1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com> 4 * 5 * Uses a block device as cache for other block devices; optimized for SSDs. 6 * All allocation is done in buckets, which should match the erase block size 7 * of the device. 8 * 9 * Buckets containing cached data are kept on a heap sorted by priority; 10 * bucket priority is increased on cache hit, and periodically all the buckets 11 * on the heap have their priority scaled down. This currently is just used as 12 * an LRU but in the future should allow for more intelligent heuristics. 13 * 14 * Buckets have an 8 bit counter; freeing is accomplished by incrementing the 15 * counter. Garbage collection is used to remove stale pointers. 16 * 17 * Indexing is done via a btree; nodes are not necessarily fully sorted, rather 18 * as keys are inserted we only sort the pages that have not yet been written. 19 * When garbage collection is run, we resort the entire node. 20 * 21 * All configuration is done via sysfs; see Documentation/admin-guide/bcache.rst. 22 */ 23 24 #include "bcache.h" 25 #include "btree.h" 26 #include "debug.h" 27 #include "extents.h" 28 29 #include <linux/slab.h> 30 #include <linux/bitops.h> 31 #include <linux/hash.h> 32 #include <linux/kthread.h> 33 #include <linux/prefetch.h> 34 #include <linux/random.h> 35 #include <linux/rcupdate.h> 36 #include <linux/sched/clock.h> 37 #include <linux/rculist.h> 38 #include <linux/delay.h> 39 #include <trace/events/bcache.h> 40 41 /* 42 * Todo: 43 * register_bcache: Return errors out to userspace correctly 44 * 45 * Writeback: don't undirty key until after a cache flush 46 * 47 * Create an iterator for key pointers 48 * 49 * On btree write error, mark bucket such that it won't be freed from the cache 50 * 51 * Journalling: 52 * Check for bad keys in replay 53 * Propagate barriers 54 * Refcount journal entries in journal_replay 55 * 56 * Garbage collection: 57 * Finish incremental gc 58 * Gc should free old UUIDs, data for invalid UUIDs 59 * 60 * Provide a way to list backing device UUIDs we have data cached for, and 61 * probably how long it's been since we've seen them, and a way to invalidate 62 * dirty data for devices that will never be attached again 63 * 64 * Keep 1 min/5 min/15 min statistics of how busy a block device has been, so 65 * that based on that and how much dirty data we have we can keep writeback 66 * from being starved 67 * 68 * Add a tracepoint or somesuch to watch for writeback starvation 69 * 70 * When btree depth > 1 and splitting an interior node, we have to make sure 71 * alloc_bucket() cannot fail. This should be true but is not completely 72 * obvious. 73 * 74 * Plugging? 75 * 76 * If data write is less than hard sector size of ssd, round up offset in open 77 * bucket to the next whole sector 78 * 79 * Superblock needs to be fleshed out for multiple cache devices 80 * 81 * Add a sysfs tunable for the number of writeback IOs in flight 82 * 83 * Add a sysfs tunable for the number of open data buckets 84 * 85 * IO tracking: Can we track when one process is doing io on behalf of another? 86 * IO tracking: Don't use just an average, weigh more recent stuff higher 87 * 88 * Test module load/unload 89 */ 90 91 #define MAX_NEED_GC 64 92 #define MAX_SAVE_PRIO 72 93 #define MAX_GC_TIMES 100 94 #define MIN_GC_NODES 100 95 #define GC_SLEEP_MS 100 96 97 #define PTR_DIRTY_BIT (((uint64_t) 1 << 36)) 98 99 #define PTR_HASH(c, k) \ 100 (((k)->ptr[0] >> c->bucket_bits) | PTR_GEN(k, 0)) 101 102 #define insert_lock(s, b) ((b)->level <= (s)->lock) 103 104 105 static inline struct bset *write_block(struct btree *b) 106 { 107 return ((void *) btree_bset_first(b)) + b->written * block_bytes(b->c); 108 } 109 110 static void bch_btree_init_next(struct btree *b) 111 { 112 /* If not a leaf node, always sort */ 113 if (b->level && b->keys.nsets) 114 bch_btree_sort(&b->keys, &b->c->sort); 115 else 116 bch_btree_sort_lazy(&b->keys, &b->c->sort); 117 118 if (b->written < btree_blocks(b)) 119 bch_bset_init_next(&b->keys, write_block(b), 120 bset_magic(&b->c->sb)); 121 122 } 123 124 /* Btree key manipulation */ 125 126 void bkey_put(struct cache_set *c, struct bkey *k) 127 { 128 unsigned int i; 129 130 for (i = 0; i < KEY_PTRS(k); i++) 131 if (ptr_available(c, k, i)) 132 atomic_dec_bug(&PTR_BUCKET(c, k, i)->pin); 133 } 134 135 /* Btree IO */ 136 137 static uint64_t btree_csum_set(struct btree *b, struct bset *i) 138 { 139 uint64_t crc = b->key.ptr[0]; 140 void *data = (void *) i + 8, *end = bset_bkey_last(i); 141 142 crc = bch_crc64_update(crc, data, end - data); 143 return crc ^ 0xffffffffffffffffULL; 144 } 145 146 void bch_btree_node_read_done(struct btree *b) 147 { 148 const char *err = "bad btree header"; 149 struct bset *i = btree_bset_first(b); 150 struct btree_iter *iter; 151 152 /* 153 * c->fill_iter can allocate an iterator with more memory space 154 * than static MAX_BSETS. 155 * See the comment arount cache_set->fill_iter. 156 */ 157 iter = mempool_alloc(&b->c->fill_iter, GFP_NOIO); 158 iter->size = b->c->sb.bucket_size / b->c->sb.block_size; 159 iter->used = 0; 160 161 #ifdef CONFIG_BCACHE_DEBUG 162 iter->b = &b->keys; 163 #endif 164 165 if (!i->seq) 166 goto err; 167 168 for (; 169 b->written < btree_blocks(b) && i->seq == b->keys.set[0].data->seq; 170 i = write_block(b)) { 171 err = "unsupported bset version"; 172 if (i->version > BCACHE_BSET_VERSION) 173 goto err; 174 175 err = "bad btree header"; 176 if (b->written + set_blocks(i, block_bytes(b->c)) > 177 btree_blocks(b)) 178 goto err; 179 180 err = "bad magic"; 181 if (i->magic != bset_magic(&b->c->sb)) 182 goto err; 183 184 err = "bad checksum"; 185 switch (i->version) { 186 case 0: 187 if (i->csum != csum_set(i)) 188 goto err; 189 break; 190 case BCACHE_BSET_VERSION: 191 if (i->csum != btree_csum_set(b, i)) 192 goto err; 193 break; 194 } 195 196 err = "empty set"; 197 if (i != b->keys.set[0].data && !i->keys) 198 goto err; 199 200 bch_btree_iter_push(iter, i->start, bset_bkey_last(i)); 201 202 b->written += set_blocks(i, block_bytes(b->c)); 203 } 204 205 err = "corrupted btree"; 206 for (i = write_block(b); 207 