1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com> 4 * 5 * Uses a block device as cache for other block devices; optimized for SSDs. 6 * All allocation is done in buckets, which should match the erase block size 7 * of the device. 8 * 9 * Buckets containing cached data are kept on a heap sorted by priority; 10 * bucket priority is increased on cache hit, and periodically all the buckets 11 * on the heap have their priority scaled down. This currently is just used as 12 * an LRU but in the future should allow for more intelligent heuristics. 13 * 14 * Buckets have an 8 bit counter; freeing is accomplished by incrementing the 15 * counter. Garbage collection is used to remove stale pointers. 16 * 17 * Indexing is done via a btree; nodes are not necessarily fully sorted, rather 18 * as keys are inserted we only sort the pages that have not yet been written. 19 * When garbage collection is run, we resort the entire node. 20 * 21 * All configuration is done via sysfs; see Documentation/admin-guide/bcache.rst. 22 */ 23 24 #include "bcache.h" 25 #include "btree.h" 26 #include "debug.h" 27 #include "extents.h" 28 29 #include <linux/slab.h> 30 #include <linux/bitops.h> 31 #include <linux/hash.h> 32 #include <linux/kthread.h> 33 #include <linux/prefetch.h> 34 #include <linux/random.h> 35 #include <linux/rcupdate.h> 36 #include <linux/sched/clock.h> 37 #include <linux/rculist.h> 38 #include <linux/delay.h> 39 #include <trace/events/bcache.h> 40 41 /* 42 * Todo: 43 * register_bcache: Return errors out to userspace correctly 44 * 45 * Writeback: don't undirty key until after a cache flush 46 * 47 * Create an iterator for key pointers 48 * 49 * On btree write error, mark bucket such that it won't be freed from the cache 50 * 51 * Journalling: 52 * Check for bad keys in replay 53 * Propagate barriers 54 * Refcount journal entries in journal_replay 55 * 56 * Garbage collection: 57 * Finish incremental gc 58 * Gc should free old UUIDs, data for invalid UUIDs 59 * 60 * Provide a way to list backing device UUIDs we have data cached for, and 61 * probably how long it's been since we've seen them, and a way to invalidate 62 * dirty data for devices that will never be attached again 63 * 64 * Keep 1 min/5 min/15 min statistics of how busy a block device has been, so 65 * that based on that and how much dirty data we have we can keep writeback 66 * from being starved 67 * 68 * Add a tracepoint or somesuch to watch for writeback starvation 69 * 70 * When btree depth > 1 and splitting an interior node, we have to make sure 71 * alloc_bucket() cannot fail. This should be true but is not completely 72 * obvious. 73 * 74 * Plugging? 75 * 76 * If data write is less than hard sector size of ssd, round up offset in open 77 * bucket to the next whole sector 78 * 79 * Superblock needs to be fleshed out for multiple cache devices 80 * 81 * Add a sysfs tunable for the number of writeback IOs in flight 82 * 83 * Add a sysfs tunable for the number of open data buckets 84 * 85 * IO tracking: Can we track when one process is doing io on behalf of another? 86 * IO tracking: Don't use just an average, weigh more recent stuff higher 87 * 88 * Test module load/unload 89 */ 90 91 #define MAX_NEED_GC 64 92 #define MAX_SAVE_PRIO 72 93 #define MAX_GC_TIMES 100 94 #define MIN_GC_NODES 100 95 #define GC_SLEEP_MS 100 96 97 #define PTR_DIRTY_BIT (((uint64_t) 1 << 36)) 98 99 #define PTR_HASH(c, k) \ 100 (((k)->ptr[0] >> c->bucket_bits) | PTR_GEN(k, 0)) 101 102 #define insert_lock(s, b) ((b)->level <= (s)->lock) 103 104 /* 105 * These macros are for recursing down the btree - they handle the details of 106 * locking and looking up nodes in the cache for you. They're best treated as 107 * mere syntax when reading code that uses them. 108 * 109 * op->lock determines whether we take a read or a write lock at a given depth. 110 * If you've got a read lock and find that you need a write lock (i.e. you're 111 * going to have to split), set op->lock and return -EINTR; btree_root() will 112 * call you again and you'll have the correct lock. 113 */ 114 115 /** 116 * btree - recurse down the btree on a specified key 117 * @fn: function to call, which will be passed the child node 118 * @key: key to recurse on 119 * @b: parent btree node 120 * @op: pointer to struct btree_op 121 */ 122 #define btree(fn, key, b, op, ...) \ 123 ({ \ 124 int _r, l = (b)->level - 1; \ 125 bool _w = l <= (op)->lock; \ 126 struct btree *_child = bch_btree_node_get((b)->c, op, key, l, \ 127 _w, b); \ 128 if (!IS_ERR(_child)) { \ 129 _r = bch_btree_ ## fn(_child, op, ##__VA_ARGS__); \ 130 rw_unlock(_w, _child); \ 131 } else \ 132 _r = PTR_ERR(_child); \ 133 _r; \ 134 }) 135 136 /** 137 * btree_root - call a function on the root of the btree 138 * @fn: function to call, which will be passed the child node 139 * @c: cache set 140 * @op: pointer to struct btree_op 141 */ 142 #define btree_root(fn, c, op, ...) \ 143 ({ \ 144 int _r = -EINTR; \ 145 do { \ 146 struct btree *_b = (c)->root; \ 147 bool _w = insert_lock(op, _b); \ 148 rw_lock(_w, _b, _b->level); \ 149 if (_b == (c)->root && \ 150 _w == insert_lock(op, _b)) { \ 151 _r = bch_btree_ ## fn(_b, op, ##__VA_ARGS__); \ 152 } \ 153 rw_unlock(_w, _b); \ 154 bch_cannibalize_unlock(c); \ 155 if (_r == -EINTR) \ 156 schedule(); \ 157 } while (_r == -EINTR); \ 158 \ 159 finish_wait(&(c)->btree_cache_wait, &(op)->wait); \ 160 _r; \ 161 }) 162 163 static inline struct bset *write_block(struct btree *b) 164 { 165 return ((void *) btree_bset_first(b)) + b->written * block_bytes(b->c); 166 } 167 168 static void bch_btree_init_next(struct btree *b) 169 { 170 /* If not a leaf node, always sort */ 171 if (b->level && b->keys.nsets) 172 bch_btree_sort(&b->keys, &b->c->sort); 173 else 174 bch_btree_sort_lazy(&b->keys, &b->c->sort); 175 176 if (b->written < btree_blocks(b)) 177 bch_bset_init_next(&b->keys, write_block(b), 178 bset_magic(&b->c->sb)); 179 180 } 181 182 /* Btree key manipulation */ 183 184 void bkey_put(struct cache_set *c, struct bkey *k) 185 { 186 unsigned int i; 187 188 for (i = 0; i < KEY_PTRS(k); i++) 189 if (ptr_available(c, k, i)) 190 atomic_dec_bug(&PTR_BUCKET(c, k, i)->pin); 191 } 192 193 /* Btree IO */ 194 195 static uint64_t btree_csum_set(struct btree *b, struct bset *i) 196 { 197 uint64_t crc = b->key.ptr[0]; 198 void *data = (void *) i + 8, *end = bset_bkey_last(i); 199 200 crc = bch_crc64_update(crc, data, end - data); 201 return crc ^ 0xffffffffffffffffULL; 202 } 203 204 void bch_btree_node_read_done(struct btree *b) 205 { 206 const char *err = "bad btree header"; 207 struct bset *i = btree_bset_first(b); 208 struct btree_iter *iter; 209 210 /* 211 * c->fill_iter can allocate an iterator with more memory space 212 * than static MAX_BSETS. 213 * See the comment arount cache_set->fill_iter. 214 */ 215 iter = mempool_alloc(&b->c->fill_iter, GFP_NOIO); 216 iter->size = b->c->sb.bucket_size / b->c->sb.block_size; 217 iter->used = 0; 218 219 #ifdef CONFIG_BCACHE_DEBUG 220 iter->b = &b->keys; 221 #endif 222 223 if (!i->seq) 224 goto err; 225 226 for (; 227 b->written < btree_blocks(b) && i->seq == b->keys.set[0].data->seq; 228 i = write_block(b)) { 229 err = "unsupported bset version"; 230 if (i->version > BCACHE_BSET_VERSION) 231 goto err; 232 233 err = "bad btree header"; 234 if (b->written + set_blocks(i, block_bytes(b->c)) > 235 btree_blocks(b)) 236 goto err; 237 238 err = "bad magic"; 239 if (i->magic != bset_magic(&b->c->sb)) 240 goto err; 241 242 err = "bad checksum"; 243 switch (i->version) { 244 case 0: 245 if (i->csum != csum_set(i)) 246 goto err; 247 break; 248 case BCACHE_BSET_VERSION: 249 if (i->csum != btree_csum_set(b, i)) 250 goto err; 251 break; 252 } 253 254 err = "empty set"; 255 if (i != b->keys.set[0].data && !i->keys) 256 goto err; 257 258 bch_btree_iter_push(iter, i->start, bset_bkey_last(i)); 259 260 b->written += set_blocks(i, block_bytes(b->c)); 261 } 262 263 err = "corrupted btree"; 264 for (i = write_block(b); 265 bset_sector_offset(&b->keys, i) < KEY_SIZE(&b->key); 266 i = ((void *) i) + block_bytes(b->c)) 267 if (i->seq == b->keys.set[0].data->seq) 268 goto err; 269 270 bch_btree_sort_and_fix_extents(&b->keys, iter, &b->c->sort); 271 272 i = b->keys.set[0].data; 273 err = "short btree key"; 274 if (b->keys.set[0].size && 275 bkey_cmp(&b->key, &b->keys.set[0].end) < 0) 276 goto err; 277 278 if (b->written < btree_blocks(b)) 279 bch_bset_init_next(&b->keys, write_block(b), 280 bset_magic(&b->c->sb)); 281 out: 282 mempool_free(iter, &b->c->fill_iter); 283 return; 284 err: 285 set_btree_node_io_error(b); 286 bch_cache_set_error(b->c, "%s at bucket %zu, block %u, %u keys", 287 err, PTR_BUCKET_NR(b->c, &b->key, 0), 288 bset_block_offset(b, i), i->keys); 289 goto out; 290 } 291 