698 struct cache *ca; 1699 struct bucket *b; 1700 1701 if (!c->gc_mark_valid) 1702 return; 1703 1704 mutex_lock(&c->bucket_lock); 1705 1706 c->gc_mark_valid = 0; 1707 c->gc_done = ZERO_KEY; 1708 1709 ca = c->cache; 1710 for_each_bucket(b, ca) { 1711 b->last_gc = b->gen; 1712 if (!atomic_read(&b->pin)) { 1713 SET_GC_MARK(b, 0); 1714 SET_GC_SECTORS_USED(b, 0); 1715 } 1716 } 1717 1718 mutex_unlock(&c->bucket_lock); 1719 } 1720 1721 static void bch_btree_gc_finish(struct cache_set *c) 1722 { 1723 struct bucket *b; 1724 struct cache *ca; 1725 unsigned int i, j; 1726 uint64_t *k; 1727 1728 mutex_lock(&c->bucket_lock); 1729 1730 set_gc_sectors(c); 1731 c->gc_mark_valid = 1; 1732 c->need_gc = 0; 1733 1734 for (i = 0; i < KEY_PTRS(&c->uuid_bucket); i++) 1735 SET_GC_MARK(PTR_BUCKET(c, &c->uuid_bucket, i), 1736 GC_MARK_METADATA); 1737 1738 /* don't reclaim buckets to which writeback keys point */ 1739 rcu_read_lock(); 1740 for (i = 0; i < c->devices_max_used; i++) { 1741 struct bcache_device *d = c->devices[i]; 1742 struct cached_dev *dc; 1743 struct keybuf_key *w, *n; 1744 1745 if (!d || UUID_FLASH_ONLY(&c->uuids[i])) 1746 continue; 1747 dc = container_of(d, struct cached_dev, disk); 1748 1749 spin_lock(&dc->writeback_keys.lock); 1750 rbtree_postorder_for_each_entry_safe(w, n, 1751 &dc->writeback_keys.keys, node) 1752 for (j = 0; j < KEY_PTRS(&w->key); j++) 1753 SET_GC_MARK(PTR_BUCKET(c, &w->key, j), 1754 GC_MARK_DIRTY); 1755 spin_unlock(&dc->writeback_keys.lock); 1756 } 1757 rcu_read_unlock(); 1758 1759 c->avail_nbuckets = 0; 1760 1761 ca = c->cache; 1762 ca->invalidate_needs_gc = 0; 1763 1764 for (k = ca->sb.d; k < ca->sb.d + ca->sb.keys; k++) 1765 SET_GC_MARK(ca->buckets + *k, GC_MARK_METADATA); 1766 1767 for (k = ca->prio_buckets; 1768 k < ca->prio_buckets + prio_buckets(ca) * 2; k++) 1769 SET_GC_MARK(ca->buckets + *k, GC_MARK_METADATA); 1770 1771 for_each_bucket(b, ca) { 1772 c->need_gc = max(c->need_gc, bucket_gc_gen(b)); 1773 1774 if (atomic_read(&b->pin)) 1775 continue; 1776 1777 BUG_ON(!GC_MARK(b) && GC_SECTORS_USED(b)); 1778 1779 if (!GC_MARK(b) || GC_MARK(b) == GC_MARK_RECLAIMABLE) 1780 c->avail_nbuckets++; 1781 } 1782 1783 mutex_unlock(&c->bucket_lock); 1784 } 1785 1786 static void bch_btree_gc(struct cache_set *c) 1787 { 1788 int ret; 1789 struct gc_stat stats; 1790 struct closure writes; 1791 struct btree_op op; 1792 uint64_t start_time = local_clock(); 1793 1794 trace_bcache_gc_start(c); 1795 1796 memset(&stats, 0, sizeof(struct gc_stat)); 1797 closure_init_stack(&writes); 1798 bch_btree_op_init(&op, SHRT_MAX); 1799 1800 btree_gc_start(c); 1801 1802 /* if CACHE_SET_IO_DISABLE set, gc thread should stop too */ 1803 do { 1804 ret = bcache_btree_root(gc_root, c, &op, &writes, &stats); 1805 closure_sync(&writes); 1806 cond_resched(); 1807 1808 if (ret == -EAGAIN) 1809 schedule_timeout_interruptible(msecs_to_jiffies 1810 (GC_SLEEP_MS)); 1811 else if (ret) 1812 pr_warn("gc failed!