xref: /openbmc/linux/drivers/md/bcache/btree.c (revision a89aa749ece9c6fee7932163472d2ee0efd6ddd3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com>
4  *
5  * Uses a block device as cache for other block devices; optimized for SSDs.
6  * All allocation is done in buckets, which should match the erase block size
7  * of the device.
8  *
9  * Buckets containing cached data are kept on a heap sorted by priority;
10  * bucket priority is increased on cache hit, and periodically all the buckets
11  * on the heap have their priority scaled down. This currently is just used as
12  * an LRU but in the future should allow for more intelligent heuristics.
13  *
14  * Buckets have an 8 bit counter; freeing is accomplished by incrementing the
15  * counter. Garbage collection is used to remove stale pointers.
16  *
17  * Indexing is done via a btree; nodes are not necessarily fully sorted, rather
18  * as keys are inserted we only sort the pages that have not yet been written.
19  * When garbage collection is run, we resort the entire node.
20  *
21  * All configuration is done via sysfs; see Documentation/admin-guide/bcache.rst.
22  */
23 
24 #include "bcache.h"
25 #include "btree.h"
26 #include "debug.h"
27 #include "extents.h"
28 
29 #include <linux/slab.h>
30 #include <linux/bitops.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/prefetch.h>
34 #include <linux/random.h>
35 #include <linux/rcupdate.h>
36 #include <linux/sched/clock.h>
37 #include <linux/rculist.h>
38 #include <linux/delay.h>
39 #include <trace/events/bcache.h>
40 
41 /*
42  * Todo:
43  * register_bcache: Return errors out to userspace correctly
44  *
45  * Writeback: don't undirty key until after a cache flush
46  *
47  * Create an iterator for key pointers
48  *
49  * On btree write error, mark bucket such that it won't be freed from the cache
50  *
51  * Journalling:
52  *   Check for bad keys in replay
53  *   Propagate barriers
54  *   Refcount journal entries in journal_replay
55  *
56  * Garbage collection:
57  *   Finish incremental gc
58  *   Gc should free old UUIDs, data for invalid UUIDs
59  *
60  * Provide a way to list backing device UUIDs we have data cached for, and
61  * probably how long it's been since we've seen them, and a way to invalidate
62  * dirty data for devices that will never be attached again
63  *
64  * Keep 1 min/5 min/15 min statistics of how busy a block device has been, so
65  * that based on that and how much dirty data we have we can keep writeback
66  * from being starved
67  *
68  * Add a tracepoint or somesuch to watch for writeback starvation
69  *
70  * When btree depth > 1 and splitting an interior node, we have to make sure
71  * alloc_bucket() cannot fail. This should be true but is not completely
72  * obvious.
73  *
74  * Plugging?
75  *
76  * If data write is less than hard sector size of ssd, round up offset in open
77  * bucket to the next whole sector
78  *
79  * Superblock needs to be fleshed out for multiple cache devices
80  *
81  * Add a sysfs tunable for the number of writeback IOs in flight
82  *
83  * Add a sysfs tunable for the number of open data buckets
84  *
85  * IO tracking: Can we track when one process is doing io on behalf of another?
86  * IO tracking: Don't use just an average, weigh more recent stuff higher
87  *
88  * Test module load/unload
89  */
90 
91 #define MAX_NEED_GC		64
92 #define MAX_SAVE_PRIO		72
93 #define MAX_GC_TIMES		100
94 #define MIN_GC_NODES		100
95 #define GC_SLEEP_MS		100
96 
97 #define PTR_DIRTY_BIT		(((uint64_t) 1 << 36))
98 
99 #define PTR_HASH(c, k)							\
100 	(((k)->ptr[0] >> c->bucket_bits) | PTR_GEN(k, 0))
101 
102 #define insert_lock(s, b)	((b)->level <= (s)->lock)
103 
104 
105 static inline struct bset *write_block(struct btree *b)
106 {
107 	return ((void *) btree_bset_first(b)) + b->written * block_bytes(b->c);
108 }
109 
110 static void bch_btree_init_next(struct btree *b)
111 {
112 	/* If not a leaf node, always sort */
113 	if (b->level && b->keys.nsets)
114 		bch_btree_sort(&b->keys, &b->c->sort);
115 	else
116 		bch_btree_sort_lazy(&b->keys, &b->c->sort);
117 
118 	if (b->written < btree_blocks(b))
119 		bch_bset_init_next(&b->keys, write_block(b),
120 				   bset_magic(&b->c->sb));
121 
122 }
123 
124 /* Btree key manipulation */
125 
126 void bkey_put(struct cache_set *c, struct bkey *k)
127 {
128 	unsigned int i;
129 
130 	for (i = 0; i < KEY_PTRS(k); i++)
131 		if (ptr_available(c, k, i))
132 			atomic_dec_bug(&PTR_BUCKET(c, k, i)->pin);
133 }
134 
135 /* Btree IO */
136 
137 static uint64_t btree_csum_set(struct btree *b, struct bset *i)
138 {
139 	uint64_t crc = b->key.ptr[0];
140 	void *data = (void *) i + 8, *end = bset_bkey_last(i);
141 
142 	crc = bch_crc64_update(crc, data, end - data);
143 	return crc ^ 0xffffffffffffffffULL;
144 }
145 
146 void bch_btree_node_read_done(struct btree *b)
147 {
148 	const char *err = "bad btree header";
149 	struct bset *i = btree_bset_first(b);
150 	struct btree_iter *iter;
151 
152 	/*
153 	 * c->fill_iter can allocate an iterator with more memory space
154 	 * than static MAX_BSETS.
155 	 * See the comment arount cache_set->fill_iter.
156 	 */
157 	iter = mempool_alloc(&b->c->fill_iter, GFP_NOIO);
158 	iter->size = b->c->sb.bucket_size / b->c->sb.block_size;
159 	iter->used = 0;
160 
161 #ifdef CONFIG_BCACHE_DEBUG
162 	iter->b = &b->keys;
163 #endif
164 
165 	if (!i->seq)
166 		goto err;
167 
168 	for (;
169 	     b->written < btree_blocks(b) && i->seq == b->keys.set[0].data->seq;
170 	     i = write_block(b)) {
171 		err = "unsupported bset version";
172 		if (i->version > BCACHE_BSET_VERSION)
173 			goto err;
174 
175 		err = "bad btree header";
176 		if (b->written + set_blocks(i, block_bytes(b->c)) >
177 		    btree_blocks(b))
178 			goto err;
179 
180 		err = "bad magic";
181 		if (i->magic != bset_magic(&b->c->sb))
182 			goto err;
183 
184 		err = "bad checksum";
185 		switch (i->version) {
186 		case 0:
187 			if (i->csum != csum_set(i))
188 				goto err;
189 			break;
190 		case BCACHE_BSET_VERSION:
191 			if (i->csum != btree_csum_set(b, i))
192 				goto err;
193 			break;
194 		}
195 
196 		err = "empty set";
197 		if (i != b->keys.set[0].data && !i->keys)
198 			goto err;
199 
200 		bch_btree_iter_push(iter, i->start, bset_bkey_last(i));
201 
202 		b->written += set_blocks(i, block_bytes(b->c));
203 	}
204 
205 	err = "corrupted btree";
206 	for (i = write_block(b);
207 	     bset_sector_offset(&b->keys, i) < KEY_SIZE(&b->key);
208 	     i = ((void *) i) + block_bytes(b->c))
209 		if (i->seq == b->keys.set[0].data->seq)
210 			goto err;
211 
212 	bch_btree_sort_and_fix_extents(&b->keys, iter, &b->c->sort);
213 
214 	i = b->keys.set[0].data;
215 	err = "short btree key";
216 	if (b->keys.set[0].size &&
217 	    bkey_cmp(&b->key, &b->keys.set[0].end) < 0)
218 		goto err;
219 
220 	if (b->written < btree_blocks(b))
221 		bch_bset_init_next(&b->keys, write_block(b),
222 				   bset_magic(&b->c->sb));
223 out:
224 	mempool_free(iter, &b->c->fill_iter);
225 	return;
226 err:
227 	set_btree_node_io_error(b);
228 	bch_cache_set_error(b->c, "%s at bucket %zu, block %u, %u keys",
229 			    err, PTR_BUCKET_NR(b->c, &b->key, 0),
230 			    bset_block_offset(b, i), i->keys);
231 	goto out;
232 }
233 
234 static void btree_node_read_endio(struct bio *bio)
235 {
236 	struct closure *cl = bio->bi_private;
237 
238 	closure_put(cl);
239 }
240 
241 static void bch_btree_node_read(struct btree *b)
242 {
243 	uint64_t start_time = local_clock();
244 	struct closure cl;
245 	struct bio *bio;
246 
247 	trace_bcache_btree_read(b);
248 
249 	closure_init_stack(&cl);
250 
251 	bio = bch_bbio_alloc(b->c);
252 	bio->bi_iter.bi_size = KEY_SIZE(&b->key) << 9;
253 	bio->bi_end_io	= btree_node_read_endio;
254 	bio->bi_private	= &cl;
255 	bio->bi_opf = REQ_OP_READ | REQ_META;
256 
257 	bch_bio_map(bio, b->keys.set[0].data);
258 
259 	bch_submit_bbio(bio, b->c, &b->key, 0);
260 	closure_sync(&cl);
261 
262 	if (bio->bi_status)
263 		set_btree_node_io_error(b);
264 
265 	bch_bbio_free(bio, b->c);
266 
267 	if (btree_node_io_error(b))
268 		goto err;
269 
270 	bch_btree_node_read_done(b);
271 	bch_time_stats_update(&b->c->btree_read_time, start_time);
272 
273 	return;
274 err:
275 	bch_cache_set_error(b->c, "io error reading bucket %zu",
276 			    PTR_BUCKET_NR(b->c, &b->key, 0));
277 }
278 
279 static void btree_complete_write(struct btree *b, struct btree_write *w)
280 {
281 	if (w->prio_blocked &&
282 	    !atomic_sub_return(w->prio_blocked, &b->c->prio_blocked))
283 		wake_up_allocators(b->c);
284 
285 	if (w->journal) {
286 		atomic_dec_bug(w->journal);
287 		__closure_wake_up(&b->c->journal.wait);
288 	}
289 
290 	w->prio_blocked	= 0;
291 	w->journal	= NULL;
292 }
293 
294 static void btree_node_write_unlock(struct closure *cl)
295 {
296 	struct btree *b = container_of(cl, struct btree, io);
297 
298 	up(&b->io_mutex);
299 }
300 
301 static void __btree_node_write_done(struct closure *cl)
302 {
303 	struct btree *b = container_of(cl, struct btree, io);
304 	struct btree_write *w = btree_prev_write(b);
305 
306 	bch_bbio_free(b->bio, b->c);
307 	b->bio = NULL;
308 	btree_complete_write(b, w);
309 
310 	if (btree_node_dirty(b))
311 		schedule_delayed_work(&b->work, 30 * HZ);
312 
313 	closure_return_with_destructor(cl, btree_node_write_unlock);
314 }
315 
316 static void btree_node_write_done(struct closure *cl)
317 {
318 	struct btree *b = container_of(cl, struct btree, io);
319 
320 	bio_free_pages(b->bio);
321 	__btree_node_write_done(cl);
322 }
323 
324 static void btree_node_write_endio(struct bio *bio)
325 {
326 	struct closure *cl = bio->bi_private;
327 	struct btree *b = container_of(cl, struct btree, io);
328 
329 	if (bio->bi_status)
330 		set_btree_node_io_error(b);
331 
332 	bch_bbio_count_io_errors(b->c, bio, bio->bi_status, "writing btree");
333 	closure_put(cl);
334 }
335 
336 static void do_btree_node_write(struct btree *b)
337 {
338 	struct closure *cl = &b->io;
339 	struct bset *i = btree_bset_last(b);
340 	BKEY_PADDED(key) k;
341 
342 	i->version	= BCACHE_BSET_VERSION;
343 	i->csum		= btree_csum_set(b, i);
344 
345 	BUG_ON(b->bio);
346 	b->bio = bch_bbio_alloc(b->c);
347 
348 	b->bio->bi_end_io	= btree_node_write_endio;
349 	b->bio->bi_private	= cl;
350 	b->bio->bi_iter.bi_size	= roundup(set_bytes(i), block_bytes(b->c));
351 	b->bio->bi_opf		= REQ_OP_WRITE | REQ_META | REQ_FUA;
352 	bch_bio_map(b->bio, i);
353 
354 	/*
355 	 * If we're appending to a leaf node, we don't technically need FUA -
356 	 * this write just needs to be persisted before the next journal write,
357 	 * which will be marked FLUSH|FUA.