292 static void btree_node_read_endio(struct bio *bio) 293 { 294 struct closure *cl = bio->bi_private; 295 296 closure_put(cl); 297 } 298 299 static void bch_btree_node_read(struct btree *b) 300 { 301 uint64_t start_time = local_clock(); 302 struct closure cl; 303 struct bio *bio; 304 305 trace_bcache_btree_read(b); 306 307 closure_init_stack(&cl); 308 309 bio = bch_bbio_alloc(b->c); 310 bio->bi_iter.bi_size = KEY_SIZE(&b->key) << 9; 311 bio->bi_end_io = btree_node_read_endio; 312 bio->bi_private = &cl; 313 bio->bi_opf = REQ_OP_READ | REQ_META; 314 315 bch_bio_map(bio, b->keys.set[0].data); 316 317 bch_submit_bbio(bio, b->c, &b->key, 0); 318 closure_sync(&cl); 319 320 if (bio->bi_status) 321 set_btree_node_io_error(b); 322 323 bch_bbio_free(bio, b->c); 324 325 if (btree_node_io_error(b)) 326 goto err; 327 328 bch_btree_node_read_done(b); 329 bch_time_stats_update(&b->c->btree_read_time, start_time); 330 331 return; 332 err: 333 bch_cache_set_error(b->c, "io error reading bucket %zu", 334 PTR_BUCKET_NR(b->c, &b->key, 0)); 335 } 336 337 static void btree_complete_write(struct btree *b, struct btree_write *w) 338 { 339 if (w->prio_blocked && 340 !atomic_sub_return(w->prio_blocked, &b->c->prio_blocked)) 341 wake_up_allocators(b->c); 342 343 if (w->journal) { 344 atomic_dec_bug(w->journal); 345 __closure_wake_up(&b->c->journal.wait); 346 } 347 348 w->prio_blocked = 0; 349 w->journal = NULL; 350 } 351 352 static void btree_node_write_unlock(struct closure *cl) 353 { 354 struct btree *b = container_of(cl, struct btree, io); 355 356 up(&b->io_mutex); 357 } 358 359 static void __btree_node_write_done(struct closure *cl) 360 { 361 struct btree *b = container_of(cl, struct btree, io); 362 struct btree_write *w = btree_prev_write(b); 363 364 bch_bbio_free(b->bio, b->c); 365 b->bio = NULL; 366 btree_complete_write(b, w); 367 368 if (btree_node_dirty(b)) 369 schedule_delayed_work(&b->work, 30 * HZ); 370 371 closure_return_with_destructor(cl, btree_node_write_unlock); 372 } 373 374 static void btree_node_write_done(struct closure *cl) 375 { 376 struct btree *b = container_of(cl, struct btree, io); 377 378 bio_free_pages(b->bio); 379 __btree_node_write_done(cl); 380 } 381 382 static void btree_node_write_endio(struct bio *bio) 383 { 384 struct closure *cl = bio->bi_private; 385 struct btree *b = container_of(cl, struct btree, io); 386 387 if (bio->bi_status) 388 set_btree_node_io_error(b); 389 390 bch_bbio_count_io_errors(b->c, bio, bio->bi_status, "writing btree"); 391 closure_put(cl); 392 } 393 394 static void do_btree_node_write(struct btree *b) 395 { 396 struct closure *cl = &b->io; 397 struct bset *i = btree_bset_last(b); 398 BKEY_PADDED(key) k; 399 400 i->version = BCACHE_BSET_VERSION; 401 i->csum = btree_csum_set(b, i); 402 403 BUG_ON(b->bio); 404 b->bio = bch_bbio_alloc(b->c); 405 406 b->bio->bi_end_io = btree_node_write_endio; 407 b->bio->bi_private = cl; 408 b->bio->bi_iter.bi_size = roundup(set_bytes(i), block_bytes(b->c)); 409 b->bio->bi_opf = REQ_OP_WRITE | REQ_META | REQ_FUA; 410 bch_bio_map(b->bio, i); 411 412 /* 413 * If we're appending to a leaf node, we don't technically need FUA - 414 * this write just needs to be persisted before the next journal write, 415 * which will be marked FLUSH|FUA. 416 * 417 * Similarly if we're writing a new btree root - the pointer is going to 418 * be in the next journal entry. 419 * 420 * But if we're writing a new btree node (that isn't a root) or 421 * appending to a non leaf btree node, we need either FUA or a flush 422 * when we write the parent with the new pointer. FUA is cheaper than a 423 * flush, and writes appending to leaf nodes aren't blocking anything so 424 * just make all btree node writes FUA to keep things sane. 425 */ 426 427 bkey_copy(&k.key, &b->key); 428 SET_PTR_OFFSET(&k.key, 0, PTR_OFFSET(&k.key, 0) + 429 bset_sector_offset(&b->keys, i)); 430 431 if (!bch_bio_alloc_pages(b->bio, __GFP_NOWARN|GFP_NOWAIT)) { 432 struct bio_vec *bv; 433 void *addr = (void *) ((unsigned long) i & ~(PAGE_SIZE - 1)); 434 struct bvec_iter_all iter_all; 435 436 bio_for_each_segment_all(bv, b->bio, iter_all) { 437 memcpy(page_address(bv->bv_page), addr, PAGE_SIZE); 438 addr += PAGE_SIZE; 439 } 440 441 bch_submit_bbio(b->bio, b->c, &k.key, 0); 442 443 continue_at(cl, btree_node_write_done, NULL); 444 } else { 445 /* 446 * No problem for multipage bvec since the bio is 447 * just allocated 448 */ 449 b->bio->bi_vcnt = 0; 450 bch_bio_map(b->bio, i); 451 452 bch_submit_bbio(b->bio, b->c, &k.key, 0); 453 454 closure_sync(cl); 455 continue_at_nobarrier(cl, __btree_node_write_done, NULL); 456 } 457 } 458 459 void __bch_btree_node_write(struct btree *b, struct closure *parent) 460 { 461 struct bset *i = btree_bset_last(b); 462 463 lockdep_assert_held(&b->write_lock); 464 465 trace_bcache_btree_write(b); 466 467 BUG_ON(current->bio_list); 468 BUG_ON(b->written >= btree_blocks(b)); 469 BUG_ON(b->written && !i->keys); 470 BUG_ON(btree_bset_first(b)->seq != i->seq); 471 bch_check_keys(&b->keys, "writing"); 472 473 cancel_delayed_work(&b->work); 474 475 /* If caller isn't waiting for write, parent refcount is cache set */ 476 down(&b->io_mutex); 477 closure_init(&b->io, parent ?: &b->c->cl); 478 479 clear_bit(BTREE_NODE_dirty, &b->flags); 480 change_bit(BTREE_NODE_write_idx, &b->flags); 481 482 do_btree_node_write(b); 483 484 atomic_long_add(set_blocks(i, block_bytes(b->c)) * b->c->sb.block_size, 485 &PTR_CACHE(b->c, &b->key, 0)->btree_sectors_written); 486 487 b->written += set_blocks(i, block_bytes(b->c)); 488 } 489 490 void bch_btree_node_write(struct btree *b, struct closure *parent) 491 { 492 unsigned int nsets = b->keys.nsets; 493 494 lockdep_assert_held(&b->lock); 495 496 __bch_btree_node_write(b, parent); 497 498 /* 499 * do verify if there was more than one set initially (i.e. we did a 500 * sort) and we sorted down to a single set: 501 */ 502 if (nsets && !b->keys.nsets) 503 bch_btree_verify(b); 504 505 bch_btree_init_next(b); 506 } 507 508 static void bch_btree_node_write_sync(struct btree *b) 509 { 510 struct closure cl; 511 512 closure_init_stack(&cl); 513 514 mutex_lock(&b->write_lock); 515 bch_btree_node_write(b, &cl); 516 mutex_unlock(&b->write_lock); 517 518 closure_sync(&cl); 519 } 520 521 static void btree_node_write_work(struct work_struct *w) 522 { 523 struct btree *b = container_of(to_delayed_work(w), struct btree, work); 524 525 mutex_lock(&b->write_lock); 526 if (btree_node_dirty(b)) 527 __bch_btree_node_write(b, NULL); 528 mutex_unlock(&b->write_lock); 529 } 530 531 static void bch_btree_leaf_dirty(struct btree *b, atomic_t *journal_ref) 532 { 533 struct bset *i = btree_bset_last(b); 534 struct btree_write *w = btree_current_write(b); 535 536 lockdep_assert_held(&b->write_lock); 537 538 BUG_ON(!b->written); 539 BUG_ON(!i->keys); 540 541 if (!btree_node_dirty(b)) 542 schedule_delayed_work(&b->work, 30 * HZ); 543 544 set_btree_node_dirty(b); 545 546 /* 547 * w->journal is always the oldest journal pin of all bkeys 548 * in the leaf node, to make sure the oldest jset seq won't 549 * be increased before this btree node is flushed. 550 */ 551 if (journal_ref) { 552 if (w->journal && 553 journal_pin_cmp(b->c, w->journal, journal_ref)) { 554 atomic_dec_bug(w->journal); 555 w->journal = NULL; 556 } 557 558 if (!w->journal) { 559 w->journal = journal_ref; 560 atomic_inc(w->journal); 561 } 562 } 563 564 /* Force write if set is too big */ 565 if (set_bytes(i) > PAGE_SIZE - 48 && 566 !current->bio_list) 567 bch_btree_node_write(b, NULL); 568 } 569 570 /* 571 * Btree in memory cache - allocation/freeing 572 * mca -> memory cache 573 */ 574 575 #define mca_reserve(c) (((c->root && c->root->level) \ 576 ? c->root->level : 1) * 8 + 16) 577 #define mca_can_free(c) \ 578 max_t(int, 0, c->btree_cache_used - mca_reserve(c)) 579 580 static void mca_data_free(struct btree *b) 581 { 582 BUG_ON(b->io_mutex.count != 1); 583 584 bch_btree_keys_free(&b->keys); 585 586 b->c->btree_cache_used--; 587 list_move(&b->list, &b->c->btree_cache_freed); 588 } 589 590 static void mca_bucket_free(struct btree *b) 591 { 592 BUG_ON(btree_node_dirty(b)); 593 594 b->key.ptr[0] = 0; 595 hlist_del_init_rcu(&b->hash); 596 list_move(&b->list, &b->c->btree_cache_freeable); 597 } 598 599 static unsigned int btree_order(struct bkey *k) 600 { 601 return ilog2(KEY_SIZE(k) / PAGE_SECTORS ?: 1); 602 } 603 604 static void mca_data_alloc(struct btree *b, struct bkey *k, gfp_t gfp) 605 { 606 if (!bch_btree_keys_alloc(&b->keys, 607 max_t(unsigned int, 608 ilog2(b->c->btree_pages), 609 btree_order(k)), 610 gfp)) { 611 b->c->btree_cache_used++; 612 list_move(&b->list, &b->c->btree_cache); 613 } else { 614 list_move(&b->list, &b->c->btree_cache_freed); 615 } 616 } 617 618 static struct btree *mca_bucket_alloc(struct cache_set *c, 619 struct bkey *k, gfp_t gfp) 620 { 621 /* 622 * kzalloc() is necessary here for initialization, 623 * see code comments in bch_btree_keys_init(). 