\n"); 1813 } while (ret && !test_bit(CACHE_SET_IO_DISABLE, &c->flags)); 1814 1815 bch_btree_gc_finish(c); 1816 wake_up_allocators(c); 1817 1818 bch_time_stats_update(&c->btree_gc_time, start_time); 1819 1820 stats.key_bytes *= sizeof(uint64_t); 1821 stats.data <<= 9; 1822 bch_update_bucket_in_use(c, &stats); 1823 memcpy(&c->gc_stats, &stats, sizeof(struct gc_stat)); 1824 1825 trace_bcache_gc_end(c); 1826 1827 bch_moving_gc(c); 1828 } 1829 1830 static bool gc_should_run(struct cache_set *c) 1831 { 1832 struct cache *ca = c->cache; 1833 1834 if (ca->invalidate_needs_gc) 1835 return true; 1836 1837 if (atomic_read(&c->sectors_to_gc) < 0) 1838 return true; 1839 1840 return false; 1841 } 1842 1843 static int bch_gc_thread(void *arg) 1844 { 1845 struct cache_set *c = arg; 1846 1847 while (1) { 1848 wait_event_interruptible(c->gc_wait, 1849 kthread_should_stop() || 1850 test_bit(CACHE_SET_IO_DISABLE, &c->flags) || 1851 gc_should_run(c)); 1852 1853 if (kthread_should_stop() || 1854 test_bit(CACHE_SET_IO_DISABLE, &c->flags)) 1855 break; 1856 1857 set_gc_sectors(c); 1858 bch_btree_gc(c); 1859 } 1860 1861 wait_for_kthread_stop(); 1862 return 0; 1863 } 1864 1865 int bch_gc_thread_start(struct cache_set *c) 1866 { 1867 c->gc_thread = kthread_run(bch_gc_thread, c, "bcache_gc"); 1868 return PTR_ERR_OR_ZERO(c->gc_thread); 1869 } 1870 1871 /* Initial partial gc */ 1872 1873 static int bch_btree_check_recurse(struct btree *b, struct btree_op *op) 1874 { 1875 int ret = 0; 1876 struct bkey *k, *p = NULL; 1877 struct btree_iter iter; 1878 1879 for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid) 1880 bch_initial_mark_key(b->c, b->level, k); 1881 1882 bch_initial_mark_key(b->c, b->level + 1, &b->key); 1883 1884 if (b->level) { 1885 bch_btree_iter_init(&b->keys, &iter, NULL); 1886 1887 do { 1888 k = bch_btree_iter_next_filter(&iter, &b->keys, 1889 bch_ptr_bad); 1890 if (k) { 1891 btree_node_prefetch(b, k); 1892 /* 1893 * initiallize c->gc_stats.nodes 1894 * for incremental GC 1895 */ 1896 b->c->gc_stats.nodes++; 1897 } 1898 1899 if (p) 1900 ret = bcache_btree(check_recurse, p, b, op); 1901 1902 p = k; 1903 } while (p && !ret); 1904 } 1905 1906 return ret; 1907 } 1908 1909 1910 static int bch_btree_check_thread(void *arg) 1911 { 1912 int ret; 1913 struct btree_check_info *info = arg; 1914 struct btree_check_state *check_state = info->state; 1915 struct cache_set *c = check_state->c; 1916 struct btree_iter iter; 1917 struct bkey *k, *p; 1918 int cur_idx, prev_idx, skip_nr; 1919 1920 k = p = NULL; 1921 cur_idx = prev_idx = 0; 1922 ret = 0; 1923 1924 /* root node keys are checked before thread created */ 1925 bch_btree_iter_init(&c->root->keys, &iter, NULL); 1926 k = bch_btree_iter_next_filter(&iter, &c->root->keys, bch_ptr_bad); 1927 BUG_ON(!k); 1928 1929 p = k; 1930 while (k) { 1931 /* 1932 * Fetch a root node key index, skip the keys which 1933 * should be fetched by other threads, then check the 1934 * sub-tree indexed by the fetched key. 1935 */ 1936 spin_lock(&check_state->idx_lock); 1937 cur_idx = check_state->key_idx; 1938 check_state->key_idx++; 1939 spin_unlock(&check_state->idx_lock); 1940 1941 skip_nr = cur_idx - prev_idx; 1942 1943 while (skip_nr) { 1944 k = bch_btree_iter_next_filter(&iter, 1945 &c->root->keys, 1946 bch_ptr_bad); 1947 if (k) 1948 p = k; 1949 else { 1950 /* 1951 * No more keys to check in root node, 1952 * current checking threads are enough, 1953 * stop creating more. 1954 */ 1955 atomic_set(&check_state->enough, 1); 1956 /* Update check_state->enough earlier */ 1957 smp_mb__after_atomic(); 1958 goto out; 1959 } 1960 skip_nr--; 1961 cond_resched(); 1962 } 1963 1964 if (p) { 1965 struct btree_op op; 1966 1967 btree_node_prefetch(c->root, p); 1968 c->gc_stats.nodes++; 1969 bch_btree_op_init(&op, 0); 1970 ret = bcache_btree(check_recurse, p, c->root, &op); 1971 if (ret) 1972 goto out; 1973 } 1974 p = NULL; 1975 prev_idx = cur_idx; 1976 cond_resched(); 1977 } 1978 1979 out: 1980 info->result = ret; 1981 /* update check_state->started among all CPUs */ 1982 smp_mb__before_atomic(); 1983 if (atomic_dec_and_test(&check_state->started)) 1984 wake_up(&check_state->wait); 1985 1986 return ret; 1987 } 1988 1989 1990 1991 static int bch_btree_chkthread_nr(void) 1992 { 1993 int n = num_online_cpus()/2; 1994 1995 if (n == 0) 1996 n = 1; 1997 else if (n > BCH_BTR_CHKTHREAD_MAX) 1998 n = BCH_BTR_CHKTHREAD_MAX; 1999 2000 return n; 2001 } 2002 2003 int bch_btree_check(struct cache_set *c) 2004 { 2005 int ret = 0; 2006 int i; 2007 struct bkey *k = NULL; 2008 struct btree_iter iter; 2009 struct btree_check_state *check_state; 2010 char name[32]; 2011 2012 /* check and mark root node keys */ 2013 for_each_key_filter(&c->root->keys, k, &iter, bch_ptr_invalid) 2014 bch_initial_mark_key(c, c->root->level, k); 2015 2016 bch_initial_mark_key(c, c->root->level + 1, &c->root->key); 2017 2018 if (c->root->level == 0) 2019 return 0; 2020 2021 check_state = kzalloc(sizeof(struct btree_check_state), GFP_KERNEL); 2022 if (!check_state) 2023 return -ENOMEM; 2024 2025 check_state->c = c; 2026 check_state->total_threads = bch_btree_chkthread_nr(); 2027 check_state->key_idx = 0; 2028 spin_lock_init(&check_state->idx_lock); 2029 atomic_set(&check_state->started, 0); 2030 atomic_set(&check_state->enough, 0); 2031 init_waitqueue_head(&check_state->wait); 2032 2033 /* 2034 * Run multiple threads to check btree nodes in parallel, 2035 * if check_state->enough is non-zero, it means current 2036 * running check threads are enough, unncessary to create 2037 * more. 2038 */ 2039 for (i = 0; i < check_state->total_threads; i++) { 2040 /* fetch latest check_state->enough earlier */ 2041 smp_mb__before_atomic(); 2042 if (atomic_read(&check_state->enough)) 2043 break; 2044 2045 check_state->infos[i].result = 0; 2046 check_state->infos[i].state = check_state; 2047 snprintf(name, sizeof(name), "bch_btrchk[%u]", i); 2048 atomic_inc(&check_state->started); 2049 2050 check_state->infos[i].thread = 2051 kthread_run(bch_btree_check_thread, 2052 &check_state->infos[i], 2053 name); 2054 if (IS_ERR(check_state->infos[i].thread)) { 2055 pr_err("fails to run thread bch_btrchk[%d]\n", i); 2056 for (--i; i >= 0; i--) 2057 kthread_stop(check_state->infos[i].thread); 2058 ret = -ENOMEM; 2059 goto out; 2060 } 2061 } 2062 2063 /* 2064 * Must wait for all threads to stop. 2065 */ 2066 wait_event_interruptible(check_state->wait, 2067 atomic_read(&check_state->started) == 0); 2068 2069 for (i = 0; i < check_state->total_threads; i++) { 2070 if (check_state->infos[i].result) { 2071 ret = check_state->infos[i].result; 2072 goto out; 2073 } 2074 } 2075 2076 out: 2077 kfree(check_state); 2078 return ret; 2079 } 2080 2081 void bch_initial_gc_finish(struct cache_set *c) 2082 { 2083 struct cache *ca = c->cache; 2084 struct bucket *b; 2085 2086 bch_btree_gc_finish(c); 2087 2088 mutex_lock(&c->bucket_lock); 2089 2090 /* 2091 * We need to put some unused buckets directly on the prio freelist in 2092 * order to get the allocator thread started - it needs freed buckets in 2093 * order to rewrite the prios and gens, and it needs to rewrite prios 2094 * and gens in order to free buckets. 