358 	 *
359 	 * Similarly if we're writing a new btree root - the pointer is going to
360 	 * be in the next journal entry.
361 	 *
362 	 * But if we're writing a new btree node (that isn't a root) or
363 	 * appending to a non leaf btree node, we need either FUA or a flush
364 	 * when we write the parent with the new pointer. FUA is cheaper than a
365 	 * flush, and writes appending to leaf nodes aren't blocking anything so
366 	 * just make all btree node writes FUA to keep things sane.
367 	 */
368 
369 	bkey_copy(&k.key, &b->key);
370 	SET_PTR_OFFSET(&k.key, 0, PTR_OFFSET(&k.key, 0) +
371 		       bset_sector_offset(&b->keys, i));
372 
373 	if (!bch_bio_alloc_pages(b->bio, __GFP_NOWARN|GFP_NOWAIT)) {
374 		struct bio_vec *bv;
375 		void *addr = (void *) ((unsigned long) i & ~(PAGE_SIZE - 1));
376 		struct bvec_iter_all iter_all;
377 
378 		bio_for_each_segment_all(bv, b->bio, iter_all) {
379 			memcpy(page_address(bv->bv_page), addr, PAGE_SIZE);
380 			addr += PAGE_SIZE;
381 		}
382 
383 		bch_submit_bbio(b->bio, b->c, &k.key, 0);
384 
385 		continue_at(cl, btree_node_write_done, NULL);
386 	} else {
387 		/*
388 		 * No problem for multipage bvec since the bio is
389 		 * just allocated
390 		 */
391 		b->bio->bi_vcnt = 0;
392 		bch_bio_map(b->bio, i);
393 
394 		bch_submit_bbio(b->bio, b->c, &k.key, 0);
395 
396 		closure_sync(cl);
397 		continue_at_nobarrier(cl, __btree_node_write_done, NULL);
398 	}
399 }
400 
401 void __bch_btree_node_write(struct btree *b, struct closure *parent)
402 {
403 	struct bset *i = btree_bset_last(b);
404 
405 	lockdep_assert_held(&b->write_lock);
406 
407 	trace_bcache_btree_write(b);
408 
409 	BUG_ON(current->bio_list);
410 	BUG_ON(b->written >= btree_blocks(b));
411 	BUG_ON(b->written && !i->keys);
412 	BUG_ON(btree_bset_first(b)->seq != i->seq);
413 	bch_check_keys(&b->keys, "writing");
414 
415 	cancel_delayed_work(&b->work);
416 
417 	/* If caller isn't waiting for write, parent refcount is cache set */
418 	down(&b->io_mutex);
419 	closure_init(&b->io, parent ?: &b->c->cl);
420 
421 	clear_bit(BTREE_NODE_dirty,	 &b->flags);
422 	change_bit(BTREE_NODE_write_idx, &b->flags);
423 
424 	do_btree_node_write(b);
425 
426 	atomic_long_add(set_blocks(i, block_bytes(b->c)) * b->c->sb.block_size,
427 			&PTR_CACHE(b->c, &b->key, 0)->btree_sectors_written);
428 
429 	b->written += set_blocks(i, block_bytes(b->c));
430 }
431 
432 void bch_btree_node_write(struct btree *b, struct closure *parent)
433 {
434 	unsigned int nsets = b->keys.nsets;
435 
436 	lockdep_assert_held(&b->lock);
437 
438 	__bch_btree_node_write(b, parent);
439 
440 	/*
441 	 * do verify if there was more than one set initially (i.e. we did a
442 	 * sort) and we sorted down to a single set:
443 	 */
444 	if (nsets && !b->keys.nsets)
445 		bch_btree_verify(b);
446 
447 	bch_btree_init_next(b);
448 }
449 
450 static void bch_btree_node_write_sync(struct btree *b)
451 {
452 	struct closure cl;
453 
454 	closure_init_stack(&cl);
455 
456 	mutex_lock(&b->write_lock);
457 	bch_btree_node_write(b, &cl);
458 	mutex_unlock(&b->write_lock);
459 
460 	closure_sync(&cl);
461 }
462 
463 static void btree_node_write_work(struct work_struct *w)
464 {
465 	struct btree *b = container_of(to_delayed_work(w), struct btree, work);
466 
467 	mutex_lock(&b->write_lock);
468 	if (btree_node_dirty(b))
469 		__bch_btree_node_write(b, NULL);
470 	mutex_unlock(&b->write_lock);
471 }
472 
473 static void bch_btree_leaf_dirty(struct btree *b, atomic_t *journal_ref)
474 {
475 	struct bset *i = btree_bset_last(b);
476 	struct btree_write *w = btree_current_write(b);
477 
478 	lockdep_assert_held(&b->write_lock);
479 
480 	BUG_ON(!b->written);
481 	BUG_ON(!i->keys);
482 
483 	if (!btree_node_dirty(b))
484 		schedule_delayed_work(&b->work, 30 * HZ);
485 
486 	set_btree_node_dirty(b);
487 
488 	/*
489 	 * w->journal is always the oldest journal pin of all bkeys
490 	 * in the leaf node, to make sure the oldest jset seq won't
491 	 * be increased before this btree node is flushed.
492 	 */
493 	if (journal_ref) {
494 		if (w->journal &&
495 		    journal_pin_cmp(b->c, w->journal, journal_ref)) {
496 			atomic_dec_bug(w->journal);
497 			w->journal = NULL;
498 		}
499 
500 		if (!w->journal) {
501 			w->journal = journal_ref;
502 			atomic_inc(w->journal);
503 		}
504 	}
505 
506 	/* Force write if set is too big */
507 	if (set_bytes(i) > PAGE_SIZE - 48 &&
508 	    !current->bio_list)
509 		bch_btree_node_write(b, NULL);
510 }
511 
512 /*
513  * Btree in memory cache - allocation/freeing
514  * mca -> memory cache
515  */
516 
517 #define mca_reserve(c)	(((c->root && c->root->level)		\
518 			  ? c->root->level : 1) * 8 + 16)
519 #define mca_can_free(c)						\
520 	max_t(int, 0, c->btree_cache_used - mca_reserve(c))
521 
522 static void mca_data_free(struct btree *b)
523 {
524 	BUG_ON(b->io_mutex.count != 1);
525 
526 	bch_btree_keys_free(&b->keys);
527 
528 	b->c->btree_cache_used--;
529 	list_move(&b->list, &b->c->btree_cache_freed);
530 }
531 
532 static void mca_bucket_free(struct btree *b)
533 {
534 	BUG_ON(btree_node_dirty(b));
535 
536 	b->key.ptr[0] = 0;
537 	hlist_del_init_rcu(&b->hash);
538 	list_move(&b->list, &b->c->btree_cache_freeable);
539 }
540 
541 static unsigned int btree_order(struct bkey *k)
542 {
543 	return ilog2(KEY_SIZE(k) / PAGE_SECTORS ?: 1);
544 }
545 
546 static void mca_data_alloc(struct btree *b, struct bkey *k, gfp_t gfp)
547 {
548 	if (!bch_btree_keys_alloc(&b->keys,
549 				  max_t(unsigned int,
550 					ilog2(b->c->btree_pages),
551 					btree_order(k)),
552 				  gfp)) {
553 		b->c->btree_cache_used++;
554 		list_move(&b->list, &b->c->btree_cache);
555 	} else {
556 		list_move(&b->list, &b->c->btree_cache_freed);
557 	}
558 }
559 
560 static struct btree *mca_bucket_alloc(struct cache_set *c,
561 				      struct bkey *k, gfp_t gfp)
562 {
563 	/*
564 	 * kzalloc() is necessary here for initialization,
565 	 * see code comments in bch_btree_keys_init().
566 	 */
567 	struct btree *b = kzalloc(sizeof(struct btree), gfp);
568 
569 	if (!b)
570 		return NULL;
571 
572 	init_rwsem(&b->lock);
573 	lockdep_set_novalidate_class(&b->lock);
574 	mutex_init(&b->write_lock);
575 	lockdep_set_novalidate_class(&b->write_lock);
576 	INIT_LIST_HEAD(&b->list);
577 	INIT_DELAYED_WORK(&b->work, btree_node_write_work);
578 	b->c = c;
579 	sema_init(&b->io_mutex, 1);
580 
581 	mca_data_alloc(b, k, gfp);
582 	return b;
583 }
584 
585 static int mca_reap(struct btree *b, unsigned int min_order, bool flush)
586 {
587 	struct closure cl;
588 
589 	closure_init_stack(&cl);
590 	lockdep_assert_held(&b->c->bucket_lock);
591 
592 	if (!down_write_trylock(&b->lock))
593 		return -ENOMEM;
594 
595 	BUG_ON(btree_node_dirty(b) && !b->keys.set[0].data);
596 
597 	if (b->keys.page_order < min_order)
598 		goto out_unlock;
599 
600 	if (!flush) {
601 		if (btree_node_dirty(b))
602 			goto out_unlock;
603 
604 		if (down_trylock(&b->io_mutex))
605 			goto out_unlock;
606 		up(&b->io_mutex);
607 	}
608 
609 retry:
610 	/*
611 	 * BTREE_NODE_dirty might be cleared in btree_flush_btree() by
612 	 * __bch_btree_node_write(). To avoid an extra flush, acquire
613 	 * b->write_lock before checking BTREE_NODE_dirty bit.
614 	 */
615 	mutex_lock(&b->write_lock);
616 	/*
617 	 * If this btree node is selected in btree_flush_write() by journal
618 	 * code, delay and retry until the node is flushed by journal code
619 	 * and BTREE_NODE_journal_flush bit cleared by btree_flush_write().
620 	 */
621 	if (btree_node_journal_flush(b)) {
622 		pr_debug("bnode %p is flushing by journal, retry", b);
623 		mutex_unlock(&b->write_lock);
624 		udelay(1);
625 		goto retry;
626 	}
627 
628 	if (btree_node_dirty(b))
629 		__bch_btree_node_write(b, &cl);
630 	mutex_unlock(&b->write_lock);
631 
632 	closure_sync(&cl);
633 
634 	/* wait for any in flight btree write */
635 	down(&b->io_mutex);
636 	up(&b->io_mutex);
637 
638 	return 0;
639 out_unlock:
640 	rw_unlock(true, b);
641 	return -ENOMEM;
642 }
643 
644 static unsigned long bch_mca_scan(struct shrinker *shrink,
645 				  struct shrink_control *sc)
646 {
647 	struct cache_set *c = container_of(shrink, struct cache_set, shrink);
648 	struct btree *b, *t;
649 	unsigned long i, nr = sc->nr_to_scan;
650 	unsigned long freed = 0;
651 	unsigned int btree_cache_used;
652 
653 	if (c->shrinker_disabled)
654 		return SHRINK_STOP;
655 
656 	if (c->btree_cache_alloc_lock)
657 		return SHRINK_STOP;
658 
659 	/* Return -1 if we can't do anything right now */
660 	if (sc->gfp_mask & __GFP_IO)
661 		mutex_lock(&c->bucket_lock);
662 	else if (!mutex_trylock(&c->bucket_lock))
663 		return -1;
664 
665 	/*
666 	 * It's _really_ critical that we don't free too many btree nodes - we
667 	 * have to always leave ourselves a reserve. The reserve is how we
668 	 * guarantee that allocating memory for a new btree node can always
669 	 * succeed, so that inserting keys into the btree can always succeed and
670 	 * IO can always make forward progress:
671 	 */
672 	nr /= c->btree_pages;
673 	if (nr == 0)
674 		nr = 1;
675 	nr = min_t(unsigned long, nr, mca_can_free(c));
676 
677 	i = 0;
678 	btree_cache_used = c->btree_cache_used;
679 	list_for_each_entry_safe_reverse(b, t, &c->btree_cache_freeable, list) {
680 		if (nr <= 0)
681 			goto out;
682 
683 		if (!mca_reap(b, 0, false)) {
684 			mca_data_free(b);
685 			rw_unlock(true, b);
686 			freed++;
687 		}
688 		nr--;
689 		i++;
690 	}
691 
692 	list_for_each_entry_safe_reverse(b, t, &c->btree_cache, list) {
693 		if (nr <= 0 || i >= btree_cache_used)
694 			goto out;
695 
696 		if (!mca_reap(b, 0, false)) {
697 			mca_bucket_free(b);
698 			mca_data_free(b);
699 			rw_unlock(true, b);
700 			freed++;
701 		}
702 
703 		nr--;
704 		i++;
705 	}
706 out:
707 	mutex_unlock(&c->bucket_lock);
708 	return freed * c->btree_pages;
709 }
710 
711 static unsigned long bch_mca_count(struct shrinker *shrink,
712 				   struct shrink_control *sc)
713 {
714 	struct cache_set *c = container_of(shrink, struct cache_set, shrink);
715 
716 	if (c->shrinker_disabled)
717 		return 0;
718 
719 	if (c->btree_cache_alloc_lock)
720 		return 0;
721 
722 	return mca_can_free(c) * c->btree_pages;
723 }
724 
725 void bch_btree_cache_free(struct cache_set *c)
726 {
727 	struct btree *b;
728 	struct closure cl;
729 
730 	closure_init_stack(&cl);
731 
732 	if (c->shrink.list.next)
733 		unregister_shrinker(&c->shrink);
734 
735 	mutex_lock(&c->bucket_lock);
736 
737 #ifdef CONFIG_BCACHE_DEBUG
738 	if (c->verify_data)
739 		list_move(&c->verify_data->list, &c->btree_cache);
740 
741 	free_pages((unsigned long) c->verify_ondisk, ilog2(bucket_pages(c)));
742 #endif
743 
744 	list_splice(&c->btree_cache_freeable,
745 		    &c->btree_cache);
746 
747 	while (!list_empty(&c->btree_cache)) {
748 		b = list_first_entry(&c->btree_cache, struct btree, list);
749 
750 		/*
751 		 * This function is called by cache_set_free(), no I/O
752 		 * request on cache now, it is unnecessary to acquire
753 		 * b->write_lock before clearing BTREE_NODE_dirty anymore.