624 */ 625 struct btree *b = kzalloc(sizeof(struct btree), gfp); 626 627 if (!b) 628 return NULL; 629 630 init_rwsem(&b->lock); 631 lockdep_set_novalidate_class(&b->lock); 632 mutex_init(&b->write_lock); 633 lockdep_set_novalidate_class(&b->write_lock); 634 INIT_LIST_HEAD(&b->list); 635 INIT_DELAYED_WORK(&b->work, btree_node_write_work); 636 b->c = c; 637 sema_init(&b->io_mutex, 1); 638 639 mca_data_alloc(b, k, gfp); 640 return b; 641 } 642 643 static int mca_reap(struct btree *b, unsigned int min_order, bool flush) 644 { 645 struct closure cl; 646 647 closure_init_stack(&cl); 648 lockdep_assert_held(&b->c->bucket_lock); 649 650 if (!down_write_trylock(&b->lock)) 651 return -ENOMEM; 652 653 BUG_ON(btree_node_dirty(b) && !b->keys.set[0].data); 654 655 if (b->keys.page_order < min_order) 656 goto out_unlock; 657 658 if (!flush) { 659 if (btree_node_dirty(b)) 660 goto out_unlock; 661 662 if (down_trylock(&b->io_mutex)) 663 goto out_unlock; 664 up(&b->io_mutex); 665 } 666 667 retry: 668 /* 669 * BTREE_NODE_dirty might be cleared in btree_flush_btree() by 670 * __bch_btree_node_write(). To avoid an extra flush, acquire 671 * b->write_lock before checking BTREE_NODE_dirty bit. 672 */ 673 mutex_lock(&b->write_lock); 674 /* 675 * If this btree node is selected in btree_flush_write() by journal 676 * code, delay and retry until the node is flushed by journal code 677 * and BTREE_NODE_journal_flush bit cleared by btree_flush_write(). 678 */ 679 if (btree_node_journal_flush(b)) { 680 pr_debug("bnode %p is flushing by journal, retry", b); 681 mutex_unlock(&b->write_lock); 682 udelay(1); 683 goto retry; 684 } 685 686 if (btree_node_dirty(b)) 687 __bch_btree_node_write(b, &cl); 688 mutex_unlock(&b->write_lock); 689 690 closure_sync(&cl); 691 692 /* wait for any in flight btree write */ 693 down(&b->io_mutex); 694 up(&b->io_mutex); 695 696 return 0; 697 out_unlock: 698 rw_unlock(true, b); 699 return -ENOMEM; 700 } 701 702 static unsigned long bch_mca_scan(struct shrinker *shrink, 703 struct shrink_control *sc) 704 { 705 struct cache_set *c = container_of(shrink, struct cache_set, shrink); 706 struct btree *b, *t; 707 unsigned long i, nr = sc->nr_to_scan; 708 unsigned long freed = 0; 709 unsigned int btree_cache_used; 710 711 if (c->shrinker_disabled) 712 return SHRINK_STOP; 713 714 if (c->btree_cache_alloc_lock) 715 return SHRINK_STOP; 716 717 /* Return -1 if we can't do anything right now */ 718 if (sc->gfp_mask & __GFP_IO) 719 mutex_lock(&c->bucket_lock); 720 else if (!mutex_trylock(&c->bucket_lock)) 721 return -1; 722 723 /* 724 * It's _really_ critical that we don't free too many btree nodes - we 725 * have to always leave ourselves a reserve. The reserve is how we 726 * guarantee that allocating memory for a new btree node can always 727 * succeed, so that inserting keys into the btree can always succeed and 728 * IO can always make forward progress: 729 */ 730 nr /= c->btree_pages; 731 if (nr == 0) 732 nr = 1; 733 nr = min_t(unsigned long, nr, mca_can_free(c)); 734 735 i = 0; 736 btree_cache_used = c->btree_cache_used; 737 list_for_each_entry_safe(b, t, &c->btree_cache_freeable, list) { 738 if (nr <= 0) 739 goto out; 740 741 if (++i > 3 && 742 !mca_reap(b, 0, false)) { 743 mca_data_free(b); 744 rw_unlock(true, b); 745 freed++; 746 } 747 nr--; 748 } 749 750 for (; (nr--) && i < btree_cache_used; i++) { 751 if (list_empty(&c->btree_cache)) 752 goto out; 753 754 b = list_first_entry(&c->btree_cache, struct btree, list); 755 list_rotate_left(&c->btree_cache); 756 757 if (!b->accessed && 758 !mca_reap(b, 0, false)) { 759 mca_bucket_free(b); 760 mca_data_free(b); 761 rw_unlock(true, b); 762 freed++; 763 } else 764 b->accessed = 0; 765 } 766 out: 767 mutex_unlock(&c->bucket_lock); 768 return freed * c->btree_pages; 769 } 770 771 static unsigned long bch_mca_count(struct shrinker *shrink, 772 struct shrink_control *sc) 773 { 774 struct cache_set *c = container_of(shrink, struct cache_set, shrink); 775 776 if (c->shrinker_disabled) 777 return 0; 778 779 if (c->btree_cache_alloc_lock) 780 return 0; 781 782 return mca_can_free(c) * c->btree_pages; 783 } 784 785 void bch_btree_cache_free(struct cache_set *c) 786 { 787 struct btree *b; 788 struct closure cl; 789 790 closure_init_stack(&cl); 791 792 if (c->shrink.list.next) 793 unregister_shrinker(&c->shrink); 794 795 mutex_lock(&c->bucket_lock); 796 797 #ifdef CONFIG_BCACHE_DEBUG 798 if (c->verify_data) 799 list_move(&c->verify_data->list, &c->btree_cache); 800 801 free_pages((unsigned long) c->verify_ondisk, ilog2(bucket_pages(c))); 802 #endif 803 804 list_splice(&c->btree_cache_freeable, 805 &c->btree_cache); 806 807 while (!list_empty(&c->btree_cache)) { 808 b = list_first_entry(&c->btree_cache, struct btree, list); 809 810 /* 811 * This function is called by cache_set_free(), no I/O 812 * request on cache now, it is unnecessary to acquire 813 * b->write_lock before clearing BTREE_NODE_dirty anymore. 814 */ 815 if (btree_node_dirty(b)) { 816 btree_complete_write(b, btree_current_write(b)); 817 clear_bit(BTREE_NODE_dirty, &b->flags); 818 } 819 mca_data_free(b); 820 } 821 822 while (!list_empty(&c->btree_cache_freed)) { 823 b = list_first_entry(&c->btree_cache_freed, 824 struct btree, list); 825 list_del(&b->list); 826 cancel_delayed_work_sync(&b->work); 827 kfree(b); 828 } 829 830 mutex_unlock(&c->bucket_lock); 831 } 832 833 int bch_btree_cache_alloc(struct cache_set *c) 834 { 835 unsigned int i; 836 837 for (i = 0; i < mca_reserve(c); i++) 838 if (!mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL)) 839 return -ENOMEM; 840 841 list_splice_init(&c->btree_cache, 842 &c->btree_cache_freeable); 843 844 #ifdef CONFIG_BCACHE_DEBUG 845 mutex_init(&c->verify_lock); 846 847 c->verify_ondisk = (void *) 848 __get_free_pages(GFP_KERNEL, ilog2(bucket_pages(c))); 849 850 c->verify_data = mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL); 851 852 if (c->verify_data && 853 c->verify_data->keys.set->data) 854 list_del_init(&c->verify_data->list); 855 else 856 c->verify_data = NULL; 857 #endif 858 859 c->shrink.count_objects = bch_mca_count; 860 c->shrink.scan_objects = bch_mca_scan; 861 c->shrink.seeks = 4; 862 c->shrink.batch = c->btree_pages * 2; 863 864 if (register_shrinker(&c->shrink)) 865 pr_warn("bcache: %s: could not register shrinker", 866 __func__); 867 868 return 0; 869 } 870 871 /* Btree in memory cache - hash table */ 872 873 static struct hlist_head *mca_hash(struct cache_set *c, struct bkey *k) 874 { 875 return &c->bucket_hash[hash_32(PTR_HASH(c, k), BUCKET_HASH_BITS)]; 876 } 877 878 static struct btree *mca_find(struct cache_set *c, struct bkey *k) 879 { 880 struct btree *b; 881 882 rcu_read_lock(); 883 hlist_for_each_entry_rcu(b, mca_hash(c, k), hash) 884 if (PTR_HASH(c, &b->key) == PTR_HASH(c, k)) 885 goto out; 886 b = NULL; 887 out: 888 rcu_read_unlock(); 889 return b; 890 } 891 892 static int mca_cannibalize_lock(struct cache_set *c, struct btree_op *op) 893 { 894 spin_lock(&c->btree_cannibalize_lock); 895 if (likely(c->btree_cache_alloc_lock == NULL)) { 896 c->btree_cache_alloc_lock = current; 897 } else if (c->btree_cache_alloc_lock != current) { 898 if (op) 899 prepare_to_wait(&c->btree_cache_wait, &op->wait, 900 TASK_UNINTERRUPTIBLE); 901 spin_unlock(&c->btree_cannibalize_lock); 902 return -EINTR; 903 } 904 spin_unlock(&c->btree_cannibalize_lock); 905 906 return 0; 907 } 908 909 static struct btree *mca_cannibalize(struct cache_set *c, struct btree_op *op, 910 struct bkey *k) 911 { 912 struct btree *b; 913 914 trace_bcache_btree_cache_cannibalize(c); 915 916 if (mca_cannibalize_lock(c, op)) 917 return ERR_PTR(-EINTR); 918 919 list_for_each_entry_reverse(b, &c->btree_cache, list) 920 if (!mca_reap(b, btree_order(k), false)) 921 return b; 922 923 list_for_each_entry_reverse(b, &c->btree_cache, list) 924 if (!mca_reap(b, btree_order(k), true)) 925 return b; 926 927 WARN(1, "btree cache cannibalize failed\n"); 928 return ERR_PTR(-ENOMEM); 929 } 930 931 /* 932 * We can only have one thread cannibalizing other cached btree nodes at a time, 933 * or we'll deadlock. We use an open coded mutex to ensure that, which a 934 * cannibalize_bucket() will take. This means every time we unlock the root of 935 * the btree, we need to release this lock if we have it held. 936 */ 937 static void bch_cannibalize_unlock(struct cache_set *c) 938 { 939 spin_lock(&c->btree_cannibalize_lock); 940 if (c->btree_cache_alloc_lock == current) { 941 c->btree_cache_alloc_lock = NULL; 942 wake_up(&c->btree_cache_wait); 943 } 944 spin_unlock(&c->btree_cannibalize_lock); 945 } 946 