2095 * 2096 * This is only safe for buckets that have no live data in them, which 2097 * there should always be some of. 2098 */ 2099 for_each_bucket(b, ca) { 2100 if (fifo_full(&ca->free[RESERVE_PRIO]) && 2101 fifo_full(&ca->free[RESERVE_BTREE])) 2102 break; 2103 2104 if (bch_can_invalidate_bucket(ca, b) && 2105 !GC_MARK(b)) { 2106 __bch_invalidate_one_bucket(ca, b); 2107 if (!fifo_push(&ca->free[RESERVE_PRIO], 2108 b - ca->buckets)) 2109 fifo_push(&ca->free[RESERVE_BTREE], 2110 b - ca->buckets); 2111 } 2112 } 2113 2114 mutex_unlock(&c->bucket_lock); 2115 } 2116 2117 /* Btree insertion */ 2118 2119 static bool btree_insert_key(struct btree *b, struct bkey *k, 2120 struct bkey *replace_key) 2121 { 2122 unsigned int status; 2123 2124 BUG_ON(bkey_cmp(k, &b->key) > 0); 2125 2126 status = bch_btree_insert_key(&b->keys, k, replace_key); 2127 if (status != BTREE_INSERT_STATUS_NO_INSERT) { 2128 bch_check_keys(&b->keys, "%u for %s", status, 2129 replace_key ? "replace" : "insert"); 2130 2131 trace_bcache_btree_insert_key(b, k, replace_key != NULL, 2132 status); 2133 return true; 2134 } else 2135 return false; 2136 } 2137 2138 static size_t insert_u64s_remaining(struct btree *b) 2139 { 2140 long ret = bch_btree_keys_u64s_remaining(&b->keys); 2141 2142 /* 2143 * Might land in the middle of an existing extent and have to split it 2144 */ 2145 if (b->keys.ops->is_extents) 2146 ret -= KEY_MAX_U64S; 2147 2148 return max(ret, 0L); 2149 } 2150 2151 static bool bch_btree_insert_keys(struct btree *b, struct btree_op *op, 2152 struct keylist *insert_keys, 2153 struct bkey *replace_key) 2154 { 2155 bool ret = false; 2156 int oldsize = bch_count_data(&b->keys); 2157 2158 while (!bch_keylist_empty(insert_keys)) { 2159 struct bkey *k = insert_keys->keys; 2160 2161 if (bkey_u64s(k) > insert_u64s_remaining(b)) 2162 break; 2163 2164 if (bkey_cmp(k, &b->key) <= 0) { 2165 if (!b->level) 2166 bkey_put(b->c, k); 2167 2168 ret |= btree_insert_key(b, k, replace_key); 2169 bch_keylist_pop_front(insert_keys); 2170 } else if (bkey_cmp(&START_KEY(k), &b->key) < 0) { 2171 BKEY_PADDED(key) temp; 2172 bkey_copy(&temp.key, insert_keys->keys); 2173 2174 bch_cut_back(&b->key, &temp.key); 2175 bch_cut_front(&b->key, insert_keys->keys); 2176 2177 ret |= btree_insert_key(b, &temp.key, replace_key); 2178 break; 2179 } else { 2180 break; 2181 } 2182 } 2183 2184 if (!ret) 2185 op->insert_collision = true; 2186 2187 BUG_ON(!bch_keylist_empty(insert_keys) && b->level); 2188 2189 BUG_ON(bch_count_data(&b->keys) < oldsize); 2190 return ret; 2191 } 2192 2193 static int btree_split(struct btree *b, struct btree_op *op, 2194 struct keylist *insert_keys, 2195 struct bkey *replace_key) 2196 { 2197 bool split; 2198 struct btree *n1, *n2 = NULL, *n3 = NULL; 2199 uint64_t start_time = local_clock(); 2200 struct closure cl; 2201 struct keylist parent_keys; 2202 2203 closure_init_stack(&cl); 2204 bch_keylist_init(&parent_keys); 2205 2206 if (btree_check_reserve(b, op)) { 2207 if (!b->level) 2208 return -EINTR; 2209 else 2210 WARN(1, "insufficient reserve for split\n"); 2211 } 2212 2213 n1 = btree_node_alloc_replacement(b, op); 2214 if (IS_ERR(n1)) 2215 goto err; 2216 2217 split = set_blocks(btree_bset_first(n1), 2218 block_bytes(n1->c->cache)) > (btree_blocks(b) * 4) / 5; 2219 2220 if (split) { 2221 unsigned int keys = 0; 2222 2223 trace_bcache_btree_node_split(b, btree_bset_first(n1)->keys); 2224 2225 n2 = bch_btree_node_alloc(b->c, op, b->level, b->parent); 2226 if (IS_ERR(n2)) 2227 goto err_free1; 2228 2229 if (!b->parent) { 2230 n3 = bch_btree_node_alloc(b->c, op, b->level + 1, NULL); 2231 if (IS_ERR(n3)) 2232 goto err_free2; 2233 } 2234 2235 