xref: /openbmc/linux/drivers/md/bcache/btree.c (revision 9726bfcd)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com>
4  *
5  * Uses a block device as cache for other block devices; optimized for SSDs.
6  * All allocation is done in buckets, which should match the erase block size
7  * of the device.
8  *
9  * Buckets containing cached data are kept on a heap sorted by priority;
10  * bucket priority is increased on cache hit, and periodically all the buckets
11  * on the heap have their priority scaled down. This currently is just used as
12  * an LRU but in the future should allow for more intelligent heuristics.
13  *
14  * Buckets have an 8 bit counter; freeing is accomplished by incrementing the
15  * counter. Garbage collection is used to remove stale pointers.
16  *
17  * Indexing is done via a btree; nodes are not necessarily fully sorted, rather
18  * as keys are inserted we only sort the pages that have not yet been written.
19  * When garbage collection is run, we resort the entire node.
20  *
21  * All configuration is done via sysfs; see Documentation/admin-guide/bcache.rst.
22  */
23 
24 #include "bcache.h"
25 #include "btree.h"
26 #include "debug.h"
27 #include "extents.h"
28 
29 #include <linux/slab.h>
30 #include <linux/bitops.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/prefetch.h>
34 #include <linux/random.h>
35 #include <linux/rcupdate.h>
36 #include <linux/sched/clock.h>
37 #include <linux/rculist.h>
38 #include <linux/delay.h>
39 #include <trace/events/bcache.h>
40 
41 /*
42  * Todo:
43  * register_bcache: Return errors out to userspace correctly
44  *
45  * Writeback: don't undirty key until after a cache flush
46  *
47  * Create an iterator for key pointers
48  *
49  * On btree write error, mark bucket such that it won't be freed from the cache
50  *
51  * Journalling:
52  *   Check for bad keys in replay
53  *   Propagate barriers
54  *   Refcount journal entries in journal_replay
55  *
56  * Garbage collection:
57  *   Finish incremental gc
58  *   Gc should free old UUIDs, data for invalid UUIDs
59  *
60  * Provide a way to list backing device UUIDs we have data cached for, and
61  * probably how long it's been since we've seen them, and a way to invalidate
62  * dirty data for devices that will never be attached again
63  *
64  * Keep 1 min/5 min/15 min statistics of how busy a block device has been, so
65  * that based on that and how much dirty data we have we can keep writeback
66  * from being starved
67  *
68  * Add a tracepoint or somesuch to watch for writeback starvation
69  *
70  * When btree depth > 1 and splitting an interior node, we have to make sure
71  * alloc_bucket() cannot fail. This should be true but is not completely
72  * obvious.
73  *
74  * Plugging?
75  *
76  * If data write is less than hard sector size of ssd, round up offset in open
77  * bucket to the next whole sector
78  *
79  * Superblock needs to be fleshed out for multiple cache devices
80  *
81  * Add a sysfs tunable for the number of writeback IOs in flight
82  *
83  * Add a sysfs tunable for the number of open data buckets
84  *
85  * IO tracking: Can we track when one process is doing io on behalf of another?
86  * IO tracking: Don't use just an average, weigh more recent stuff higher
87  *
88  * Test module load/unload
89  */
90 
91 #define MAX_NEED_GC		64
92 #define MAX_SAVE_PRIO		72
93 #define MAX_GC_TIMES		100
94 #define MIN_GC_NODES		100
95 #define GC_SLEEP_MS		100
96 
97 #define PTR_DIRTY_BIT		(((uint64_t) 1 << 36))
98 
99 #define PTR_HASH(c, k)							\
100 	(((k)->ptr[0] >> c->bucket_bits) | PTR_GEN(k, 0))
101 
102 #define insert_lock(s, b)	((b)->level <= (s)->lock)
103 
104 /*
105  * These macros are for recursing down the btree - they handle the details of
106  * locking and looking up nodes in the cache for you. They're best treated as
107  * mere syntax when reading code that uses them.
108  *
109  * op->lock determines whether we take a read or a write lock at a given depth.
110  * If you've got a read lock and find that you need a write lock (i.e. you're
111  * going to have to split), set op->lock and return -EINTR; btree_root() will
112  * call you again and you'll have the correct lock.
113  */
114 
115 /**
116  * btree - recurse down the btree on a specified key
117  * @fn:		function to call, which will be passed the child node
118  * @key:	key to recurse on
119  * @b:		parent btree node
120  * @op:		pointer to struct btree_op
121  */
122 #define btree(fn, key, b, op, ...)					\
123 ({									\
124 	int _r, l = (b)->level - 1;					\
125 	bool _w = l <= (op)->lock;					\
126 	struct btree *_child = bch_btree_node_get((b)->c, op, key, l,	\
127 						  _w, b);		\
128 	if (!IS_ERR(_child)) {						\
129 		_r = bch_btree_ ## fn(_child, op, ##__VA_ARGS__);	\
130 		rw_unlock(_w, _child);					\
131 	} else								\
132 		_r = PTR_ERR(_child);					\
133 	_r;								\
134 })
135 
136 /**
137  * btree_root - call a function on the root of the btree
138  * @fn:		function to call, which will be passed the child node
139  * @c:		cache set
140  * @op:		pointer to struct btree_op
141  */
142 #define btree_root(fn, c, op, ...)					\
143 ({									\
144 	int _r = -EINTR;						\
145 	do {								\
146 		struct btree *_b = (c)->root;				\
147 		bool _w = insert_lock(op, _b);				\
148 		rw_lock(_w, _b, _b->level);				\
149 		if (_b == (c)->root &&					\
150 		    _w == insert_lock(op, _b)) {			\
151 			_r = bch_btree_ ## fn(_b, op, ##__VA_ARGS__);	\
152 		}							\
153 		rw_unlock(_w, _b);					\
154 		bch_cannibalize_unlock(c);				\
155 		if (_r == -EINTR)					\
156 			schedule();					\
157 	} while (_r == -EINTR);						\
158 									\
159 	finish_wait(&(c)->btree_cache_wait, &(op)->wait);		\
160 	_r;								\
161 })
162 
163 static inline struct bset *write_block(struct btree *b)
164 {
165 	return ((void *) btree_bset_first(b)) + b->written * block_bytes(b->c);
166 }
167 
168 static void bch_btree_init_next(struct btree *b)
169 {
170 	/* If not a leaf node, always sort */
171 	if (b->level && b->keys.nsets)
172 		bch_btree_sort(&b->keys, &b->c->sort);
173 	else
174 		bch_btree_sort_lazy(&b->keys, &b->c->sort);
175 
176 	if (b->written < btree_blocks(b))
177 		bch_bset_init_next(&b->keys, write_block(b),
178 				   bset_magic(&b->c->sb));
179 
180 }
181 
182 /* Btree key manipulation */
183 
184 void bkey_put(struct cache_set *c, struct bkey *k)
185 {
186 	unsigned int i;
187 
188 	for (i = 0; i < KEY_PTRS(k); i++)
189 		if (ptr_available(c, k, i))
190 			atomic_dec_bug(&PTR_BUCKET(c, k, i)->pin);
191 }
192 
193 /* Btree IO */
194 
195 static uint64_t btree_csum_set(struct btree *b, struct bset *i)
196 {
197 	uint64_t crc = b->key.ptr[0];
198 	void *data = (void *) i + 8, *end = bset_bkey_last(i);
199 
200 	crc = bch_crc64_update(crc, data, end - data);
201 	return crc ^ 0xffffffffffffffffULL;
202 }
203 
204 void bch_btree_node_read_done(struct btree *b)
205 {
206 	const char *err = "bad btree header";
207 	struct bset *i = btree_bset_first(b);
208 	struct btree_iter *iter;
209 
210 	/*
211 	 * c->fill_iter can allocate an iterator with more memory space
212 	 * than static MAX_BSETS.
213 	 * See the comment arount cache_set->fill_iter.
214 	 */
215 	iter = mempool_alloc(&b->c->fill_iter, GFP_NOIO);
216 	iter->size = b->c->sb.bucket_size / b->c->sb.block_size;
217 	iter->used = 0;
218 
219 #ifdef CONFIG_BCACHE_DEBUG
220 	iter->b = &b->keys;
221 #endif
222 
223 	if (!i->seq)
224 		goto err;
225 
226 	for (;
227 	     b->written < btree_blocks(b) && i->seq == b->keys.set[0].data->seq;
228 	     i = write_block(b)) {
229 		err = "unsupported bset version";
230 		if (i->version > BCACHE_BSET_VERSION)
231 			goto err;
232 
233 		err = "bad btree header";
234 		if (b->written + set_blocks(i, block_bytes(b->c)) >
235 		    btree_blocks(b))
236 			goto err;
237 
238 		err = "bad magic";
239 		if (i->magic != bset_magic(&b->c->sb))
240 			goto err;
241 
242 		err = "bad checksum";
243 		switch (i->version) {
244 		case 0:
245 			if (i->csum != csum_set(i))
246 				goto err;
247 			break;
248 		case BCACHE_BSET_VERSION:
249 			if (i->csum != btree_csum_set(b, i))
250 				goto err;
251 			break;
252 		}
253 
254 		err = "empty set";
255 		if (i != b->keys.set[0].data && !i->keys)
256 			goto err;
257 
258 		bch_btree_iter_push(iter, i->start, bset_bkey_last(i));
259 
260 		b->written += set_blocks(i, block_bytes(b->c));
261 	}
262 
263 	err = "corrupted btree";
264 	for (i = write_block(b);
265 	     bset_sector_offset(&b->keys, i) < KEY_SIZE(&b->key);
266 	     i = ((void *) i) + block_bytes(b->c))
267 		if (i->seq == b->keys.set[0].data->seq)
268 			goto err;
269 
270 	bch_btree_sort_and_fix_extents(&b->keys, iter, &b->c->sort);
271 
272 	i = b->keys.set[0].data;
273 	err = "short btree key";
274 	if (b->keys.set[0].size &&
275 	    bkey_cmp(&b->key, &b->keys.set[0].end) < 0)
276 		goto err;
277 
278 	if (b->written < btree_blocks(b))
279 		bch_bset_init_next(&b->keys, write_block(b),
280 				   bset_magic(&b->c->sb));
281 out:
282 	mempool_free(iter, &b->c->fill_iter);
283 	return;
284 err:
285 	set_btree_node_io_error(b);
286 	bch_cache_set_error(b->c, "%s at bucket %zu, block %u, %u keys",
287 			    err, PTR_BUCKET_NR(b->c, &b->key, 0),
288 			    bset_block_offset(b, i), i->keys);
289 	goto out;
290 }
291 
292 static void btree_node_read_endio(struct bio *bio)
293 {
294 	struct closure *cl = bio->bi_private;
295 
296 	closure_put(cl);
297 }
298 
299 static void bch_btree_node_read(struct btree *b)
300 {
301 	uint64_t start_time = local_clock();
302 	struct closure cl;
303 	struct bio *bio;
304 
305 	trace_bcache_btree_read(b);
306 
307 	closure_init_stack(&cl);
308 
309 	bio = bch_bbio_alloc(b->c);
310 	bio->bi_iter.bi_size = KEY_SIZE(&b->key) << 9;
311 	bio->bi_end_io	= btree_node_read_endio;
312 	bio->bi_private	= &cl;
313 	bio->bi_opf = REQ_OP_READ | REQ_META;
314 
315 	bch_bio_map(bio, b->keys.set[0].data);
316 
317 	bch_submit_bbio(bio, b->c, &b->key, 0);
318 	closure_sync(&cl);
319 
320 	if (bio->bi_status)
321 		set_btree_node_io_error(b);
322 
323 	bch_bbio_free(bio, b->c);
324 
325 	if (btree_node_io_error(b))
326 		goto err;
327 
328 	bch_btree_node_read_done(b);
329 	bch_time_stats_update(&b->c->btree_read_time, start_time);
330 
331 	return;
332 err:
333 	bch_cache_set_error(b->c, "io error reading bucket %zu",
334 			    PTR_BUCKET_NR(b->c, &b->key, 0));
335 }
336 
337 static void btree_complete_write(struct btree *b, struct btree_write *w)
338 {
339 	if (w->prio_blocked &&
340 	    !atomic_sub_return(w->prio_blocked, &b->c->prio_blocked))
341 		wake_up_allocators(b->c);
342 
343 	if (w->journal) {
344 		atomic_dec_bug(w->journal);
345 		__closure_wake_up(&b->c->journal.wait);
346 	}
347 
348 	w->prio_blocked	= 0;
349 	w->journal	= NULL;
350 }
351 
352 static void btree_node_write_unlock(struct closure *cl)
353 {
354 	struct btree *b = container_of(cl, struct btree, io);
355 
356 	up(&b->io_mutex);
357 }
358 
359 static void __btree_node_write_done(struct closure *cl)
360 {
361 	struct btree *b = container_of(cl, struct btree, io);
362 	struct btree_write *w = btree_prev_write(b);
363 
364 	bch_bbio_free(b->bio, b->c);
365 	b->bio = NULL;
366 	btree_complete_write(b, w);
367 
368 	if (btree_node_dirty(b))
369 		schedule_delayed_work(&b->work, 30 * HZ);
370 
371 	closure_return_with_destructor(cl, btree_node_write_unlock);
372 }
373 
374 static void btree_node_write_done(struct closure *cl)
375 {
376 	struct btree *b = container_of(cl, struct btree, io);
377 
378 	bio_free_pages(b->bio);
379 	__btree_node_write_done(cl);
380 }
381 
382 static void btree_node_write_endio(struct bio *bio)
383 {
384 	struct closure *cl = bio->bi_private;
385 	struct btree *b = container_of(cl, struct btree, io);
386 
387 	if (bio->bi_status)
388 		set_btree_node_io_error(b);
389 
390 	bch_bbio_count_io_errors(b->c, bio, bio->bi_status, "writing btree");
391 	closure_put(cl);
392 }
393 
394 static void do_btree_node_write(struct btree *b)
395 {
396 	struct closure *cl = &b->io;
397 	struct bset *i = btree_bset_last(b);
398 	BKEY_PADDED(key) k;
399 
400 	i->version	= BCACHE_BSET_VERSION;
401 	i->csum		= btree_csum_set(b, i);
402 
403 	BUG_ON(b->bio);
404 	b->bio = bch_bbio_alloc(b->c);
405 
406 	b->bio->bi_end_io	= btree_node_write_endio;
407 	b->bio->bi_private	= cl;
408 	b->bio->bi_iter.bi_size	= roundup(set_bytes(i), block_bytes(b->c));
409 	b->bio->bi_opf		= REQ_OP_WRITE | REQ_META | REQ_FUA;
410 	bch_bio_map(b->bio, i);
411 
412 	/*
413 	 * If we're appending to a leaf node, we don't technically need FUA -
414 	 * this write just needs to be persisted before the next journal write,
415 	 * which will be marked FLUSH|FUA.