947 static struct btree *mca_alloc(struct cache_set *c, struct btree_op *op, 948 struct bkey *k, int level) 949 { 950 struct btree *b; 951 952 BUG_ON(current->bio_list); 953 954 lockdep_assert_held(&c->bucket_lock); 955 956 if (mca_find(c, k)) 957 return NULL; 958 959 /* btree_free() doesn't free memory; it sticks the node on the end of 960 * the list. Check if there's any freed nodes there: 961 */ 962 list_for_each_entry(b, &c->btree_cache_freeable, list) 963 if (!mca_reap(b, btree_order(k), false)) 964 goto out; 965 966 /* We never free struct btree itself, just the memory that holds the on 967 * disk node. Check the freed list before allocating a new one: 968 */ 969 list_for_each_entry(b, &c->btree_cache_freed, list) 970 if (!mca_reap(b, 0, false)) { 971 mca_data_alloc(b, k, __GFP_NOWARN|GFP_NOIO); 972 if (!b->keys.set[0].data) 973 goto err; 974 else 975 goto out; 976 } 977 978 b = mca_bucket_alloc(c, k, __GFP_NOWARN|GFP_NOIO); 979 if (!b) 980 goto err; 981 982 BUG_ON(!down_write_trylock(&b->lock)); 983 if (!b->keys.set->data) 984 goto err; 985 out: 986 BUG_ON(b->io_mutex.count != 1); 987 988 bkey_copy(&b->key, k); 989 list_move(&b->list, &c->btree_cache); 990 hlist_del_init_rcu(&b->hash); 991 hlist_add_head_rcu(&b->hash, mca_hash(c, k)); 992 993 lock_set_subclass(&b->lock.dep_map, level + 1, _THIS_IP_); 994 b->parent = (void *) ~0UL; 995 b->flags = 0; 996 b->written = 0; 997 b->level = level; 998 999 if (!b->level) 1000 bch_btree_keys_init(&b->keys, &bch_extent_keys_ops, 1001 &b->c->expensive_debug_checks); 1002 else 1003 bch_btree_keys_init(&b->keys, &bch_btree_keys_ops, 1004 &b->c->expensive_debug_checks); 1005 1006 return b; 1007 err: 1008 if (b) 1009 rw_unlock(true, b); 1010 1011 b = mca_cannibalize(c, op, k); 1012 if (!IS_ERR(b)) 1013 goto out; 1014 1015 return b; 1016 } 1017 1018 /* 1019 * bch_btree_node_get - find a btree node in the cache and lock it, reading it 1020 * in from disk if necessary. 1021 * 1022 * If IO is necessary and running under generic_make_request, returns -EAGAIN. 1023 * 1024 * The btree node will have either a read or a write lock held, depending on 1025 * level and op->lock. 1026 */ 1027 struct btree *bch_btree_node_get(struct cache_set *c, struct btree_op *op, 1028 struct bkey *k, int level, bool write, 1029 struct btree *parent) 1030 { 1031 int i = 0; 1032 struct btree *b; 1033 1034 BUG_ON(level < 0); 1035 retry: 1036 b = mca_find(c, k); 1037 1038 if (!b) { 1039 if (current->bio_list) 1040 return ERR_PTR(-EAGAIN); 1041 1042 mutex_lock(&c->bucket_lock); 1043 b = mca_alloc(c, op, k, level); 1044 mutex_unlock(&c->bucket_lock); 1045 1046 if (!b) 1047 goto retry; 1048 if (IS_ERR(b)) 1049 return b; 1050 1051 bch_btree_node_read(b); 1052 1053 if (!write) 1054 downgrade_write(&b->lock); 1055 } else { 1056 rw_lock(write, b, level); 1057 if (PTR_HASH(c, &b->key) != PTR_HASH(c, k)) { 1058 rw_unlock(write, b); 1059 goto retry; 1060 } 1061 BUG_ON(b->level != level); 1062 } 1063 1064 if (btree_node_io_error(b)) { 1065 rw_unlock(write, b); 1066 return ERR_PTR(-EIO); 1067 } 1068 1069 BUG_ON(!b->written); 1070 1071 b->parent = parent; 1072 b->accessed = 1; 1073 1074 for (; i <= b->keys.nsets && b->keys.set[i].size; i++) { 1075 prefetch(b->keys.set[i].tree); 1076 prefetch(b->keys.set[i].data); 1077 } 1078 1079 for (; i <= b->keys.nsets; i++) 1080 prefetch(b->keys.set[i].data); 1081 1082 return b; 1083 } 1084 1085 static void btree_node_prefetch(struct btree *parent, struct bkey *k) 1086 { 1087 struct btree *b; 1088 1089 mutex_lock(&parent->c->bucket_lock); 1090 b = mca_alloc(parent->c, NULL, k, parent->level - 1); 1091 mutex_unlock(&parent->c->bucket_lock); 1092 1093 if (!IS_ERR_OR_NULL(b)) { 1094 b->parent = parent; 1095 bch_btree_node_read(b); 1096 rw_unlock(true, b); 1097 } 1098 } 1099 1100 /* Btree alloc */ 1101 1102 static void btree_node_free(struct btree *b) 1103 { 1104 trace_bcache_btree_node_free(b); 1105 1106 BUG_ON(b == b->c->root); 1107 1108 retry: 1109 mutex_lock(&b->write_lock); 1110 /* 1111 * If the btree node is selected and flushing in btree_flush_write(), 1112 * delay and retry until the BTREE_NODE_journal_flush bit cleared, 1113 * then it is safe to free the btree node here. Otherwise this btree 1114 * node will be in race condition. 1115 */ 1116 if (btree_node_journal_flush(b)) { 1117 mutex_unlock(&b->write_lock); 1118 pr_debug("bnode %p journal_flush set, retry", b); 1119 udelay(1); 1120 goto retry; 1121 } 1122 1123 if (btree_node_dirty(b)) { 1124 btree_complete_write(b, btree_current_write(b)); 1125 clear_bit(BTREE_NODE_dirty, &b->flags); 1126 } 1127 1128 mutex_unlock(&b->write_lock); 1129 1130 cancel_delayed_work(&b->work); 1131 1132 mutex_lock(&b->c->bucket_lock); 1133 bch_bucket_free(b->c, &b->key); 1134 mca_bucket_free(b); 1135 mutex_unlock(&b->c->bucket_lock); 1136 } 1137 1138 struct btree *__bch_btree_node_alloc(struct cache_set *c, struct btree_op *op, 1139 int level, bool wait, 1140 struct btree *parent) 1141 { 1142 BKEY_PADDED(key) k; 1143 struct btree *b = ERR_PTR(-EAGAIN); 1144 1145 mutex_lock(&c->bucket_lock); 1146 retry: 1147 if (__bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, 1, wait)) 1148 goto err; 1149 1150 bkey_put(c, &k.key); 1151 SET_KEY_SIZE(&k.key, c->btree_pages * PAGE_SECTORS); 1152 1153 b = mca_alloc(c, op, &k.key, level); 1154 if (IS_ERR(b)) 1155 goto err_free; 1156 1157 if (!b) { 1158 cache_bug(c, 1159 "Tried to allocate bucket that was in btree cache"); 1160 goto retry; 1161 } 1162 1163 b->accessed = 1; 1164 b->parent = parent; 1165 bch_bset_init_next(&b->keys, b->keys.set->data, bset_magic(&b->c->sb)); 1166 1167 mutex_unlock(&c->bucket_lock); 1168 1169 trace_bcache_btree_node_alloc(b); 1170 return b; 1171 err_free: 1172 bch_bucket_free(c, &k.key); 1173 err: 1174 mutex_unlock(&c->bucket_lock); 1175 1176 trace_bcache_btree_node_alloc_fail(c); 1177 return b; 1178 } 1179 1180 static struct btree *bch_btree_node_alloc(struct cache_set *c, 1181 struct btree_op *op, int level, 1182 struct btree *parent) 1183 { 1184 return __bch_btree_node_alloc(c, op, level, op != NULL, parent); 1185 } 1186 1187 static struct btree *btree_node_alloc_replacement(struct btree *b, 1188 struct btree_op *op) 1189 { 1190 struct btree *n = bch_btree_node_alloc(b->c, op, b->level, b->parent); 1191 1192 if (!IS_ERR_OR_NULL(n)) { 1193 mutex_lock(&n->write_lock); 1194 bch_btree_sort_into(&b->keys, &n->keys, &b->c->sort); 1195 bkey_copy_key(&n->key, &b->key); 1196 mutex_unlock(&n->write_lock); 1197 } 1198 1199 return n; 1200 } 1201 1202 static void make_btree_freeing_key(struct btree *b, struct bkey *k) 1203 { 1204 unsigned int i; 1205 1206 mutex_lock(&b->c->bucket_lock); 1207 1208 atomic_inc(&b->c->prio_blocked); 1209 1210 bkey_copy(k, &b->key); 1211 bkey_copy_key(k, &ZERO_KEY); 1212 1213 for (i = 0; i < KEY_PTRS(k); i++) 1214 SET_PTR_GEN(k, i, 1215 bch_inc_gen(PTR_CACHE(b->c, &b->key, i), 1216 PTR_BUCKET(b->c, &b->key, i))); 1217 1218 mutex_unlock(&b->c->bucket_lock); 1219 } 1220 1221 static int btree_check_reserve(struct btree *b, struct btree_op *op) 1222 { 1223 struct cache_set *c = b->c; 1224 struct cache *ca; 1225 unsigned int i, reserve = (c->root->level - b->level) * 2 + 1; 1226 1227 mutex_lock(&c->bucket_lock); 1228 1229 for_each_cache(ca, c, i) 1230 if (fifo_used(&ca->free[RESERVE_BTREE]) < reserve) { 1231 if (op) 1232 prepare_to_wait(&c->btree_cache_wait, &op->wait, 1233 TASK_UNINTERRUPTIBLE); 1234 mutex_unlock(&c->bucket_lock); 1235 return -EINTR; 1236 } 1237 1238 mutex_unlock(&c->bucket_lock); 1239 1240 return mca_cannibalize_lock(b->c, op); 1241 } 1242 1243 /* Garbage collection */ 1244 1245 static uint8_t __bch_btree_mark_key(struct cache_set *c, int level, 1246 struct bkey *k) 1247 { 1248 uint8_t stale = 0; 1249 unsigned int i; 1250 struct bucket *g; 1251 1252 /* 1253 * ptr_invalid() can't return true for the keys that mark btree nodes as 1254 * freed, but since ptr_bad() returns true we'll never actually use them 1255 * for anything and thus we don't want mark their pointers here 1256 */ 1257 if (!bkey_cmp(k, &ZERO_KEY)) 1258 return stale; 1259 1260 for (i = 0; i < KEY_PTRS(k); i++) { 1261 if (!ptr_available(c, k, i)) 1262 continue; 1263 1264 g = PTR_BUCKET(c, k, i); 1265 1266 if (gen_after(g->last_gc, PTR_GEN(k, i))) 1267 g->last_gc = PTR_GEN(k, i); 1268 1269 if (ptr_stale(c, k, i)) { 1270 stale = max(stale, ptr_stale(c, k, i)); 1271 continue; 1272 } 1273 1274 cache_bug_on(GC_MARK(g) && 1275 (GC_MARK(g) == GC_MARK_METADATA) != (level != 0), 1276 c, "inconsistent ptrs: mark = %llu, level = %i", 1277 GC_MARK(g), level); 1278 1279 if (level) 1280 SET_GC_MARK(g, GC_MARK_METADATA); 1281 else if (KEY_DIRTY(k)) 1282 SET_GC_MARK(g, GC_MARK_DIRTY); 1283 else if (!GC_MARK(g)) 1284 SET_GC_MARK(g, GC_MARK_RECLAIMABLE); 1285 1286 /* guard against overflow */ 1287 SET_GC_SECTORS_USED(g, min_t(unsigned int, 1288 GC_SECTORS_USED(g) + KEY_SIZE(k), 1289 MAX_GC_SECTORS_USED)); 1290 1291 BUG_ON(!GC_SECTORS_USED(g)); 1292 } 1293 1294 return stale; 1295 } 1296 1297 #define btree_mark_key(b, k) __bch_btree_mark_key(b->c, b->level, k) 1298 1299 void bch_initial_mark_key(struct cache_set *c, int level, struct bkey *k) 1300 { 1301 unsigned int i; 1302 1303 for (i = 0; i < KEY_PTRS(k); i++) 1304 if (ptr_available(c, k, i) && 1305 !ptr_stale(c, k, i)) { 1306 struct bucket *b = PTR_BUCKET(c, k, i); 1307 1308 b->gen = PTR_GEN(k, i); 1309 1310 if (level && bkey_cmp(k, &ZERO_KEY)) 1311 b->prio = BTREE_PRIO; 1312 else if (!level && b->prio == BTREE_PRIO) 1313 b->prio = INITIAL_PRIO; 1314 } 1315 1316 __bch_btree_mark_key(c, level, k); 1317 } 1318 1319 void bch_update_bucket_in_use(struct cache_set *c, struct gc_stat *stats) 1320 { 1321 stats->in_use = (c->nbuckets - c->avail_nbuckets) * 100 / c->nbuckets; 1322 } 1323 1324 static bool btree_gc_mark_node(struct btree *b, struct gc_stat *gc) 1325 { 1326 uint8_t stale = 0; 1327 unsigned int keys = 0, good_keys = 0; 1328 struct bkey *k; 1329 struct btree_iter iter; 1330 struct bset_tree *t; 1331 1332 gc->nodes++; 1333 1334 for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid) { 1335 stale = max(stale, btree_mark_key(b, k)); 1336 keys++; 1337 1338 if (bch_ptr_bad(&b->keys, k)) 1339 continue; 1340 1341 gc->key_bytes += bkey_u64s(k); 1342 gc->nkeys++; 1343 good_keys++; 1344 1345 gc->data += KEY_SIZE(k); 1346 } 1347 1348 for (t = b->keys.set; t <= &b->keys.set[b->keys.nsets]; t++) 1349 btree_bug_on(t->size && 1350 bset_written(&b->keys, t) && 1351 bkey_cmp(&b->key, &t->end) < 0, 1352 b, "found short btree key in gc"); 1353 1354 if (b->c->gc_always_rewrite) 1355 return true; 1356 1357 if (stale > 10) 1358 return true; 1359 1360 if ((keys - good_keys) * 2 > keys) 1361 return true; 1362 1363 return false; 1364 } 1365 1366 #define GC_MERGE_NODES 4U 1367 1368 struct gc_merge_info { 1369 struct btree *b; 1370 unsigned int keys; 1371 }; 1372 1373 static int bch_btree_insert_node(struct btree *b, struct btree_op *op, 1374 struct keylist *insert_keys, 1375 atomic_t *journal_ref, 1376 struct bkey *replace_key); 1377 1378 static int btree_gc_coalesce(struct btree *b, struct btree_op *op, 1379 struct gc_stat *gc, struct gc_merge_info *r) 1380 { 1381 unsigned int i, nodes = 0, keys = 0, blocks; 1382 struct btree *new_nodes[GC_MERGE_NODES]; 1383 struct keylist keylist; 1384 struct closure cl; 1385 struct bkey *k; 1386 1387 bch_keylist_init(&keylist); 1388 1389 if (btree_check_reserve(b, NULL)) 1390 return 0; 1391 1392 memset(new_nodes, 0, sizeof(new_nodes)); 1393 closure_init_stack(&cl); 1394 1395 while (nodes < GC_MERGE_NODES && !IS_ERR_OR_NULL(r[nodes].b)) 1396 keys += r[nodes++].keys; 1397 1398 blocks = btree_default_blocks(b->c) * 2 / 3; 1399 1400 if (nodes < 2 || 1401 __set_blocks(b->keys.set[0].data, keys, 1402 block_bytes(b->c)) > blocks * (nodes - 1)) 1403 return 0; 1404 1405 for (i = 0; i < nodes; i++) { 1406 new_nodes[i] = btree_node_alloc_replacement(r[i].b, NULL); 1407 if (IS_ERR_OR_NULL(new_nodes[i])) 1408 goto out_nocoalesce; 1409 } 1410 1411 /* 1412 * We have to check the reserve here, after we've allocated our new 1413 * nodes, to make sure the insert below will succeed - we also check 1414 * before as an optimization to potentially avoid a bunch of expensive 1415 * allocs/sorts 1416 */ 1417 if (btree_check_reserve(b, NULL)) 1418 goto out_nocoalesce; 1419 1420 for (i = 0; i < nodes; i++) 1421 mutex_lock(&new_nodes[i]->write_lock); 1422 1423 for (i = nodes - 1; i > 0; --i) { 1424 struct bset *n1 = btree_bset_first(new_nodes[i]); 1425 struct bset *n2 = btree_bset_first(new_nodes[i - 1]); 1426 struct bkey *k, *last = NULL; 1427 1428 keys = 0; 1429 1430 if (i > 1) { 1431 for (k = n2->start; 1432 k < bset_bkey_last(n2); 1433 k = bkey_next(k)) { 1434 if (__set_blocks(n1, n1->keys + keys + 1435 bkey_u64s(k), 1436 block_bytes(b->c)) > blocks) 1437 break; 1438 1439 last = k; 1440 keys += bkey_u64s(k); 1441 } 1442 } else { 1443 /* 1444 * Last node we're not getting rid of - we're getting 1445 * rid of the node at r[0]. Have to try and fit all of 1446 * the remaining keys into this node; we can't ensure 1447 * they will always fit due to rounding and variable 1448 * length keys (shouldn't be possible in practice, 1449 * though) 1450 */ 1451 if (__set_blocks(n1, n1->keys + n2->keys, 1452 block_bytes(b->c)) > 1453 btree_blocks(new_nodes[i])) 1454 goto out_nocoalesce; 1455 1456 keys = n2->keys; 1457 /* Take the key of the node we're getting rid of */ 1458 last = &r->b->key; 1459 } 1460 1461 BUG_ON(__set_blocks(n1, n1->keys + keys, block_bytes(b->c)) > 1462 btree_blocks(new_nodes[i])); 1463 1464 if (last) 1465 bkey_copy_key(&new_nodes[i]->key, last); 1466 1467 memcpy(bset_bkey_last(n1), 1468 n2->start, 1469 (void *) bset_bkey_idx(n2, keys) - (void *) n2->start); 1470 1471 n1->keys += keys; 1472 r[i].keys = n1->keys; 1473 1474 memmove(n2->start, 1475 bset_bkey_idx(n2, keys), 1476 (void *) bset_bkey_last(n2) - 1477 (void *) bset_bkey_idx(n2, keys)); 1478 1479 n2->keys -= keys; 1480 1481 if (__bch_keylist_realloc(&keylist, 1482 bkey_u64s(&new_nodes[i]->key))) 1483 goto out_nocoalesce; 1484 1485 bch_btree_node_write(new_nodes[i], &cl); 1486 bch_keylist_add(&keylist, &new_nodes[i]->key); 1487 } 1488 1489 for (i = 0; i < nodes; i++) 1490 mutex_unlock(&new_nodes[i]->write_lock); 1491 1492 closure_sync(&cl); 1493 1494 /* We emptied out this node */ 1495 BUG_ON(btree_bset_first(new_nodes[0])->keys); 1496 btree_node_free(new_nodes[0]); 1497 rw_unlock(true, new_nodes[0]); 1498 new_nodes[0] = NULL; 1499 1500 for (i = 0; i < nodes; i++) { 1501 if (__bch_keylist_realloc(&keylist, bkey_u64s(&r[i].b->key))) 1502 goto out_nocoalesce; 1503 1504 make_btree_freeing_key(r[i].b, keylist.top); 1505 bch_keylist_push(&keylist); 1506 } 1507 1508 bch_btree_insert_node(b, op, &keylist, NULL, NULL); 1509 BUG_ON(!bch_keylist_empty(&keylist)); 1510 1511 for (i = 0; i < nodes; i++) { 1512 btree_node_free(r[i].b); 1513 rw_unlock(true, r[i].b); 1514 1515 r[i].b = new_nodes[i]; 1516 } 1517 1518 memmove(r, r + 1, sizeof(r[0]) * (nodes - 1)); 1519 r[nodes - 1].b = ERR_PTR(-EINTR); 1520 1521 trace_bcache_btree_gc_coalesce(nodes); 1522 gc->nodes--; 1523 1524 bch_keylist_free(&keylist); 1525 1526 /* Invalidated our iterator */ 1527 return -EINTR; 1528 1529 out_nocoalesce: 1530 closure_sync(&cl); 1531 1532 while ((k = bch_keylist_pop(&keylist))) 1533 if (!bkey_cmp(k, &ZERO_KEY)) 1534 atomic_dec(&b->c->prio_blocked); 1535 bch_keylist_free(&keylist); 1536 1537 for (i = 0; i < nodes; i++) 1538 if (!IS_ERR_OR_NULL(new_nodes[i])) { 1539 btree_node_free(new_nodes[i]); 1540 rw_unlock(true, new_nodes[i]); 1541 } 1542 return 0; 1543 } 1544 1545 static int btree_gc_rewrite_node(struct btree *b, struct btree_op *op, 1546 struct btree *replace) 1547 { 1548 struct keylist keys; 1549 struct btree *n; 1550 1551 if (btree_check_reserve(b, NULL)) 1552 return 0; 1553 1554 n = btree_node_alloc_replacement(replace, NULL); 1555 1556 /* recheck reserve after allocating replacement node */ 1557 if (btree_check_reserve(b, NULL)) { 1558 btree_node_free(n); 1559 rw_unlock(true, n); 1560 return 0; 1561 } 1562 1563 bch_btree_node_write_sync(n); 1564 1565 bch_keylist_init(&keys); 1566 bch_keylist_add(&keys, &n->key); 1567 1568 make_btree_freeing_key(replace, keys.top); 1569 bch_keylist_push(&keys); 1570 1571 bch_btree_insert_node(b, op, &keys, NULL, NULL); 1572 BUG_ON(!bch_keylist_empty(&keys)); 1573 1574 btree_node_free(replace); 1575 rw_unlock(true, n); 1576 1577 /* Invalidated our iterator */ 1578 return -EINTR; 1579 } 1580 1581 static unsigned int btree_gc_count_keys(struct btree *b) 1582 { 1583 struct bkey *k; 1584 struct btree_iter iter; 1585 unsigned int ret = 0; 1586 1587 for_each_key_filter(&b->keys, k, &iter, bch_ptr_bad) 1588 ret += bkey_u64s(k); 1589 1590 return ret; 1591 } 1592 1593 static size_t btree_gc_min_nodes(struct cache_set *c) 1594 { 1595 size_t min_nodes; 1596 1597 /* 1598 * Since incremental GC would stop 100ms when front 1599 * side I/O comes, so when there are many btree nodes, 1600 * if GC only processes constant (100) nodes each time, 1601 * GC would last a long time, and the front side I/Os 1602 * would run out of the buckets (since no new bucket 1603 * can be allocated during GC), and be blocked again. 