mutex_lock(&n1->write_lock); 2236 mutex_lock(&n2->write_lock); 2237 2238 bch_btree_insert_keys(n1, op, insert_keys, replace_key); 2239 2240 /* 2241 * Has to be a linear search because we don't have an auxiliary 2242 * search tree yet 2243 */ 2244 2245 while (keys < (btree_bset_first(n1)->keys * 3) / 5) 2246 keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1), 2247 keys)); 2248 2249 bkey_copy_key(&n1->key, 2250 bset_bkey_idx(btree_bset_first(n1), keys)); 2251 keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1), keys)); 2252 2253 btree_bset_first(n2)->keys = btree_bset_first(n1)->keys - keys; 2254 btree_bset_first(n1)->keys = keys; 2255 2256 memcpy(btree_bset_first(n2)->start, 2257 bset_bkey_last(btree_bset_first(n1)), 2258 btree_bset_first(n2)->keys * sizeof(uint64_t)); 2259 2260 bkey_copy_key(&n2->key, &b->key); 2261 2262 bch_keylist_add(&parent_keys, &n2->key); 2263 bch_btree_node_write(n2, &cl); 2264 mutex_unlock(&n2->write_lock); 2265 rw_unlock(true, n2); 2266 } else { 2267 trace_bcache_btree_node_compact(b, btree_bset_first(n1)->keys); 2268 2269 mutex_lock(&n1->write_lock); 2270 bch_btree_insert_keys(n1, op, insert_keys, replace_key); 2271 } 2272 2273 bch_keylist_add(&parent_keys, &n1->key); 2274 bch_btree_node_write(n1, &cl); 2275 mutex_unlock(&n1->write_lock); 2276 2277 if (n3) { 2278 /* Depth increases, make a new root */ 2279 mutex_lock(&n3->write_lock); 2280 bkey_copy_key(&n3->key, &MAX_KEY); 2281 bch_btree_insert_keys(n3, op, &parent_keys, NULL); 2282 bch_btree_node_write(n3, &cl); 2283 mutex_unlock(&n3->write_lock); 2284 2285 closure_sync(&cl); 2286 bch_btree_set_root(n3); 2287 rw_unlock(true, n3); 2288 } else if (!b->parent) { 2289 /* Root filled up but didn't need to be split */ 2290 closure_sync(&cl); 2291 bch_btree_set_root(n1); 2292 } else { 2293 /* Split a non root node */ 2294 closure_sync(&cl); 2295 make_btree_freeing_key(b, parent_keys.top); 2296 bch_keylist_push(&parent_keys); 2297 2298 bch_btree_insert_node(b->parent, op, &parent_keys, NULL, NULL); 2299 BUG_ON(!bch_keylist_empty(&parent_keys)); 2300 } 2301 2302 btree_node_free(b); 2303 rw_unlock(true, n1); 2304 2305 bch_time_stats_update(&b->c->btree_split_time, start_time); 2306 2307 return 0; 2308 err_free2: 2309 bkey_put(b->c, &n2->key); 2310 btree_node_free(n2); 2311 rw_unlock(true, n2); 2312 err_free1: 2313 bkey_put(b->c, &n1->key); 2314 btree_node_free(n1); 2315 rw_unlock(true, n1); 2316 err: 2317 WARN(1, "bcache: btree split failed (level %u)", b->level); 2318 2319 if (n3 == ERR_PTR(-EAGAIN) || 2320 n2 == ERR_PTR(-EAGAIN) || 2321 n1 == ERR_PTR(-EAGAIN)) 2322 return -EAGAIN; 2323 2324 return -ENOMEM; 2325 } 2326 2327 static int bch_btree_insert_node(struct btree *b, struct btree_op *op, 2328 struct keylist *insert_keys, 2329 atomic_t *journal_ref, 2330 struct bkey *replace_key) 2331 { 2332 struct closure cl; 2333 2334 BUG_ON(b->level && replace_key); 2335 2336 closure_init_stack(&cl); 2337 2338 mutex_lock(&b->write_lock); 2339 2340 if (write_block(b) != btree_bset_last(b) && 2341 b->keys.last_set_unwritten) 2342 bch_btree_init_next(b); /* just wrote a set */ 2343 2344 if (bch_keylist_nkeys(insert_keys) > insert_u64s_remaining(b)) { 2345 mutex_unlock(&b->write_lock); 2346 goto split; 2347 } 2348 2349 BUG_ON(write_block(b) != btree_bset_last(b)); 2350 2351 if (bch_btree_insert_keys(b, op, insert_keys, replace_key)) { 2352 if (!b->level) 2353 bch_btree_leaf_dirty(b, journal_ref); 2354 