754 		 */
755 		if (btree_node_dirty(b)) {
756 			btree_complete_write(b, btree_current_write(b));
757 			clear_bit(BTREE_NODE_dirty, &b->flags);
758 		}
759 		mca_data_free(b);
760 	}
761 
762 	while (!list_empty(&c->btree_cache_freed)) {
763 		b = list_first_entry(&c->btree_cache_freed,
764 				     struct btree, list);
765 		list_del(&b->list);
766 		cancel_delayed_work_sync(&b->work);
767 		kfree(b);
768 	}
769 
770 	mutex_unlock(&c->bucket_lock);
771 }
772 
773 int bch_btree_cache_alloc(struct cache_set *c)
774 {
775 	unsigned int i;
776 
777 	for (i = 0; i < mca_reserve(c); i++)
778 		if (!mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL))
779 			return -ENOMEM;
780 
781 	list_splice_init(&c->btree_cache,
782 			 &c->btree_cache_freeable);
783 
784 #ifdef CONFIG_BCACHE_DEBUG
785 	mutex_init(&c->verify_lock);
786 
787 	c->verify_ondisk = (void *)
788 		__get_free_pages(GFP_KERNEL, ilog2(bucket_pages(c)));
789 
790 	c->verify_data = mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL);
791 
792 	if (c->verify_data &&
793 	    c->verify_data->keys.set->data)
794 		list_del_init(&c->verify_data->list);
795 	else
796 		c->verify_data = NULL;
797 #endif
798 
799 	c->shrink.count_objects = bch_mca_count;
800 	c->shrink.scan_objects = bch_mca_scan;
801 	c->shrink.seeks = 4;
802 	c->shrink.batch = c->btree_pages * 2;
803 
804 	if (register_shrinker(&c->shrink))
805 		pr_warn("bcache: %s: could not register shrinker",
806 				__func__);
807 
808 	return 0;
809 }
810 
811 /* Btree in memory cache - hash table */
812 
813 static struct hlist_head *mca_hash(struct cache_set *c, struct bkey *k)
814 {
815 	return &c->bucket_hash[hash_32(PTR_HASH(c, k), BUCKET_HASH_BITS)];
816 }
817 
818 static struct btree *mca_find(struct cache_set *c, struct bkey *k)
819 {
820 	struct btree *b;
821 
822 	rcu_read_lock();
823 	hlist_for_each_entry_rcu(b, mca_hash(c, k), hash)
824 		if (PTR_HASH(c, &b->key) == PTR_HASH(c, k))
825 			goto out;
826 	b = NULL;
827 out:
828 	rcu_read_unlock();
829 	return b;
830 }
831 
832 static int mca_cannibalize_lock(struct cache_set *c, struct btree_op *op)
833 {
834 	spin_lock(&c->btree_cannibalize_lock);
835 	if (likely(c->btree_cache_alloc_lock == NULL)) {
836 		c->btree_cache_alloc_lock = current;
837 	} else if (c->btree_cache_alloc_lock != current) {
838 		if (op)
839 			prepare_to_wait(&c->btree_cache_wait, &op->wait,
840 					TASK_UNINTERRUPTIBLE);
841 		spin_unlock(&c->btree_cannibalize_lock);
842 		return -EINTR;
843 	}
844 	spin_unlock(&c->btree_cannibalize_lock);
845 
846 	return 0;
847 }
848 
849 static struct btree *mca_cannibalize(struct cache_set *c, struct btree_op *op,
850 				     struct bkey *k)
851 {
852 	struct btree *b;
853 
854 	trace_bcache_btree_cache_cannibalize(c);
855 
856 	if (mca_cannibalize_lock(c, op))
857 		return ERR_PTR(-EINTR);
858 
859 	list_for_each_entry_reverse(b, &c->btree_cache, list)
860 		if (!mca_reap(b, btree_order(k), false))
861 			return b;
862 
863 	list_for_each_entry_reverse(b, &c->btree_cache, list)
864 		if (!mca_reap(b, btree_order(k), true))
865 			return b;
866 
867 	WARN(1, "btree cache cannibalize failed\n");
868 	return ERR_PTR(-ENOMEM);
869 }
870 
871 /*
872  * We can only have one thread cannibalizing other cached btree nodes at a time,
873  * or we'll deadlock. We use an open coded mutex to ensure that, which a
874  * cannibalize_bucket() will take. This means every time we unlock the root of
875  * the btree, we need to release this lock if we have it held.
876  */
877 static void bch_cannibalize_unlock(struct cache_set *c)
878 {
879 	spin_lock(&c->btree_cannibalize_lock);
880 	if (c->btree_cache_alloc_lock == current) {
881 		c->btree_cache_alloc_lock = NULL;
882 		wake_up(&c->btree_cache_wait);
883 	}
884 	spin_unlock(&c->btree_cannibalize_lock);
885 }
886 
887 static struct btree *mca_alloc(struct cache_set *c, struct btree_op *op,
888 			       struct bkey *k, int level)
889 {
890 	struct btree *b;
891 
892 	BUG_ON(current->bio_list);
893 
894 	lockdep_assert_held(&c->bucket_lock);
895 
896 	if (mca_find(c, k))
897 		return NULL;
898 
899 	/* btree_free() doesn't free memory; it sticks the node on the end of
900 	 * the list. Check if there's any freed nodes there:
901 	 */
902 	list_for_each_entry(b, &c->btree_cache_freeable, list)
903 		if (!mca_reap(b, btree_order(k), false))
904 			goto out;
905 
906 	/* We never free struct btree itself, just the memory that holds the on
907 	 * disk node. Check the freed list before allocating a new one:
908 	 */
909 	list_for_each_entry(b, &c->btree_cache_freed, list)
910 		if (!mca_reap(b, 0, false)) {
911 			mca_data_alloc(b, k, __GFP_NOWARN|GFP_NOIO);
912 			if (!b->keys.set[0].data)
913 				goto err;
914 			else
915 				goto out;
916 		}
917 
918 	b = mca_bucket_alloc(c, k, __GFP_NOWARN|GFP_NOIO);
919 	if (!b)
920 		goto err;
921 
922 	BUG_ON(!down_write_trylock(&b->lock));
923 	if (!b->keys.set->data)
924 		goto err;
925 out:
926 	BUG_ON(b->io_mutex.count != 1);
927 
928 	bkey_copy(&b->key, k);
929 	list_move(&b->list, &c->btree_cache);
930 	hlist_del_init_rcu(&b->hash);
931 	hlist_add_head_rcu(&b->hash, mca_hash(c, k));
932 
933 	lock_set_subclass(&b->lock.dep_map, level + 1, _THIS_IP_);
934 	b->parent	= (void *) ~0UL;
935 	b->flags	= 0;
936 	b->written	= 0;
937 	b->level	= level;
938 
939 	if (!b->level)
940 		bch_btree_keys_init(&b->keys, &bch_extent_keys_ops,
941 				    &b->c->expensive_debug_checks);
942 	else
943 		bch_btree_keys_init(&b->keys, &bch_btree_keys_ops,
944 				    &b->c->expensive_debug_checks);
945 
946 	return b;
947 err:
948 	if (b)
949 		rw_unlock(true, b);
950 
951 	b = mca_cannibalize(c, op, k);
952 	if (!IS_ERR(b))
953 		goto out;
954 
955 	return b;
956 }
957 
958 /*
959  * bch_btree_node_get - find a btree node in the cache and lock it, reading it
960  * in from disk if necessary.
961  *
962  * If IO is necessary and running under generic_make_request, returns -EAGAIN.
963  *
964  * The btree node will have either a read or a write lock held, depending on
965  * level and op->lock.
966  */
967 struct btree *bch_btree_node_get(struct cache_set *c, struct btree_op *op,
968 				 struct bkey *k, int level, bool write,
969 				 struct btree *parent)
970 {
971 	int i = 0;
972 	struct btree *b;
973 
974 	BUG_ON(level < 0);
975 retry:
976 	b = mca_find(c, k);
977 
978 	if (!b) {
979 		if (current->bio_list)
980 			return ERR_PTR(-EAGAIN);
981 
982 		mutex_lock(&c->bucket_lock);
983 		b = mca_alloc(c, op, k, level);
984 		mutex_unlock(&c->bucket_lock);
985 
986 		if (!b)
987 			goto retry;
988 		if (IS_ERR(b))
989 			return b;
990 
991 		bch_btree_node_read(b);
992 
993 		if (!write)
994 			downgrade_write(&b->lock);
995 	} else {
996 		rw_lock(write, b, level);
997 		if (PTR_HASH(c, &b->key) != PTR_HASH(c, k)) {
998 			rw_unlock(write, b);
999 			goto retry;
1000 		}
1001 		BUG_ON(b->level != level);
1002 	}
1003 
1004 	if (btree_node_io_error(b)) {
1005 		rw_unlock(write, b);
1006 		return ERR_PTR(-EIO);
1007 	}
1008 
1009 	BUG_ON(!b->written);
1010 
1011 	b->parent = parent;
1012 
1013 	for (; i <= b->keys.nsets && b->keys.set[i].size; i++) {
1014 		prefetch(b->keys.set[i].tree);
1015 		prefetch(b->keys.set[i].data);
1016 	}
1017 
1018 	for (; i <= b->keys.nsets; i++)
1019 		prefetch(b->keys.set[i].data);
1020 
1021 	return b;
1022 }
1023 
1024 static void btree_node_prefetch(struct btree *parent, struct bkey *k)
1025 {
1026 	struct btree *b;
1027 
1028 	mutex_lock(&parent->c->bucket_lock);
1029 	b = mca_alloc(parent->c, NULL, k, parent->level - 1);
1030 	mutex_unlock(&parent->c->bucket_lock);
1031 
1032 	if (!IS_ERR_OR_NULL(b)) {
1033 		b->parent = parent;
1034 		bch_btree_node_read(b);
1035 		rw_unlock(true, b);
1036 	}
1037 }
1038 
1039 /* Btree alloc */
1040 
1041 static void btree_node_free(struct btree *b)
1042 {
1043 	trace_bcache_btree_node_free(b);
1044 
1045 	BUG_ON(b == b->c->root);
1046 
1047 retry:
1048 	mutex_lock(&b->write_lock);
1049 	/*
1050 	 * If the btree node is selected and flushing in btree_flush_write(),
1051 	 * delay and retry until the BTREE_NODE_journal_flush bit cleared,
1052 	 * then it is safe to free the btree node here. Otherwise this btree
1053 	 * node will be in race condition.