bset_sector_offset(&b->keys, i) < KEY_SIZE(&b->key); 208 i = ((void *) i) + block_bytes(b->c)) 209 if (i->seq == b->keys.set[0].data->seq) 210 goto err; 211 212 bch_btree_sort_and_fix_extents(&b->keys, iter, &b->c->sort); 213 214 i = b->keys.set[0].data; 215 err = "short btree key"; 216 if (b->keys.set[0].size && 217 bkey_cmp(&b->key, &b->keys.set[0].end) < 0) 218 goto err; 219 220 if (b->written < btree_blocks(b)) 221 bch_bset_init_next(&b->keys, write_block(b), 222 bset_magic(&b->c->sb)); 223 out: 224 mempool_free(iter, &b->c->fill_iter); 225 return; 226 err: 227 set_btree_node_io_error(b); 228 bch_cache_set_error(b->c, "%s at bucket %zu, block %u, %u keys", 229 err, PTR_BUCKET_NR(b->c, &b->key, 0), 230 bset_block_offset(b, i), i->keys); 231 goto out; 232 } 233 234 static void btree_node_read_endio(struct bio *bio) 235 { 236 struct closure *cl = bio->bi_private; 237 238 closure_put(cl); 239 } 240 241 static void bch_btree_node_read(struct btree *b) 242 { 243 uint64_t start_time = local_clock(); 244 struct closure cl; 245 struct bio *bio; 246 247 trace_bcache_btree_read(b); 248 249 closure_init_stack(&cl); 250 251 bio = bch_bbio_alloc(b->c); 252 bio->bi_iter.bi_size = KEY_SIZE(&b->key) << 9; 253 bio->bi_end_io = btree_node_read_endio; 254 bio->bi_private = &cl; 255 bio->bi_opf = REQ_OP_READ | REQ_META; 256 257 bch_bio_map(bio, b->keys.set[0].data); 258 259 bch_submit_bbio(bio, b->c, &b->key, 0); 260 closure_sync(&cl); 261 262 if (bio->bi_status) 263 set_btree_node_io_error(b); 264 265 bch_bbio_free(bio, b->c); 266 267 if (btree_node_io_error(b)) 268 goto err; 269 270 bch_btree_node_read_done(b); 271 bch_time_stats_update(&b->c->btree_read_time, start_time); 272 273 return; 274 err: 275 bch_cache_set_error(b->c, "io error reading bucket %zu", 276 PTR_BUCKET_NR(b->c, &b->key, 0)); 277 } 278 279 static void btree_complete_write(struct btree *b, struct btree_write *w) 280 { 281 if (w->prio_blocked && 282 !atomic_sub_return(w->prio_blocked, &b->c->prio_blocked)) 283 wake_up_allocators(b->c); 284 285 if (w->journal) { 286 atomic_dec_bug(w->journal); 287 __closure_wake_up(&b->c->journal.wait); 288 } 289 290 w->prio_blocked = 0; 291 w->journal = NULL; 292 } 293 294 static void btree_node_write_unlock(struct closure *cl) 295 { 296 struct btree *b = container_of(cl, struct btree, io); 297 298 up(&b->io_mutex); 299 } 300 301 static void __btree_node_write_done(struct closure *cl) 302 { 303 struct btree *b = container_of(cl, struct btree, io); 304 struct btree_write *w = btree_prev_write(b); 305 306 bch_bbio_free(b->bio, b->c); 307 b->bio = NULL; 308 btree_complete_write(b, w); 309 310 if (btree_node_dirty(b)) 311 schedule_delayed_work(&b->work, 30 * HZ); 312 313 closure_return_with_destructor(cl, btree_node_write_unlock); 314 } 315 316 static void btree_node_write_done(struct closure *cl) 317 { 318 struct btree *b = container_of(cl, struct btree, io); 319 320 bio_free_pages(b->bio); 321 __btree_node_write_done(cl); 322 } 323 324 static void btree_node_write_endio(struct bio *bio) 325 { 326 struct closure *cl = bio->bi_private; 327 struct btree *b = container_of(cl, struct btree, io); 328 329 if (bio->bi_status) 330 set_btree_node_io_error(b); 331 332 bch_bbio_count_io_errors(b->c, bio, bio->bi_status, "writing btree"); 333 closure_put(cl); 334 } 335 336 static void do_btree_node_write(struct btree *b) 337 { 338 struct closure *cl = &b->io; 339 struct bset *i = btree_bset_last(b); 340 BKEY_PADDED(key) k; 341 342 i->version = BCACHE_BSET_VERSION; 343 i->csum = btree_csum_set(b, i); 344 345 BUG_ON(b->bio); 346 b->bio = bch_bbio_alloc(b->c); 347 348 b->bio->bi_end_io = btree_node_write_endio; 349 b->bio->bi_private = cl; 350 b->bio->bi_iter.bi_size = roundup(set_bytes(i), block_bytes(b->c)); 351 b->bio->bi_opf = REQ_OP_WRITE | REQ_META | REQ_FUA; 352 bch_bio_map(b->bio, i); 353 354 /* 355 * If we're appending to a leaf node, we don't technically need FUA - 356 * this write just needs to be persisted before the next journal write, 357 * which will be marked FLUSH|FUA. 358 * 359 * Similarly if we're writing a new btree root - the pointer is going to 360 * be in the next journal entry. 361 * 362 * But if we're writing a new btree node (that isn't a root) or 363 * appending to a non leaf btree node, we need either FUA or a flush 364 * when we write the parent with the new pointer. FUA is cheaper than a 365 * flush, and writes appending to leaf nodes aren't blocking anything so 366 * just make all btree node writes FUA to keep things sane. 367 */ 368 369 bkey_copy(&k.key, &b->key); 370 SET_PTR_OFFSET(&k.key, 0, PTR_OFFSET(&k.key, 0) + 371 bset_sector_offset(&b->keys, i)); 372 373 if (!bch_bio_alloc_pages(b->bio, __GFP_NOWARN|GFP_NOWAIT)) { 374 struct bio_vec *bv; 375 void *addr = (void *) ((unsigned long) i & ~(PAGE_SIZE - 1)); 376 struct bvec_iter_all iter_all; 377 378 bio_for_each_segment_all(bv, b->bio, iter_all) { 379 memcpy(page_address(bv->bv_page), addr, PAGE_SIZE); 380 addr += PAGE_SIZE; 381 } 382 383 bch_submit_bbio(b->bio, b->c, &k.key, 0); 384 385 continue_at(cl, btree_node_write_done, NULL); 386 } else { 387 /* 388 * No problem for multipage bvec since the bio is 389 * just allocated 390 */ 391 b->bio->bi_vcnt = 0; 392 bch_bio_map(b->bio, i); 393 394 bch_submit_bbio(b->bio, b->c, &k.key, 0); 395 396 closure_sync(cl); 397 continue_at_nobarrier(cl, __btree_node_write_done, NULL); 398 } 399 } 400 401 void __bch_btree_node_write(struct btree *b, struct closure *parent) 402 { 403 struct bset *i = btree_bset_last(b); 404 405 lockdep_assert_held(&b->write_lock); 406 407 trace_bcache_btree_write(b); 408 409 BUG_ON(current->bio_list); 410 BUG_ON(b->written >= btree_blocks(b)); 411 BUG_ON(b->written && !i->keys); 412 BUG_ON(btree_bset_first(b)->seq != i->seq); 413 bch_check_keys(&b->keys, "writing"); 414 415 cancel_delayed_work(&b->work); 416 417 /* If caller isn't waiting for write, parent refcount is cache set */ 418 down(&b->io_mutex); 419 closure_init(&b->io, parent ?: &b->c->cl); 420 421 clear_bit(BTREE_NODE_dirty, &b->flags); 422 change_bit(BTREE_NODE_write_idx, &b->flags); 423 424 do_btree_node_write(b); 425 426 