else 2355 bch_btree_node_write(b, &cl); 2356 } 2357 2358 mutex_unlock(&b->write_lock); 2359 2360 /* wait for btree node write if necessary, after unlock */ 2361 closure_sync(&cl); 2362 2363 return 0; 2364 split: 2365 if (current->bio_list) { 2366 op->lock = b->c->root->level + 1; 2367 return -EAGAIN; 2368 } else if (op->lock <= b->c->root->level) { 2369 op->lock = b->c->root->level + 1; 2370 return -EINTR; 2371 } else { 2372 /* Invalidated all iterators */ 2373 int ret = btree_split(b, op, insert_keys, replace_key); 2374 2375 if (bch_keylist_empty(insert_keys)) 2376 return 0; 2377 else if (!ret) 2378 return -EINTR; 2379 return ret; 2380 } 2381 } 2382 2383 int bch_btree_insert_check_key(struct btree *b, struct btree_op *op, 2384 struct bkey *check_key) 2385 { 2386 int ret = -EINTR; 2387 uint64_t btree_ptr = b->key.ptr[0]; 2388 unsigned long seq = b->seq; 2389 struct keylist insert; 2390 bool upgrade = op->lock == -1; 2391 2392 bch_keylist_init(&insert); 2393 2394 if (upgrade) { 2395 rw_unlock(false, b); 2396 rw_lock(true, b, b->level); 2397 2398 if (b->key.ptr[0] != btree_ptr || 2399 b->seq != seq + 1) { 2400 op->lock = b->level; 2401 goto out; 2402 } 2403 } 2404 2405 SET_KEY_PTRS(check_key, 1); 2406 get_random_bytes(&check_key->ptr[0], sizeof(uint64_t)); 2407 2408 SET_PTR_DEV(check_key, 0, PTR_CHECK_DEV); 2409 2410 bch_keylist_add(&insert, check_key); 2411 2412 ret = bch_btree_insert_node(b, op, &insert, NULL, NULL); 2413 2414 BUG_ON(!ret && !bch_keylist_empty(&insert)); 2415 out: 2416 if (upgrade) 2417 downgrade_write(&b->lock); 2418 return ret; 2419 } 2420 2421 struct btree_insert_op { 2422 struct btree_op op; 2423 struct keylist *keys; 2424 atomic_t *journal_ref; 2425 struct bkey *replace_key; 2426 }; 2427 2428 static int btree_insert_fn(struct btree_op *b_op, struct btree *b) 2429 { 2430 struct btree_insert_op *op = container_of(b_op, 2431 struct btree_insert_op, op); 2432 2433 int ret = bch_btree_insert_node(b, &op->op, op->keys, 2434 op->journal_ref, op->replace_key); 2435 if (ret && !bch_keylist_empty(op->keys)) 2436 return ret; 2437 else 2438 return MAP_DONE; 2439 } 2440 2441 int bch_btree_insert(struct cache_set *c, struct keylist *keys, 2442 atomic_t *journal_ref, struct bkey *replace_key) 2443 { 2444 struct btree_insert_op op; 2445 int ret = 0; 2446 2447 BUG_ON(current->bio_list); 2448 BUG_ON(bch_keylist_empty(keys)); 2449 2450 bch_btree_op_init(&op.op, 0); 2451 op.keys = keys; 2452 op.journal_ref = journal_ref; 2453 op.replace_key = replace_key; 2454 2455 while (!ret && !bch_keylist_empty(keys)) { 2456 op.op.lock = 0; 2457 ret = bch_btree_map_leaf_nodes(&op.op, c, 2458 &START_KEY(keys->keys), 2459 btree_insert_fn); 2460 } 2461 2462 if (ret) { 2463 struct bkey *k; 2464 2465 pr_err("error %i\n", ret); 2466 2467 while ((k = bch_keylist_pop(keys))) 2468 bkey_put(c, k); 2469 } else if (op.op.insert_collision) 2470 ret = -ESRCH; 2471 2472 return ret; 2473 } 2474 2475 void bch_btree_set_root(struct btree *b) 2476 { 2477 unsigned int i; 2478 struct closure cl; 2479 2480 closure_init_stack(&cl); 2481 2482 trace_bcache_btree_set_root(b); 2483 2484 BUG_ON(!b->written); 2485 2486 for (i = 0; i < KEY_PTRS(&b->key); i++) 2487 BUG_ON(PTR_BUCKET(b->c, &b->key, i)->prio != BTREE_PRIO); 2488 2489 mutex_lock(&b->c->bucket_lock); 2490 list_del_init(&b->list); 2491 mutex_unlock(&b->c->bucket_lock); 2492 2493 b->c->root = b; 2494 2495 bch_journal_meta(b->c, &cl); 2496 closure_sync(&cl); 