1054 	 */
1055 	if (btree_node_journal_flush(b)) {
1056 		mutex_unlock(&b->write_lock);
1057 		pr_debug("bnode %p journal_flush set, retry", b);
1058 		udelay(1);
1059 		goto retry;
1060 	}
1061 
1062 	if (btree_node_dirty(b)) {
1063 		btree_complete_write(b, btree_current_write(b));
1064 		clear_bit(BTREE_NODE_dirty, &b->flags);
1065 	}
1066 
1067 	mutex_unlock(&b->write_lock);
1068 
1069 	cancel_delayed_work(&b->work);
1070 
1071 	mutex_lock(&b->c->bucket_lock);
1072 	bch_bucket_free(b->c, &b->key);
1073 	mca_bucket_free(b);
1074 	mutex_unlock(&b->c->bucket_lock);
1075 }
1076 
1077 struct btree *__bch_btree_node_alloc(struct cache_set *c, struct btree_op *op,
1078 				     int level, bool wait,
1079 				     struct btree *parent)
1080 {
1081 	BKEY_PADDED(key) k;
1082 	struct btree *b = ERR_PTR(-EAGAIN);
1083 
1084 	mutex_lock(&c->bucket_lock);
1085 retry:
1086 	if (__bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, 1, wait))
1087 		goto err;
1088 
1089 	bkey_put(c, &k.key);
1090 	SET_KEY_SIZE(&k.key, c->btree_pages * PAGE_SECTORS);
1091 
1092 	b = mca_alloc(c, op, &k.key, level);
1093 	if (IS_ERR(b))
1094 		goto err_free;
1095 
1096 	if (!b) {
1097 		cache_bug(c,
1098 			"Tried to allocate bucket that was in btree cache");
1099 		goto retry;
1100 	}
1101 
1102 	b->parent = parent;
1103 	bch_bset_init_next(&b->keys, b->keys.set->data, bset_magic(&b->c->sb));
1104 
1105 	mutex_unlock(&c->bucket_lock);
1106 
1107 	trace_bcache_btree_node_alloc(b);
1108 	return b;
1109 err_free:
1110 	bch_bucket_free(c, &k.key);
1111 err:
1112 	mutex_unlock(&c->bucket_lock);
1113 
1114 	trace_bcache_btree_node_alloc_fail(c);
1115 	return b;
1116 }
1117 
1118 static struct btree *bch_btree_node_alloc(struct cache_set *c,
1119 					  struct btree_op *op, int level,
1120 					  struct btree *parent)
1121 {
1122 	return __bch_btree_node_alloc(c, op, level, op != NULL, parent);
1123 }
1124 
1125 static struct btree *btree_node_alloc_replacement(struct btree *b,
1126 						  struct btree_op *op)
1127 {
1128 	struct btree *n = bch_btree_node_alloc(b->c, op, b->level, b->parent);
1129 
1130 	if (!IS_ERR_OR_NULL(n)) {
1131 		mutex_lock(&n->write_lock);
1132 		bch_btree_sort_into(&b->keys, &n->keys, &b->c->sort);
1133 		bkey_copy_key(&n->key, &b->key);
1134 		mutex_unlock(&n->write_lock);
1135 	}
1136 
1137 	return n;
1138 }
1139 
1140 static void make_btree_freeing_key(struct btree *b, struct bkey *k)
1141 {
1142 	unsigned int i;
1143 
1144 	mutex_lock(&b->c->bucket_lock);
1145 
1146 	atomic_inc(&b->c->prio_blocked);
1147 
1148 	bkey_copy(k, &b->key);
1149 	bkey_copy_key(k, &ZERO_KEY);
1150 
1151 	for (i = 0; i < KEY_PTRS(k); i++)
1152 		SET_PTR_GEN(k, i,
1153 			    bch_inc_gen(PTR_CACHE(b->c, &b->key, i),
1154 					PTR_BUCKET(b->c, &b->key, i)));
1155 
1156 	mutex_unlock(&b->c->bucket_lock);
1157 }
1158 
1159 static int btree_check_reserve(struct btree *b, struct btree_op *op)
1160 {
1161 	struct cache_set *c = b->c;
1162 	struct cache *ca;
1163 	unsigned int i, reserve = (c->root->level - b->level) * 2 + 1;
1164 
1165 	mutex_lock(&c->bucket_lock);
1166 
1167 	for_each_cache(ca, c, i)
1168 		if (fifo_used(&ca->free[RESERVE_BTREE]) < reserve) {
1169 			if (op)
1170 				prepare_to_wait(&c->btree_cache_wait, &op->wait,
1171 						TASK_UNINTERRUPTIBLE);
1172 			mutex_unlock(&c->bucket_lock);
1173 			return -EINTR;
1174 		}
1175 
1176 	mutex_unlock(&c->bucket_lock);
1177 
1178 	return mca_cannibalize_lock(b->c, op);
1179 }
1180 
1181 /* Garbage collection */
1182 
1183 static uint8_t __bch_btree_mark_key(struct cache_set *c, int level,
1184 				    struct bkey *k)
1185 {
1186 	uint8_t stale = 0;
1187 	unsigned int i;
1188 	struct bucket *g;
1189 
1190 	/*
1191 	 * ptr_invalid() can't return true for the keys that mark btree nodes as
1192 	 * freed, but since ptr_bad() returns true we'll never actually use them
1193 	 * for anything and thus we don't want mark their pointers here
1194 	 */
1195 	if (!bkey_cmp(k, &ZERO_KEY))
1196 		return stale;
1197 
1198 	for (i = 0; i < KEY_PTRS(k); i++) {
1199 		if (!ptr_available(c, k, i))
1200 			continue;
1201 
1202 		g = PTR_BUCKET(c, k, i);
1203 
1204 		if (gen_after(g->last_gc, PTR_GEN(k, i)))
1205 			g->last_gc = PTR_GEN(k, i);
1206 
1207 		if (ptr_stale(c, k, i)) {
1208 			stale = max(stale, ptr_stale(c, k, i));
1209 			continue;
1210 		}
1211 
1212 		cache_bug_on(GC_MARK(g) &&
1213 			     (GC_MARK(g) == GC_MARK_METADATA) != (level != 0),
1214 			     c, "inconsistent ptrs: mark = %llu, level = %i",
1215 			     GC_MARK(g), level);
1216 
1217 		if (level)
1218 			SET_GC_MARK(g, GC_MARK_METADATA);
1219 		else if (KEY_DIRTY(k))
1220 			SET_GC_MARK(g, GC_MARK_DIRTY);
1221 		else if (!GC_MARK(g))
1222 			SET_GC_MARK(g, GC_MARK_RECLAIMABLE);
1223 
1224 		/* guard against overflow */
1225 		SET_GC_SECTORS_USED(g, min_t(unsigned int,
1226 					     GC_SECTORS_USED(g) + KEY_SIZE(k),
1227 					     MAX_GC_SECTORS_USED));
1228 
1229 		BUG_ON(!GC_SECTORS_USED(g));
1230 	}
1231 
1232 	return stale;
1233 }
1234 
1235 #define btree_mark_key(b, k)	__bch_btree_mark_key(b->c, b->level, k)
1236 
1237 void bch_initial_mark_key(struct cache_set *c, int level, struct bkey *k)
1238 {
1239 	unsigned int i;
1240 
1241 	for (i = 0; i < KEY_PTRS(k); i++)
1242 		if (ptr_available(c, k, i) &&
1243 		    !ptr_stale(c, k, i)) {
1244 			struct bucket *b = PTR_BUCKET(c, k, i);
1245 
1246 			b->gen = PTR_GEN(k, i);
1247 
1248 			if (level && bkey_cmp(k, &ZERO_KEY))
1249 				b->prio = BTREE_PRIO;
1250 			else if (!level && b->prio == BTREE_PRIO)
1251 				b->prio = INITIAL_PRIO;
1252 		}
1253 
1254 	__bch_btree_mark_key(c, level, k);
1255 }
1256 
1257 void bch_update_bucket_in_use(struct cache_set *c, struct gc_stat *stats)
1258 {
1259 	stats->in_use = (c->nbuckets - c->avail_nbuckets) * 100 / c->nbuckets;
1260 }
1261 
1262 static bool btree_gc_mark_node(struct btree *b, struct gc_stat *gc)
1263 {
1264 	uint8_t stale = 0;
1265 	unsigned int keys = 0, good_keys = 0;
1266 	struct bkey *k;
1267 	struct btree_iter iter;
1268 	struct bset_tree *t;
1269 
1270 	gc->nodes++;
1271 
1272 	for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid) {
1273 		stale = max(stale, btree_mark_key(b, k));
1274 		keys++;
1275 
1276 		if (bch_ptr_bad(&b->keys, k))
1277 			continue;
1278 
1279 		gc->key_bytes += bkey_u64s(k);
1280 		gc->nkeys++;
1281 		good_keys++;
1282 
1283 		gc->data += KEY_SIZE(k);
1284 	}
1285 
1286 	for (t = b->keys.set; t <= &b->keys.set[b->keys.nsets]; t++)
1287 		btree_bug_on(t->size &&
1288 			     bset_written(&b->keys, t) &&
1289 			     bkey_cmp(&b->key, &t->end) < 0,
1290 			     b, "found short btree key in gc");
1291 
1292 	if (b->c->gc_always_rewrite)
1293 		return true;
1294 
1295 	if (stale > 10)
1296 		return true;
1297 
1298 	if ((keys - good_keys) * 2 > keys)
1299 		return true;
1300 
1301 	return false;
1302 }
1303 
1304 #define GC_MERGE_NODES	4U
1305 
1306 struct gc_merge_info {
1307 	struct btree	*b;
1308 	unsigned int	keys;
1309 };
1310 
1311 static int bch_btree_insert_node(struct btree *b, struct btree_op *op,
1312 				 struct keylist *insert_keys,
1313 				 atomic_t *journal_ref,
1314 				 struct bkey *replace_key);
1315 
1316 static int btree_gc_coalesce(struct btree *b, struct btree_op *op,
1317 			     struct gc_stat *gc, struct gc_merge_info *r)
1318 {
1319 	unsigned int i, nodes = 0, keys = 0, blocks;
1320 	struct btree *new_nodes[GC_MERGE_NODES];
1321 	struct keylist keylist;
1322 	struct closure cl;
1323 	struct bkey *k;
1324 
1325 	bch_keylist_init(&keylist);
1326 
1327 	if (btree_check_reserve(b, NULL))
1328 		return 0;
1329 
1330 	memset(new_nodes, 0, sizeof(new_nodes));
1331 	closure_init_stack(&cl);
1332 
1333 	while (nodes < GC_MERGE_NODES && !IS_ERR_OR_NULL(r[nodes].b))
1334 		keys += r[nodes++].keys;
1335 
1336 	blocks = btree_default_blocks(b->c) * 2 / 3;
1337 
1338 	if (nodes < 2 ||
1339 	    __set_blocks(b->keys.set[0].data, keys,
1340 			 block_bytes(b->c)) > blocks * (nodes - 1))
1341 		return 0;
1342 
1343 	for (i = 0; i < nodes; i++) {
1344 		new_nodes[i] = btree_node_alloc_replacement(r[i].b, NULL);
1345 		if (IS_ERR_OR_NULL(new_nodes[i]))
1346 			goto out_nocoalesce;
1347 	}
1348 
1349 	/*
1350 	 * We have to check the reserve here, after we've allocated our new
1351 	 * nodes, to make sure the insert below will succeed - we also check
1352 	 * before as an optimization to potentially avoid a bunch of expensive
1353 	 * allocs/sorts
1354 	 */
1355 	if (btree_check_reserve(b, NULL))
1356 		goto out_nocoalesce;
1357 
1358 	for (i = 0; i < nodes; i++)
1359 		mutex_lock(&new_nodes[i]->write_lock);
1360 
1361 	for (i = nodes - 1; i > 0; --i) {
1362 		struct bset *n1 = btree_bset_first(new_nodes[i]);
1363 		struct bset *n2 = btree_bset_first(new_nodes[i - 1]);
1364 		struct bkey *k, *last = NULL;
1365 
1366 		keys = 0;
1367 
1368 		if (i > 1) {
1369 			for (k = n2->start;
1370 			     k < bset_bkey_last(n2);
1371 			     k = bkey_next(k)) {
1372 				if (__set_blocks(n1, n1->keys + keys +
1373 						 bkey_u64s(k),
1374 						 block_bytes(b->c)) > blocks)
1375 					break;
1376 
1377 				last = k;
1378 				keys += bkey_u64s(k);
1379 			}
1380 		} else {
1381 			/*
1382 			 * Last node we're not getting rid of - we're getting
1383 			 * rid of the node at r[0]. Have to try and fit all of
1384 			 * the remaining keys into this node; we can't ensure
1385 			 * they will always fit due to rounding and variable
1386 			 * length keys (shouldn't be possible in practice,
1387 			 * though)
1388 			 */
1389 			if (__set_blocks(n1, n1->keys + n2->keys,