atomic_long_add(set_blocks(i, block_bytes(b->c)) * b->c->sb.block_size, 427 &PTR_CACHE(b->c, &b->key, 0)->btree_sectors_written); 428 429 b->written += set_blocks(i, block_bytes(b->c)); 430 } 431 432 void bch_btree_node_write(struct btree *b, struct closure *parent) 433 { 434 unsigned int nsets = b->keys.nsets; 435 436 lockdep_assert_held(&b->lock); 437 438 __bch_btree_node_write(b, parent); 439 440 /* 441 * do verify if there was more than one set initially (i.e. we did a 442 * sort) and we sorted down to a single set: 443 */ 444 if (nsets && !b->keys.nsets) 445 bch_btree_verify(b); 446 447 bch_btree_init_next(b); 448 } 449 450 static void bch_btree_node_write_sync(struct btree *b) 451 { 452 struct closure cl; 453 454 closure_init_stack(&cl); 455 456 mutex_lock(&b->write_lock); 457 bch_btree_node_write(b, &cl); 458 mutex_unlock(&b->write_lock); 459 460 closure_sync(&cl); 461 } 462 463 static void btree_node_write_work(struct work_struct *w) 464 { 465 struct btree *b = container_of(to_delayed_work(w), struct btree, work); 466 467 mutex_lock(&b->write_lock); 468 if (btree_node_dirty(b)) 469 __bch_btree_node_write(b, NULL); 470 mutex_unlock(&b->write_lock); 471 } 472 473 static void bch_btree_leaf_dirty(struct btree *b, atomic_t *journal_ref) 474 { 475 struct bset *i = btree_bset_last(b); 476 struct btree_write *w = btree_current_write(b); 477 478 lockdep_assert_held(&b->write_lock); 479 480 BUG_ON(!b->written); 481 BUG_ON(!i->keys); 482 483 if (!btree_node_dirty(b)) 484 schedule_delayed_work(&b->work, 30 * HZ); 485 486 set_btree_node_dirty(b); 487 488 /* 489 * w->journal is always the oldest journal pin of all bkeys 490 * in the leaf node, to make sure the oldest jset seq won't 491 * be increased before this btree node is flushed. 492 */ 493 if (journal_ref) { 494 if (w->journal && 495 journal_pin_cmp(b->c, w->journal, journal_ref)) { 496 atomic_dec_bug(w->journal); 497 w->journal = NULL; 498 } 499 500 if (!w->journal) { 501 w->journal = journal_ref; 502 atomic_inc(w->journal); 503 } 504 } 505 506 /* Force write if set is too big */ 507 if (set_bytes(i) > PAGE_SIZE - 48 && 508 !current->bio_list) 509 bch_btree_node_write(b, NULL); 510 } 511 512 /* 513 * Btree in memory cache - allocation/freeing 514 * mca -> memory cache 515 */ 516 517 #define mca_reserve(c) (((c->root && c->root->level) \ 518 ? c->root->level : 1) * 8 + 16) 519 #define mca_can_free(c) \ 520 max_t(int, 0, c->btree_cache_used - mca_reserve(c)) 521 522 static void mca_data_free(struct btree *b) 523 { 524 BUG_ON(b->io_mutex.count != 1); 525 526 bch_btree_keys_free(&b->keys); 527 528 b->c->btree_cache_used--; 529 list_move(&b->list, &b->c->btree_cache_freed); 530 } 531 532 static void mca_bucket_free(struct btree *b) 533 { 534 BUG_ON(btree_node_dirty(b)); 535 536 b->key.ptr[0] = 0; 537 hlist_del_init_rcu(&b->hash); 538 list_move(&b->list, &b->c->btree_cache_freeable); 539 } 540 541 static unsigned int btree_order(struct bkey *k) 542 { 543 return ilog2(KEY_SIZE(k) / PAGE_SECTORS ?: 1); 544 } 545 546 static void mca_data_alloc(struct btree *b, struct bkey *k, gfp_t gfp) 547 { 548 if (!bch_btree_keys_alloc(&b->keys, 549 max_t(unsigned int, 550 ilog2(b->c->btree_pages), 551 btree_order(k)), 552 gfp)) { 553 b->c->btree_cache_used++; 554 list_move(&b->list, &b->c->btree_cache); 555 } else { 556 list_move(&b->list, &b->c->btree_cache_freed); 557 } 558 } 559 560 static struct btree *mca_bucket_alloc(struct cache_set *c, 561 struct bkey *k, gfp_t gfp) 562 { 563 /* 564 * kzalloc() is necessary here for initialization, 565 * see code comments in bch_btree_keys_init(). 566 */ 567 struct btree *b = kzalloc(sizeof(struct btree), gfp); 568 569 if (!b) 570 return NULL; 571 572 init_rwsem(&b->lock); 573 lockdep_set_novalidate_class(&b->lock); 574 mutex_init(&b->write_lock); 575 lockdep_set_novalidate_class(&b->write_lock); 576 INIT_LIST_HEAD(&b->list); 577 INIT_DELAYED_WORK(&b->work, btree_node_write_work); 578 b->c = c; 579 sema_init(&b->io_mutex, 1); 580 581 mca_data_alloc(b, k, gfp); 582 return b; 583 } 584 585 static int mca_reap(struct btree *b, unsigned int min_order, bool flush) 586 { 587 struct closure cl; 588 589 closure_init_stack(&cl); 590 lockdep_assert_held(&b->c->bucket_lock); 591 592 if (!down_write_trylock(&b->lock)) 593 return -ENOMEM; 594 595 BUG_ON(btree_node_dirty(b) && !b->keys.set[0].data); 596 597 if (b->keys.page_order < min_order) 598 goto out_unlock; 599 600 if (!flush) { 601 if (btree_node_dirty(b)) 602 goto out_unlock; 603 604 if (down_trylock(&b->io_mutex)) 605 goto out_unlock; 606 up(&b->io_mutex); 607 } 608 609 retry: 610 /* 611 * BTREE_NODE_dirty might be cleared in btree_flush_btree() by 612 * __bch_btree_node_write(). To avoid an extra flush, acquire 613 * b->write_lock before checking BTREE_NODE_dirty bit. 614 */ 615 mutex_lock(&b->write_lock); 616 /* 617 * If this btree node is selected in btree_flush_write() by journal 618 * code, delay and retry until the node is flushed by journal code 619 * and BTREE_NODE_journal_flush bit cleared by btree_flush_write(). 620 */ 621 if (btree_node_journal_flush(b)) { 622 pr_debug("bnode %p is flushing by journal, retry\n", b); 623 mutex_unlock(&b->write_lock); 624 udelay(1); 625 goto retry; 626 } 627 628 if (btree_node_dirty(b)) 629 __bch_btree_node_write(b, &cl); 630 mutex_unlock(&b->write_lock); 631 632 closure_sync(&cl); 633 634 /* wait for any in flight btree write */ 635 down(&b->io_mutex); 636 up(&b->io_mutex); 637 638 return 0; 639 out_unlock: 640 rw_unlock(true, b); 641 return -ENOMEM; 642 } 643 644 static unsigned long bch_mca_scan(struct shrinker *shrink, 645 struct shrink_control *sc) 646 { 647 struct cache_set *c = container_of(shrink, struct cache_set, shrink); 648 struct btree *b, *t; 649 unsigned long i, nr = sc->nr_to_scan; 650 unsigned long freed = 0; 651 unsigned int btree_cache_used; 652 653 if (c->shrinker_disabled) 654 return SHRINK_STOP; 655 656 if (c->btree_cache_alloc_lock) 657 return SHRINK_STOP; 658 659 /* Return -1 if we can't do anything right now */ 660 if (sc->gfp_mask & __GFP_IO) 661 mutex_lock(&c->bucket_lock); 662 else if (!mutex_trylock(&c->bucket_lock)) 663 return -1; 664 665 /* 666 * It's _really_ critical that we don't free too many btree nodes - we 667 * have to always leave ourselves a reserve. The reserve is how we 668 * guarantee that allocating memory for a new btree node can always 669 * succeed, so that inserting keys into the btree can always succeed and 670 * IO can always make forward progress: 671 */ 672 nr /= c->btree_pages; 673 if (nr == 0) 674 nr = 1; 675 nr = min_t(unsigned long, nr, mca_can_free(c)); 676 677 i = 0; 678 btree_cache_used = c->btree_cache_used; 679 list_for_each_entry_safe_reverse(b, t, &c->btree_cache_freeable, list) { 680 if (nr <= 0) 681 goto out; 682 683 if (!mca_reap(b, 0, false)) { 684 mca_data_free(b); 685 rw_unlock(true, b); 686 freed++; 687 } 688 nr--; 689 i++; 690 } 691 692 list_for_each_entry_safe_reverse(b, t, &c->btree_cache, list) { 693 if (nr <= 0 || i >= btree_cache_used) 694 goto out; 695 696 if (!mca_reap(b, 0, false)) { 697 mca_bucket_free(b); 698 mca_data_free(b); 699 rw_unlock(true, b); 700 freed++; 701 } 702 703 nr--; 704 i++; 705 } 706 out: 707 mutex_unlock(&c->bucket_lock); 708 return freed * c->btree_pages; 709 } 710 711 static unsigned long bch_mca_count(struct shrinker *shrink, 712 struct shrink_control *sc) 713 { 714 struct cache_set *c = container_of(shrink, struct cache_set, shrink); 715 716 if (c->shrinker_disabled) 717 return 0; 718 719 if (c->btree_cache_alloc_lock) 720 return 0; 721 722 return mca_can_free(c) * c->btree_pages; 723 } 724 725 void bch_btree_cache_free(struct cache_set *c) 726 { 727 struct btree *b; 728 struct closure cl; 729 730 closure_init_stack(&cl); 731 732 if (c->shrink.list.next) 733 unregister_shrinker(&c->shrink); 734 735 mutex_lock(&c->bucket_lock); 736 737 #ifdef CONFIG_BCACHE_DEBUG 738 if (c->verify_data) 739 list_move(&c->verify_data->list, &c->btree_cache); 740 741 free_pages((unsigned long) c->verify_ondisk, ilog2(meta_bucket_pages(&c->sb))); 742 #endif 743 744 list_splice(&c->btree_cache_freeable, 745 &c->btree_cache); 746 747 while (!list_empty(&c->btree_cache)) { 748 b = list_first_entry(&c->btree_cache, struct btree, list); 749 750 /* 751 * This function is called by cache_set_free(), no I/O 752 * request on cache now, it is unnecessary to acquire 753 * b->write_lock before clearing BTREE_NODE_dirty anymore. 754 */ 755 if (btree_node_dirty(b)) { 756 btree_complete_write(b, btree_current_write(b)); 757 clear_bit(BTREE_NODE_dirty, &b->flags); 758 } 759 mca_data_free(b); 760 } 761 762 while (!list_empty(&c->btree_cache_freed)) { 763 b = list_first_entry(&c->btree_cache_freed, 764 struct btree, list); 765 list_del(&b->list); 766 cancel_delayed_work_sync(&b->work); 767 kfree(b); 768 } 769 770 mutex_unlock(&c->bucket_lock); 771 } 772 773 int bch_btree_cache_alloc(struct cache_set *c) 774 { 775 unsigned int i; 776 777 for (i = 0; i < mca_reserve(c); i++) 778 if (!mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL)) 779 return -ENOMEM; 780 781 list_splice_init(&c->btree_cache, 782 &c->btree_cache_freeable); 783 784 #ifdef CONFIG_BCACHE_DEBUG 785 mutex_init(&c->verify_lock); 786 787 c->verify_ondisk = (void *) 788 __get_free_pages(GFP_KERNEL|__GFP_COMP, ilog2(meta_bucket_pages(&c->sb))); 789 if (!c->verify_ondisk) { 790 /* 791 * Don't worry about the mca_rereserve buckets 792 * allocated in previous for-loop, they will be 793 * handled properly in bch_cache_set_unregister(). 794 */ 795 return -ENOMEM; 796 } 797 798 c->verify_data = mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL); 799 800 if (c->verify_data && 801 c->verify_data->keys.set->data) 802 list_del_init(&c->verify_data->list); 803 else 804 c->verify_data = NULL; 805 #endif 806 807 c->shrink.count_objects = bch_mca_count; 808 c->shrink.scan_objects = bch_mca_scan; 809 c->shrink.seeks = 4; 810 c->shrink.batch = c->btree_pages * 2; 811 812 if (register_shrinker(&c->shrink)) 813 pr_warn("bcache: %s: could not register shrinker\n", 814 __func__); 815 816 return 0; 817 } 818 819 /* Btree in memory cache - hash table */ 820 821 static struct hlist_head *mca_hash(struct cache_set *c, struct bkey *k) 822 { 823 return &c->bucket_hash[hash_32(PTR_HASH(c, k), BUCKET_HASH_BITS)]; 824 } 825 826 static struct btree *mca_find(struct cache_set *c, struct bkey *k) 827 { 828 struct btree *b; 829 830 rcu_read_lock(); 831 hlist_for_each_entry_rcu(b, mca_hash(c, k), hash) 832 if (PTR_HASH(c, &b->key) == PTR_HASH(c, k)) 833 goto out; 834 b = NULL; 835 out: 836 rcu_read_unlock(); 837 return b; 838 } 839 840 static int mca_cannibalize_lock(struct cache_set *c, struct btree_op *op) 841 { 842 spin_lock(&c->btree_cannibalize_lock); 843 if (likely(c->btree_cache_alloc_lock == NULL)) { 844 c->btree_cache_alloc_lock = current; 845 } else if (c->btree_cache_alloc_lock != current) { 846 if (op) 847 prepare_to_wait(&c->btree_cache_wait, &op->wait, 848 TASK_UNINTERRUPTIBLE); 849 spin_unlock(&c->btree_cannibalize_lock); 850 return -EINTR; 851 } 852 spin_unlock(&c->btree_cannibalize_lock); 853 854 return 0; 855 } 856 857 static struct btree *mca_cannibalize(struct cache_set *c, struct btree_op *op, 858 struct bkey *k) 859 { 860 struct btree *b; 861 862 trace_bcache_btree_cache_cannibalize(c); 863 864 if (mca_cannibalize_lock(c, op)) 865 return ERR_PTR(-EINTR); 866 867 list_for_each_entry_reverse(b, &c->btree_cache, list) 868 if (!mca_reap(b, btree_order(k), false)) 869 return b; 870 871 list_for_each_entry_reverse(b, &c->btree_cache, list) 872 if (!mca_reap(b, btree_order(k), true)) 873 return b; 874 875 WARN(1, "btree cache cannibalize failed\n"); 876 return ERR_PTR(-ENOMEM); 877 } 878 879 /* 880 * We can only have one thread cannibalizing other cached btree nodes at a time, 881 * or we'll deadlock. We use an open coded mutex to ensure that, which a 882 * cannibalize_bucket() will take. This means every time we unlock the root of 883 * the btree, we need to release this lock if we have it held. 884 */ 885 static void bch_cannibalize_unlock(struct cache_set *c) 886 { 887 spin_lock(&c->btree_cannibalize_lock); 888 if (c->btree_cache_alloc_lock == current) { 889 c->btree_cache_alloc_lock = NULL; 890 wake_up(&c->btree_cache_wait); 891 } 892 spin_unlock(&c->btree_cannibalize_lock); 