1604 * So GC should not process constant nodes, but varied 1605 * nodes according to the number of btree nodes, which 1606 * realized by dividing GC into constant(100) times, 1607 * so when there are many btree nodes, GC can process 1608 * more nodes each time, otherwise, GC will process less 1609 * nodes each time (but no less than MIN_GC_NODES) 1610 */ 1611 min_nodes = c->gc_stats.nodes / MAX_GC_TIMES; 1612 if (min_nodes < MIN_GC_NODES) 1613 min_nodes = MIN_GC_NODES; 1614 1615 return min_nodes; 1616 } 1617 1618 1619 static int btree_gc_recurse(struct btree *b, struct btree_op *op, 1620 struct closure *writes, struct gc_stat *gc) 1621 { 1622 int ret = 0; 1623 bool should_rewrite; 1624 struct bkey *k; 1625 struct btree_iter iter; 1626 struct gc_merge_info r[GC_MERGE_NODES]; 1627 struct gc_merge_info *i, *last = r + ARRAY_SIZE(r) - 1; 1628 1629 bch_btree_iter_init(&b->keys, &iter, &b->c->gc_done); 1630 1631 for (i = r; i < r + ARRAY_SIZE(r); i++) 1632 i->b = ERR_PTR(-EINTR); 1633 1634 while (1) { 1635 k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad); 1636 if (k) { 1637 r->b = bch_btree_node_get(b->c, op, k, b->level - 1, 1638 true, b); 1639 if (IS_ERR(r->b)) { 1640 ret = PTR_ERR(r->b); 1641 break; 1642 } 1643 1644 r->keys = btree_gc_count_keys(r->b); 1645 1646 ret = btree_gc_coalesce(b, op, gc, r); 1647 if (ret) 1648 break; 1649 } 1650 1651 if (!last->b) 1652 break; 1653 1654 if (!IS_ERR(last->b)) { 1655 should_rewrite = btree_gc_mark_node(last->b, gc); 1656 if (should_rewrite) { 1657 ret = btree_gc_rewrite_node(b, op, last->b); 1658 if (ret) 1659 break; 1660 } 1661 1662 if (last->b->level) { 1663 ret = btree_gc_recurse(last->b, op, writes, gc); 1664 if (ret) 1665 break; 1666 } 1667 1668 bkey_copy_key(&b->c->gc_done, &last->b->key); 1669 1670 /* 1671 * Must flush leaf nodes before gc ends, since replace 1672 * operations aren't journalled 1673 */ 1674 mutex_lock(&last->b->write_lock); 1675 if (btree_node_dirty(last->b)) 1676 bch_btree_node_write(last->b, writes); 1677 mutex_unlock(&last->b->write_lock); 1678 rw_unlock(true, last->b); 1679 } 1680 1681 memmove(r + 1, r, sizeof(r[0]) * (GC_MERGE_NODES - 1)); 1682 r->b = NULL; 1683 1684 if (atomic_read(&b->c->search_inflight) && 1685 gc->nodes >= gc->nodes_pre + btree_gc_min_nodes(b->c)) { 1686 gc->nodes_pre = gc->nodes; 1687 ret = -EAGAIN; 1688 break; 1689 } 1690 1691 if (need_resched()) { 1692 ret = -EAGAIN; 1693 break; 1694 } 1695 } 1696 1697 for (i = r; i < r + ARRAY_SIZE(r); i++) 1698 if (!IS_ERR_OR_NULL(i->b)) { 1699 mutex_lock(&i->b->write_lock); 1700 if (btree_node_dirty(i->b)) 1701 bch_btree_node_write(i->b, writes); 1702 mutex_unlock(&i->b->write_lock); 1703 rw_unlock(true, i->b); 1704 } 1705 1706 return ret; 1707 } 1708 1709 static int bch_btree_gc_root(struct btree *b, struct btree_op *op, 1710 struct closure *writes, struct gc_stat *gc) 1711 { 1712 struct btree *n = NULL; 1713 int ret = 0; 1714 bool should_rewrite; 1715 1716 should_rewrite = btree_gc_mark_node(b, gc); 1717 if (should_rewrite) { 1718 n = btree_node_alloc_replacement(b, NULL); 1719 1720 if (!IS_ERR_OR_NULL(n)) { 1721 bch_btree_node_write_sync(n); 1722 1723 bch_btree_set_root(n); 1724 btree_node_free(b); 1725 rw_unlock(true, n); 1726 1727 return -EINTR; 1728 } 1729 } 1730 1731 __bch_btree_mark_key(b->c, b->level + 1, &b->key); 1732 1733 if (b->level) { 1734 ret = btree_gc_recurse(b, op, writes, gc); 1735 if (ret) 1736 return ret; 1737 } 1738 1739 bkey_copy_key(&b->c->gc_done, &b->key); 1740 1741 return ret; 1742 } 1743 1744 static void btree_gc_start(struct cache_set *c) 1745 { 1746 struct cache *ca; 1747 struct bucket *b; 1748 unsigned int i; 1749 1750 if (!c->gc_mark_valid) 1751 return; 1752 1753 mutex_lock(&c->bucket_lock); 1754 1755 c->gc_mark_valid = 0; 1756 c->gc_done = ZERO_KEY; 1757 1758 for_each_cache(ca, c, i) 1759 for_each_bucket(b, ca) { 1760 b->last_gc = b->gen; 1761 if (!atomic_read(&b->pin)) { 1762 SET_GC_MARK(b, 0); 1763 SET_GC_SECTORS_USED(b, 0); 1764 } 1765 } 1766 1767 mutex_unlock(&c->bucket_lock); 1768 } 1769 1770 static void bch_btree_gc_finish(struct cache_set *c) 1771 { 1772 struct bucket *b; 1773 struct cache *ca; 1774 unsigned int i; 1775 1776 mutex_lock(&c->bucket_lock); 1777 1778 set_gc_sectors(c); 1779 c->gc_mark_valid = 1; 1780 c->need_gc = 0; 1781 1782 for (i = 0; i < KEY_PTRS(&c->uuid_bucket); i++) 1783 SET_GC_MARK(PTR_BUCKET(c, &c->uuid_bucket, i), 1784 GC_MARK_METADATA); 1785 1786 /* don't reclaim buckets to which writeback keys point */ 1787 rcu_read_lock(); 1788 for (i = 0; i < c->devices_max_used; i++) { 1789 struct bcache_device *d = c->devices[i]; 1790 struct cached_dev *dc; 1791 struct keybuf_key *w, *n; 1792 unsigned int j; 1793 1794 if (!d || UUID_FLASH_ONLY(&c->uuids[i])) 1795 continue; 1796 dc = container_of(d, struct cached_dev, disk); 1797 1798 spin_lock(&dc->writeback_keys.lock); 1799 rbtree_postorder_for_each_entry_safe(w, n, 1800 &dc->writeback_keys.keys, node) 1801 for (j = 0; j < KEY_PTRS(&w->key); j++) 1802 SET_GC_MARK(PTR_BUCKET(c, &w->key, j), 1803 GC_MARK_DIRTY); 1804 spin_unlock(&dc->writeback_keys.lock); 1805 } 1806 rcu_read_unlock(); 1807 1808 c->avail_nbuckets = 0; 1809 for_each_cache(ca, c, i) { 1810 uint64_t *i; 1811 1812 ca->invalidate_needs_gc = 0; 1813 1814 for (i = ca->sb.d; i < ca->sb.d + ca->sb.keys; i++) 1815 SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA); 1816 1817 for (i = ca->prio_buckets; 1818 i < ca->prio_buckets + prio_buckets(ca) * 2; i++) 1819 SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA); 1820 1821 for_each_bucket(b, ca) { 1822 c->need_gc = max(c->need_gc, bucket_gc_gen(b)); 1823 1824 if (atomic_read(&b->pin)) 1825 continue; 1826 1827 BUG_ON(!GC_MARK(b) && GC_SECTORS_USED(b)); 1828 1829 if (!GC_MARK(b) || GC_MARK(b) == GC_MARK_RECLAIMABLE) 1830 c->avail_nbuckets++; 1831 } 1832 } 1833 1834 mutex_unlock(&c->bucket_lock); 1835 } 1836 1837 static void bch_btree_gc(struct cache_set *c) 1838 { 1839 int ret; 1840 struct gc_stat stats; 1841 struct closure writes; 1842 struct btree_op op; 1843 uint64_t start_time = local_clock(); 1844 1845 trace_bcache_gc_start(c); 1846 1847 memset(&stats, 0, sizeof(struct gc_stat)); 1848 closure_init_stack(&writes); 1849 bch_btree_op_init(&op, SHRT_MAX); 1850 1851 btree_gc_start(c); 1852 1853 /* if CACHE_SET_IO_DISABLE set, gc thread should stop too */ 1854 do { 1855 ret = btree_root(gc_root, c, &op, &writes, &stats); 1856 closure_sync(&writes); 1857 cond_resched(); 1858 1859 if (ret == -EAGAIN) 1860 schedule_timeout_interruptible(msecs_to_jiffies 1861 (GC_SLEEP_MS)); 1862 else if (ret) 1863 pr_warn("gc failed!"); 1864 } while (ret && !test_bit(CACHE_SET_IO_DISABLE, &c->flags)); 1865 1866 bch_btree_gc_finish(c); 1867 wake_up_allocators(c); 1868 1869 bch_time_stats_update(&c->btree_gc_time, start_time); 1870 1871 stats.key_bytes *= sizeof(uint64_t); 1872 stats.data <<= 9; 1873 bch_update_bucket_in_use(c, &stats); 1874 memcpy(&c->gc_stats, &stats, sizeof(struct gc_stat)); 1875 1876 trace_bcache_gc_end(c); 1877 1878 bch_moving_gc(c); 1879 } 1880 1881 static bool gc_should_run(struct cache_set *c) 1882 { 1883 struct cache *ca; 1884 unsigned int i; 1885 1886 for_each_cache(ca, c, i) 1887 if (ca->invalidate_needs_gc) 1888 return true; 1889 1890 if (atomic_read(&c->sectors_to_gc) < 0) 1891 return true; 1892 1893 return false; 1894 } 1895 1896 static int bch_gc_thread(void *arg) 1897 { 1898 struct cache_set *c = arg; 1899 1900 while (1) { 1901 wait_event_interruptible(c->gc_wait, 1902 kthread_should_stop() || 1903 test_bit(CACHE_SET_IO_DISABLE, &c->flags) || 1904 gc_should_run(c)); 1905 1906 if (kthread_should_stop() || 1907 test_bit(CACHE_SET_IO_DISABLE, &c->flags)) 1908 break; 1909 1910 set_gc_sectors(c); 1911 bch_btree_gc(c); 1912 } 1913 1914 wait_for_kthread_stop(); 1915 return 0; 1916 } 1917 1918 int bch_gc_thread_start(struct cache_set *c) 1919 { 1920 c->gc_thread = kthread_run(bch_gc_thread, c, "bcache_gc"); 1921 return PTR_ERR_OR_ZERO(c->gc_thread); 1922 } 1923 1924 /* Initial partial gc */ 1925 1926 static int bch_btree_check_recurse(struct btree *b, struct btree_op *op) 1927 { 1928 int ret = 0; 1929 struct bkey *k, *p = NULL; 1930 struct btree_iter iter; 1931 1932 for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid) 1933 bch_initial_mark_key(b->c, b->level, k); 1934 1935 bch_initial_mark_key(b->c, b->level + 1, &b->key); 1936 1937 if (b->level) { 1938 bch_btree_iter_init(&b->keys, &iter, NULL); 1939 1940 do { 1941 k = bch_btree_iter_next_filter(&iter, &b->keys, 1942 bch_ptr_bad); 1943 if (k) { 1944 btree_node_prefetch(b, k); 1945 /* 1946 * initiallize c->gc_stats.nodes 1947 * for incremental GC 1948 */ 1949 b->c->gc_stats.nodes++; 1950 } 1951 1952 if (p) 1953 ret = btree(check_recurse, p, b, op); 1954 1955 p = k; 1956 } while (p && !ret); 1957 } 1958 1959 return ret; 1960 } 1961 1962 int bch_btree_check(struct cache_set *c) 1963 { 1964 struct btree_op op; 1965 1966 bch_btree_op_init(&op, SHRT_MAX); 1967 1968 return btree_root(check_recurse, c, &op); 1969 } 1970 1971 void bch_initial_gc_finish(struct cache_set *c) 1972 { 1973 struct cache *ca; 1974 struct bucket *b; 1975 unsigned int i; 1976 1977 bch_btree_gc_finish(c); 1978 1979 mutex_lock(&c->bucket_lock); 1980 1981 /* 1982 * We need to put some unused buckets directly on the prio freelist in 1983 * order to get the allocator thread started - it needs freed buckets in 1984 * order to rewrite the prios and gens, and it needs to rewrite prios 1985 * and gens in order to free buckets. 