1390 					 block_bytes(b->c)) >
1391 			    btree_blocks(new_nodes[i]))
1392 				goto out_nocoalesce;
1393 
1394 			keys = n2->keys;
1395 			/* Take the key of the node we're getting rid of */
1396 			last = &r->b->key;
1397 		}
1398 
1399 		BUG_ON(__set_blocks(n1, n1->keys + keys, block_bytes(b->c)) >
1400 		       btree_blocks(new_nodes[i]));
1401 
1402 		if (last)
1403 			bkey_copy_key(&new_nodes[i]->key, last);
1404 
1405 		memcpy(bset_bkey_last(n1),
1406 		       n2->start,
1407 		       (void *) bset_bkey_idx(n2, keys) - (void *) n2->start);
1408 
1409 		n1->keys += keys;
1410 		r[i].keys = n1->keys;
1411 
1412 		memmove(n2->start,
1413 			bset_bkey_idx(n2, keys),
1414 			(void *) bset_bkey_last(n2) -
1415 			(void *) bset_bkey_idx(n2, keys));
1416 
1417 		n2->keys -= keys;
1418 
1419 		if (__bch_keylist_realloc(&keylist,
1420 					  bkey_u64s(&new_nodes[i]->key)))
1421 			goto out_nocoalesce;
1422 
1423 		bch_btree_node_write(new_nodes[i], &cl);
1424 		bch_keylist_add(&keylist, &new_nodes[i]->key);
1425 	}
1426 
1427 	for (i = 0; i < nodes; i++)
1428 		mutex_unlock(&new_nodes[i]->write_lock);
1429 
1430 	closure_sync(&cl);
1431 
1432 	/* We emptied out this node */
1433 	BUG_ON(btree_bset_first(new_nodes[0])->keys);
1434 	btree_node_free(new_nodes[0]);
1435 	rw_unlock(true, new_nodes[0]);
1436 	new_nodes[0] = NULL;
1437 
1438 	for (i = 0; i < nodes; i++) {
1439 		if (__bch_keylist_realloc(&keylist, bkey_u64s(&r[i].b->key)))
1440 			goto out_nocoalesce;
1441 
1442 		make_btree_freeing_key(r[i].b, keylist.top);
1443 		bch_keylist_push(&keylist);
1444 	}
1445 
1446 	bch_btree_insert_node(b, op, &keylist, NULL, NULL);
1447 	BUG_ON(!bch_keylist_empty(&keylist));
1448 
1449 	for (i = 0; i < nodes; i++) {
1450 		btree_node_free(r[i].b);
1451 		rw_unlock(true, r[i].b);
1452 
1453 		r[i].b = new_nodes[i];
1454 	}
1455 
1456 	memmove(r, r + 1, sizeof(r[0]) * (nodes - 1));
1457 	r[nodes - 1].b = ERR_PTR(-EINTR);
1458 
1459 	trace_bcache_btree_gc_coalesce(nodes);
1460 	gc->nodes--;
1461 
1462 	bch_keylist_free(&keylist);
1463 
1464 	/* Invalidated our iterator */
1465 	return -EINTR;
1466 
1467 out_nocoalesce:
1468 	closure_sync(&cl);
1469 
1470 	while ((k = bch_keylist_pop(&keylist)))
1471 		if (!bkey_cmp(k, &ZERO_KEY))
1472 			atomic_dec(&b->c->prio_blocked);
1473 	bch_keylist_free(&keylist);
1474 
1475 	for (i = 0; i < nodes; i++)
1476 		if (!IS_ERR_OR_NULL(new_nodes[i])) {
1477 			btree_node_free(new_nodes[i]);
1478 			rw_unlock(true, new_nodes[i]);
1479 		}
1480 	return 0;
1481 }
1482 
1483 static int btree_gc_rewrite_node(struct btree *b, struct btree_op *op,
1484 				 struct btree *replace)
1485 {
1486 	struct keylist keys;
1487 	struct btree *n;
1488 
1489 	if (btree_check_reserve(b, NULL))
1490 		return 0;
1491 
1492 	n = btree_node_alloc_replacement(replace, NULL);
1493 
1494 	/* recheck reserve after allocating replacement node */
1495 	if (btree_check_reserve(b, NULL)) {
1496 		btree_node_free(n);
1497 		rw_unlock(true, n);
1498 		return 0;
1499 	}
1500 
1501 	bch_btree_node_write_sync(n);
1502 
1503 	bch_keylist_init(&keys);
1504 	bch_keylist_add(&keys, &n->key);
1505 
1506 	make_btree_freeing_key(replace, keys.top);
1507 	bch_keylist_push(&keys);
1508 
1509 	bch_btree_insert_node(b, op, &keys, NULL, NULL);
1510 	BUG_ON(!bch_keylist_empty(&keys));
1511 
1512 	btree_node_free(replace);
1513 	rw_unlock(true, n);
1514 
1515 	/* Invalidated our iterator */
1516 	return -EINTR;
1517 }
1518 
1519 static unsigned int btree_gc_count_keys(struct btree *b)
1520 {
1521 	struct bkey *k;
1522 	struct btree_iter iter;
1523 	unsigned int ret = 0;
1524 
1525 	for_each_key_filter(&b->keys, k, &iter, bch_ptr_bad)
1526 		ret += bkey_u64s(k);
1527 
1528 	return ret;
1529 }
1530 
1531 static size_t btree_gc_min_nodes(struct cache_set *c)
1532 {
1533 	size_t min_nodes;
1534 
1535 	/*
1536 	 * Since incremental GC would stop 100ms when front
1537 	 * side I/O comes, so when there are many btree nodes,
1538 	 * if GC only processes constant (100) nodes each time,
1539 	 * GC would last a long time, and the front side I/Os
1540 	 * would run out of the buckets (since no new bucket
1541 	 * can be allocated during GC), and be blocked again.
1542 	 * So GC should not process constant nodes, but varied
1543 	 * nodes according to the number of btree nodes, which
1544 	 * realized by dividing GC into constant(100) times,
1545 	 * so when there are many btree nodes, GC can process
1546 	 * more nodes each time, otherwise, GC will process less
1547 	 * nodes each time (but no less than MIN_GC_NODES)
1548 	 */
1549 	min_nodes = c->gc_stats.nodes / MAX_GC_TIMES;
1550 	if (min_nodes < MIN_GC_NODES)
1551 		min_nodes = MIN_GC_NODES;
1552 
1553 	return min_nodes;
1554 }
1555 
1556 
1557 static int btree_gc_recurse(struct btree *b, struct btree_op *op,
1558 			    struct closure *writes, struct gc_stat *gc)
1559 {
1560 	int ret = 0;
1561 	bool should_rewrite;
1562 	struct bkey *k;
1563 	struct btree_iter iter;
1564 	struct gc_merge_info r[GC_MERGE_NODES];
1565 	struct gc_merge_info *i, *last = r + ARRAY_SIZE(r) - 1;
1566 
1567 	bch_btree_iter_init(&b->keys, &iter, &b->c->gc_done);
1568 
1569 	for (i = r; i < r + ARRAY_SIZE(r); i++)
1570 		i->b = ERR_PTR(-EINTR);
1571 
1572 	while (1) {
1573 		k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad);
1574 		if (k) {
1575 			r->b = bch_btree_node_get(b->c, op, k, b->level - 1,
1576 						  true, b);
1577 			if (IS_ERR(r->b)) {
1578 				ret = PTR_ERR(r->b);
1579 				break;
1580 			}
1581 
1582 			r->keys = btree_gc_count_keys(r->b);
1583 
1584 			ret = btree_gc_coalesce(b, op, gc, r);
1585 			if (ret)
1586 				break;
1587 		}
1588 
1589 		if (!last->b)
1590 			break;
1591 
1592 		if (!IS_ERR(last->b)) {
1593 			should_rewrite = btree_gc_mark_node(last->b, gc);
1594 			if (should_rewrite) {
1595 				ret = btree_gc_rewrite_node(b, op, last->b);
1596 				if (ret)
1597 					break;
1598 			}
1599 
1600 			if (last->b->level) {
1601 				ret = btree_gc_recurse(last->b, op, writes, gc);
1602 				if (ret)
1603 					break;
1604 			}
1605 
1606 			bkey_copy_key(&b->c->gc_done, &last->b->key);
1607 
1608 			/*
1609 			 * Must flush leaf nodes before gc ends, since replace
1610 			 * operations aren't journalled
1611 			 */
1612 			mutex_lock(&last->b->write_lock);
1613 			if (btree_node_dirty(last->b))
1614 				bch_btree_node_write(last->b, writes);
1615 			mutex_unlock(&last->b->write_lock);
1616 			rw_unlock(true, last->b);
1617 		}
1618 
1619 		memmove(r + 1, r, sizeof(r[0]) * (GC_MERGE_NODES - 1));
1620 		r->b = NULL;
1621 
1622 		if (atomic_read(&b->c->search_inflight) &&
1623 		    gc->nodes >= gc->nodes_pre + btree_gc_min_nodes(b->c)) {
1624 			gc->nodes_pre =  gc->nodes;
1625 			ret = -EAGAIN;
1626 			break;
1627 		}
1628 
1629 		if (need_resched()) {
1630 			ret = -EAGAIN;
1631 			break;
1632 		}
1633 	}
1634 
1635 	for (i = r; i < r + ARRAY_SIZE(r); i++)
1636 		if (!IS_ERR_OR_NULL(i->b)) {
1637 			mutex_lock(&i->b->write_lock);
1638 			if (btree_node_dirty(i->b))
1639 				bch_btree_node_write(i->b, writes);
1640 			mutex_unlock(&i->b->write_lock);
1641 			rw_unlock(true, i->b);
1642 		}
1643 
1644 	return ret;
1645 }
1646 
1647 static int bch_btree_gc_root(struct btree *b, struct btree_op *op,
1648 			     struct closure *writes, struct gc_stat *gc)
1649 {
1650 	struct btree *n = NULL;
1651 	int ret = 0;
1652 	bool should_rewrite;
1653 
1654 	should_rewrite = btree_gc_mark_node(b, gc);
1655 	if (should_rewrite) {
1656 		n = btree_node_alloc_replacement(b, NULL);
1657 
1658 		if (!IS_ERR_OR_NULL(n)) {
1659 			bch_btree_node_write_sync(n);
1660 
1661 			bch_btree_set_root(n);
1662 			btree_node_free(b);
1663 			rw_unlock(true, n);
1664 
1665 			return -EINTR;
1666 		}
1667 	}
1668 
1669 	__bch_btree_mark_key(b->c, b->level + 1, &b->key);
1670 
1671 	if (b->level) {
1672 		ret = btree_gc_recurse(b, op, writes, gc);
1673 		if (ret)
1674 			return ret;
1675 	}
1676 
1677 	bkey_copy_key(&b->c->gc_done, &b->key);
1678 
1679 	return ret;
1680 }
1681 
1682 static void btree_gc_start(struct cache_set *c)
1683 {
1684 	struct cache *ca;
1685 	struct bucket *b;
1686 	unsigned int i;
1687 
1688 	if (!c->gc_mark_valid)
1689 		return;
1690 
1691 	mutex_lock(&c->bucket_lock);
1692 
1693 	c->gc_mark_valid = 0;
1694 	c->gc_done = ZERO_KEY;
1695 
1696 	for_each_cache(ca, c, i)
1697 		for_each_bucket(b, ca) {
1698 			b->last_gc = b->gen;
1699 			if (!atomic_read(&b->pin)) {
1700 				SET_GC_MARK(b, 0);
1701 				SET_GC_SECTORS_USED(b, 0);
1702 			}
1703 		}
1704 
1705 	mutex_unlock(&c->bucket_lock);
1706 }
1707 
1708 static void bch_btree_gc_finish(struct cache_set *c)
1709 {
1710 	struct bucket *b;
1711 	struct cache *ca;
1712 	unsigned int i;
1713 
1714 	mutex_lock(&c->bucket_lock);
1715 
1716 	set_gc_sectors(c);
1717 	c->gc_mark_valid = 1;
1718 	c->need_gc	= 0;
1719 
1720 	for (i = 0; i < KEY_PTRS(&c->uuid_bucket); i++)
1721 		SET_GC_MARK(PTR_BUCKET(c, &c->uuid_bucket, i),
1722 			    GC_MARK_METADATA);
1723 
1724 	/* don't reclaim buckets to which writeback keys point */
1725 	rcu_read_lock();
1726 	for (i = 0; i < c->devices_max_used; i++) {
1727 		struct bcache_device *d = c->devices[i];
1728 		struct cached_dev *dc;
1729 		struct keybuf_key *w, *n;
1730 		unsigned int j;
1731 
1732 		if (!d || UUID_FLASH_ONLY(&c->uuids[i]))
1733 			continue;
1734 		dc = container_of(d, struct cached_dev, disk);
1735 
1736 		spin_lock(&dc->writeback_keys.lock);
1737 		rbtree_postorder_for_each_entry_safe(w, n,
1738 					&dc->writeback_keys.keys, node)