893 } 894 895 static struct btree *mca_alloc(struct cache_set *c, struct btree_op *op, 896 struct bkey *k, int level) 897 { 898 struct btree *b; 899 900 BUG_ON(current->bio_list); 901 902 lockdep_assert_held(&c->bucket_lock); 903 904 if (mca_find(c, k)) 905 return NULL; 906 907 /* btree_free() doesn't free memory; it sticks the node on the end of 908 * the list. Check if there's any freed nodes there: 909 */ 910 list_for_each_entry(b, &c->btree_cache_freeable, list) 911 if (!mca_reap(b, btree_order(k), false)) 912 goto out; 913 914 /* We never free struct btree itself, just the memory that holds the on 915 * disk node. Check the freed list before allocating a new one: 916 */ 917 list_for_each_entry(b, &c->btree_cache_freed, list) 918 if (!mca_reap(b, 0, false)) { 919 mca_data_alloc(b, k, __GFP_NOWARN|GFP_NOIO); 920 if (!b->keys.set[0].data) 921 goto err; 922 else 923 goto out; 924 } 925 926 b = mca_bucket_alloc(c, k, __GFP_NOWARN|GFP_NOIO); 927 if (!b) 928 goto err; 929 930 BUG_ON(!down_write_trylock(&b->lock)); 931 if (!b->keys.set->data) 932 goto err; 933 out: 934 BUG_ON(b->io_mutex.count != 1); 935 936 bkey_copy(&b->key, k); 937 list_move(&b->list, &c->btree_cache); 938 hlist_del_init_rcu(&b->hash); 939 hlist_add_head_rcu(&b->hash, mca_hash(c, k)); 940 941 lock_set_subclass(&b->lock.dep_map, level + 1, _THIS_IP_); 942 b->parent = (void *) ~0UL; 943 b->flags = 0; 944 b->written = 0; 945 b->level = level; 946 947 if (!b->level) 948 bch_btree_keys_init(&b->keys, &bch_extent_keys_ops, 949 &b->c->expensive_debug_checks); 950 else 951 bch_btree_keys_init(&b->keys, &bch_btree_keys_ops, 952 &b->c->expensive_debug_checks); 953 954 return b; 955 err: 956 if (b) 957 rw_unlock(true, b); 958 959 b = mca_cannibalize(c, op, k); 960 if (!IS_ERR(b)) 961 goto out; 962 963 return b; 964 } 965 966 /* 967 * bch_btree_node_get - find a btree node in the cache and lock it, reading it 968 * in from disk if necessary. 969 * 970 * If IO is necessary and running under submit_bio_noacct, returns -EAGAIN. 971 * 972 * The btree node will have either a read or a write lock held, depending on 973 * level and op->lock. 974 */ 975 struct btree *bch_btree_node_get(struct cache_set *c, struct btree_op *op, 976 struct bkey *k, int level, bool write, 977 struct btree *parent) 978 { 979 int i = 0; 980 struct btree *b; 981 982 BUG_ON(level < 0); 983 retry: 984 b = mca_find(c, k); 985 986 if (!b) { 987 if (current->bio_list) 988 return ERR_PTR(-EAGAIN); 989 990 mutex_lock(&c->bucket_lock); 991 b = mca_alloc(c, op, k, level); 992 mutex_unlock(&c->bucket_lock); 993 994 if (!b) 995 goto retry; 996 if (IS_ERR(b)) 997 return b; 998 999 bch_btree_node_read(b); 1000 1001 if (!write) 1002 downgrade_write(&b->lock); 1003 } else { 1004 rw_lock(write, b, level); 1005 if (PTR_HASH(c, &b->key) != PTR_HASH(c, k)) { 1006 rw_unlock(write, b); 1007 goto retry; 1008 } 1009 BUG_ON(b->level != level); 1010 } 1011 1012 if (btree_node_io_error(b)) { 1013 rw_unlock(write, b); 1014 return ERR_PTR(-EIO); 1015 } 1016 1017 BUG_ON(!b->written); 1018 1019 b->parent = parent; 1020 1021 for (; i <= b->keys.nsets && b->keys.set[i].size; i++) { 1022 prefetch(b->keys.set[i].tree); 1023 prefetch(b->keys.set[i].data); 1024 } 1025 1026 for (; i <= b->keys.nsets; i++) 1027 prefetch(b->keys.set[i].data); 1028 1029 return b; 1030 } 1031 1032 static void btree_node_prefetch(struct btree *parent, struct bkey *k) 1033 { 1034 struct btree *b; 1035 1036 mutex_lock(&parent->c->bucket_lock); 1037 b = mca_alloc(parent->c, NULL, k, parent->level - 1); 1038 mutex_unlock(&parent->c->bucket_lock); 1039 1040 if (!IS_ERR_OR_NULL(b)) { 1041 b->parent = parent; 1042 bch_btree_node_read(b); 1043 rw_unlock(true, b); 1044 } 1045 } 1046 1047 /* Btree alloc */ 1048 1049 static void btree_node_free(struct btree *b) 1050 { 1051 trace_bcache_btree_node_free(b); 1052 1053 BUG_ON(b == b->c->root); 1054 1055 retry: 1056 mutex_lock(&b->write_lock); 1057 /* 1058 * If the btree node is selected and flushing in btree_flush_write(), 1059 * delay and retry until the BTREE_NODE_journal_flush bit cleared, 1060 * then it is safe to free the btree node here. Otherwise this btree 1061 * node will be in race condition. 1062 */ 1063 if (btree_node_journal_flush(b)) { 1064 mutex_unlock(&b->write_lock); 1065 pr_debug("bnode %p journal_flush set, retry\n", b); 1066 udelay(1); 1067 goto retry; 1068 } 1069 1070 if (btree_node_dirty(b)) { 1071 btree_complete_write(b, btree_current_write(b)); 1072 clear_bit(BTREE_NODE_dirty, &b->flags); 1073 } 1074 1075 mutex_unlock(&b->write_lock); 1076 1077 cancel_delayed_work(&b->work); 1078 1079 mutex_lock(&b->c->bucket_lock); 1080 bch_bucket_free(b->c, &b->key); 1081 mca_bucket_free(b); 1082 mutex_unlock(&b->c->bucket_lock); 1083 } 1084 1085 struct btree *__bch_btree_node_alloc(struct cache_set *c, struct btree_op *op, 1086 int level, bool wait, 1087 struct btree *parent) 1088 { 1089 BKEY_PADDED(key) k; 1090 struct btree *b = ERR_PTR(-EAGAIN); 1091 1092 mutex_lock(&c->bucket_lock); 1093 retry: 1094 if (__bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, 1, wait)) 1095 goto err; 1096 1097 bkey_put(c, &k.key); 1098 SET_KEY_SIZE(&k.key, c->btree_pages * PAGE_SECTORS); 1099 1100 b = mca_alloc(c, op, &k.key, level); 1101 if (IS_ERR(b)) 1102 goto err_free; 1103 1104 if (!b) { 1105 cache_bug(c, 1106 "Tried to allocate bucket that was in btree cache"); 1107 goto retry; 1108 } 1109 1110 b->parent = parent; 1111 bch_bset_init_next(&b->keys, b->keys.set->data, bset_magic(&b->c->sb)); 1112 1113 mutex_unlock(&c->bucket_lock); 1114 1115 trace_bcache_btree_node_alloc(b); 1116 return b; 1117 err_free: 1118 bch_bucket_free(c, &k.key); 1119 err: 1120 mutex_unlock(&c->bucket_lock); 1121 1122 trace_bcache_btree_node_alloc_fail(c); 1123 return b; 1124 } 1125 1126 static struct btree *bch_btree_node_alloc(struct cache_set *c, 1127 struct btree_op *op, int level, 1128 struct btree *parent) 1129 { 1130 return __bch_btree_node_alloc(c, op, level, op != NULL, parent); 1131 } 1132 1133 static struct btree *btree_node_alloc_replacement(struct btree *b, 1134 struct btree_op *op) 1135 { 1136 struct btree *n = bch_btree_node_alloc(b->c, op, b->level, b->parent); 1137 1138 if (!IS_ERR_OR_NULL(n)) { 1139 mutex_lock(&n->write_lock); 1140 bch_btree_sort_into(&b->keys, &n->keys, &b->c->sort); 1141 bkey_copy_key(&n->key, &b->key); 1142 mutex_unlock(&n->write_lock); 1143 } 1144 1145 return n; 1146 } 1147 1148 static void make_btree_freeing_key(struct btree *b, struct bkey *k) 1149 { 1150 unsigned int i; 1151 1152 mutex_lock(&b->c->bucket_lock); 1153 1154 atomic_inc(&b->c->prio_blocked); 1155 1156 bkey_copy(k, &b->key); 1157 bkey_copy_key(k, &ZERO_KEY); 1158 1159 for (i = 0; i < KEY_PTRS(k); i++) 1160 SET_PTR_GEN(k, i, 1161 bch_inc_gen(PTR_CACHE(b->c, &b->key, i), 1162 PTR_BUCKET(b->c, &b->key, i))); 1163 1164 mutex_unlock(&b->c->bucket_lock); 1165 } 1166 1167 static int btree_check_reserve(struct btree *b, struct btree_op *op) 1168 { 1169 struct cache_set *c = b->c; 1170 struct cache *ca; 1171 unsigned int i, reserve = (c->root->level - b->level) * 2 + 1; 1172 1173 mutex_lock(&c->bucket_lock); 1174 1175 for_each_cache(ca, c, i) 1176 if (fifo_used(&ca->free[RESERVE_BTREE]) < reserve) { 1177 if (op) 1178 prepare_to_wait(&c->btree_cache_wait, &op->wait, 1179 TASK_UNINTERRUPTIBLE); 1180 mutex_unlock(&c->bucket_lock); 1181 return -EINTR; 1182 } 1183 1184 mutex_unlock(&c->bucket_lock); 1185 1186 return mca_cannibalize_lock(b->c, op); 1187 } 1188 1189 /* Garbage collection */ 1190 1191 static uint8_t __bch_btree_mark_key(struct cache_set *c, int level, 1192 struct bkey *k) 1193 { 1194 uint8_t stale = 0; 1195 unsigned int i; 1196 struct bucket *g; 1197 1198 /* 1199 * ptr_invalid() can't return true for the keys that mark btree nodes as 1200 * freed, but since ptr_bad() returns true we'll never actually use them 1201 * for anything and thus we don't want mark their pointers here 1202 */ 1203 if (!bkey_cmp(k, &ZERO_KEY)) 1204 return stale; 1205 1206 for (i = 0; i < KEY_PTRS(k); i++) { 1207 if (!ptr_available(c, k, i)) 1208 continue; 1209 1210 g = PTR_BUCKET(c, k, i); 1211 1212 if (gen_after(g->last_gc, PTR_GEN(k, i))) 1213 g->last_gc = PTR_GEN(k, i); 1214 1215 if (ptr_stale(c, k, i)) { 1216 stale = max(stale, ptr_stale(c, k, i)); 1217 continue; 1218 } 1219 1220 cache_bug_on(GC_MARK(g) && 1221 (GC_MARK(g) == GC_MARK_METADATA) != (level != 0), 1222 c, "inconsistent ptrs: mark = %llu, level = %i", 1223 GC_MARK(g), level); 1224 1225 if (level) 1226 SET_GC_MARK(g, GC_MARK_METADATA); 1227 else if (KEY_DIRTY(k)) 1228 SET_GC_MARK(g, GC_MARK_DIRTY); 1229 else if (!GC_MARK(g)) 1230 SET_GC_MARK(g, GC_MARK_RECLAIMABLE); 1231 1232 /* guard against overflow */ 1233 SET_GC_SECTORS_USED(g, min_t(unsigned int, 1234 GC_SECTORS_USED(g) + KEY_SIZE(k), 1235 MAX_GC_SECTORS_USED)); 1236 1237 BUG_ON(!GC_SECTORS_USED(g)); 1238 } 1239 1240 return stale; 1241 } 1242 1243 #define btree_mark_key(b, k) __bch_btree_mark_key(b->c, b->level, k) 1244 1245 void bch_initial_mark_key(struct cache_set *c, int level, struct bkey *k) 1246 { 1247 unsigned int i; 1248 1249 for (i = 0; i < KEY_PTRS(k); i++) 1250 if (ptr_available(c, k, i) && 1251 !ptr_stale(c, k, i)) { 1252 struct bucket *b = PTR_BUCKET(c, k, i); 1253 1254 b->gen = PTR_GEN(k, i); 1255 1256 if (level && bkey_cmp(k, &ZERO_KEY)) 1257 b->prio = BTREE_PRIO; 1258 else if (!level && b->prio == BTREE_PRIO) 1259 b->prio = INITIAL_PRIO; 1260 } 1261 1262 __bch_btree_mark_key(c, level, k); 1263 } 1264 1265 void bch_update_bucket_in_use(struct cache_set *c, struct gc_stat *stats) 1266 { 1267 stats->in_use = (c->nbuckets - c->avail_nbuckets) * 100 / c->nbuckets; 1268 } 1269 1270 static bool btree_gc_mark_node(struct btree *b, struct gc_stat *gc) 1271 { 1272 uint8_t stale = 0; 1273 unsigned int keys = 0, good_keys = 0; 1274 struct bkey *k; 1275 struct btree_iter iter; 1276 struct bset_tree *t; 1277 1278 gc->nodes++; 1279 1280 for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid) { 1281 stale = max(stale, btree_mark_key(b, k)); 1282 keys++; 1283 1284 if (bch_ptr_bad(&b->keys, k)) 1285 continue; 1286 1287 gc->key_bytes += bkey_u64s(k); 1288 gc->nkeys++; 1289 good_keys++; 1290 1291 gc->data += KEY_SIZE(k); 1292 } 1293 1294 for (t = b->keys.set; t <= &b->keys.set[b->keys.nsets]; t++) 1295 btree_bug_on(t->size && 1296 bset_written(&b->keys, t) && 1297 bkey_cmp(&b->key, &t->end) < 0, 1298 b, "found short btree key in gc"); 1299 1300 if (b->c->gc_always_rewrite) 1301 return true; 1302 1303 if (stale > 10) 1304 return true; 1305 1306 if ((keys - good_keys) * 2 > keys) 1307 return true; 1308 1309 return false; 1310 } 1311 1312 #define GC_MERGE_NODES 4U 1313 1314 struct gc_merge_info { 1315 struct btree *b; 1316 unsigned int keys; 1317 }; 1318 1319 static int bch_btree_insert_node(struct btree *b, struct btree_op *op, 1320 struct keylist *insert_keys, 1321 atomic_t *journal_ref, 1322 struct bkey *replace_key); 1323 1324 static int btree_gc_coalesce(struct btree *b, struct btree_op *op, 1325 struct gc_stat *gc, struct gc_merge_info *r) 1326 { 1327 unsigned int i, nodes = 0, keys = 0, blocks; 1328 struct btree *new_nodes[GC_MERGE_NODES]; 1329 struct keylist keylist; 1330 struct closure cl; 1331 struct bkey *k; 1332 1333 bch_keylist_init(&keylist); 1334 1335 if (btree_check_reserve(b, NULL)) 1336 return 0; 1337 1338 memset(new_nodes, 0, sizeof(new_nodes)); 1339 closure_init_stack(&cl); 1340 1341 while (nodes < GC_MERGE_NODES && !IS_ERR_OR_NULL(r[nodes].b)) 1342 keys += r[nodes++].keys; 1343 1344 blocks = btree_default_blocks(b->c) * 2 / 3; 1345 1346 if (nodes < 2 || 1347 __set_blocks(b->keys.set[0].data, keys, 1348 block_bytes(b->c)) > blocks * (nodes - 1)) 1349 return 0; 1350 1351 for (i = 0; i < nodes; i++) { 1352 new_nodes[i] = btree_node_alloc_replacement(r[i].b, NULL); 1353 if (IS_ERR_OR_NULL(new_nodes[i])) 1354 goto out_nocoalesce; 1355 } 1356 1357 /* 1358 * We have to check the reserve here, after we've allocated our new 1359 * nodes, to make sure the insert below will succeed - we also check 1360 * before as an optimization to potentially avoid a bunch of expensive 1361 * allocs/sorts 1362 */ 1363 if (btree_check_reserve(b, NULL)) 1364 goto out_nocoalesce; 1365 1366 for (i = 0; i < nodes; i++) 1367 mutex_lock(&new_nodes[i]->write_lock); 