416 	 *
417 	 * Similarly if we're writing a new btree root - the pointer is going to
418 	 * be in the next journal entry.
419 	 *
420 	 * But if we're writing a new btree node (that isn't a root) or
421 	 * appending to a non leaf btree node, we need either FUA or a flush
422 	 * when we write the parent with the new pointer. FUA is cheaper than a
423 	 * flush, and writes appending to leaf nodes aren't blocking anything so
424 	 * just make all btree node writes FUA to keep things sane.
425 	 */
426 
427 	bkey_copy(&k.key, &b->key);
428 	SET_PTR_OFFSET(&k.key, 0, PTR_OFFSET(&k.key, 0) +
429 		       bset_sector_offset(&b->keys, i));
430 
431 	if (!bch_bio_alloc_pages(b->bio, __GFP_NOWARN|GFP_NOWAIT)) {
432 		struct bio_vec *bv;
433 		void *addr = (void *) ((unsigned long) i & ~(PAGE_SIZE - 1));
434 		struct bvec_iter_all iter_all;
435 
436 		bio_for_each_segment_all(bv, b->bio, iter_all) {
437 			memcpy(page_address(bv->bv_page), addr, PAGE_SIZE);
438 			addr += PAGE_SIZE;
439 		}
440 
441 		bch_submit_bbio(b->bio, b->c, &k.key, 0);
442 
443 		continue_at(cl, btree_node_write_done, NULL);
444 	} else {
445 		/*
446 		 * No problem for multipage bvec since the bio is
447 		 * just allocated
448 		 */
449 		b->bio->bi_vcnt = 0;
450 		bch_bio_map(b->bio, i);
451 
452 		bch_submit_bbio(b->bio, b->c, &k.key, 0);
453 
454 		closure_sync(cl);
455 		continue_at_nobarrier(cl, __btree_node_write_done, NULL);
456 	}
457 }
458 
459 void __bch_btree_node_write(struct btree *b, struct closure *parent)
460 {
461 	struct bset *i = btree_bset_last(b);
462 
463 	lockdep_assert_held(&b->write_lock);
464 
465 	trace_bcache_btree_write(b);
466 
467 	BUG_ON(current->bio_list);
468 	BUG_ON(b->written >= btree_blocks(b));
469 	BUG_ON(b->written && !i->keys);
470 	BUG_ON(btree_bset_first(b)->seq != i->seq);
471 	bch_check_keys(&b->keys, "writing");
472 
473 	cancel_delayed_work(&b->work);
474 
475 	/* If caller isn't waiting for write, parent refcount is cache set */
476 	down(&b->io_mutex);
477 	closure_init(&b->io, parent ?: &b->c->cl);
478 
479 	clear_bit(BTREE_NODE_dirty,	 &b->flags);
480 	change_bit(BTREE_NODE_write_idx, &b->flags);
481 
482 	do_btree_node_write(b);
483 
484 	atomic_long_add(set_blocks(i, block_bytes(b->c)) * b->c->sb.block_size,
485 			&PTR_CACHE(b->c, &b->key, 0)->btree_sectors_written);
486 
487 	b->written += set_blocks(i, block_bytes(b->c));
488 }
489 
490 void bch_btree_node_write(struct btree *b, struct closure *parent)
491 {
492 	unsigned int nsets = b->keys.nsets;
493 
494 	lockdep_assert_held(&b->lock);
495 
496 	__bch_btree_node_write(b, parent);
497 
498 	/*
499 	 * do verify if there was more than one set initially (i.e. we did a
500 	 * sort) and we sorted down to a single set:
501 	 */
502 	if (nsets && !b->keys.nsets)
503 		bch_btree_verify(b);
504 
505 	bch_btree_init_next(b);
506 }
507 
508 static void bch_btree_node_write_sync(struct btree *b)
509 {
510 	struct closure cl;
511 
512 	closure_init_stack(&cl);
513 
514 	mutex_lock(&b->write_lock);
515 	bch_btree_node_write(b, &cl);
516 	mutex_unlock(&b->write_lock);
517 
518 	closure_sync(&cl);
519 }
520 
521 static void btree_node_write_work(struct work_struct *w)
522 {
523 	struct btree *b = container_of(to_delayed_work(w), struct btree, work);
524 
525 	mutex_lock(&b->write_lock);
526 	if (btree_node_dirty(b))
527 		__bch_btree_node_write(b, NULL);
528 	mutex_unlock(&b->write_lock);
529 }
530 
531 static void bch_btree_leaf_dirty(struct btree *b, atomic_t *journal_ref)
532 {
533 	struct bset *i = btree_bset_last(b);
534 	struct btree_write *w = btree_current_write(b);
535 
536 	lockdep_assert_held(&b->write_lock);
537 
538 	BUG_ON(!b->written);
539 	BUG_ON(!i->keys);
540 
541 	if (!btree_node_dirty(b))
542 		schedule_delayed_work(&b->work, 30 * HZ);
543 
544 	set_btree_node_dirty(b);
545 
546 	if (journal_ref) {
547 		if (w->journal &&
548 		    journal_pin_cmp(b->c, w->journal, journal_ref)) {
549 			atomic_dec_bug(w->journal);
550 			w->journal = NULL;
551 		}
552 
553 		if (!w->journal) {
554 			w->journal = journal_ref;
555 			atomic_inc(w->journal);
556 		}
557 	}
558 
559 	/* Force write if set is too big */
560 	if (set_bytes(i) > PAGE_SIZE - 48 &&
561 	    !current->bio_list)
562 		bch_btree_node_write(b, NULL);
563 }
564 
565 /*
566  * Btree in memory cache - allocation/freeing
567  * mca -> memory cache
568  */
569 
570 #define mca_reserve(c)	(((c->root && c->root->level)		\
571 			  ? c->root->level : 1) * 8 + 16)
572 #define mca_can_free(c)						\
573 	max_t(int, 0, c->btree_cache_used - mca_reserve(c))
574 
575 static void mca_data_free(struct btree *b)
576 {
577 	BUG_ON(b->io_mutex.count != 1);
578 
579 	bch_btree_keys_free(&b->keys);
580 
581 	b->c->btree_cache_used--;
582 	list_move(&b->list, &b->c->btree_cache_freed);
583 }
584 
585 static void mca_bucket_free(struct btree *b)
586 {
587 	BUG_ON(btree_node_dirty(b));
588 
589 	b->key.ptr[0] = 0;
590 	hlist_del_init_rcu(&b->hash);
591 	list_move(&b->list, &b->c->btree_cache_freeable);
592 }
593 
594 static unsigned int btree_order(struct bkey *k)
595 {
596 	return ilog2(KEY_SIZE(k) / PAGE_SECTORS ?: 1);
597 }
598 
599 static void mca_data_alloc(struct btree *b, struct bkey *k, gfp_t gfp)
600 {
601 	if (!bch_btree_keys_alloc(&b->keys,
602 				  max_t(unsigned int,
603 					ilog2(b->c->btree_pages),
604 					btree_order(k)),
605 				  gfp)) {
606 		b->c->btree_cache_used++;
607 		list_move(&b->list, &b->c->btree_cache);
608 	} else {
609 		list_move(&b->list, &b->c->btree_cache_freed);
610 	}
611 }
612 
613 static struct btree *mca_bucket_alloc(struct cache_set *c,
614 				      struct bkey *k, gfp_t gfp)
615 {
616 	/*
617 	 * kzalloc() is necessary here for initialization,
618 	 * see code comments in bch_btree_keys_init().
619 	 */
620 	struct btree *b = kzalloc(sizeof(struct btree), gfp);
621 
622 	if (!b)
623 		return NULL;
624 
625 	init_rwsem(&b->lock);
626 	lockdep_set_novalidate_class(&b->lock);
627 	mutex_init(&b->write_lock);
628 	lockdep_set_novalidate_class(&b->write_lock);
629 	INIT_LIST_HEAD(&b->list);
630 	INIT_DELAYED_WORK(&b->work, btree_node_write_work);
631 	b->c = c;
632 	sema_init(&b->io_mutex, 1);
633 
634 	mca_data_alloc(b, k, gfp);
635 	return b;
636 }
637 
638 static int mca_reap(struct btree *b, unsigned int min_order, bool flush)
639 {
640 	struct closure cl;
641 
642 	closure_init_stack(&cl);
643 	lockdep_assert_held(&b->c->bucket_lock);
644 
645 	if (!down_write_trylock(&b->lock))
646 		return -ENOMEM;
647 
648 	BUG_ON(btree_node_dirty(b) && !b->keys.set[0].data);
649 
650 	if (b->keys.page_order < min_order)
651 		goto out_unlock;
652 
653 	if (!flush) {
654 		if (btree_node_dirty(b))
655 			goto out_unlock;
656 
657 		if (down_trylock(&b->io_mutex))
658 			goto out_unlock;
659 		up(&b->io_mutex);
660 	}
661 
662 retry:
663 	/*
664 	 * BTREE_NODE_dirty might be cleared in btree_flush_btree() by
665 	 * __bch_btree_node_write(). To avoid an extra flush, acquire
666 	 * b->write_lock before checking BTREE_NODE_dirty bit.