1986 * 1987 * This is only safe for buckets that have no live data in them, which 1988 * there should always be some of. 1989 */ 1990 for_each_cache(ca, c, i) { 1991 for_each_bucket(b, ca) { 1992 if (fifo_full(&ca->free[RESERVE_PRIO]) && 1993 fifo_full(&ca->free[RESERVE_BTREE])) 1994 break; 1995 1996 if (bch_can_invalidate_bucket(ca, b) && 1997 !GC_MARK(b)) { 1998 __bch_invalidate_one_bucket(ca, b); 1999 if (!fifo_push(&ca->free[RESERVE_PRIO], 2000 b - ca->buckets)) 2001 fifo_push(&ca->free[RESERVE_BTREE], 2002 b - ca->buckets); 2003 } 2004 } 2005 } 2006 2007 mutex_unlock(&c->bucket_lock); 2008 } 2009 2010 /* Btree insertion */ 2011 2012 static bool btree_insert_key(struct btree *b, struct bkey *k, 2013 struct bkey *replace_key) 2014 { 2015 unsigned int status; 2016 2017 BUG_ON(bkey_cmp(k, &b->key) > 0); 2018 2019 status = bch_btree_insert_key(&b->keys, k, replace_key); 2020 if (status != BTREE_INSERT_STATUS_NO_INSERT) { 2021 bch_check_keys(&b->keys, "%u for %s", status, 2022 replace_key ? "replace" : "insert"); 2023 2024 trace_bcache_btree_insert_key(b, k, replace_key != NULL, 2025 status); 2026 return true; 2027 } else 2028 return false; 2029 } 2030 2031 static size_t insert_u64s_remaining(struct btree *b) 2032 { 2033 long ret = bch_btree_keys_u64s_remaining(&b->keys); 2034 2035 /* 2036 * Might land in the middle of an existing extent and have to split it 2037 */ 2038 if (b->keys.ops->is_extents) 2039 ret -= KEY_MAX_U64S; 2040 2041 return max(ret, 0L); 2042 } 2043 2044 static bool bch_btree_insert_keys(struct btree *b, struct btree_op *op, 2045 struct keylist *insert_keys, 2046 struct bkey *replace_key) 2047 { 2048 bool ret = false; 2049 int oldsize = bch_count_data(&b->keys); 2050 2051 while (!bch_keylist_empty(insert_keys)) { 2052 struct bkey *k = insert_keys->keys; 2053 2054 if (bkey_u64s(k) > insert_u64s_remaining(b)) 2055 break; 2056 2057 if (bkey_cmp(k, &b->key) <= 0) { 2058 if (!b->level) 2059 bkey_put(b->c, k); 2060 2061 ret |= btree_insert_key(b, k, replace_key); 2062 bch_keylist_pop_front(insert_keys); 2063 } else if (bkey_cmp(&START_KEY(k), &b->key) < 0) { 2064 BKEY_PADDED(key) temp; 2065 bkey_copy(&temp.key, insert_keys->keys); 2066 2067 bch_cut_back(&b->key, &temp.key); 2068 bch_cut_front(&b->key, insert_keys->keys); 2069 2070 ret |= btree_insert_key(b, &temp.key, replace_key); 2071 break; 2072 } else { 2073 break; 2074 } 2075 } 2076 2077 if (!ret) 2078 op->insert_collision = true; 2079 2080 BUG_ON(!bch_keylist_empty(insert_keys) && b->level); 2081 2082 BUG_ON(bch_count_data(&b->keys) < oldsize); 2083 return ret; 2084 } 2085 2086 static int btree_split(struct btree *b, struct btree_op *op, 2087 struct keylist *insert_keys, 2088 struct bkey *replace_key) 2089 { 2090 bool split; 2091 struct btree *n1, *n2 = NULL, *n3 = NULL; 2092 uint64_t start_time = local_clock(); 2093 struct closure cl; 2094 struct keylist parent_keys; 2095 2096 closure_init_stack(&cl); 2097 bch_keylist_init(&parent_keys); 2098 2099 if (btree_check_reserve(b, op)) { 2100 if (!b->level) 2101 return -EINTR; 2102 else 2103 WARN(1, "insufficient reserve for split\n"); 2104 } 2105 2106 n1 = btree_node_alloc_replacement(b, op); 2107 if (IS_ERR(n1)) 2108 goto err; 2109 2110 split = set_blocks(btree_bset_first(n1), 2111 block_bytes(n1->c)) > (btree_blocks(b) * 4) / 5; 2112 2113 if (split) { 2114 unsigned int keys = 0; 2115 2116 trace_bcache_btree_node_split(b, btree_bset_first(n1)->keys); 2117 2118 n2 = bch_btree_node_alloc(b->c, op, b->level, b->parent); 2119 if (IS_ERR(n2)) 2120 goto err_free1; 2121 2122 if (!b->parent) { 2123 n3 = bch_btree_node_alloc(b->c, op, b->level + 1, NULL); 2124 if (IS_ERR(n3)) 2125 goto err_free2; 2126 } 2127 2128 mutex_lock(&n1->write_lock); 2129 mutex_lock(&n2->write_lock); 2130 2131 bch_btree_insert_keys(n1, op, insert_keys, replace_key); 2132 2133 /* 2134 * Has to be a linear search because we don't have an auxiliary 2135 * search tree yet 2136 */ 2137 2138 while (keys < (btree_bset_first(n1)->keys * 3) / 5) 2139 keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1), 2140 keys)); 2141 2142 bkey_copy_key(&n1->key, 2143 bset_bkey_idx(btree_bset_first(n1), keys)); 2144 keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1), keys)); 2145 2146 btree_bset_first(n2)->keys = btree_bset_first(n1)->keys - keys; 2147 btree_bset_first(n1)->keys = keys; 2148 2149 memcpy(btree_bset_first(n2)->start, 2150 bset_bkey_last(btree_bset_first(n1)), 2151 btree_bset_first(n2)->keys * sizeof(uint64_t)); 2152 2153 bkey_copy_key(&n2->key, &b->key); 2154 2155 bch_keylist_add(&parent_keys, &n2->key); 2156 bch_btree_node_write(n2, &cl); 2157 mutex_unlock(&n2->write_lock); 2158 rw_unlock(true, n2); 2159 } else { 2160 trace_bcache_btree_node_compact(b, btree_bset_first(n1)->keys); 2161 2162 mutex_lock(&n1->write_lock); 2163 bch_btree_insert_keys(n1, op, insert_keys, replace_key); 2164 } 2165 2166 bch_keylist_add(&parent_keys, &n1->key); 2167 bch_btree_node_write(n1, &cl); 2168 mutex_unlock(&n1->write_lock); 2169 2170 if (n3) { 2171 /* Depth increases, make a new root */ 2172 mutex_lock(&n3->write_lock); 2173 bkey_copy_key(&n3->key, &MAX_KEY); 2174 bch_btree_insert_keys(n3, op, &parent_keys, NULL); 2175 bch_btree_node_write(n3, &cl); 2176 mutex_unlock(&n3->write_lock); 2177 2178 closure_sync(&cl); 2179 bch_btree_set_root(n3); 2180 rw_unlock(true, n3); 2181 } else if (!b->parent) { 2182 /* Root filled up but didn't need to be split */ 2183 closure_sync(&cl); 2184 bch_btree_set_root(n1); 2185 } else { 2186 /* Split a non root node */ 2187 closure_sync(&cl); 2188 make_btree_freeing_key(b, parent_keys.top); 2189 bch_keylist_push(&parent_keys); 2190 2191 bch_btree_insert_node(b->parent, op, &parent_keys, NULL, NULL); 2192 BUG_ON(!bch_keylist_empty(&parent_keys)); 2193 } 2194 2195 btree_node_free(b); 2196 rw_unlock(true, n1); 2197 2198 bch_time_stats_update(&b->c->btree_split_time, start_time); 2199 2200 return 0; 2201 err_free2: 2202 bkey_put(b->c, &n2->key); 2203 btree_node_free(n2); 2204 rw_unlock(true, n2); 2205 err_free1: 2206 bkey_put(b->c, &n1->key); 2207 btree_node_free(n1); 2208 rw_unlock(true, n1); 2209 err: 2210 WARN(1, "bcache: btree split failed (level %u)", b->level); 2211 2212 if (n3 == ERR_PTR(-EAGAIN) || 2213 n2 == ERR_PTR(-EAGAIN) || 2214 n1 == ERR_PTR(-EAGAIN)) 2215 return -EAGAIN; 2216 2217 return -ENOMEM; 2218 } 2219 2220 static int bch_btree_insert_node(struct btree *b, struct btree_op *op, 2221 struct keylist *insert_keys, 2222 atomic_t *journal_ref, 2223 struct bkey *replace_key) 2224 { 2225 struct closure cl; 2226 2227 BUG_ON(b->level && replace_key); 2228 2229 closure_init_stack(&cl); 2230 2231 mutex_lock(&b->write_lock); 2232 2233 if (write_block(b) != btree_bset_last(b) && 2234 b->keys.last_set_unwritten) 2235 bch_btree_init_next(b); /* just wrote a set */ 2236 2237 if (bch_keylist_nkeys(insert_keys) > insert_u64s_remaining(b)) { 2238 mutex_unlock(&b->write_lock); 2239 goto split; 2240 } 2241 2242 BUG_ON(write_block(b) != btree_bset_last(b)); 2243 2244 if (bch_btree_insert_keys(b, op, insert_keys, replace_key)) { 2245 if (!b->level) 2246 bch_btree_leaf_dirty(b, journal_ref); 2247 else 2248 bch_btree_node_write(b, &cl); 2249 } 2250 2251 mutex_unlock(&b->write_lock); 2252 2253 /* wait for btree node write if necessary, after unlock */ 2254 closure_sync(&cl); 2255 2256 return 0; 2257 split: 2258 if (current->bio_list) { 2259 op->lock = b->c->root->level + 1; 2260 return -EAGAIN; 2261 } else if (op->lock <= b->c->root->level) { 2262 op->lock = b->c->root->level + 1; 2263 return -EINTR; 2264 } else { 2265 /* Invalidated all iterators */ 2266 int ret = btree_split(b, op, insert_keys, replace_key); 2267 2268 if (bch_keylist_empty(insert_keys)) 2269 return 0; 2270 else if (!ret) 2271 return -EINTR; 2272 return ret; 2273 } 2274 } 2275 2276 int bch_btree_insert_check_key(struct btree *b, struct btree_op *op, 2277 struct bkey *check_key) 2278 { 2279 int ret = -EINTR; 2280 uint64_t btree_ptr = b->key.ptr[0]; 2281 unsigned long seq = b->seq; 2282 struct keylist insert; 2283 bool upgrade = op->lock == -1; 2284 2285 bch_keylist_init(&insert); 2286 2287 if (upgrade) { 2288 rw_unlock(false, b); 2289 rw_lock(true, b, b->level); 2290 2291 if (b->key.ptr[0] != btree_ptr || 2292 b->seq != seq + 1) { 2293 op->lock = b->level; 2294 goto out; 2295 } 2296 } 2297 2298 SET_KEY_PTRS(check_key, 1); 2299 