1739 			for (j = 0; j < KEY_PTRS(&w->key); j++)
1740 				SET_GC_MARK(PTR_BUCKET(c, &w->key, j),
1741 					    GC_MARK_DIRTY);
1742 		spin_unlock(&dc->writeback_keys.lock);
1743 	}
1744 	rcu_read_unlock();
1745 
1746 	c->avail_nbuckets = 0;
1747 	for_each_cache(ca, c, i) {
1748 		uint64_t *i;
1749 
1750 		ca->invalidate_needs_gc = 0;
1751 
1752 		for (i = ca->sb.d; i < ca->sb.d + ca->sb.keys; i++)
1753 			SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA);
1754 
1755 		for (i = ca->prio_buckets;
1756 		     i < ca->prio_buckets + prio_buckets(ca) * 2; i++)
1757 			SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA);
1758 
1759 		for_each_bucket(b, ca) {
1760 			c->need_gc	= max(c->need_gc, bucket_gc_gen(b));
1761 
1762 			if (atomic_read(&b->pin))
1763 				continue;
1764 
1765 			BUG_ON(!GC_MARK(b) && GC_SECTORS_USED(b));
1766 
1767 			if (!GC_MARK(b) || GC_MARK(b) == GC_MARK_RECLAIMABLE)
1768 				c->avail_nbuckets++;
1769 		}
1770 	}
1771 
1772 	mutex_unlock(&c->bucket_lock);
1773 }
1774 
1775 static void bch_btree_gc(struct cache_set *c)
1776 {
1777 	int ret;
1778 	struct gc_stat stats;
1779 	struct closure writes;
1780 	struct btree_op op;
1781 	uint64_t start_time = local_clock();
1782 
1783 	trace_bcache_gc_start(c);
1784 
1785 	memset(&stats, 0, sizeof(struct gc_stat));
1786 	closure_init_stack(&writes);
1787 	bch_btree_op_init(&op, SHRT_MAX);
1788 
1789 	btree_gc_start(c);
1790 
1791 	/* if CACHE_SET_IO_DISABLE set, gc thread should stop too */
1792 	do {
1793 		ret = bcache_btree_root(gc_root, c, &op, &writes, &stats);
1794 		closure_sync(&writes);
1795 		cond_resched();
1796 
1797 		if (ret == -EAGAIN)
1798 			schedule_timeout_interruptible(msecs_to_jiffies
1799 						       (GC_SLEEP_MS));
1800 		else if (ret)
1801 			pr_warn("gc failed!");
1802 	} while (ret && !test_bit(CACHE_SET_IO_DISABLE, &c->flags));
1803 
1804 	bch_btree_gc_finish(c);
1805 	wake_up_allocators(c);
1806 
1807 	bch_time_stats_update(&c->btree_gc_time, start_time);
1808 
1809 	stats.key_bytes *= sizeof(uint64_t);
1810 	stats.data	<<= 9;
1811 	bch_update_bucket_in_use(c, &stats);
1812 	memcpy(&c->gc_stats, &stats, sizeof(struct gc_stat));
1813 
1814 	trace_bcache_gc_end(c);
1815 
1816 	bch_moving_gc(c);
1817 }
1818 
1819 static bool gc_should_run(struct cache_set *c)
1820 {
1821 	struct cache *ca;
1822 	unsigned int i;
1823 
1824 	for_each_cache(ca, c, i)
1825 		if (ca->invalidate_needs_gc)
1826 			return true;
1827 
1828 	if (atomic_read(&c->sectors_to_gc) < 0)
1829 		return true;
1830 
1831 	return false;
1832 }
1833 
1834 static int bch_gc_thread(void *arg)
1835 {
1836 	struct cache_set *c = arg;
1837 
1838 	while (1) {
1839 		wait_event_interruptible(c->gc_wait,
1840 			   kthread_should_stop() ||
1841 			   test_bit(CACHE_SET_IO_DISABLE, &c->flags) ||
1842 			   gc_should_run(c));
1843 
1844 		if (kthread_should_stop() ||
1845 		    test_bit(CACHE_SET_IO_DISABLE, &c->flags))
1846 			break;
1847 
1848 		set_gc_sectors(c);
1849 		bch_btree_gc(c);
1850 	}
1851 
1852 	wait_for_kthread_stop();
1853 	return 0;
1854 }
1855 
1856 int bch_gc_thread_start(struct cache_set *c)
1857 {
1858 	c->gc_thread = kthread_run(bch_gc_thread, c, "bcache_gc");
1859 	return PTR_ERR_OR_ZERO(c->gc_thread);
1860 }
1861 
1862 /* Initial partial gc */
1863 
1864 static int bch_btree_check_recurse(struct btree *b, struct btree_op *op)
1865 {
1866 	int ret = 0;
1867 	struct bkey *k, *p = NULL;
1868 	struct btree_iter iter;
1869 
1870 	for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid)
1871 		bch_initial_mark_key(b->c, b->level, k);
1872 
1873 	bch_initial_mark_key(b->c, b->level + 1, &b->key);
1874 
1875 	if (b->level) {
1876 		bch_btree_iter_init(&b->keys, &iter, NULL);
1877 
1878 		do {
1879 			k = bch_btree_iter_next_filter(&iter, &b->keys,
1880 						       bch_ptr_bad);
1881 			if (k) {
1882 				btree_node_prefetch(b, k);
1883 				/*
1884 				 * initiallize c->gc_stats.nodes
1885 				 * for incremental GC
1886 				 */
1887 				b->c->gc_stats.nodes++;
1888 			}
1889 
1890 			if (p)
1891 				ret = bcache_btree(check_recurse, p, b, op);
1892 
1893 			p = k;
1894 		} while (p && !ret);
1895 	}
1896 
1897 	return ret;
1898 }
1899 
1900 
1901 static int bch_btree_check_thread(void *arg)
1902 {
1903 	int ret;
1904 	struct btree_check_info *info = arg;
1905 	struct btree_check_state *check_state = info->state;
1906 	struct cache_set *c = check_state->c;
1907 	struct btree_iter iter;
1908 	struct bkey *k, *p;
1909 	int cur_idx, prev_idx, skip_nr;
1910 	int i, n;
1911 
1912 	k = p = NULL;
1913 	i = n = 0;
1914 	cur_idx = prev_idx = 0;
1915 	ret = 0;
1916 
1917 	/* root node keys are checked before thread created */
1918 	bch_btree_iter_init(&c->root->keys, &iter, NULL);
1919 	k = bch_btree_iter_next_filter(&iter, &c->root->keys, bch_ptr_bad);
1920 	BUG_ON(!k);
1921 
1922 	p = k;
1923 	while (k) {
1924 		/*
1925 		 * Fetch a root node key index, skip the keys which
1926 		 * should be fetched by other threads, then check the
1927 		 * sub-tree indexed by the fetched key.
1928 		 */
1929 		spin_lock(&check_state->idx_lock);
1930 		cur_idx = check_state->key_idx;
1931 		check_state->key_idx++;
1932 		spin_unlock(&check_state->idx_lock);
1933 
1934 		skip_nr = cur_idx - prev_idx;
1935 
1936 		while (skip_nr) {
1937 			k = bch_btree_iter_next_filter(&iter,
1938 						       &c->root->keys,
1939 						       bch_ptr_bad);
1940 			if (k)
1941 				p = k;
1942 			else {
1943 				/*
1944 				 * No more keys to check in root node,
1945 				 * current checking threads are enough,
1946 				 * stop creating more.
1947 				 */
1948 				atomic_set(&check_state->enough, 1);
1949 				/* Update check_state->enough earlier */
1950 				smp_mb__after_atomic();
1951 				goto out;
1952 			}
1953 			skip_nr--;
1954 			cond_resched();
1955 		}
1956 
1957 		if (p) {
1958 			struct btree_op op;
1959 
1960 			btree_node_prefetch(c->root, p);
1961 			c->gc_stats.nodes++;
1962 			bch_btree_op_init(&op, 0);
1963 			ret = bcache_btree(check_recurse, p, c->root, &op);
1964 			if (ret)
1965 				goto out;
1966 		}
1967 		p = NULL;
1968 		prev_idx = cur_idx;
1969 		cond_resched();
1970 	}
1971 
1972 out:
1973 	info->result = ret;
1974 	/* update check_state->started among all CPUs */
1975 	smp_mb__before_atomic();
1976 	if (atomic_dec_and_test(&check_state->started))
1977 		wake_up(&check_state->wait);
1978 
1979 	return ret;
1980 }
1981 
1982 
1983 
1984 static int bch_btree_chkthread_nr(void)
1985 {
1986 	int n = num_online_cpus()/2;
1987 
1988 	if (n == 0)
1989 		n = 1;
1990 	else if (n > BCH_BTR_CHKTHREAD_MAX)
1991 		n = BCH_BTR_CHKTHREAD_MAX;
1992 
1993 	return n;
1994 }
1995 
1996 int bch_btree_check(struct cache_set *c)
1997 {
1998 	int ret = 0;
1999 	int i;
2000 	struct bkey *k = NULL;
2001 	struct btree_iter iter;
2002 	struct btree_check_state *check_state;
2003 	char name[32];
2004 
2005 	/* check and mark root node keys */
2006 	for_each_key_filter(&c->root->keys, k, &iter, bch_ptr_invalid)
2007 		bch_initial_mark_key(c, c->root->level, k);
2008 
2009 	bch_initial_mark_key(c, c->root->level + 1, &c->root->key);
2010 
2011 	if (c->root->level == 0)
2012 		return 0;
2013 
2014 	check_state = kzalloc(sizeof(struct btree_check_state), GFP_KERNEL);
2015 	if (!check_state)
2016 		return -ENOMEM;
2017 
2018 	check_state->c = c;
2019 	check_state->total_threads = bch_btree_chkthread_nr();
2020 	check_state->key_idx = 0;
2021 	spin_lock_init(&check_state->idx_lock);
2022 	atomic_set(&check_state->started, 0);
2023 	atomic_set(&check_state->enough, 0);
2024 	init_waitqueue_head(&check_state->wait);
2025 
2026 	/*
2027 	 * Run multiple threads to check btree nodes in parallel,
2028 	 * if check_state->enough is non-zero, it means current
2029 	 * running check threads are enough, unncessary to create
2030 	 * more.
2031 	 */
2032 	for (i = 0; i < check_state->total_threads; i++) {
2033 		/* fetch latest check_state->enough earlier */
2034 		smp_mb__before_atomic();
2035 		if (atomic_read(&check_state->enough))
2036 			break;
2037 
2038 		check_state->infos[i].result = 0;
2039 		check_state->infos[i].state = check_state;
2040 		snprintf(name, sizeof(name), "bch_btrchk[%u]", i);
2041 		atomic_inc(&check_state->started);
2042 
2043 		check_state->infos[i].thread =
2044 			kthread_run(bch_btree_check_thread,
2045 				    &check_state->infos[i],
2046 				    name);
2047 		if (IS_ERR(check_state->infos[i].thread)) {
2048 			pr_err("fails to run thread bch_btrchk[%d]", i);
2049 			for (--i; i >= 0; i--)
2050 				kthread_stop(check_state->infos[i].thread);
2051 			ret = -ENOMEM;
2052 			goto out;
2053 		}
2054 	}
2055 
2056 	wait_event_interruptible(check_state->wait,
2057 				 atomic_read(&check_state->started) == 0 ||
2058 				  test_bit(CACHE_SET_IO_DISABLE, &c->flags));
2059 
2060 	for (i = 0; i < check_state->total_threads; i++) {
2061 		if (check_state->infos[i].result) {
2062 			ret = check_state->infos[i].result;
2063 			goto out;
2064 		}
2065 	}
2066 
2067 out:
2068 	kfree(check_state);
2069 	return ret;
2070 }
2071 
2072 void bch_initial_gc_finish(struct cache_set *c)
2073 {
2074 	struct cache *ca;
2075 	struct bucket *b;
2076 	unsigned int i;
2077 
2078 	bch_btree_gc_finish(c);
2079 
2080 	mutex_lock(&c->bucket_lock);
2081 
2082 	/*
2083 	 * We need to put some unused buckets directly on the prio freelist in
2084 	 * order to get the allocator thread started - it needs freed buckets in
2085 	 * order to rewrite the prios and gens, and it needs to rewrite prios
2086 	 * and gens in order to free buckets.