667 	 */
668 	mutex_lock(&b->write_lock);
669 	/*
670 	 * If this btree node is selected in btree_flush_write() by journal
671 	 * code, delay and retry until the node is flushed by journal code
672 	 * and BTREE_NODE_journal_flush bit cleared by btree_flush_write().
673 	 */
674 	if (btree_node_journal_flush(b)) {
675 		pr_debug("bnode %p is flushing by journal, retry", b);
676 		mutex_unlock(&b->write_lock);
677 		udelay(1);
678 		goto retry;
679 	}
680 
681 	if (btree_node_dirty(b))
682 		__bch_btree_node_write(b, &cl);
683 	mutex_unlock(&b->write_lock);
684 
685 	closure_sync(&cl);
686 
687 	/* wait for any in flight btree write */
688 	down(&b->io_mutex);
689 	up(&b->io_mutex);
690 
691 	return 0;
692 out_unlock:
693 	rw_unlock(true, b);
694 	return -ENOMEM;
695 }
696 
697 static unsigned long bch_mca_scan(struct shrinker *shrink,
698 				  struct shrink_control *sc)
699 {
700 	struct cache_set *c = container_of(shrink, struct cache_set, shrink);
701 	struct btree *b, *t;
702 	unsigned long i, nr = sc->nr_to_scan;
703 	unsigned long freed = 0;
704 	unsigned int btree_cache_used;
705 
706 	if (c->shrinker_disabled)
707 		return SHRINK_STOP;
708 
709 	if (c->btree_cache_alloc_lock)
710 		return SHRINK_STOP;
711 
712 	/* Return -1 if we can't do anything right now */
713 	if (sc->gfp_mask & __GFP_IO)
714 		mutex_lock(&c->bucket_lock);
715 	else if (!mutex_trylock(&c->bucket_lock))
716 		return -1;
717 
718 	/*
719 	 * It's _really_ critical that we don't free too many btree nodes - we
720 	 * have to always leave ourselves a reserve. The reserve is how we
721 	 * guarantee that allocating memory for a new btree node can always
722 	 * succeed, so that inserting keys into the btree can always succeed and
723 	 * IO can always make forward progress:
724 	 */
725 	nr /= c->btree_pages;
726 	nr = min_t(unsigned long, nr, mca_can_free(c));
727 
728 	i = 0;
729 	btree_cache_used = c->btree_cache_used;
730 	list_for_each_entry_safe(b, t, &c->btree_cache_freeable, list) {
731 		if (nr <= 0)
732 			goto out;
733 
734 		if (++i > 3 &&
735 		    !mca_reap(b, 0, false)) {
736 			mca_data_free(b);
737 			rw_unlock(true, b);
738 			freed++;
739 		}
740 		nr--;
741 	}
742 
743 	for (;  (nr--) && i < btree_cache_used; i++) {
744 		if (list_empty(&c->btree_cache))
745 			goto out;
746 
747 		b = list_first_entry(&c->btree_cache, struct btree, list);
748 		list_rotate_left(&c->btree_cache);
749 
750 		if (!b->accessed &&
751 		    !mca_reap(b, 0, false)) {
752 			mca_bucket_free(b);
753 			mca_data_free(b);
754 			rw_unlock(true, b);
755 			freed++;
756 		} else
757 			b->accessed = 0;
758 	}
759 out:
760 	mutex_unlock(&c->bucket_lock);
761 	return freed * c->btree_pages;
762 }
763 
764 static unsigned long bch_mca_count(struct shrinker *shrink,
765 				   struct shrink_control *sc)
766 {
767 	struct cache_set *c = container_of(shrink, struct cache_set, shrink);
768 
769 	if (c->shrinker_disabled)
770 		return 0;
771 
772 	if (c->btree_cache_alloc_lock)
773 		return 0;
774 
775 	return mca_can_free(c) * c->btree_pages;
776 }
777 
778 void bch_btree_cache_free(struct cache_set *c)
779 {
780 	struct btree *b;
781 	struct closure cl;
782 
783 	closure_init_stack(&cl);
784 
785 	if (c->shrink.list.next)
786 		unregister_shrinker(&c->shrink);
787 
788 	mutex_lock(&c->bucket_lock);
789 
790 #ifdef CONFIG_BCACHE_DEBUG
791 	if (c->verify_data)
792 		list_move(&c->verify_data->list, &c->btree_cache);
793 
794 	free_pages((unsigned long) c->verify_ondisk, ilog2(bucket_pages(c)));
795 #endif
796 
797 	list_splice(&c->btree_cache_freeable,
798 		    &c->btree_cache);
799 
800 	while (!list_empty(&c->btree_cache)) {
801 		b = list_first_entry(&c->btree_cache, struct btree, list);
802 
803 		/*
804 		 * This function is called by cache_set_free(), no I/O
805 		 * request on cache now, it is unnecessary to acquire
806 		 * b->write_lock before clearing BTREE_NODE_dirty anymore.
807 		 */
808 		if (btree_node_dirty(b)) {
809 			btree_complete_write(b, btree_current_write(b));
810 			clear_bit(BTREE_NODE_dirty, &b->flags);
811 		}
812 		mca_data_free(b);
813 	}
814 
815 	while (!list_empty(&c->btree_cache_freed)) {
816 		b = list_first_entry(&c->btree_cache_freed,
817 				     struct btree, list);
818 		list_del(&b->list);
819 		cancel_delayed_work_sync(&b->work);
820 		kfree(b);
821 	}
822 
823 	mutex_unlock(&c->bucket_lock);
824 }
825 
826 int bch_btree_cache_alloc(struct cache_set *c)
827 {
828 	unsigned int i;
829 
830 	for (i = 0; i < mca_reserve(c); i++)
831 		if (!mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL))
832 			return -ENOMEM;
833 
834 	list_splice_init(&c->btree_cache,
835 			 &c->btree_cache_freeable);
836 
837 #ifdef CONFIG_BCACHE_DEBUG
838 	mutex_init(&c->verify_lock);
839 
840 	c->verify_ondisk = (void *)
841 		__get_free_pages(GFP_KERNEL, ilog2(bucket_pages(c)));
842 
843 	c->verify_data = mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL);
844 
845 	if (c->verify_data &&
846 	    c->verify_data->keys.set->data)
847 		list_del_init(&c->verify_data->list);
848 	else
849 		c->verify_data = NULL;
850 #endif
851 
852 	c->shrink.count_objects = bch_mca_count;
853 	c->shrink.scan_objects = bch_mca_scan;
854 	c->shrink.seeks = 4;
855 	c->shrink.batch = c->btree_pages * 2;
856 
857 	if (register_shrinker(&c->shrink))
858 		pr_warn("bcache: %s: could not register shrinker",
859 				__func__);
860 
861 	return 0;
862 }
863 
864 /* Btree in memory cache - hash table */
865 
866 static struct hlist_head *mca_hash(struct cache_set *c, struct bkey *k)
867 {
868 	return &c->bucket_hash[hash_32(PTR_HASH(c, k), BUCKET_HASH_BITS)];
869 }
870 
871 static struct btree *mca_find(struct cache_set *c, struct bkey *k)
872 {
873 	struct btree *b;
874 
875 	rcu_read_lock();
876 	hlist_for_each_entry_rcu(b, mca_hash(c, k), hash)
877 		if (PTR_HASH(c, &b->key) == PTR_HASH(c, k))
878 			goto out;
879 	b = NULL;
880 out:
881 	rcu_read_unlock();
882 	return b;
883 }
884 
885 static int mca_cannibalize_lock(struct cache_set *c, struct btree_op *op)
886 {
887 	struct task_struct *old;
888 
889 	old = cmpxchg(&c->btree_cache_alloc_lock, NULL, current);
890 	if (old && old != current) {
891 		if (op)
892 			prepare_to_wait(&c->btree_cache_wait, &op->wait,
893 					TASK_UNINTERRUPTIBLE);
894 		return -EINTR;
895 	}
896 
897 	return 0;
898 }
899 
900 static struct btree *mca_cannibalize(struct cache_set *c, struct btree_op *op,
901 				     struct bkey *k)
902 {
903 	struct btree *b;
904 
905 	trace_bcache_btree_cache_cannibalize(c);
906 
907 	if (mca_cannibalize_lock(c, op))
908 		return ERR_PTR(-EINTR);
909 
910 	list_for_each_entry_reverse(b, &c->btree_cache, list)
911 		if (!mca_reap(b, btree_order(k), false))
912 			return b;
913 
914 	list_for_each_entry_reverse(b, &c->btree_cache, list)
915 		if (!mca_reap(b, btree_order(k), true))
916 			return b;
917 
918 	WARN(1, "btree cache cannibalize failed\n");
919 	return ERR_PTR(-ENOMEM);
920 }
921 
922 /*
923  * We can only have one thread cannibalizing other cached btree nodes at a time,
924  * or we'll deadlock. We use an open coded mutex to ensure that, which a
925  * cannibalize_bucket() will take. This means every time we unlock the root of
926  * the btree, we need to release this lock if we have it held.
927  */
928 static void bch_cannibalize_unlock(struct cache_set *c)
929 {
930 	if (c->btree_cache_alloc_lock == current) {
931 		c->btree_cache_alloc_lock = NULL;
932 		wake_up(&c->btree_cache_wait);
933 	}
934 }
935 
936 static struct btree *mca_alloc(struct cache_set *c, struct btree_op *op,
937 			       struct bkey *k, int level)
938 {
939 	struct btree *b;
940 
941 	BUG_ON(current->bio_list);
942 
943 	lockdep_assert_held(&c->bucket_lock);
944 
945 	if (mca_find(c, k))
946 		return NULL;
947 
948 	/* btree_free() doesn't free memory; it sticks the node on the end of
949 	 * the list. Check if there's any freed nodes there:
950 	 */
951 	list_for_each_entry(b, &c->btree_cache_freeable, list)
952 		if (!mca_reap(b, btree_order(k), false))
953 			goto out;
954 
955 	/* We never free struct btree itself, just the memory that holds the on
956 	 * disk node. Check the freed list before allocating a new one:
957 	 */
958 	list_for_each_entry(b, &c->btree_cache_freed, list)
959 		if (!mca_reap(b, 0, false)) {
960 			mca_data_alloc(b, k, __GFP_NOWARN|GFP_NOIO);
961 			if (!b->keys.set[0].data)
962 				goto err;
963 			else
964 				goto out;
965 		}
966 
967 	b = mca_bucket_alloc(c, k, __GFP_NOWARN|GFP_NOIO);
968 	if (!b)
969 		goto err;
970 
971 	BUG_ON(!down_write_trylock(&b->lock));
972 	if (!b->keys.set->data)
973 		goto err;
974 out:
975 	BUG_ON(b->io_mutex.count != 1);
976 
977 	bkey_copy(&b->key, k);
978 	list_move(&b->list, &c->btree_cache);
979 	hlist_del_init_rcu(&b->hash);
980 	hlist_add_head_rcu(&b->hash, mca_hash(c, k));
981 
982 	lock_set_subclass(&b->lock.dep_map, level + 1, _THIS_IP_);
983 	b->parent	= (void *) ~0UL;
984 	b->flags	= 0;
985 	b->written	= 0;
986 	b->level	= level;
987 
988 	if (!b->level)
989 		bch_btree_keys_init(&b->keys, &bch_extent_keys_ops,
990 				    &b->c->expensive_debug_checks);
991 	else
992 		bch_btree_keys_init(&b->keys, &bch_btree_keys_ops,
993 				    &b->c->expensive_debug_checks);
994 
995 	return b;
996 err:
997 	if (b)
998 		rw_unlock(true, b);
999 
1000 	b = mca_cannibalize(c, op, k);
1001 	if (!IS_ERR(b))
1002 		goto out;
1003 
1004 	return b;
1005 }
1006 
1007 /*
1008  * bch_btree_node_get - find a btree node in the cache and lock it, reading it
1009  * in from disk if necessary.
1010  *
1011  * If IO is necessary and running under generic_make_request, returns -EAGAIN.