2497 } 2498 2499 /* Map across nodes or keys */ 2500 2501 static int bch_btree_map_nodes_recurse(struct btree *b, struct btree_op *op, 2502 struct bkey *from, 2503 btree_map_nodes_fn *fn, int flags) 2504 { 2505 int ret = MAP_CONTINUE; 2506 2507 if (b->level) { 2508 struct bkey *k; 2509 struct btree_iter iter; 2510 2511 bch_btree_iter_init(&b->keys, &iter, from); 2512 2513 while ((k = bch_btree_iter_next_filter(&iter, &b->keys, 2514 bch_ptr_bad))) { 2515 ret = bcache_btree(map_nodes_recurse, k, b, 2516 op, from, fn, flags); 2517 from = NULL; 2518 2519 if (ret != MAP_CONTINUE) 2520 return ret; 2521 } 2522 } 2523 2524 if (!b->level || flags == MAP_ALL_NODES) 2525 ret = fn(op, b); 2526 2527 return ret; 2528 } 2529 2530 int __bch_btree_map_nodes(struct btree_op *op, struct cache_set *c, 2531 struct bkey *from, btree_map_nodes_fn *fn, int flags) 2532 { 2533 return bcache_btree_root(map_nodes_recurse, c, op, from, fn, flags); 2534 } 2535 2536 int bch_btree_map_keys_recurse(struct btree *b, struct btree_op *op, 2537 struct bkey *from, btree_map_keys_fn *fn, 2538 int flags) 2539 { 2540 int ret = MAP_CONTINUE; 2541 struct bkey *k; 2542 struct btree_iter iter; 2543 2544 bch_btree_iter_init(&b->keys, &iter, from); 2545 2546 while ((k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad))) { 2547 ret = !b->level 2548 ? fn(op, b, k) 2549 : bcache_btree(map_keys_recurse, k, 2550 b, op, from, fn, flags); 2551 from = NULL; 2552 2553 if (ret != MAP_CONTINUE) 2554 return ret; 2555 } 2556 2557 if (!b->level && (flags & MAP_END_KEY)) 2558 ret = fn(op, b, &KEY(KEY_INODE(&b->key), 2559 KEY_OFFSET(&b->key), 0)); 2560 2561 return ret; 2562 } 2563 2564 int bch_btree_map_keys(struct btree_op *op, struct cache_set *c, 2565 struct bkey *from, btree_map_keys_fn *fn, int flags) 2566 { 2567 return bcache_btree_root(map_keys_recurse, c, op, from, fn, flags); 2568 } 2569 2570 /* Keybuf code */ 2571 2572 static inline int keybuf_cmp(struct keybuf_key *l, struct keybuf_key *r) 2573 { 2574 /* Overlapping keys compare equal */ 2575 if (bkey_cmp(&l->key, &START_KEY(&r->key)) <= 0) 2576 return -1; 2577 if (bkey_cmp(&START_KEY(&l->key), &r->key) >= 0) 2578 return 1; 2579 return 0; 2580 } 2581 2582 static inline int keybuf_nonoverlapping_cmp(struct keybuf_key *l, 2583 struct keybuf_key *r) 2584 { 2585 return clamp_t(int64_t, bkey_cmp(&l->key, &r->key), -1, 1); 2586 } 2587 2588 struct refill { 2589 struct btree_op op; 2590 unsigned int nr_found; 2591 struct keybuf *buf; 2592 struct bkey *end; 2593 keybuf_pred_fn *pred; 2594 }; 2595 2596 static int refill_keybuf_fn(struct btree_op *op, struct btree *b, 2597 struct bkey *k) 2598 { 2599 struct refill *refill = container_of(op, struct refill, op); 2600 struct keybuf *buf = refill->buf; 2601 int ret = MAP_CONTINUE; 2602 2603 if (bkey_cmp(k, refill->end) > 0) { 2604 ret = MAP_DONE; 2605 goto out; 2606 } 2607 2608 if (!KEY_SIZE(k)) /* end key */ 2609 goto out; 2610 2611 if (refill->pred(buf, k)) { 2612 struct keybuf_key *w; 2613 2614 spin_lock(&buf->lock); 2615 2616 w = array_alloc(&buf->freelist); 2617 if (!w) { 2618 spin_unlock(&buf->lock); 2619 return MAP_DONE; 2620 } 2621 2622 w->private = NULL; 2623 bkey_copy(&w->key, k); 2624 2625 if (RB_INSERT(&buf->keys, w, node, keybuf_cmp)) 2626 array_free(&buf->freelist, w); 2627 else 2628 refill->nr_found++; 2629 2630 if (array_freelist_empty(&buf->freelist)) 2631 ret = MAP_DONE; 2632 2633 spin_unlock(&buf->lock); 