2087 	 *
2088 	 * This is only safe for buckets that have no live data in them, which
2089 	 * there should always be some of.
2090 	 */
2091 	for_each_cache(ca, c, i) {
2092 		for_each_bucket(b, ca) {
2093 			if (fifo_full(&ca->free[RESERVE_PRIO]) &&
2094 			    fifo_full(&ca->free[RESERVE_BTREE]))
2095 				break;
2096 
2097 			if (bch_can_invalidate_bucket(ca, b) &&
2098 			    !GC_MARK(b)) {
2099 				__bch_invalidate_one_bucket(ca, b);
2100 				if (!fifo_push(&ca->free[RESERVE_PRIO],
2101 				   b - ca->buckets))
2102 					fifo_push(&ca->free[RESERVE_BTREE],
2103 						  b - ca->buckets);
2104 			}
2105 		}
2106 	}
2107 
2108 	mutex_unlock(&c->bucket_lock);
2109 }
2110 
2111 /* Btree insertion */
2112 
2113 static bool btree_insert_key(struct btree *b, struct bkey *k,
2114 			     struct bkey *replace_key)
2115 {
2116 	unsigned int status;
2117 
2118 	BUG_ON(bkey_cmp(k, &b->key) > 0);
2119 
2120 	status = bch_btree_insert_key(&b->keys, k, replace_key);
2121 	if (status != BTREE_INSERT_STATUS_NO_INSERT) {
2122 		bch_check_keys(&b->keys, "%u for %s", status,
2123 			       replace_key ? "replace" : "insert");
2124 
2125 		trace_bcache_btree_insert_key(b, k, replace_key != NULL,
2126 					      status);
2127 		return true;
2128 	} else
2129 		return false;
2130 }
2131 
2132 static size_t insert_u64s_remaining(struct btree *b)
2133 {
2134 	long ret = bch_btree_keys_u64s_remaining(&b->keys);
2135 
2136 	/*
2137 	 * Might land in the middle of an existing extent and have to split it
2138 	 */
2139 	if (b->keys.ops->is_extents)
2140 		ret -= KEY_MAX_U64S;
2141 
2142 	return max(ret, 0L);
2143 }
2144 
2145 static bool bch_btree_insert_keys(struct btree *b, struct btree_op *op,
2146 				  struct keylist *insert_keys,
2147 				  struct bkey *replace_key)
2148 {
2149 	bool ret = false;
2150 	int oldsize = bch_count_data(&b->keys);
2151 
2152 	while (!bch_keylist_empty(insert_keys)) {
2153 		struct bkey *k = insert_keys->keys;
2154 
2155 		if (bkey_u64s(k) > insert_u64s_remaining(b))
2156 			break;
2157 
2158 		if (bkey_cmp(k, &b->key) <= 0) {
2159 			if (!b->level)
2160 				bkey_put(b->c, k);
2161 
2162 			ret |= btree_insert_key(b, k, replace_key);
2163 			bch_keylist_pop_front(insert_keys);
2164 		} else if (bkey_cmp(&START_KEY(k), &b->key) < 0) {
2165 			BKEY_PADDED(key) temp;
2166 			bkey_copy(&temp.key, insert_keys->keys);
2167 
2168 			bch_cut_back(&b->key, &temp.key);
2169 			bch_cut_front(&b->key, insert_keys->keys);
2170 
2171 			ret |= btree_insert_key(b, &temp.key, replace_key);
2172 			break;
2173 		} else {
2174 			break;
2175 		}
2176 	}
2177 
2178 	if (!ret)
2179 		op->insert_collision = true;
2180 
2181 	BUG_ON(!bch_keylist_empty(insert_keys) && b->level);
2182 
2183 	BUG_ON(bch_count_data(&b->keys) < oldsize);
2184 	return ret;
2185 }
2186 
2187 static int btree_split(struct btree *b, struct btree_op *op,
2188 		       struct keylist *insert_keys,
2189 		       struct bkey *replace_key)
2190 {
2191 	bool split;
2192 	struct btree *n1, *n2 = NULL, *n3 = NULL;
2193 	uint64_t start_time = local_clock();
2194 	struct closure cl;
2195 	struct keylist parent_keys;
2196 
2197 	closure_init_stack(&cl);
2198 	bch_keylist_init(&parent_keys);
2199 
2200 	if (btree_check_reserve(b, op)) {
2201 		if (!b->level)
2202 			return -EINTR;
2203 		else
2204 			WARN(1, "insufficient reserve for split\n");
2205 	}
2206 
2207 	n1 = btree_node_alloc_replacement(b, op);
2208 	if (IS_ERR(n1))
2209 		goto err;
2210 
2211 	split = set_blocks(btree_bset_first(n1),
2212 			   block_bytes(n1->c)) > (btree_blocks(b) * 4) / 5;
2213 
2214 	if (split) {
2215 		unsigned int keys = 0;
2216 
2217 		trace_bcache_btree_node_split(b, btree_bset_first(n1)->keys);
2218 
2219 		n2 = bch_btree_node_alloc(b->c, op, b->level, b->parent);
2220 		if (IS_ERR(n2))
2221 			goto err_free1;
2222 
2223 		if (!b->parent) {
2224 			n3 = bch_btree_node_alloc(b->c, op, b->level + 1, NULL);
2225 			if (IS_ERR(n3))
2226 				goto err_free2;
2227 		}
2228 
2229 		mutex_lock(&n1->write_lock);
2230 		mutex_lock(&n2->write_lock);
2231 
2232 		bch_btree_insert_keys(n1, op, insert_keys, replace_key);
2233 
2234 		/*
2235 		 * Has to be a linear search because we don't have an auxiliary
2236 		 * search tree yet
2237 		 */
2238 
2239 		while (keys < (btree_bset_first(n1)->keys * 3) / 5)
2240 			keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1),
2241 							keys));
2242 
2243 		bkey_copy_key(&n1->key,
2244 			      bset_bkey_idx(btree_bset_first(n1), keys));
2245 		keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1), keys));
2246 
2247 		btree_bset_first(n2)->keys = btree_bset_first(n1)->keys - keys;
2248 		btree_bset_first(n1)->keys = keys;
2249 
2250 		memcpy(btree_bset_first(n2)->start,
2251 		       bset_bkey_last(btree_bset_first(n1)),
2252 		       btree_bset_first(n2)->keys * sizeof(uint64_t));
2253 
2254 		bkey_copy_key(&n2->key, &b->key);
2255 
2256 		bch_keylist_add(&parent_keys, &n2->key);
2257 		bch_btree_node_write(n2, &cl);
2258 		mutex_unlock(&n2->write_lock);
2259 		rw_unlock(true, n2);
2260 	} else {
2261 		trace_bcache_btree_node_compact(b, btree_bset_first(n1)->keys);
2262 
2263 		mutex_lock(&n1->write_lock);
2264 		bch_btree_insert_keys(n1, op, insert_keys, replace_key);
2265 	}
2266 
2267 	bch_keylist_add(&parent_keys, &n1->key);
2268 	bch_btree_node_write(n1, &cl);
2269 	mutex_unlock(&n1->write_lock);
2270 
2271 	if (n3) {
2272 		/* Depth increases, make a new root */
2273 		mutex_lock(&n3->write_lock);
2274 		bkey_copy_key(&n3->key, &MAX_KEY);
2275 		bch_btree_insert_keys(n3, op, &parent_keys, NULL);
2276 		bch_btree_node_write(n3, &cl);
2277 		mutex_unlock(&n3->write_lock);
2278 
2279 		closure_sync(&cl);
2280 		bch_btree_set_root(n3);
2281 		rw_unlock(true, n3);
2282 	} else if (!b->parent) {
2283 		/* Root filled up but didn't need to be split */
2284 		closure_sync(&cl);
2285 		bch_btree_set_root(n1);
2286 	} else {
2287 		/* Split a non root node */
2288 		closure_sync(&cl);
2289 		make_btree_freeing_key(b, parent_keys.top);
2290 		bch_keylist_push(&parent_keys);
2291 
2292 		bch_btree_insert_node(b->parent, op, &parent_keys, NULL, NULL);
2293 		BUG_ON(!bch_keylist_empty(&parent_keys));
2294 	}
2295 
2296 	btree_node_free(b);
2297 	rw_unlock(true, n1);
2298 
2299 	bch_time_stats_update(&b->c->btree_split_time, start_time);
2300 
2301 	return 0;
2302 err_free2:
2303 	bkey_put(b->c, &n2->key);
2304 	btree_node_free(n2);
2305 	rw_unlock(true, n2);
2306 err_free1:
2307 	bkey_put(b->c, &n1->key);
2308 	btree_node_free(n1);
2309 	rw_unlock(true, n1);
2310 err:
2311 	WARN(1, "bcache: btree split failed (level %u)", b->level);
2312 
2313 	if (n3 == ERR_PTR(-EAGAIN) ||
2314 	    n2 == ERR_PTR(-EAGAIN) ||
2315 	    n1 == ERR_PTR(-EAGAIN))
2316 		return -EAGAIN;
2317 
2318 	return -ENOMEM;
2319 }
2320 
2321 static int bch_btree_insert_node(struct btree *b, struct btree_op *op,
2322 				 struct keylist *insert_keys,
2323 				 atomic_t *journal_ref,
2324 				 struct bkey *replace_key)
2325 {
2326 	struct closure cl;
2327 
2328 	BUG_ON(b->level && replace_key);
2329 
2330 	closure_init_stack(&cl);
2331 
2332 	mutex_lock(&b->write_lock);
2333 
2334 	if (write_block(b) != btree_bset_last(b) &&
2335 	    b->keys.last_set_unwritten)
2336 		bch_btree_init_next(b); /* just wrote a set */
2337 
2338 	if (bch_keylist_nkeys(insert_keys) > insert_u64s_remaining(b)) {
2339 		mutex_unlock(&b->write_lock);
2340 		goto split;
2341 	}
2342 
2343 	BUG_ON(write_block(b) != btree_bset_last(b));
2344 
2345 	if (bch_btree_insert_keys(b, op, insert_keys, replace_key)) {
2346 		if (!b->level)
2347 			bch_btree_leaf_dirty(b, journal_ref);
2348 		else
2349 			bch_btree_node_write(b, &cl);
2350 	}
2351 
2352 	mutex_unlock(&b->write_lock);
2353 
2354 	/* wait for btree node write if necessary, after unlock */
2355 	closure_sync(&cl);
2356 
2357 	return 0;
2358 split:
2359 	if (current->bio_list) {
2360 		op->lock = b->c->root->level + 1;
2361 		return -EAGAIN;
2362 	} else if (op->lock <= b->c->root->level) {
2363 		op->lock = b->c->root->level + 1;
2364 		return -EINTR;
2365 	} else {
2366 		/* Invalidated all iterators */
2367 		int ret = btree_split(b, op, insert_keys, replace_key);
2368 
2369 		if (bch_keylist_empty(insert_keys))
2370 			return 0;
2371 		else if (!ret)
2372 			return -EINTR;
2373 		return ret;
2374 	}
2375 }
2376 
2377 int bch_btree_insert_check_key(struct btree *b, struct btree_op *op,
2378 			       struct bkey *check_key)
2379 {
2380 	int ret = -EINTR;
2381 	uint64_t btree_ptr = b->key.ptr[0];
2382 	unsigned long seq = b->seq;
2383 	struct keylist insert;
2384 	bool upgrade = op->lock == -1;
2385 
2386 	bch_keylist_init(&insert);
2387 
2388 	if (upgrade) {
2389 		rw_unlock(false, b);
2390 		rw_lock(true, b, b->level);
2391 
2392 		if (b->key.ptr[0] != btree_ptr ||
2393 		    b->seq != seq + 1) {
2394 			op->lock = b->level;
2395 			goto out;
2396 		}
2397 	}
2398 
2399 	SET_KEY_PTRS(check_key, 1);
2400 	get_random_bytes(&check_key->ptr[0], sizeof(uint64_t));
2401 
2402 	SET_PTR_DEV(check_key, 0, PTR_CHECK_DEV);
2403 
2404 	bch_keylist_add(&insert, check_key);
2405 
2406 	ret = bch_btree_insert_node(b, op, &insert, NULL, NULL);