1012  *
1013  * The btree node will have either a read or a write lock held, depending on
1014  * level and op->lock.
1015  */
1016 struct btree *bch_btree_node_get(struct cache_set *c, struct btree_op *op,
1017 				 struct bkey *k, int level, bool write,
1018 				 struct btree *parent)
1019 {
1020 	int i = 0;
1021 	struct btree *b;
1022 
1023 	BUG_ON(level < 0);
1024 retry:
1025 	b = mca_find(c, k);
1026 
1027 	if (!b) {
1028 		if (current->bio_list)
1029 			return ERR_PTR(-EAGAIN);
1030 
1031 		mutex_lock(&c->bucket_lock);
1032 		b = mca_alloc(c, op, k, level);
1033 		mutex_unlock(&c->bucket_lock);
1034 
1035 		if (!b)
1036 			goto retry;
1037 		if (IS_ERR(b))
1038 			return b;
1039 
1040 		bch_btree_node_read(b);
1041 
1042 		if (!write)
1043 			downgrade_write(&b->lock);
1044 	} else {
1045 		rw_lock(write, b, level);
1046 		if (PTR_HASH(c, &b->key) != PTR_HASH(c, k)) {
1047 			rw_unlock(write, b);
1048 			goto retry;
1049 		}
1050 		BUG_ON(b->level != level);
1051 	}
1052 
1053 	if (btree_node_io_error(b)) {
1054 		rw_unlock(write, b);
1055 		return ERR_PTR(-EIO);
1056 	}
1057 
1058 	BUG_ON(!b->written);
1059 
1060 	b->parent = parent;
1061 	b->accessed = 1;
1062 
1063 	for (; i <= b->keys.nsets && b->keys.set[i].size; i++) {
1064 		prefetch(b->keys.set[i].tree);
1065 		prefetch(b->keys.set[i].data);
1066 	}
1067 
1068 	for (; i <= b->keys.nsets; i++)
1069 		prefetch(b->keys.set[i].data);
1070 
1071 	return b;
1072 }
1073 
1074 static void btree_node_prefetch(struct btree *parent, struct bkey *k)
1075 {
1076 	struct btree *b;
1077 
1078 	mutex_lock(&parent->c->bucket_lock);
1079 	b = mca_alloc(parent->c, NULL, k, parent->level - 1);
1080 	mutex_unlock(&parent->c->bucket_lock);
1081 
1082 	if (!IS_ERR_OR_NULL(b)) {
1083 		b->parent = parent;
1084 		bch_btree_node_read(b);
1085 		rw_unlock(true, b);
1086 	}
1087 }
1088 
1089 /* Btree alloc */
1090 
1091 static void btree_node_free(struct btree *b)
1092 {
1093 	trace_bcache_btree_node_free(b);
1094 
1095 	BUG_ON(b == b->c->root);
1096 
1097 retry:
1098 	mutex_lock(&b->write_lock);
1099 	/*
1100 	 * If the btree node is selected and flushing in btree_flush_write(),
1101 	 * delay and retry until the BTREE_NODE_journal_flush bit cleared,
1102 	 * then it is safe to free the btree node here. Otherwise this btree
1103 	 * node will be in race condition.
1104 	 */
1105 	if (btree_node_journal_flush(b)) {
1106 		mutex_unlock(&b->write_lock);
1107 		pr_debug("bnode %p journal_flush set, retry", b);
1108 		udelay(1);
1109 		goto retry;
1110 	}
1111 
1112 	if (btree_node_dirty(b)) {
1113 		btree_complete_write(b, btree_current_write(b));
1114 		clear_bit(BTREE_NODE_dirty, &b->flags);
1115 	}
1116 
1117 	mutex_unlock(&b->write_lock);
1118 
1119 	cancel_delayed_work(&b->work);
1120 
1121 	mutex_lock(&b->c->bucket_lock);
1122 	bch_bucket_free(b->c, &b->key);
1123 	mca_bucket_free(b);
1124 	mutex_unlock(&b->c->bucket_lock);
1125 }
1126 
1127 struct btree *__bch_btree_node_alloc(struct cache_set *c, struct btree_op *op,
1128 				     int level, bool wait,
1129 				     struct btree *parent)
1130 {
1131 	BKEY_PADDED(key) k;
1132 	struct btree *b = ERR_PTR(-EAGAIN);
1133 
1134 	mutex_lock(&c->bucket_lock);
1135 retry:
1136 	if (__bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, 1, wait))
1137 		goto err;
1138 
1139 	bkey_put(c, &k.key);
1140 	SET_KEY_SIZE(&k.key, c->btree_pages * PAGE_SECTORS);
1141 
1142 	b = mca_alloc(c, op, &k.key, level);
1143 	if (IS_ERR(b))
1144 		goto err_free;
1145 
1146 	if (!b) {
1147 		cache_bug(c,
1148 			"Tried to allocate bucket that was in btree cache");
1149 		goto retry;
1150 	}
1151 
1152 	b->accessed = 1;
1153 	b->parent = parent;
1154 	bch_bset_init_next(&b->keys, b->keys.set->data, bset_magic(&b->c->sb));
1155 
1156 	mutex_unlock(&c->bucket_lock);
1157 
1158 	trace_bcache_btree_node_alloc(b);
1159 	return b;
1160 err_free:
1161 	bch_bucket_free(c, &k.key);
1162 err:
1163 	mutex_unlock(&c->bucket_lock);
1164 
1165 	trace_bcache_btree_node_alloc_fail(c);
1166 	return b;
1167 }
1168 
1169 static struct btree *bch_btree_node_alloc(struct cache_set *c,
1170 					  struct btree_op *op, int level,
1171 					  struct btree *parent)
1172 {
1173 	return __bch_btree_node_alloc(c, op, level, op != NULL, parent);
1174 }
1175 
1176 static struct btree *btree_node_alloc_replacement(struct btree *b,
1177 						  struct btree_op *op)
1178 {
1179 	struct btree *n = bch_btree_node_alloc(b->c, op, b->level, b->parent);
1180 
1181 	if (!IS_ERR_OR_NULL(n)) {
1182 		mutex_lock(&n->write_lock);
1183 		bch_btree_sort_into(&b->keys, &n->keys, &b->c->sort);
1184 		bkey_copy_key(&n->key, &b->key);
1185 		mutex_unlock(&n->write_lock);
1186 	}
1187 
1188 	return n;
1189 }
1190 
1191 static void make_btree_freeing_key(struct btree *b, struct bkey *k)
1192 {
1193 	unsigned int i;
1194 
1195 	mutex_lock(&b->c->bucket_lock);
1196 
1197 	atomic_inc(&b->c->prio_blocked);
1198 
1199 	bkey_copy(k, &b->key);
1200 	bkey_copy_key(k, &ZERO_KEY);
1201 
1202 	for (i = 0; i < KEY_PTRS(k); i++)
1203 		SET_PTR_GEN(k, i,
1204 			    bch_inc_gen(PTR_CACHE(b->c, &b->key, i),
1205 					PTR_BUCKET(b->c, &b->key, i)));
1206 
1207 	mutex_unlock(&b->c->bucket_lock);
1208 }
1209 
1210 static int btree_check_reserve(struct btree *b, struct btree_op *op)
1211 {
1212 	struct cache_set *c = b->c;
1213 	struct cache *ca;
1214 	unsigned int i, reserve = (c->root->level - b->level) * 2 + 1;
1215 
1216 	mutex_lock(&c->bucket_lock);
1217 
1218 	for_each_cache(ca, c, i)
1219 		if (fifo_used(&ca->free[RESERVE_BTREE]) < reserve) {
1220 			if (op)
1221 				prepare_to_wait(&c->btree_cache_wait, &op->wait,
1222 						TASK_UNINTERRUPTIBLE);
1223 			mutex_unlock(&c->bucket_lock);
1224 			return -EINTR;
1225 		}
1226 
1227 	mutex_unlock(&c->bucket_lock);
1228 
1229 	return mca_cannibalize_lock(b->c, op);
1230 }
1231 
1232 /* Garbage collection */
1233 
1234 static uint8_t __bch_btree_mark_key(struct cache_set *c, int level,
1235 				    struct bkey *k)
1236 {
1237 	uint8_t stale = 0;
1238 	unsigned int i;
1239 	struct bucket *g;
1240 
1241 	/*
1242 	 * ptr_invalid() can't return true for the keys that mark btree nodes as
1243 	 * freed, but since ptr_bad() returns true we'll never actually use them
1244 	 * for anything and thus we don't want mark their pointers here
1245 	 */
1246 	if (!bkey_cmp(k, &ZERO_KEY))
1247 		return stale;
1248 
1249 	for (i = 0; i < KEY_PTRS(k); i++) {
1250 		if (!ptr_available(c, k, i))
1251 			continue;
1252 
1253 		g = PTR_BUCKET(c, k, i);
1254 
1255 		if (gen_after(g->last_gc, PTR_GEN(k, i)))
1256 			g->last_gc = PTR_GEN(k, i);
1257 
1258 		if (ptr_stale(c, k, i)) {
1259 			stale = max(stale, ptr_stale(c, k, i));
1260 			continue;
1261 		}
1262 
1263 		cache_bug_on(GC_MARK(g) &&
1264 			     (GC_MARK(g) == GC_MARK_METADATA) != (level != 0),
1265 			     c, "inconsistent ptrs: mark = %llu, level = %i",
1266 			     GC_MARK(g), level);
1267 
1268 		if (level)
1269 			SET_GC_MARK(g, GC_MARK_METADATA);
1270 		else if (KEY_DIRTY(k))
1271 			SET_GC_MARK(g, GC_MARK_DIRTY);
1272 		else if (!GC_MARK(g))
1273 			SET_GC_MARK(g, GC_MARK_RECLAIMABLE);
1274 
1275 		/* guard against overflow */
1276 		SET_GC_SECTORS_USED(g, min_t(unsigned int,
1277 					     GC_SECTORS_USED(g) + KEY_SIZE(k),
1278 					     MAX_GC_SECTORS_USED));
1279 
1280 		BUG_ON(!GC_SECTORS_USED(g));
1281 	}
1282 
1283 	return stale;
1284 }
1285 
1286 #define btree_mark_key(b, k)	__bch_btree_mark_key(b->c, b->level, k)
1287 
1288 void bch_initial_mark_key(struct cache_set *c, int level, struct bkey *k)
1289 {
1290 	unsigned int i;
1291 
1292 	for (i = 0; i < KEY_PTRS(k); i++)
1293 		if (ptr_available(c, k, i) &&
1294 		    !ptr_stale(c, k, i)) {
1295 			struct bucket *b = PTR_BUCKET(c, k, i);
1296 
1297 			b->gen = PTR_GEN(k, i);
1298 
1299 			if (level && bkey_cmp(k, &ZERO_KEY))
1300 				b->prio = BTREE_PRIO;
1301 			else if (!level && b->prio == BTREE_PRIO)
1302 				b->prio = INITIAL_PRIO;
1303 		}
1304 
1305 	__bch_btree_mark_key(c, level, k);
1306 }
1307 
1308 void bch_update_bucket_in_use(struct cache_set *c, struct gc_stat *stats)