2634 } 2635 out: 2636 buf->last_scanned = *k; 2637 return ret; 2638 } 2639 2640 void bch_refill_keybuf(struct cache_set *c, struct keybuf *buf, 2641 struct bkey *end, keybuf_pred_fn *pred) 2642 { 2643 struct bkey start = buf->last_scanned; 2644 struct refill refill; 2645 2646 cond_resched(); 2647 2648 bch_btree_op_init(&refill.op, -1); 2649 refill.nr_found = 0; 2650 refill.buf = buf; 2651 refill.end = end; 2652 refill.pred = pred; 2653 2654 bch_btree_map_keys(&refill.op, c, &buf->last_scanned, 2655 refill_keybuf_fn, MAP_END_KEY); 2656 2657 trace_bcache_keyscan(refill.nr_found, 2658 KEY_INODE(&start), KEY_OFFSET(&start), 2659 KEY_INODE(&buf->last_scanned), 2660 KEY_OFFSET(&buf->last_scanned)); 2661 2662 spin_lock(&buf->lock); 2663 2664 if (!RB_EMPTY_ROOT(&buf->keys)) { 2665 struct keybuf_key *w; 2666 2667 w = RB_FIRST(&buf->keys, struct keybuf_key, node); 2668 buf->start = START_KEY(&w->key); 2669 2670 w = RB_LAST(&buf->keys, struct keybuf_key, node); 2671 buf->end = w->key; 2672 } else { 2673 buf->start = MAX_KEY; 2674 buf->end = MAX_KEY; 2675 } 2676 2677 spin_unlock(&buf->lock); 2678 } 2679 2680 static void __bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w) 2681 { 2682 rb_erase(&w->node, &buf->keys); 2683 array_free(&buf->freelist, w); 2684 } 2685 2686 void bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w) 2687 { 2688 spin_lock(&buf->lock); 2689 __bch_keybuf_del(buf, w); 2690 spin_unlock(&buf->lock); 2691 } 2692 2693 bool bch_keybuf_check_overlapping(struct keybuf *buf, struct bkey *start, 2694 struct bkey *end) 2695 { 2696 bool ret = false; 2697 struct keybuf_key *p, *w, s; 2698 2699 s.key = *start; 2700 2701 if (bkey_cmp(end, &buf->start) <= 0 || 2702 bkey_cmp(start, &buf->end) >= 0) 2703 return false; 2704 2705 spin_lock(&buf->lock); 2706 w = RB_GREATER(&buf->keys, s, node, keybuf_nonoverlapping_cmp); 2707 2708 while (w && bkey_cmp(&START_KEY(&w->key), end) < 0) { 2709 p = w; 2710 w = RB_NEXT(w, node); 2711 2712 if (p->private) 2713 ret = true; 2714 else 2715 __bch_keybuf_del(buf, p); 2716 } 2717 2718 spin_unlock(&buf->lock); 2719 return ret; 2720 } 2721 2722 struct keybuf_key *bch_keybuf_next(struct keybuf *buf) 2723 { 2724 struct keybuf_key *w; 2725 2726 spin_lock(&buf->lock); 2727 2728 w = RB_FIRST(&buf->keys, struct keybuf_key, node); 2729 2730 while (w && w->private) 2731 w = RB_NEXT(w, node); 2732 2733 if (w) 2734 w->private = ERR_PTR(-EINTR); 2735 2736 spin_unlock(&buf->lock); 2737 return w; 2738 } 2739 2740 struct keybuf_key *bch_keybuf_next_rescan(struct cache_set *c, 2741 struct keybuf *buf, 2742 struct bkey *end, 2743 keybuf_pred_fn *pred) 2744 { 2745 struct keybuf_key *ret; 2746 2747 while (1) { 2748 ret = bch_keybuf_next(buf); 2749 if (ret) 2750 break; 2751 2752 if (bkey_cmp(&buf->last_scanned, end) >= 0) { 2753 pr_debug("scan finished\n"); 2754 break; 2755 } 2756 2757 bch_refill_keybuf(c, buf, end, pred); 2758 } 2759 2760 return ret; 2761 } 2762 2763 void bch_keybuf_init(struct keybuf *buf) 2764 { 2765 buf->last_scanned = MAX_KEY; 2766 buf->keys = RB_ROOT; 2767 2768 spin_lock_init(&buf->lock); 2769 array_allocator_init(&buf->freelist); 2770 } 2771 2772 void bch_btree_exit(void) 2773 { 2774 if (btree_io_wq) 2775 destroy_workqueue(btree_io_wq); 2776 } 2777 2778 int __init bch_btree_init(void) 2779 { 2780 btree_io_wq = alloc_workqueue("bch_btree_io", WQ_MEM_RECLAIM, 0); 2781 if (!btree_io_wq) 2782 return -ENOMEM; 2783 2784 return 0; 2785 } 2786