2407 
2408 	BUG_ON(!ret && !bch_keylist_empty(&insert));
2409 out:
2410 	if (upgrade)
2411 		downgrade_write(&b->lock);
2412 	return ret;
2413 }
2414 
2415 struct btree_insert_op {
2416 	struct btree_op	op;
2417 	struct keylist	*keys;
2418 	atomic_t	*journal_ref;
2419 	struct bkey	*replace_key;
2420 };
2421 
2422 static int btree_insert_fn(struct btree_op *b_op, struct btree *b)
2423 {
2424 	struct btree_insert_op *op = container_of(b_op,
2425 					struct btree_insert_op, op);
2426 
2427 	int ret = bch_btree_insert_node(b, &op->op, op->keys,
2428 					op->journal_ref, op->replace_key);
2429 	if (ret && !bch_keylist_empty(op->keys))
2430 		return ret;
2431 	else
2432 		return MAP_DONE;
2433 }
2434 
2435 int bch_btree_insert(struct cache_set *c, struct keylist *keys,
2436 		     atomic_t *journal_ref, struct bkey *replace_key)
2437 {
2438 	struct btree_insert_op op;
2439 	int ret = 0;
2440 
2441 	BUG_ON(current->bio_list);
2442 	BUG_ON(bch_keylist_empty(keys));
2443 
2444 	bch_btree_op_init(&op.op, 0);
2445 	op.keys		= keys;
2446 	op.journal_ref	= journal_ref;
2447 	op.replace_key	= replace_key;
2448 
2449 	while (!ret && !bch_keylist_empty(keys)) {
2450 		op.op.lock = 0;
2451 		ret = bch_btree_map_leaf_nodes(&op.op, c,
2452 					       &START_KEY(keys->keys),
2453 					       btree_insert_fn);
2454 	}
2455 
2456 	if (ret) {
2457 		struct bkey *k;
2458 
2459 		pr_err("error %i", ret);
2460 
2461 		while ((k = bch_keylist_pop(keys)))
2462 			bkey_put(c, k);
2463 	} else if (op.op.insert_collision)
2464 		ret = -ESRCH;
2465 
2466 	return ret;
2467 }
2468 
2469 void bch_btree_set_root(struct btree *b)
2470 {
2471 	unsigned int i;
2472 	struct closure cl;
2473 
2474 	closure_init_stack(&cl);
2475 
2476 	trace_bcache_btree_set_root(b);
2477 
2478 	BUG_ON(!b->written);
2479 
2480 	for (i = 0; i < KEY_PTRS(&b->key); i++)
2481 		BUG_ON(PTR_BUCKET(b->c, &b->key, i)->prio != BTREE_PRIO);
2482 
2483 	mutex_lock(&b->c->bucket_lock);
2484 	list_del_init(&b->list);
2485 	mutex_unlock(&b->c->bucket_lock);
2486 
2487 	b->c->root = b;
2488 
2489 	bch_journal_meta(b->c, &cl);
2490 	closure_sync(&cl);
2491 }
2492 
2493 /* Map across nodes or keys */
2494 
2495 static int bch_btree_map_nodes_recurse(struct btree *b, struct btree_op *op,
2496 				       struct bkey *from,
2497 				       btree_map_nodes_fn *fn, int flags)
2498 {
2499 	int ret = MAP_CONTINUE;
2500 
2501 	if (b->level) {
2502 		struct bkey *k;
2503 		struct btree_iter iter;
2504 
2505 		bch_btree_iter_init(&b->keys, &iter, from);
2506 
2507 		while ((k = bch_btree_iter_next_filter(&iter, &b->keys,
2508 						       bch_ptr_bad))) {
2509 			ret = bcache_btree(map_nodes_recurse, k, b,
2510 				    op, from, fn, flags);
2511 			from = NULL;
2512 
2513 			if (ret != MAP_CONTINUE)
2514 				return ret;
2515 		}
2516 	}
2517 
2518 	if (!b->level || flags == MAP_ALL_NODES)
2519 		ret = fn(op, b);
2520 
2521 	return ret;
2522 }
2523 
2524 int __bch_btree_map_nodes(struct btree_op *op, struct cache_set *c,
2525 			  struct bkey *from, btree_map_nodes_fn *fn, int flags)
2526 {
2527 	return bcache_btree_root(map_nodes_recurse, c, op, from, fn, flags);
2528 }
2529 
2530 int bch_btree_map_keys_recurse(struct btree *b, struct btree_op *op,
2531 				      struct bkey *from, btree_map_keys_fn *fn,
2532 				      int flags)
2533 {
2534 	int ret = MAP_CONTINUE;
2535 	struct bkey *k;
2536 	struct btree_iter iter;
2537 
2538 	bch_btree_iter_init(&b->keys, &iter, from);
2539 
2540 	while ((k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad))) {
2541 		ret = !b->level
2542 			? fn(op, b, k)
2543 			: bcache_btree(map_keys_recurse, k,
2544 				       b, op, from, fn, flags);
2545 		from = NULL;
2546 
2547 		if (ret != MAP_CONTINUE)
2548 			return ret;
2549 	}
2550 
2551 	if (!b->level && (flags & MAP_END_KEY))
2552 		ret = fn(op, b, &KEY(KEY_INODE(&b->key),
2553 				     KEY_OFFSET(&b->key), 0));
2554 
2555 	return ret;
2556 }
2557 
2558 int bch_btree_map_keys(struct btree_op *op, struct cache_set *c,
2559 		       struct bkey *from, btree_map_keys_fn *fn, int flags)
2560 {
2561 	return bcache_btree_root(map_keys_recurse, c, op, from, fn, flags);
2562 }
2563 
2564 /* Keybuf code */
2565 
2566 static inline int keybuf_cmp(struct keybuf_key *l, struct keybuf_key *r)
2567 {
2568 	/* Overlapping keys compare equal */
2569 	if (bkey_cmp(&l->key, &START_KEY(&r->key)) <= 0)
2570 		return -1;
2571 	if (bkey_cmp(&START_KEY(&l->key), &r->key) >= 0)
2572 		return 1;
2573 	return 0;
2574 }
2575 
2576 static inline int keybuf_nonoverlapping_cmp(struct keybuf_key *l,
2577 					    struct keybuf_key *r)
2578 {
2579 	return clamp_t(int64_t, bkey_cmp(&l->key, &r->key), -1, 1);
2580 }
2581 
2582 struct refill {
2583 	struct btree_op	op;
2584 	unsigned int	nr_found;
2585 	struct keybuf	*buf;
2586 	struct bkey	*end;
2587 	keybuf_pred_fn	*pred;
2588 };
2589 
2590 static int refill_keybuf_fn(struct btree_op *op, struct btree *b,
2591 			    struct bkey *k)
2592 {
2593 	struct refill *refill = container_of(op, struct refill, op);
2594 	struct keybuf *buf = refill->buf;
2595 	int ret = MAP_CONTINUE;
2596 
2597 	if (bkey_cmp(k, refill->end) > 0) {
2598 		ret = MAP_DONE;
2599 		goto out;
2600 	}
2601 
2602 	if (!KEY_SIZE(k)) /* end key */
2603 		goto out;
2604 
2605 	if (refill->pred(buf, k)) {
2606 		struct keybuf_key *w;
2607 
2608 		spin_lock(&buf->lock);
2609 
2610 		w = array_alloc(&buf->freelist);
2611 		if (!w) {
2612 			spin_unlock(&buf->lock);
2613 			return MAP_DONE;
2614 		}
2615 
2616 		w->private = NULL;
2617 		bkey_copy(&w->key, k);
2618 
2619 		if (RB_INSERT(&buf->keys, w, node, keybuf_cmp))
2620 			array_free(&buf->freelist, w);
2621 		else
2622 			refill->nr_found++;
2623 
2624 		if (array_freelist_empty(&buf->freelist))
2625 			ret = MAP_DONE;
2626 
2627 		spin_unlock(&buf->lock);
2628 	}
2629 out:
2630 	buf->last_scanned = *k;
2631 	return ret;
2632 }
2633 
2634 void bch_refill_keybuf(struct cache_set *c, struct keybuf *buf,
2635 		       struct bkey *end, keybuf_pred_fn *pred)
2636 {
2637 	struct bkey start = buf->last_scanned;
2638 	struct refill refill;
2639 
2640 	cond_resched();
2641 
2642 	bch_btree_op_init(&refill.op, -1);
2643 	refill.nr_found	= 0;
2644 	refill.buf	= buf;
2645 	refill.end	= end;
2646 	refill.pred	= pred;
2647 
2648 	bch_btree_map_keys(&refill.op, c, &buf->last_scanned,
2649 			   refill_keybuf_fn, MAP_END_KEY);
2650 
2651 	trace_bcache_keyscan(refill.nr_found,
2652 			     KEY_INODE(&start), KEY_OFFSET(&start),
2653 			     KEY_INODE(&buf->last_scanned),
2654 			     KEY_OFFSET(&buf->last_scanned));
2655 
2656 	spin_lock(&buf->lock);
2657 
2658 	if (!RB_EMPTY_ROOT(&buf->keys)) {
2659 		struct keybuf_key *w;
2660 
2661 		w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2662 		buf->start	= START_KEY(&w->key);
2663 
2664 		w = RB_LAST(&buf->keys, struct keybuf_key, node);
2665 		buf->end	= w->key;
2666 	} else {
2667 		buf->start	= MAX_KEY;
2668 		buf->end	= MAX_KEY;
2669 	}
2670 
2671 	spin_unlock(&buf->lock);
2672 }
2673 
2674 static void __bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2675 {
2676 	rb_erase(&w->node, &buf->keys);
2677 	array_free(&buf->freelist, w);
2678 }
2679 
2680 void bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2681 {
2682 	spin_lock(&buf->lock);
2683 	__bch_keybuf_del(buf, w);
2684 	spin_unlock(&buf->lock);
2685 }
2686 
2687 bool bch_keybuf_check_overlapping(struct keybuf *buf, struct bkey *start,
2688 				  struct bkey *end)
2689 {
2690 	bool ret = false;
2691 	struct keybuf_key *p, *w, s;
2692 
2693 	s.key = *start;
2694 
2695 	if (bkey_cmp(end, &buf->start) <= 0 ||
2696 	    bkey_cmp(start, &buf->end) >= 0)
2697 		return false;
2698 
2699 	spin_lock(&buf->lock);
2700 	w = RB_GREATER(&buf->keys, s, node, keybuf_nonoverlapping_cmp);
2701 
2702 	while (w && bkey_cmp(&START_KEY(&w->key), end) < 0) {
2703 		p = w;
2704 		w = RB_NEXT(w, node);
2705 
2706 		if (p->private)
2707 			ret = true;
2708 		else
2709 			__bch_keybuf_del(buf, p);
2710 	}
2711 
2712 	spin_unlock(&buf->lock);
2713 	return ret;
2714 }
2715 
2716 struct keybuf_key *bch_keybuf_next(struct keybuf *buf)
2717 {
2718 	struct keybuf_key *w;
2719 
2720 	spin_lock(&buf->lock);
2721 
2722 	w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2723 
2724 	while (w && w->private)
2725 		w = RB_NEXT(w, node);
2726 
2727 	if (w)
2728 		w->private = ERR_PTR(-EINTR);
2729 
2730 	spin_unlock(&buf->lock);
2731 	return w;
2732 }
2733 
2734 struct keybuf_key *bch_keybuf_next_rescan(struct cache_set *c,
2735 					  struct keybuf *buf,
2736 					  struct bkey *end,
2737 					  keybuf_pred_fn *pred)
2738 {
2739 	struct keybuf_key *ret;
2740 
2741 	while (1) {
2742 		ret = bch_keybuf_next(buf);
2743 		if (ret)
2744 			break;
2745 
2746 		if (bkey_cmp(&buf->last_scanned, end) >= 0) {
2747 			pr_debug("scan finished");
2748 			break;
2749 		}
2750 
2751 		bch_refill_keybuf(c, buf, end, pred);
2752 	}
2753 
2754 	return ret;
2755 }
2756 
2757 void bch_keybuf_init(struct keybuf *buf)
2758 {
2759 	buf->last_scanned	= MAX_KEY;
2760 	buf->keys		= RB_ROOT;
2761 
2762 	spin_lock_init(&buf->lock);
2763 	array_allocator_init(&buf->freelist);
2764 }
2765