1309 {
1310 	stats->in_use = (c->nbuckets - c->avail_nbuckets) * 100 / c->nbuckets;
1311 }
1312 
1313 static bool btree_gc_mark_node(struct btree *b, struct gc_stat *gc)
1314 {
1315 	uint8_t stale = 0;
1316 	unsigned int keys = 0, good_keys = 0;
1317 	struct bkey *k;
1318 	struct btree_iter iter;
1319 	struct bset_tree *t;
1320 
1321 	gc->nodes++;
1322 
1323 	for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid) {
1324 		stale = max(stale, btree_mark_key(b, k));
1325 		keys++;
1326 
1327 		if (bch_ptr_bad(&b->keys, k))
1328 			continue;
1329 
1330 		gc->key_bytes += bkey_u64s(k);
1331 		gc->nkeys++;
1332 		good_keys++;
1333 
1334 		gc->data += KEY_SIZE(k);
1335 	}
1336 
1337 	for (t = b->keys.set; t <= &b->keys.set[b->keys.nsets]; t++)
1338 		btree_bug_on(t->size &&
1339 			     bset_written(&b->keys, t) &&
1340 			     bkey_cmp(&b->key, &t->end) < 0,
1341 			     b, "found short btree key in gc");
1342 
1343 	if (b->c->gc_always_rewrite)
1344 		return true;
1345 
1346 	if (stale > 10)
1347 		return true;
1348 
1349 	if ((keys - good_keys) * 2 > keys)
1350 		return true;
1351 
1352 	return false;
1353 }
1354 
1355 #define GC_MERGE_NODES	4U
1356 
1357 struct gc_merge_info {
1358 	struct btree	*b;
1359 	unsigned int	keys;
1360 };
1361 
1362 static int bch_btree_insert_node(struct btree *b, struct btree_op *op,
1363 				 struct keylist *insert_keys,
1364 				 atomic_t *journal_ref,
1365 				 struct bkey *replace_key);
1366 
1367 static int btree_gc_coalesce(struct btree *b, struct btree_op *op,
1368 			     struct gc_stat *gc, struct gc_merge_info *r)
1369 {
1370 	unsigned int i, nodes = 0, keys = 0, blocks;
1371 	struct btree *new_nodes[GC_MERGE_NODES];
1372 	struct keylist keylist;
1373 	struct closure cl;
1374 	struct bkey *k;
1375 
1376 	bch_keylist_init(&keylist);
1377 
1378 	if (btree_check_reserve(b, NULL))
1379 		return 0;
1380 
1381 	memset(new_nodes, 0, sizeof(new_nodes));
1382 	closure_init_stack(&cl);
1383 
1384 	while (nodes < GC_MERGE_NODES && !IS_ERR_OR_NULL(r[nodes].b))
1385 		keys += r[nodes++].keys;
1386 
1387 	blocks = btree_default_blocks(b->c) * 2 / 3;
1388 
1389 	if (nodes < 2 ||
1390 	    __set_blocks(b->keys.set[0].data, keys,
1391 			 block_bytes(b->c)) > blocks * (nodes - 1))
1392 		return 0;
1393 
1394 	for (i = 0; i < nodes; i++) {
1395 		new_nodes[i] = btree_node_alloc_replacement(r[i].b, NULL);
1396 		if (IS_ERR_OR_NULL(new_nodes[i]))
1397 			goto out_nocoalesce;
1398 	}
1399 
1400 	/*
1401 	 * We have to check the reserve here, after we've allocated our new
1402 	 * nodes, to make sure the insert below will succeed - we also check
1403 	 * before as an optimization to potentially avoid a bunch of expensive
1404 	 * allocs/sorts
1405 	 */
1406 	if (btree_check_reserve(b, NULL))
1407 		goto out_nocoalesce;
1408 
1409 	for (i = 0; i < nodes; i++)
1410 		mutex_lock(&new_nodes[i]->write_lock);
1411 
1412 	for (i = nodes - 1; i > 0; --i) {
1413 		struct bset *n1 = btree_bset_first(new_nodes[i]);
1414 		struct bset *n2 = btree_bset_first(new_nodes[i - 1]);
1415 		struct bkey *k, *last = NULL;
1416 
1417 		keys = 0;
1418 
1419 		if (i > 1) {
1420 			for (k = n2->start;
1421 			     k < bset_bkey_last(n2);
1422 			     k = bkey_next(k)) {
1423 				if (__set_blocks(n1, n1->keys + keys +
1424 						 bkey_u64s(k),
1425 						 block_bytes(b->c)) > blocks)
1426 					break;
1427 
1428 				last = k;
1429 				keys += bkey_u64s(k);
1430 			}
1431 		} else {
1432 			/*
1433 			 * Last node we're not getting rid of - we're getting
1434 			 * rid of the node at r[0]. Have to try and fit all of
1435 			 * the remaining keys into this node; we can't ensure
1436 			 * they will always fit due to rounding and variable
1437 			 * length keys (shouldn't be possible in practice,
1438 			 * though)
1439 			 */
1440 			if (__set_blocks(n1, n1->keys + n2->keys,
1441 					 block_bytes(b->c)) >
1442 			    btree_blocks(new_nodes[i]))
1443 				goto out_nocoalesce;
1444 
1445 			keys = n2->keys;
1446 			/* Take the key of the node we're getting rid of */
1447 			last = &r->b->key;
1448 		}
1449 
1450 		BUG_ON(__set_blocks(n1, n1->keys + keys, block_bytes(b->c)) >
1451 		       btree_blocks(new_nodes[i]));
1452 
1453 		if (last)
1454 			bkey_copy_key(&new_nodes[i]->key, last);
1455 
1456 		memcpy(bset_bkey_last(n1),
1457 		       n2->start,
1458 		       (void *) bset_bkey_idx(n2, keys) - (void *) n2->start);
1459 
1460 		n1->keys += keys;
1461 		r[i].keys = n1->keys;
1462 
1463 		memmove(n2->start,
1464 			bset_bkey_idx(n2, keys),
1465 			(void *) bset_bkey_last(n2) -
1466 			(void *) bset_bkey_idx(n2, keys));
1467 
1468 		n2->keys -= keys;
1469 
1470 		if (__bch_keylist_realloc(&keylist,
1471 					  bkey_u64s(&new_nodes[i]->key)))
1472 			goto out_nocoalesce;
1473 
1474 		bch_btree_node_write(new_nodes[i], &cl);
1475 		bch_keylist_add(&keylist, &new_nodes[i]->key);
1476 	}
1477 
1478 	for (i = 0; i < nodes; i++)
1479 		mutex_unlock(&new_nodes[i]->write_lock);
1480 
1481 	closure_sync(&cl);
1482 
1483 	/* We emptied out this node */
1484 	BUG_ON(btree_bset_first(new_nodes[0])->keys);
1485 	btree_node_free(new_nodes[0]);
1486 	rw_unlock(true, new_nodes[0]);
1487 	new_nodes[0] = NULL;
1488 
1489 	for (i = 0; i < nodes; i++) {
1490 		if (__bch_keylist_realloc(&keylist, bkey_u64s(&r[i].b->key)))
1491 			goto out_nocoalesce;
1492 
1493 		make_btree_freeing_key(r[i].b, keylist.top);
1494 		bch_keylist_push(&keylist);
1495 	}
1496 
1497 	bch_btree_insert_node(b, op, &keylist, NULL, NULL);
1498 	BUG_ON(!bch_keylist_empty(&keylist));
1499 
1500 	for (i = 0; i < nodes; i++) {
1501 		btree_node_free(r[i].b);
1502 		rw_unlock(true, r[i].b);
1503 
1504 		r[i].b = new_nodes[i];
1505 	}
1506 
1507 	memmove(r, r + 1, sizeof(r[0]) * (nodes - 1));
1508 	r[nodes - 1].b = ERR_PTR(-EINTR);
1509 
1510 	trace_bcache_btree_gc_coalesce(nodes);
1511 	gc->nodes--;
1512 
1513 	bch_keylist_free(&keylist);
1514 
1515 	/* Invalidated our iterator */
1516 	return -EINTR;
1517 
1518 out_nocoalesce:
1519 	closure_sync(&cl);
1520 
1521 	while ((k = bch_keylist_pop(&keylist)))
1522 		if (!bkey_cmp(k, &ZERO_KEY))
1523 			atomic_dec(&b->c->prio_blocked);
1524 	bch_keylist_free(&keylist);
1525 
1526 	for (i = 0; i < nodes; i++)
1527 		if (!IS_ERR_OR_NULL(new_nodes[i])) {
1528 			btree_node_free(new_nodes[i]);
1529 			rw_unlock(true, new_nodes[i]);
1530 		}
1531 	return 0;
1532 }
1533 
1534 static int btree_gc_rewrite_node(struct btree *b, struct btree_op *op,
1535 				 struct btree *replace)
1536 {
1537 	struct keylist keys;
1538 	struct btree *n;
1539 
1540 	if (btree_check_reserve(b, NULL))
1541 		return 0;
1542 
1543 	n = btree_node_alloc_replacement(replace, NULL);
1544 
1545 	/* recheck reserve after allocating replacement node */
1546 	if (btree_check_reserve(b, NULL)) {
1547 		btree_node_free(n);
1548 		rw_unlock(true, n);
1549 		return 0;
1550 	}
1551 
1552 	bch_btree_node_write_sync(n);
1553 
1554 	bch_keylist_init(&keys);
1555 	bch_keylist_add(&keys, &n->key);
1556 
1557 	make_btree_freeing_key(replace, keys.top);
1558 	bch_keylist_push(&keys);
1559 
1560 	bch_btree_insert_node(b, op, &keys, NULL, NULL);
1561 	BUG_ON(!bch_keylist_empty(&keys));
1562 
1563 	btree_node_free(replace);
1564 	rw_unlock(true, n);
1565 
1566 	/* Invalidated our iterator */
1567 	return -EINTR;
1568 }
1569 
1570 static unsigned int btree_gc_count_keys(struct btree *b)
1571 {
1572 	struct bkey *k;
1573 	struct btree_iter iter;
1574 	unsigned int ret = 0;
1575 
1576 	for_each_key_filter(&b->keys, k, &iter, bch_ptr_bad)
1577 		ret += bkey_u64s(k);
1578 
1579 	return ret;
1580 }
1581 
1582 static size_t btree_gc_min_nodes(struct cache_set *c)
1583 {
1584 	size_t min_nodes;
1585 
1586 	/*
1587 	 * Since incremental GC would stop 100ms when front
1588 	 * side I/O comes, so when there are many btree nodes,
1589 	 * if GC only processes constant (100) nodes each time,
1590 	 * GC would last a long time, and the front side I/Os
1591 	 * would run out of the buckets (since no new bucket
1592 	 * can be allocated during GC), and be blocked again.