1368 1369 for (i = nodes - 1; i > 0; --i) { 1370 struct bset *n1 = btree_bset_first(new_nodes[i]); 1371 struct bset *n2 = btree_bset_first(new_nodes[i - 1]); 1372 struct bkey *k, *last = NULL; 1373 1374 keys = 0; 1375 1376 if (i > 1) { 1377 for (k = n2->start; 1378 k < bset_bkey_last(n2); 1379 k = bkey_next(k)) { 1380 if (__set_blocks(n1, n1->keys + keys + 1381 bkey_u64s(k), 1382 block_bytes(b->c)) > blocks) 1383 break; 1384 1385 last = k; 1386 keys += bkey_u64s(k); 1387 } 1388 } else { 1389 /* 1390 * Last node we're not getting rid of - we're getting 1391 * rid of the node at r[0]. Have to try and fit all of 1392 * the remaining keys into this node; we can't ensure 1393 * they will always fit due to rounding and variable 1394 * length keys (shouldn't be possible in practice, 1395 * though) 1396 */ 1397 if (__set_blocks(n1, n1->keys + n2->keys, 1398 block_bytes(b->c)) > 1399 btree_blocks(new_nodes[i])) 1400 goto out_unlock_nocoalesce; 1401 1402 keys = n2->keys; 1403 /* Take the key of the node we're getting rid of */ 1404 last = &r->b->key; 1405 } 1406 1407 BUG_ON(__set_blocks(n1, n1->keys + keys, block_bytes(b->c)) > 1408 btree_blocks(new_nodes[i])); 1409 1410 if (last) 1411 bkey_copy_key(&new_nodes[i]->key, last); 1412 1413 memcpy(bset_bkey_last(n1), 1414 n2->start, 1415 (void *) bset_bkey_idx(n2, keys) - (void *) n2->start); 1416 1417 n1->keys += keys; 1418 r[i].keys = n1->keys; 1419 1420 memmove(n2->start, 1421 bset_bkey_idx(n2, keys), 1422 (void *) bset_bkey_last(n2) - 1423 (void *) bset_bkey_idx(n2, keys)); 1424 1425 n2->keys -= keys; 1426 1427 if (__bch_keylist_realloc(&keylist, 1428 bkey_u64s(&new_nodes[i]->key))) 1429 goto out_unlock_nocoalesce; 1430 1431 bch_btree_node_write(new_nodes[i], &cl); 1432 bch_keylist_add(&keylist, &new_nodes[i]->key); 1433 } 1434 1435 for (i = 0; i < nodes; i++) 1436 mutex_unlock(&new_nodes[i]->write_lock); 1437 1438 closure_sync(&cl); 1439 1440 /* We emptied out this node */ 1441 BUG_ON(btree_bset_first(new_nodes[0])->keys); 1442 btree_node_free(new_nodes[0]); 1443 rw_unlock(true, new_nodes[0]); 1444 new_nodes[0] = NULL; 1445 1446 for (i = 0; i < nodes; i++) { 1447 if (__bch_keylist_realloc(&keylist, bkey_u64s(&r[i].b->key))) 1448 goto out_nocoalesce; 1449 1450 make_btree_freeing_key(r[i].b, keylist.top); 1451 bch_keylist_push(&keylist); 1452 } 1453 1454 bch_btree_insert_node(b, op, &keylist, NULL, NULL); 1455 BUG_ON(!bch_keylist_empty(&keylist)); 1456 1457 for (i = 0; i < nodes; i++) { 1458 btree_node_free(r[i].b); 1459 rw_unlock(true, r[i].b); 1460 1461 r[i].b = new_nodes[i]; 1462 } 1463 1464 memmove(r, r + 1, sizeof(r[0]) * (nodes - 1)); 1465 r[nodes - 1].b = ERR_PTR(-EINTR); 1466 1467 trace_bcache_btree_gc_coalesce(nodes); 1468 gc->nodes--; 1469 1470 bch_keylist_free(&keylist); 1471 1472 /* Invalidated our iterator */ 1473 return -EINTR; 1474 1475 out_unlock_nocoalesce: 1476 for (i = 0; i < nodes; i++) 1477 mutex_unlock(&new_nodes[i]->write_lock); 1478 1479 out_nocoalesce: 1480 closure_sync(&cl); 1481 1482 while ((k = bch_keylist_pop(&keylist))) 1483 if (!bkey_cmp(k, &ZERO_KEY)) 1484 atomic_dec(&b->c->prio_blocked); 1485 bch_keylist_free(&keylist); 1486 1487 for (i = 0; i < nodes; i++) 1488 if (!IS_ERR_OR_NULL(new_nodes[i])) { 1489 btree_node_free(new_nodes[i]); 1490 rw_unlock(true, new_nodes[i]); 1491 } 1492 return 0; 1493 } 1494 1495 static int btree_gc_rewrite_node(struct btree *b, struct btree_op *op, 1496 struct btree *replace) 1497 { 1498 struct keylist keys; 1499 struct btree *n; 1500 1501 if (btree_check_reserve(b, NULL)) 1502 return 0; 1503 1504 n = btree_node_alloc_replacement(replace, NULL); 1505 1506 /* recheck reserve after allocating replacement node */ 1507 if (btree_check_reserve(b, NULL)) { 1508 btree_node_free(n); 1509 rw_unlock(true, n); 1510 return 0; 1511 } 1512 1513 bch_btree_node_write_sync(n); 1514 1515 bch_keylist_init(&keys); 1516 bch_keylist_add(&keys, &n->key); 1517 1518 make_btree_freeing_key(replace, keys.top); 1519 bch_keylist_push(&keys); 1520 1521 bch_btree_insert_node(b, op, &keys, NULL, NULL); 1522 BUG_ON(!bch_keylist_empty(&keys)); 1523 1524 btree_node_free(replace); 1525 rw_unlock(true, n); 1526 1527 /* Invalidated our iterator */ 1528 return -EINTR; 1529 } 1530 1531 static unsigned int btree_gc_count_keys(struct btree *b) 1532 { 1533 struct bkey *k; 1534 struct btree_iter iter; 1535 unsigned int ret = 0; 1536 1537 for_each_key_filter(&b->keys, k, &iter, bch_ptr_bad) 1538 ret += bkey_u64s(k); 1539 1540 return ret; 1541 } 1542 1543 static size_t btree_gc_min_nodes(struct cache_set *c) 1544 { 1545 size_t min_nodes; 1546 1547 /* 1548 * Since incremental GC would stop 100ms when front 1549 * side I/O comes, so when there are many btree nodes, 1550 * if GC only processes constant (100) nodes each time, 1551 * GC would last a long time, and the front side I/Os 1552 * would run out of the buckets (since no new bucket 1553 * can be allocated during GC), and be blocked again. 1554 * So GC should not process constant nodes, but varied 1555 * nodes according to the number of btree nodes, which 1556 * realized by dividing GC into constant(100) times, 1557 * so when there are many btree nodes, GC can process 1558 * more nodes each time, otherwise, GC will process less 1559 * nodes each time (but no less than MIN_GC_NODES) 1560 */ 1561 min_nodes = c->gc_stats.nodes / MAX_GC_TIMES; 1562 if (min_nodes < MIN_GC_NODES) 1563 min_nodes = MIN_GC_NODES; 1564 1565 return min_nodes; 1566 } 1567 1568 1569 static int btree_gc_recurse(struct btree *b, struct btree_op *op, 1570 struct closure *writes, struct gc_stat *gc) 1571 { 1572 int ret = 0; 1573 bool should_rewrite; 1574 struct bkey *k; 1575 struct btree_iter iter; 1576 struct gc_merge_info r[GC_MERGE_NODES]; 1577 struct gc_merge_info *i, *last = r + ARRAY_SIZE(r) - 1; 1578 1579 bch_btree_iter_init(&b->keys, &iter, &b->c->gc_done); 1580 1581 for (i = r; i < r + ARRAY_SIZE(r); i++) 1582 i->b = ERR_PTR(-EINTR); 1583 1584 while (1) { 1585 k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad); 1586 if (k) { 1587 r->b = bch_btree_node_get(b->c, op, k, b->level - 1, 1588 true, b); 1589 if (IS_ERR(r->b)) { 