get_random_bytes(&check_key->ptr[0], sizeof(uint64_t)); 2300 2301 SET_PTR_DEV(check_key, 0, PTR_CHECK_DEV); 2302 2303 bch_keylist_add(&insert, check_key); 2304 2305 ret = bch_btree_insert_node(b, op, &insert, NULL, NULL); 2306 2307 BUG_ON(!ret && !bch_keylist_empty(&insert)); 2308 out: 2309 if (upgrade) 2310 downgrade_write(&b->lock); 2311 return ret; 2312 } 2313 2314 struct btree_insert_op { 2315 struct btree_op op; 2316 struct keylist *keys; 2317 atomic_t *journal_ref; 2318 struct bkey *replace_key; 2319 }; 2320 2321 static int btree_insert_fn(struct btree_op *b_op, struct btree *b) 2322 { 2323 struct btree_insert_op *op = container_of(b_op, 2324 struct btree_insert_op, op); 2325 2326 int ret = bch_btree_insert_node(b, &op->op, op->keys, 2327 op->journal_ref, op->replace_key); 2328 if (ret && !bch_keylist_empty(op->keys)) 2329 return ret; 2330 else 2331 return MAP_DONE; 2332 } 2333 2334 int bch_btree_insert(struct cache_set *c, struct keylist *keys, 2335 atomic_t *journal_ref, struct bkey *replace_key) 2336 { 2337 struct btree_insert_op op; 2338 int ret = 0; 2339 2340 BUG_ON(current->bio_list); 2341 BUG_ON(bch_keylist_empty(keys)); 2342 2343 bch_btree_op_init(&op.op, 0); 2344 op.keys = keys; 2345 op.journal_ref = journal_ref; 2346 op.replace_key = replace_key; 2347 2348 while (!ret && !bch_keylist_empty(keys)) { 2349 op.op.lock = 0; 2350 ret = bch_btree_map_leaf_nodes(&op.op, c, 2351 &START_KEY(keys->keys), 2352 btree_insert_fn); 2353 } 2354 2355 if (ret) { 2356 struct bkey *k; 2357 2358 pr_err("error %i", ret); 2359 2360 while ((k = bch_keylist_pop(keys))) 2361 bkey_put(c, k); 2362 } else if (op.op.insert_collision) 2363 ret = -ESRCH; 2364 2365 return ret; 2366 } 2367 2368 void bch_btree_set_root(struct btree *b) 2369 { 2370 unsigned int i; 2371 struct closure cl; 2372 2373 closure_init_stack(&cl); 2374 2375 trace_bcache_btree_set_root(b); 2376 2377 BUG_ON(!b->written); 2378 2379 for (i = 0; i < KEY_PTRS(&b->key); i++) 2380 BUG_ON(PTR_BUCKET(b->c, &b->key, i)->prio != BTREE_PRIO); 2381 2382 mutex_lock(&b->c->bucket_lock); 2383 list_del_init(&b->list); 2384 mutex_unlock(&b->c->bucket_lock); 2385 2386 b->c->root = b; 2387 2388 bch_journal_meta(b->c, &cl); 2389 closure_sync(&cl); 2390 } 2391 2392 /* Map across nodes or keys */ 2393 2394 static int bch_btree_map_nodes_recurse(struct btree *b, struct btree_op *op, 2395 struct bkey *from, 2396 btree_map_nodes_fn *fn, int flags) 2397 { 2398 int ret = MAP_CONTINUE; 2399 2400 if (b->level) { 2401 struct bkey *k; 2402 struct btree_iter iter; 2403 2404 bch_btree_iter_init(&b->keys, &iter, from); 2405 2406 while ((k = bch_btree_iter_next_filter(&iter, &b->keys, 2407 bch_ptr_bad))) { 2408 ret = btree(map_nodes_recurse, k, b, 2409 op, from, fn, flags); 2410 from = NULL; 2411 2412 if (ret != MAP_CONTINUE) 2413 return ret; 2414 } 2415 } 2416 2417 if (!b->level || flags == MAP_ALL_NODES) 2418 ret = fn(op, b); 2419 2420 return ret; 2421 } 2422 2423 int __bch_btree_map_nodes(struct btree_op *op, struct cache_set *c, 2424 struct bkey *from, btree_map_nodes_fn *fn, int flags) 2425 { 2426 return btree_root(map_nodes_recurse, c, op, from, fn, flags); 2427 } 2428 2429 static int bch_btree_map_keys_recurse(struct btree *b, struct btree_op *op, 2430 struct bkey *from, btree_map_keys_fn *fn, 2431 int flags) 2432 { 2433 int ret = MAP_CONTINUE; 2434 struct bkey *k; 2435 struct btree_iter iter; 2436 2437 bch_btree_iter_init(&b->keys, &iter, from); 2438 2439 while ((k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad))) { 2440 ret = !b->level 2441 ? fn(op, b, k) 2442 : btree(map_keys_recurse, k, b, op, from, fn, flags); 2443 from = NULL; 2444 2445 if (ret != MAP_CONTINUE) 2446 return ret; 2447 } 2448 2449 if (!b->level && (flags & MAP_END_KEY)) 2450 ret = fn(op, b, &KEY(KEY_INODE(&b->key), 2451 KEY_OFFSET(&b->key), 0)); 2452 2453 return ret; 2454 } 2455 2456 int bch_btree_map_keys(struct btree_op *op, struct cache_set *c, 2457 struct bkey *from, btree_map_keys_fn *fn, int flags) 2458 { 2459 return btree_root(map_keys_recurse, c, op, from, fn, flags); 2460 } 2461 2462 /* Keybuf code */ 2463 2464 static inline int keybuf_cmp(struct keybuf_key *l, struct keybuf_key *r) 2465 { 2466 /* Overlapping keys compare equal */ 2467 if (bkey_cmp(&l->key, &START_KEY(&r->key)) <= 0) 2468 return -1; 2469 if (bkey_cmp(&START_KEY(&l->key), &r->key) >= 0) 2470 return 1; 2471 return 0; 2472 } 2473 2474 static inline int keybuf_nonoverlapping_cmp(struct keybuf_key *l, 2475 struct keybuf_key *r) 2476 { 2477 return clamp_t(int64_t, bkey_cmp(&l->key, &r->key), -1, 1); 2478 } 2479 2480 struct refill { 2481 struct btree_op op; 2482 unsigned int nr_found; 2483 struct keybuf *buf; 2484 struct bkey *end; 2485 keybuf_pred_fn *pred; 2486 }; 2487 2488 static int refill_keybuf_fn(struct btree_op *op, struct btree *b, 2489 struct bkey *k) 2490 { 2491 struct refill *refill = container_of(op, struct refill, op); 2492 struct keybuf *buf = refill->buf; 2493 int ret = MAP_CONTINUE; 2494 2495 if (bkey_cmp(k, refill->end) > 0) { 2496 ret = MAP_DONE; 2497 goto out; 2498 } 2499 2500 if (!KEY_SIZE(k)) /* end key */ 2501 goto out; 2502 2503 if (refill->pred(buf, k)) { 2504 struct keybuf_key *w; 2505 2506 spin_lock(&buf->lock); 2507 2508 w = array_alloc(&buf->freelist); 2509 if (!w) { 2510 spin_unlock(&buf->lock); 2511 return MAP_DONE; 2512 } 2513 2514 w->private = NULL; 2515 bkey_copy(&w->key, k); 2516 2517 if (RB_INSERT(&buf->keys, w, node, keybuf_cmp)) 2518 array_free(&buf->freelist, w); 2519 else 2520 refill->nr_found++; 2521 2522 if (array_freelist_empty(&buf->freelist)) 2523 ret = MAP_DONE; 2524 2525 spin_unlock(&buf->lock); 2526 } 2527 out: 2528 buf->last_scanned = *k; 2529 return ret; 2530 } 2531 2532 void bch_refill_keybuf(struct cache_set *c, struct keybuf *buf, 2533 struct bkey *end, keybuf_pred_fn *pred) 2534 { 2535 struct bkey start = buf->last_scanned; 2536 struct refill refill; 2537 2538 cond_resched(); 2539 2540 bch_btree_op_init(&refill.op, -1); 2541 refill.nr_found = 0; 2542 refill.buf = buf; 2543 refill.end = end; 2544 refill.pred = pred; 2545 2546 bch_btree_map_keys(&refill.op, c, &buf->last_scanned, 2547 refill_keybuf_fn, MAP_END_KEY); 2548 2549 trace_bcache_keyscan(refill.nr_found, 2550 KEY_INODE(&start), KEY_OFFSET(&start), 2551 KEY_INODE(&buf->last_scanned), 2552 KEY_OFFSET(&buf->last_scanned)); 2553 2554 spin_lock(&buf->lock); 2555 2556 if (!RB_EMPTY_ROOT(&buf->keys)) { 2557 struct keybuf_key *w; 2558 2559 w = RB_FIRST(&buf->keys, struct keybuf_key, node); 2560 buf->start = START_KEY(&w->key); 2561 2562 w = RB_LAST(&buf->keys, struct keybuf_key, node); 2563 buf->end = w->key; 2564 } else { 2565 buf->start = MAX_KEY; 2566 buf->end = MAX_KEY; 2567 } 2568 2569 spin_unlock(&buf->lock); 2570 } 2571 2572 static void __bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w) 2573 { 2574 rb_erase(&w->node, &buf->keys); 2575 array_free(&buf->freelist, w); 2576 } 2577 2578 void bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w) 2579 { 2580 spin_lock(&buf->lock); 2581 __bch_keybuf_del(buf, w); 2582 spin_unlock(&buf->lock); 2583 } 2584 2585 bool bch_keybuf_check_overlapping(struct keybuf *buf, struct bkey *start, 2586 struct bkey *end) 2587 { 2588 bool ret = false; 2589 struct keybuf_key *p, *w, s; 2590 2591 s.key = *start; 2592 2593 if (bkey_cmp(end, &buf->start) <= 0 || 2594 bkey_cmp(start, &buf->end) >= 0) 2595 return false; 2596 2597 spin_lock(&buf->lock); 2598 w = RB_GREATER(&buf->keys, s, node, keybuf_nonoverlapping_cmp); 2599 2600 while (w && bkey_cmp(&START_KEY(&w->key), end) < 0) { 2601 p = w; 2602 w = RB_NEXT(w, node); 2603 2604 if (p->private) 2605 ret = true; 2606 else 2607 __bch_keybuf_del(buf, p); 2608 } 2609 2610 spin_unlock(&buf->lock); 2611 return ret; 2612 } 2613 2614 struct keybuf_key *bch_keybuf_next(struct keybuf *buf) 2615 { 2616 struct keybuf_key *w; 2617 2618 spin_lock(&buf->lock); 2619 2620 w = RB_FIRST(&buf->keys, struct keybuf_key, node); 2621 2622 while (w && w->private) 2623 w = RB_NEXT(w, node); 2624 2625 if (w) 2626 w->private = ERR_PTR(-EINTR); 2627 2628 spin_unlock(&buf->lock); 2629 return w; 2630 } 2631 2632 struct keybuf_key *bch_keybuf_next_rescan(struct cache_set *c, 2633 struct keybuf *buf, 2634 struct bkey *end, 2635 keybuf_pred_fn *pred) 2636 { 2637 struct keybuf_key *ret; 2638 2639 while (1) { 2640 ret = bch_keybuf_next(buf); 2641 if (ret) 2642 break; 2643 2644 if (bkey_cmp(&buf->last_scanned, end) >= 0) { 2645 pr_debug("scan finished"); 2646 break; 2647 } 2648 2649 bch_refill_keybuf(c, buf, end, pred); 2650 } 2651 2652 return ret; 2653 } 2654 2655 void bch_keybuf_init(struct keybuf *buf) 2656 { 2657 buf->last_scanned = MAX_KEY; 2658 buf->keys = RB_ROOT; 2659 2660 spin_lock_init(&buf->lock); 2661 array_allocator_init(&buf->freelist); 2662 } 2663