1593 	 * So GC should not process constant nodes, but varied
1594 	 * nodes according to the number of btree nodes, which
1595 	 * realized by dividing GC into constant(100) times,
1596 	 * so when there are many btree nodes, GC can process
1597 	 * more nodes each time, otherwise, GC will process less
1598 	 * nodes each time (but no less than MIN_GC_NODES)
1599 	 */
1600 	min_nodes = c->gc_stats.nodes / MAX_GC_TIMES;
1601 	if (min_nodes < MIN_GC_NODES)
1602 		min_nodes = MIN_GC_NODES;
1603 
1604 	return min_nodes;
1605 }
1606 
1607 
1608 static int btree_gc_recurse(struct btree *b, struct btree_op *op,
1609 			    struct closure *writes, struct gc_stat *gc)
1610 {
1611 	int ret = 0;
1612 	bool should_rewrite;
1613 	struct bkey *k;
1614 	struct btree_iter iter;
1615 	struct gc_merge_info r[GC_MERGE_NODES];
1616 	struct gc_merge_info *i, *last = r + ARRAY_SIZE(r) - 1;
1617 
1618 	bch_btree_iter_init(&b->keys, &iter, &b->c->gc_done);
1619 
1620 	for (i = r; i < r + ARRAY_SIZE(r); i++)
1621 		i->b = ERR_PTR(-EINTR);
1622 
1623 	while (1) {
1624 		k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad);
1625 		if (k) {
1626 			r->b = bch_btree_node_get(b->c, op, k, b->level - 1,
1627 						  true, b);
1628 			if (IS_ERR(r->b)) {
1629 				ret = PTR_ERR(r->b);
1630 				break;
1631 			}
1632 
1633 			r->keys = btree_gc_count_keys(r->b);
1634 
1635 			ret = btree_gc_coalesce(b, op, gc, r);
1636 			if (ret)
1637 				break;
1638 		}
1639 
1640 		if (!last->b)
1641 			break;
1642 
1643 		if (!IS_ERR(last->b)) {
1644 			should_rewrite = btree_gc_mark_node(last->b, gc);
1645 			if (should_rewrite) {
1646 				ret = btree_gc_rewrite_node(b, op, last->b);
1647 				if (ret)
1648 					break;
1649 			}
1650 
1651 			if (last->b->level) {
1652 				ret = btree_gc_recurse(last->b, op, writes, gc);
1653 				if (ret)
1654 					break;
1655 			}
1656 
1657 			bkey_copy_key(&b->c->gc_done, &last->b->key);
1658 
1659 			/*
1660 			 * Must flush leaf nodes before gc ends, since replace
1661 			 * operations aren't journalled
1662 			 */
1663 			mutex_lock(&last->b->write_lock);
1664 			if (btree_node_dirty(last->b))
1665 				bch_btree_node_write(last->b, writes);
1666 			mutex_unlock(&last->b->write_lock);
1667 			rw_unlock(true, last->b);
1668 		}
1669 
1670 		memmove(r + 1, r, sizeof(r[0]) * (GC_MERGE_NODES - 1));
1671 		r->b = NULL;
1672 
1673 		if (atomic_read(&b->c->search_inflight) &&
1674 		    gc->nodes >= gc->nodes_pre + btree_gc_min_nodes(b->c)) {
1675 			gc->nodes_pre =  gc->nodes;
1676 			ret = -EAGAIN;
1677 			break;
1678 		}
1679 
1680 		if (need_resched()) {
1681 			ret = -EAGAIN;
1682 			break;
1683 		}
1684 	}
1685 
1686 	for (i = r; i < r + ARRAY_SIZE(r); i++)
1687 		if (!IS_ERR_OR_NULL(i->b)) {
1688 			mutex_lock(&i->b->write_lock);
1689 			if (btree_node_dirty(i->b))
1690 				bch_btree_node_write(i->b, writes);
1691 			mutex_unlock(&i->b->write_lock);
1692 			rw_unlock(true, i->b);
1693 		}
1694 
1695 	return ret;
1696 }
1697 
1698 static int bch_btree_gc_root(struct btree *b, struct btree_op *op,
1699 			     struct closure *writes, struct gc_stat *gc)
1700 {
1701 	struct btree *n = NULL;
1702 	int ret = 0;
1703 	bool should_rewrite;
1704 
1705 	should_rewrite = btree_gc_mark_node(b, gc);
1706 	if (should_rewrite) {
1707 		n = btree_node_alloc_replacement(b, NULL);
1708 
1709 		if (!IS_ERR_OR_NULL(n)) {
1710 			bch_btree_node_write_sync(n);
1711 
1712 			bch_btree_set_root(n);
1713 			btree_node_free(b);
1714 			rw_unlock(true, n);
1715 
1716 			return -EINTR;
1717 		}
1718 	}
1719 
1720 	__bch_btree_mark_key(b->c, b->level + 1, &b->key);
1721 
1722 	if (b->level) {
1723 		ret = btree_gc_recurse(b, op, writes, gc);
1724 		if (ret)
1725 			return ret;
1726 	}
1727 
1728 	bkey_copy_key(&b->c->gc_done, &b->key);
1729 
1730 	return ret;
1731 }
1732 
1733 static void btree_gc_start(struct cache_set *c)
1734 {
1735 	struct cache *ca;
1736 	struct bucket *b;
1737 	unsigned int i;
1738 
1739 	if (!c->gc_mark_valid)
1740 		return;
1741 
1742 	mutex_lock(&c->bucket_lock);
1743 
1744 	c->gc_mark_valid = 0;
1745 	c->gc_done = ZERO_KEY;
1746 
1747 	for_each_cache(ca, c, i)
1748 		for_each_bucket(b, ca) {
1749 			b->last_gc = b->gen;
1750 			if (!atomic_read(&b->pin)) {
1751 				SET_GC_MARK(b, 0);
1752 				SET_GC_SECTORS_USED(b, 0);
1753 			}
1754 		}
1755 
1756 	mutex_unlock(&c->bucket_lock);
1757 }
1758 
1759 static void bch_btree_gc_finish(struct cache_set *c)
1760 {
1761 	struct bucket *b;
1762 	struct cache *ca;
1763 	unsigned int i;
1764 
1765 	mutex_lock(&c->bucket_lock);
1766 
1767 	set_gc_sectors(c);
1768 	c->gc_mark_valid = 1;
1769 	c->need_gc	= 0;
1770 
1771 	for (i = 0; i < KEY_PTRS(&c->uuid_bucket); i++)
1772 		SET_GC_MARK(PTR_BUCKET(c, &c->uuid_bucket, i),
1773 			    GC_MARK_METADATA);
1774 
1775 	/* don't reclaim buckets to which writeback keys point */
1776 	rcu_read_lock();
1777 	for (i = 0; i < c->devices_max_used; i++) {
1778 		struct bcache_device *d = c->devices[i];
1779 		struct cached_dev *dc;
1780 		struct keybuf_key *w, *n;
1781 		unsigned int j;
1782 
1783 		if (!d || UUID_FLASH_ONLY(&c->uuids[i]))
1784 			continue;
1785 		dc = container_of(d, struct cached_dev, disk);
1786 
1787 		spin_lock(&dc->writeback_keys.lock);
1788 		rbtree_postorder_for_each_entry_safe(w, n,
1789 					&dc->writeback_keys.keys, node)
1790 			for (j = 0; j < KEY_PTRS(&w->key); j++)
1791 				SET_GC_MARK(PTR_BUCKET(c, &w->key, j),
1792 					    GC_MARK_DIRTY);
1793 		spin_unlock(&dc->writeback_keys.lock);
1794 	}
1795 	rcu_read_unlock();
1796 
1797 	c->avail_nbuckets = 0;
1798 	for_each_cache(ca, c, i) {
1799 		uint64_t *i;
1800 
1801 		ca->invalidate_needs_gc = 0;
1802 
1803 		for (i = ca->sb.d; i < ca->sb.d + ca->sb.keys; i++)
1804 			SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA);
1805 
1806 		for (i = ca->prio_buckets;
1807 		     i < ca->prio_buckets + prio_buckets(ca) * 2; i++)
1808 			SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA);
1809 
1810 		for_each_bucket(b, ca) {
1811 			c->need_gc	= max(c->need_gc, bucket_gc_gen(b));
1812 
1813 			if (atomic_read(&b->pin))
1814 				continue;
1815 
1816 			BUG_ON(!GC_MARK(b) && GC_SECTORS_USED(b));
1817 
1818 			if (!GC_MARK(b) || GC_MARK(b) == GC_MARK_RECLAIMABLE)
1819 				c->avail_nbuckets++;
1820 		}
1821 	}
1822 
1823 	mutex_unlock(&c->bucket_lock);
1824 }
1825 
1826 static void bch_btree_gc(struct cache_set *c)
1827 {
1828 	int ret;
1829 	struct gc_stat stats;
1830 	struct closure writes;
1831 	struct btree_op op;
1832 	uint64_t start_time = local_clock();
1833 
1834 	trace_bcache_gc_start(c);
1835 
1836 	memset(&stats, 0, sizeof(struct gc_stat));
1837 	closure_init_stack(&writes);
1838 	bch_btree_op_init(&op, SHRT_MAX);
1839 
1840 	btree_gc_start(c);
1841 
1842 	/* if CACHE_SET_IO_DISABLE set, gc thread should stop too */
1843 	do {
1844 		ret = btree_root(gc_root, c, &op, &writes, &stats);
1845 		closure_sync(&writes);
1846 		cond_resched();
1847 
1848 		if (ret == -EAGAIN)
1849 			schedule_timeout_interruptible(msecs_to_jiffies
1850 						       (GC_SLEEP_MS));
1851 		else if (ret)
1852 			pr_warn("gc failed!");
1853 	} while (ret && !test_bit(CACHE_SET_IO_DISABLE, &c->flags));
1854 
1855 	bch_btree_gc_finish(c);
1856 	wake_up_allocators(c);
1857 
1858 	bch_time_stats_update(&c->btree_gc_time, start_time);
1859 
1860 	stats.key_bytes *= sizeof(uint64_t);
1861 	stats.data	<<= 9;
1862 	bch_update_bucket_in_use(c, &stats);
1863 	memcpy(&c->gc_stats, &stats, sizeof(struct gc_stat));
1864 
1865 	trace_bcache_gc_end(c);
1866 
1867 	bch_moving_gc(c);
1868 }
1869 
1870 static bool gc_should_run(struct cache_set *c)
1871 {
1872 	struct cache *ca;
1873 	unsigned int i;
1874 
1875 	for_each_cache(ca, c, i)
1876 		if (ca->invalidate_needs_gc)
1877 			return true;
1878 
1879 	if (atomic_read(&c->sectors_to_gc) < 0)
1880 		return true;
1881 
1882 	return false;
1883 }
1884 
1885 static int bch_gc_thread(void *arg)
1886 {
1887 	struct cache_set *c = arg;
1888 
1889 	while (1) {
1890 		wait_event_interruptible(c->gc_wait,
1891 			   kthread_should_stop() ||
1892 			   test_bit(CACHE_SET_IO_DISABLE, &c->flags) ||
1893 			   gc_should_run(c));
1894 
1895 		if (kthread_should_stop() ||
1896 		    test_bit(CACHE_SET_IO_DISABLE, &c->flags))
1897 			break;
1898 
1899 		set_gc_sectors(c);
1900 		bch_btree_gc(c);
1901 	}
1902 
1903 	wait_for_kthread_stop();
1904 	return 0;
1905 }
1906 
1907 int bch_gc_thread_start(struct cache_set *c)
1908 {
1909 	c->gc_thread = kthread_run(bch_gc_thread, c, "bcache_gc");
1910 	return PTR_ERR_OR_ZERO(c->gc_thread);
1911 }
1912 
1913 /* Initial partial gc */
1914 
1915 static int bch_btree_check_recurse(struct btree *b, struct btree_op *op)
1916 {
1917 	int ret = 0;
1918 	struct bkey *k, *p = NULL;
1919 	struct btree_iter iter;
1920 
1921 	for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid)
1922 		bch_initial_mark_key(b->c, b->level, k);
1923 
1924 	bch_initial_mark_key(b->c, b->level + 1, &b->key);
1925 
1926 	if (b->level) {
1927 		bch_btree_iter_init(&b->keys, &iter, NULL);
1928 
1929 		do {
1930 			k = bch_btree_iter_next_filter(&iter, &b->keys,
1931 						       bch_ptr_bad);
1932 			if (k) {
1933 				btree_node_prefetch(b, k);
1934 				/*
1935 				 * initiallize c->gc_stats.nodes
1936 				 * for incremental GC
1937 				 */
1938 				b->c->gc_stats.nodes++;
1939 			}
1940 
1941 			if (p)
1942 				ret = btree(check_recurse, p, b, op);
1943 
1944 			p = k;
1945 		} while (p && !ret);
1946 	}
1947 
1948 	return ret;
1949 }
1950 
1951 int bch_btree_check(struct cache_set *c)
1952 {
1953 	struct btree_op op;
1954 
1955 	bch_btree_op_init(&op, SHRT_MAX);
1956 
1957 	return btree_root(check_recurse, c, &op);
1958 }
1959 
1960 void bch_initial_gc_finish(struct cache_set *c)
1961 {
1962 	struct cache *ca;
1963 	struct bucket *b;
1964 	unsigned int i;
1965 
1966 	bch_btree_gc_finish(c);
1967 
1968 	mutex_lock(&c->bucket_lock);
1969 
1970 	/*
1971 	 * We need to put some unused buckets directly on the prio freelist in
1972 	 * order to get the allocator thread started - it needs freed buckets in
1973 	 * order to rewrite the prios and gens, and it needs to rewrite prios
1974 	 * and gens in order to free buckets.
1975 	 *
1976 	 * This is only safe for buckets that have no live data in them, which
1977 	 * there should always be some of.
1978 	 */
1979 	for_each_cache(ca, c, i) {
1980 		for_each_bucket(b, ca) {
1981 			if (fifo_full(&ca->free[RESERVE_PRIO]) &&
1982 			    fifo_full(&ca->free[RESERVE_BTREE]))
1983 				break;
1984 
1985 			if (bch_can_invalidate_bucket(ca, b) &&
1986 			    !GC_MARK(b)) {
1987 				__bch_invalidate_one_bucket(ca, b);
1988 				if (!fifo_push(&ca->free[RESERVE_PRIO],
1989 				   b - ca->buckets))
1990 					fifo_push(&ca->free[RESERVE_BTREE],
1991 						  b - ca->buckets);
1992 			}
1993 		}
1994 	}
1995 
1996 	mutex_unlock(&c->bucket_lock);
1997 }
1998 
1999 /* Btree insertion */
2000 
2001 static bool btree_insert_key(struct btree *b, struct bkey *k,
2002 			     struct bkey *replace_key)
2003 {
2004 	unsigned int status;
2005 
2006 	BUG_ON(bkey_cmp(k, &b->key) > 0);
2007 
2008 	status = bch_btree_insert_key(&b->keys, k, replace_key);
2009 	if (status != BTREE_INSERT_STATUS_NO_INSERT) {
2010 		bch_check_keys(&b->keys, "%u for %s", status,
2011 			       replace_key ? "replace" : "insert");
2012 
2013 		trace_bcache_btree_insert_key(b, k, replace_key != NULL,
2014 					      status);
2015 		return true;
2016 	} else
2017 		return false;
2018 }
2019 
2020 static size_t insert_u64s_remaining(struct btree *b)
2021 {
2022 	long ret = bch_btree_keys_u64s_remaining(&b->keys);
2023 
2024 	/*
2025 	 * Might land in the middle of an existing extent and have to split it
2026 	 */
2027 	if (b->keys.ops->is_extents)
2028 		ret -= KEY_MAX_U64S;
2029 
2030 	return max(ret, 0L);
2031 }
2032 
2033 static bool bch_btree_insert_keys(struct btree *b, struct btree_op *op,
2034 				  struct keylist *insert_keys,
2035 				  struct bkey *replace_key)
2036 {
2037 	bool ret = false;
2038 	int oldsize = bch_count_data(&b->keys);
2039 
2040 	while (!bch_keylist_empty(insert_keys)) {
2041 		struct bkey *k = insert_keys->keys;
2042 
2043 		if (bkey_u64s(k) > insert_u64s_remaining(b))
2044 			break;
2045 
2046 		if (bkey_cmp(k, &b->key) <= 0) {
2047 			if (!b->level)
2048 				bkey_put(b->c, k);
2049 
2050 			ret |= btree_insert_key(b, k, replace_key);
2051 			bch_keylist_pop_front(insert_keys);
2052 		} else if (bkey_cmp(&START_KEY(k), &b->key) < 0) {
2053 			BKEY_PADDED(key) temp;
2054 			bkey_copy(&temp.key, insert_keys->keys);
2055 
2056 			bch_cut_back(&b->key, &temp.key);
2057 			bch_cut_front(&b->key, insert_keys->keys);
2058 
2059 			ret |= btree_insert_key(b, &temp.key, replace_key);
2060 			break;
2061 		} else {
2062 			break;
2063 		}
2064 	}
2065 
2066 	if (!ret)
2067 		op->insert_collision = true;
2068 
2069 	BUG_ON(!bch_keylist_empty(insert_keys) && b->level);
2070 
2071 	BUG_ON(bch_count_data(&b->keys) < oldsize);
2072 	return ret;
2073 }
2074 
2075 static int btree_split(struct btree *b, struct btree_op *op,
2076 		       struct keylist *insert_keys,
2077 		       struct bkey *replace_key)
2078 {
2079 	bool split;
2080 	struct btree *n1, *n2 = NULL, *n3 = NULL;
2081 	uint64_t start_time = local_clock();
2082 	struct closure cl;
2083 	struct keylist parent_keys;
2084 
2085 	closure_init_stack(&cl);
2086 	bch_keylist_init(&parent_keys);
2087 
2088 	if (btree_check_reserve(b, op)) {
2089 		if (!b->level)
2090 			return -EINTR;
2091 		else
2092 			WARN(1, "insufficient reserve for split\n");
2093 	}
2094 
2095 	n1 = btree_node_alloc_replacement(b, op);
2096 	if (IS_ERR(n1))
2097 		goto err;
2098 
2099 	split = set_blocks(btree_bset_first(n1),
2100 			   block_bytes(n1->c)) > (btree_blocks(b) * 4) / 5;
2101 
2102 	if (split) {
2103 		unsigned int keys = 0;
2104 
2105 		trace_bcache_btree_node_split(b, btree_bset_first(n1)->keys);
2106 
2107 		n2 = bch_btree_node_alloc(b->c, op, b->level, b->parent);
2108 		if (IS_ERR(n2))
2109 			goto err_free1;
2110 
2111 		if (!b->parent) {
2112 			n3 = bch_btree_node_alloc(b->c, op, b->level + 1, NULL);
2113 			if (IS_ERR(n3))
2114 				goto err_free2;
2115 		}
2116 
2117 		mutex_lock(&n1->write_lock);
2118 		mutex_lock(&n2->write_lock);
2119 
2120 		bch_btree_insert_keys(n1, op, insert_keys, replace_key);
2121 
2122 		/*
2123 		 * Has to be a linear search because we don't have an auxiliary
2124 		 * search tree yet
2125 		 */
2126 
2127 		while (keys < (btree_bset_first(n1)->keys * 3) / 5)
2128 			keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1),
2129 							keys));
2130 
2131 		bkey_copy_key(&n1->key,
2132 			      bset_bkey_idx(btree_bset_first(n1), keys));
2133 		keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1), keys));
2134 
2135 		btree_bset_first(n2)->keys = btree_bset_first(n1)->keys - keys;
2136 		btree_bset_first(n1)->keys = keys;
2137 
2138 		memcpy(btree_bset_first(n2)->start,
2139 		       bset_bkey_last(btree_bset_first(n1)),
2140 		       btree_bset_first(n2)->keys * sizeof(uint64_t));
2141 
2142 		bkey_copy_key(&n2->key, &b->key);
2143 
2144 		bch_keylist_add(&parent_keys, &n2->key);
2145 		bch_btree_node_write(n2, &cl);
2146 		mutex_unlock(&n2->write_lock);
2147 		rw_unlock(true, n2);
2148 	} else {
2149 		trace_bcache_btree_node_compact(b, btree_bset_first(n1)->keys);
2150 
2151 		mutex_lock(&n1->write_lock);
2152 		bch_btree_insert_keys(n1, op, insert_keys, replace_key);
2153 	}
2154 
2155 	bch_keylist_add(&parent_keys, &n1->key);
2156 	bch_btree_node_write(n1, &cl);
2157 	mutex_unlock(&n1->write_lock);
2158 
2159 	if (n3) {
2160 		/* Depth increases, make a new root */
2161 		mutex_lock(&n3->write_lock);
2162 		bkey_copy_key(&n3->key, &MAX_KEY);
2163 		bch_btree_insert_keys(n3, op, &parent_keys, NULL);
2164 		bch_btree_node_write(n3, &cl);
2165 		mutex_unlock(&n3->write_lock);
2166 
2167 		closure_sync(&cl);
2168 		bch_btree_set_root(n3);
2169 		rw_unlock(true, n3);
2170 	} else if (!b->parent) {
2171 		/* Root filled up but didn't need to be split */
2172 		closure_sync(&cl);
2173 		bch_btree_set_root(n1);
2174 	} else {
2175 		/* Split a non root node */
2176 		closure_sync(&cl);
2177 		make_btree_freeing_key(b, parent_keys.top);
2178 		bch_keylist_push(&parent_keys);
2179 
2180 		bch_btree_insert_node(b->parent, op, &parent_keys, NULL, NULL);
2181 		BUG_ON(!bch_keylist_empty(&parent_keys));
2182 	}
2183 
2184 	btree_node_free(b);
2185 	rw_unlock(true, n1);
2186 
2187 	bch_time_stats_update(&b->c->btree_split_time, start_time);
2188 
2189 	return 0;
2190 err_free2:
2191 	bkey_put(b->c, &n2->key);
2192 	btree_node_free(n2);
2193 	rw_unlock(true, n2);
2194 err_free1:
2195 	bkey_put(b->c, &n1->key);
2196 	btree_node_free(n1);
2197 	rw_unlock(true, n1);
2198 err:
2199 	WARN(1, "bcache: btree split failed (level %u)", b->level);
2200 
2201 	if (n3 == ERR_PTR(-EAGAIN) ||
2202 	    n2 == ERR_PTR(-EAGAIN) ||
2203 	    n1 == ERR_PTR(-EAGAIN))
2204 		return -EAGAIN;
2205 
2206 	return -ENOMEM;
2207 }
2208 
2209 static int bch_btree_insert_node(struct btree *b, struct btree_op *op,
2210 				 struct keylist *insert_keys,
2211 				 atomic_t *journal_ref,
2212 				 struct bkey *replace_key)
2213 {
2214 	struct closure cl;
2215 
2216 	BUG_ON(b->level && replace_key);
2217 
2218 	closure_init_stack(&cl);
2219 
2220 	mutex_lock(&b->write_lock);
2221 
2222 	if (write_block(b) != btree_bset_last(b) &&
2223 	    b->keys.last_set_unwritten)
2224 		bch_btree_init_next(b); /* just wrote a set */
2225 
2226 	if (bch_keylist_nkeys(insert_keys) > insert_u64s_remaining(b)) {
2227 		mutex_unlock(&b->write_lock);
2228 		goto split;
2229 	}
2230 
2231 	BUG_ON(write_block(b) != btree_bset_last(b));
2232 
2233 	if (bch_btree_insert_keys(b, op, insert_keys, replace_key)) {
2234 		if (!b->level)
2235 			bch_btree_leaf_dirty(b, journal_ref);
2236 		else
2237 			bch_btree_node_write(b, &cl);
2238 	}
2239 
2240 	mutex_unlock(&b->write_lock);
2241 
2242 	/* wait for btree node write if necessary, after unlock */
2243 	closure_sync(&cl);
2244 
2245 	return 0;
2246 split:
2247 	if (current->bio_list) {
2248 		op->lock = b->c->root->level + 1;
2249 		return -EAGAIN;
2250 	} else if (op->lock <= b->c->root->level) {
2251 		op->lock = b->c->root->level + 1;
2252 		return -EINTR;
2253 	} else {
2254 		/* Invalidated all iterators */
2255 		int ret = btree_split(b, op, insert_keys, replace_key);
2256 
2257 		if (bch_keylist_empty(insert_keys))
2258 			return 0;
2259 		else if (!ret)
2260 			return -EINTR;
2261 		return ret;
2262 	}
2263 }
2264 
2265 int bch_btree_insert_check_key(struct btree *b, struct btree_op *op,
2266 			       struct bkey *check_key)
2267 {
2268 	int ret = -EINTR;
2269 	uint64_t btree_ptr = b->key.ptr[0];
2270 	unsigned long seq = b->seq;
2271 	struct keylist insert;
2272 	bool upgrade = op->lock == -1;
2273 
2274 	bch_keylist_init(&insert);
2275 
2276 	if (upgrade) {
2277 		rw_unlock(false, b);
2278 		rw_lock(true, b, b->level);
2279 
2280 		if (b->key.ptr[0] != btree_ptr ||
2281 		    b->seq != seq + 1) {
2282 			op->lock = b->level;
2283 			goto out;
2284 		}
2285 	}
2286 
2287 	SET_KEY_PTRS(check_key, 1);
2288 	get_random_bytes(&check_key->ptr[0], sizeof(uint64_t));
2289 
2290 	SET_PTR_DEV(check_key, 0, PTR_CHECK_DEV);
2291 
2292 	bch_keylist_add(&insert, check_key);
2293 
2294 	ret = bch_btree_insert_node(b, op, &insert, NULL, NULL);
2295 
2296 	BUG_ON(!ret && !bch_keylist_empty(&insert));
2297 out:
2298 	if (upgrade)
2299 		downgrade_write(&b->lock);
2300 	return ret;
2301 }
2302 
2303 struct btree_insert_op {
2304 	struct btree_op	op;
2305 	struct keylist	*keys;
2306 	atomic_t	*journal_ref;
2307 	struct bkey	*replace_key;
2308 };
2309 
2310 static int btree_insert_fn(struct btree_op *b_op, struct btree *b)
2311 {
2312 	struct btree_insert_op *op = container_of(b_op,
2313 					struct btree_insert_op, op);
2314 
2315 	int ret = bch_btree_insert_node(b, &op->op, op->keys,
2316 					op->journal_ref, op->replace_key);
2317 	if (ret && !bch_keylist_empty(op->keys))
2318 		return ret;
2319 	else
2320 		return MAP_DONE;
2321 }
2322 
2323 int bch_btree_insert(struct cache_set *c, struct keylist *keys,
2324 		     atomic_t *journal_ref, struct bkey *replace_key)
2325 {
2326 	struct btree_insert_op op;
2327 	int ret = 0;
2328 
2329 	BUG_ON(current->bio_list);
2330 	BUG_ON(bch_keylist_empty(keys));
2331 
2332 	bch_btree_op_init(&op.op, 0);
2333 	op.keys		= keys;
2334 	op.journal_ref	= journal_ref;
2335 	op.replace_key	= replace_key;
2336 
2337 	while (!ret && !bch_keylist_empty(keys)) {
2338 		op.op.lock = 0;
2339 		ret = bch_btree_map_leaf_nodes(&op.op, c,
2340 					       &START_KEY(keys->keys),
2341 					       btree_insert_fn);
2342 	}
2343 
2344 	if (ret) {
2345 		struct bkey *k;
2346 
2347 		pr_err("error %i", ret);
2348 
2349 		while ((k = bch_keylist_pop(keys)))
2350 			bkey_put(c, k);
2351 	} else if (op.op.insert_collision)
2352 		ret = -ESRCH;
2353 
2354 	return ret;
2355 }
2356 
2357 void bch_btree_set_root(struct btree *b)
2358 {
2359 	unsigned int i;
2360 	struct closure cl;
2361 
2362 	closure_init_stack(&cl);
2363 
2364 	trace_bcache_btree_set_root(b);
2365 
2366 	BUG_ON(!b->written);
2367 
2368 	for (i = 0; i < KEY_PTRS(&b->key); i++)
2369 		BUG_ON(PTR_BUCKET(b->c, &b->key, i)->prio != BTREE_PRIO);
2370 
2371 	mutex_lock(&b->c->bucket_lock);
2372 	list_del_init(&b->list);
2373 	mutex_unlock(&b->c->bucket_lock);
2374 
2375 	b->c->root = b;
2376 
2377 	bch_journal_meta(b->c, &cl);
2378 	closure_sync(&cl);
2379 }
2380 
2381 /* Map across nodes or keys */
2382 
2383 static int bch_btree_map_nodes_recurse(struct btree *b, struct btree_op *op,
2384 				       struct bkey *from,
2385 				       btree_map_nodes_fn *fn, int flags)
2386 {
2387 	int ret = MAP_CONTINUE;
2388 
2389 	if (b->level) {
2390 		struct bkey *k;
2391 		struct btree_iter iter;
2392 
2393 		bch_btree_iter_init(&b->keys, &iter, from);
2394 
2395 		while ((k = bch_btree_iter_next_filter(&iter, &b->keys,
2396 						       bch_ptr_bad))) {
2397 			ret = btree(map_nodes_recurse, k, b,
2398 				    op, from, fn, flags);
2399 			from = NULL;
2400 
2401 			if (ret != MAP_CONTINUE)
2402 				return ret;
2403 		}
2404 	}
2405 
2406 	if (!b->level || flags == MAP_ALL_NODES)
2407 		ret = fn(op, b);
2408 
2409 	return ret;
2410 }
2411 
2412 int __bch_btree_map_nodes(struct btree_op *op, struct cache_set *c,
2413 			  struct bkey *from, btree_map_nodes_fn *fn, int flags)
2414 {
2415 	return btree_root(map_nodes_recurse, c, op, from, fn, flags);
2416 }
2417 
2418 static int bch_btree_map_keys_recurse(struct btree *b, struct btree_op *op,
2419 				      struct bkey *from, btree_map_keys_fn *fn,
2420 				      int flags)
2421 {
2422 	int ret = MAP_CONTINUE;
2423 	struct bkey *k;
2424 	struct btree_iter iter;
2425 
2426 	bch_btree_iter_init(&b->keys, &iter, from);
2427 
2428 	while ((k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad))) {
2429 		ret = !b->level
2430 			? fn(op, b, k)
2431 			: btree(map_keys_recurse, k, b, op, from, fn, flags);
2432 		from = NULL;
2433 
2434 		if (ret != MAP_CONTINUE)
2435 			return ret;
2436 	}
2437 
2438 	if (!b->level && (flags & MAP_END_KEY))
2439 		ret = fn(op, b, &KEY(KEY_INODE(&b->key),
2440 				     KEY_OFFSET(&b->key), 0));
2441 
2442 	return ret;
2443 }
2444 
2445 int bch_btree_map_keys(struct btree_op *op, struct cache_set *c,
2446 		       struct bkey *from, btree_map_keys_fn *fn, int flags)
2447 {
2448 	return btree_root(map_keys_recurse, c, op, from, fn, flags);
2449 }
2450 
2451 /* Keybuf code */
2452 
2453 static inline int keybuf_cmp(struct keybuf_key *l, struct keybuf_key *r)
2454 {
2455 	/* Overlapping keys compare equal */
2456 	if (bkey_cmp(&l->key, &START_KEY(&r->key)) <= 0)
2457 		return -1;
2458 	if (bkey_cmp(&START_KEY(&l->key), &r->key) >= 0)
2459 		return 1;
2460 	return 0;
2461 }
2462 
2463 static inline int keybuf_nonoverlapping_cmp(struct keybuf_key *l,
2464 					    struct keybuf_key *r)
2465 {
2466 	return clamp_t(int64_t, bkey_cmp(&l->key, &r->key), -1, 1);
2467 }
2468 
2469 struct refill {
2470 	struct btree_op	op;
2471 	unsigned int	nr_found;
2472 	struct keybuf	*buf;
2473 	struct bkey	*end;
2474 	keybuf_pred_fn	*pred;
2475 };
2476 
2477 static int refill_keybuf_fn(struct btree_op *op, struct btree *b,
2478 			    struct bkey *k)
2479 {
2480 	struct refill *refill = container_of(op, struct refill, op);
2481 	struct keybuf *buf = refill->buf;
2482 	int ret = MAP_CONTINUE;
2483 
2484 	if (bkey_cmp(k, refill->end) > 0) {
2485 		ret = MAP_DONE;
2486 		goto out;
2487 	}
2488 
2489 	if (!KEY_SIZE(k)) /* end key */
2490 		goto out;
2491 
2492 	if (refill->pred(buf, k)) {
2493 		struct keybuf_key *w;
2494 
2495 		spin_lock(&buf->lock);
2496 
2497 		w = array_alloc(&buf->freelist);
2498 		if (!w) {
2499 			spin_unlock(&buf->lock);
2500 			return MAP_DONE;
2501 		}
2502 
2503 		w->private = NULL;
2504 		bkey_copy(&w->key, k);
2505 
2506 		if (RB_INSERT(&buf->keys, w, node, keybuf_cmp))
2507 			array_free(&buf->freelist, w);
2508 		else
2509 			refill->nr_found++;
2510 
2511 		if (array_freelist_empty(&buf->freelist))
2512 			ret = MAP_DONE;
2513 
2514 		spin_unlock(&buf->lock);
2515 	}
2516 out:
2517 	buf->last_scanned = *k;
2518 	return ret;
2519 }
2520 
2521 void bch_refill_keybuf(struct cache_set *c, struct keybuf *buf,
2522 		       struct bkey *end, keybuf_pred_fn *pred)
2523 {
2524 	struct bkey start = buf->last_scanned;
2525 	struct refill refill;
2526 
2527 	cond_resched();
2528 
2529 	bch_btree_op_init(&refill.op, -1);
2530 	refill.nr_found	= 0;
2531 	refill.buf	= buf;
2532 	refill.end	= end;
2533 	refill.pred	= pred;
2534 
2535 	bch_btree_map_keys(&refill.op, c, &buf->last_scanned,
2536 			   refill_keybuf_fn, MAP_END_KEY);
2537 
2538 	trace_bcache_keyscan(refill.nr_found,
2539 			     KEY_INODE(&start), KEY_OFFSET(&start),
2540 			     KEY_INODE(&buf->last_scanned),
2541 			     KEY_OFFSET(&buf->last_scanned));
2542 
2543 	spin_lock(&buf->lock);
2544 
2545 	if (!RB_EMPTY_ROOT(&buf->keys)) {
2546 		struct keybuf_key *w;
2547 
2548 		w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2549 		buf->start	= START_KEY(&w->key);
2550 
2551 		w = RB_LAST(&buf->keys, struct keybuf_key, node);
2552 		buf->end	= w->key;
2553 	} else {
2554 		buf->start	= MAX_KEY;
2555 		buf->end	= MAX_KEY;
2556 	}
2557 
2558 	spin_unlock(&buf->lock);
2559 }
2560 
2561 static void __bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2562 {
2563 	rb_erase(&w->node, &buf->keys);
2564 	array_free(&buf->freelist, w);
2565 }
2566 
2567 void bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2568 {
2569 	spin_lock(&buf->lock);
2570 	__bch_keybuf_del(buf, w);
2571 	spin_unlock(&buf->lock);
2572 }
2573 
2574 bool bch_keybuf_check_overlapping(struct keybuf *buf, struct bkey *start,
2575 				  struct bkey *end)
2576 {
2577 	bool ret = false;
2578 	struct keybuf_key *p, *w, s;
2579 
2580 	s.key = *start;
2581 
2582 	if (bkey_cmp(end, &buf->start) <= 0 ||
2583 	    bkey_cmp(start, &buf->end) >= 0)
2584 		return false;
2585 
2586 	spin_lock(&buf->lock);
2587 	w = RB_GREATER(&buf->keys, s, node, keybuf_nonoverlapping_cmp);
2588 
2589 	while (w && bkey_cmp(&START_KEY(&w->key), end) < 0) {
2590 		p = w;
2591 		w = RB_NEXT(w, node);
2592 
2593 		if (p->private)
2594 			ret = true;
2595 		else
2596 			__bch_keybuf_del(buf, p);
2597 	}
2598 
2599 	spin_unlock(&buf->lock);
2600 	return ret;
2601 }
2602 
2603 struct keybuf_key *bch_keybuf_next(struct keybuf *buf)
2604 {
2605 	struct keybuf_key *w;
2606 
2607 	spin_lock(&buf->lock);
2608 
2609 	w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2610 
2611 	while (w && w->private)
2612 		w = RB_NEXT(w, node);
2613 
2614 	if (w)
2615 		w->private = ERR_PTR(-EINTR);
2616 
2617 	spin_unlock(&buf->lock);
2618 	return w;
2619 }
2620 
2621 struct keybuf_key *bch_keybuf_next_rescan(struct cache_set *c,
2622 					  struct keybuf *buf,
2623 					  struct bkey *end,
2624 					  keybuf_pred_fn *pred)
2625 {
2626 	struct keybuf_key *ret;
2627 
2628 	while (1) {
2629 		ret = bch_keybuf_next(buf);
2630 		if (ret)
2631 			break;
2632 
2633 		if (bkey_cmp(&buf->last_scanned, end) >= 0) {
2634 			pr_debug("scan finished");
2635 			break;
2636 		}
2637 
2638 		bch_refill_keybuf(c, buf, end, pred);
2639 	}
2640 
2641 	return ret;
2642 }
2643 
2644 void bch_keybuf_init(struct keybuf *buf)
2645 {
2646 	buf->last_scanned	= MAX_KEY;
2647 	buf->keys		= RB_ROOT;
2648 
2649 	spin_lock_init(&buf->lock);
2650 	array_allocator_init(&buf->freelist);
2651 }
2652