1590 ret = PTR_ERR(r->b); 1591 break; 1592 } 1593 1594 r->keys = btree_gc_count_keys(r->b); 1595 1596 ret = btree_gc_coalesce(b, op, gc, r); 1597 if (ret) 1598 break; 1599 } 1600 1601 if (!last->b) 1602 break; 1603 1604 if (!IS_ERR(last->b)) { 1605 should_rewrite = btree_gc_mark_node(last->b, gc); 1606 if (should_rewrite) { 1607 ret = btree_gc_rewrite_node(b, op, last->b); 1608 if (ret) 1609 break; 1610 } 1611 1612 if (last->b->level) { 1613 ret = btree_gc_recurse(last->b, op, writes, gc); 1614 if (ret) 1615 break; 1616 } 1617 1618 bkey_copy_key(&b->c->gc_done, &last->b->key); 1619 1620 /* 1621 * Must flush leaf nodes before gc ends, since replace 1622 * operations aren't journalled 1623 */ 1624 mutex_lock(&last->b->write_lock); 1625 if (btree_node_dirty(last->b)) 1626 bch_btree_node_write(last->b, writes); 1627 mutex_unlock(&last->b->write_lock); 1628 rw_unlock(true, last->b); 1629 } 1630 1631 memmove(r + 1, r, sizeof(r[0]) * (GC_MERGE_NODES - 1)); 1632 r->b = NULL; 1633 1634 if (atomic_read(&b->c->search_inflight) && 1635 gc->nodes >= gc->nodes_pre + btree_gc_min_nodes(b->c)) { 1636 gc->nodes_pre = gc->nodes; 1637 ret = -EAGAIN; 1638 break; 1639 } 1640 1641 if (need_resched()) { 1642 ret = -EAGAIN; 1643 break; 1644 } 1645 } 1646 1647 for (i = r; i < r + ARRAY_SIZE(r); i++) 1648 if (!IS_ERR_OR_NULL(i->b)) { 1649 mutex_lock(&i->b->write_lock); 1650 if (btree_node_dirty(i->b)) 1651 bch_btree_node_write(i->b, writes); 1652 mutex_unlock(&i->b->write_lock); 1653 rw_unlock(true, i->b); 1654 } 1655 1656 return ret; 1657 } 1658 1659 static int bch_btree_gc_root(struct btree *b, struct btree_op *op, 1660 struct closure *writes, struct gc_stat *gc) 1661 { 1662 struct btree *n = NULL; 1663 int ret = 0; 1664 bool should_rewrite; 1665 1666 should_rewrite = btree_gc_mark_node(b, gc); 1667 if (should_rewrite) { 1668 n = btree_node_alloc_replacement(b, NULL); 1669 1670 if (!IS_ERR_OR_NULL(n)) { 1671 bch_btree_node_write_sync(n); 1672 1673 bch_btree_set_root(n); 1674 btree_node_free(b); 1675 rw_unlock(true, n); 1676 1677 return -EINTR; 1678 } 1679 } 1680 1681 __bch_btree_mark_key(b->c, b->level + 1, &b->key); 1682 1683 if (b->level) { 1684 ret = btree_gc_recurse(b, op, writes, gc); 1685 if (ret) 1686 return ret; 1687 } 1688 1689 bkey_copy_key(&b->c->gc_done, &b->key); 1690 1691 return ret; 1692 } 1693 1694 static void btree_gc_start(struct cache_set *c) 1695 { 1696 struct cache *ca; 1697 struct bucket *b; 1698 unsigned int i; 1699 1700 if (!c->gc_mark_valid) 1701 return; 1702 1703 mutex_lock(&c->bucket_lock); 1704 1705 c->gc_mark_valid = 0; 1706 c->gc_done = ZERO_KEY; 1707 1708 for_each_cache(ca, c, i) 1709 for_each_bucket(b, ca) { 1710 b->last_gc = b->gen; 1711 if (!atomic_read(&b->pin)) { 1712 SET_GC_MARK(b, 0); 1713 SET_GC_SECTORS_USED(b, 0); 1714 } 1715 } 1716 1717 mutex_unlock(&c->bucket_lock); 1718 } 1719 1720 static void bch_btree_gc_finish(struct cache_set *c) 1721 { 1722 struct bucket *b; 1723 struct cache *ca; 1724 unsigned int i; 1725 1726 mutex_lock(&c->bucket_lock); 1727 1728 set_gc_sectors(c); 1729 c->gc_mark_valid = 1; 1730 c->need_gc = 0; 1731 1732 for (i = 0; i < KEY_PTRS(&c->uuid_bucket); i++) 1733 SET_GC_MARK(PTR_BUCKET(c, &c->uuid_bucket, i), 1734 GC_MARK_METADATA); 1735 1736 /* don't reclaim buckets to which writeback keys point */ 1737 rcu_read_lock(); 1738 for (i = 0; i < c->devices_max_used; i++) { 1739 struct bcache_device *d = c->devices[i]; 1740 struct cached_dev *dc; 1741 struct keybuf_key *w, *n; 1742 unsigned int j; 1743 1744 if (!d || UUID_FLASH_ONLY(&c->uuids[i])) 1745 continue; 1746 dc = container_of(d, struct cached_dev, disk); 1747 1748 spin_lock(&dc->writeback_keys.lock); 1749 rbtree_postorder_for_each_entry_safe(w, n, 1750 &dc->writeback_keys.keys, node) 1751 for (j = 0; j < KEY_PTRS(&w->key); j++) 1752 SET_GC_MARK(PTR_BUCKET(c, &w->key, j), 1753 GC_MARK_DIRTY); 1754 spin_unlock(&dc->writeback_keys.lock); 1755 } 1756 rcu_read_unlock(); 1757 1758 c->avail_nbuckets = 0; 1759 for_each_cache(ca, c, i) { 1760 uint64_t *i; 1761 1762 ca->invalidate_needs_gc = 0; 1763 1764 for (i = ca->sb.d; i < ca->sb.d + ca->sb.keys; i++) 1765 SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA); 1766 1767 for (i = ca->prio_buckets; 1768 i < ca->prio_buckets + prio_buckets(ca) * 2; i++) 1769 SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA); 1770 1771 for_each_bucket(b, ca) { 1772 c->need_gc = max(c->need_gc, bucket_gc_gen(b)); 1773 1774 if (atomic_read(&b->pin)) 1775 continue; 1776 1777 BUG_ON(!GC_MARK(b) && GC_SECTORS_USED(b)); 1778 1779 if (!GC_MARK(b) || GC_MARK(b) == GC_MARK_RECLAIMABLE) 1780 c->avail_nbuckets++; 1781 } 1782 } 1783 1784 mutex_unlock(&c->bucket_lock); 1785 } 1786 1787 static void bch_btree_gc(struct cache_set *c) 1788 { 1789 int ret; 1790 struct gc_stat stats; 1791 struct closure writes; 1792 struct btree_op op; 1793 uint64_t start_time = local_clock(); 1794 1795 trace_bcache_gc_start(c); 1796 1797 memset(&stats, 0, sizeof(struct gc_stat)); 1798 closure_init_stack(&writes); 1799 bch_btree_op_init(&op, SHRT_MAX); 1800 1801 btree_gc_start(c); 1802 1803 /* if CACHE_SET_IO_DISABLE set, gc thread should stop too */ 1804 do { 1805 ret = bcache_btree_root(gc_root, c, &op, &writes, &stats); 1806 closure_sync(&writes); 1807 cond_resched(); 1808 1809 if (ret == -EAGAIN) 1810 schedule_timeout_interruptible(msecs_to_jiffies 1811 (GC_SLEEP_MS)); 1812 else if (ret) 1813 pr_warn("gc failed!\n"); 1814 } while (ret && !test_bit(CACHE_SET_IO_DISABLE, &c->flags)); 1815 1816 bch_btree_gc_finish(c); 1817 wake_up_allocators(c); 1818 1819 bch_time_stats_update(&c->btree_gc_time, start_time); 1820 1821 stats.key_bytes *= sizeof(uint64_t); 1822 stats.data <<= 9; 1823 bch_update_bucket_in_use(c, &stats); 1824 memcpy(&c->gc_stats, &stats, sizeof(struct gc_stat)); 1825 1826 trace_bcache_gc_end(c); 1827 1828 bch_moving_gc(c); 1829 } 1830 1831 static bool gc_should_run(struct cache_set *c) 1832 { 1833 struct cache *ca; 1834 unsigned int i; 1835 1836 for_each_cache(ca, c, i) 1837 if (ca->invalidate_needs_gc) 1838 return true; 1839 1840 if (atomic_read(&c->sectors_to_gc) < 0) 1841 return true; 1842 1843 return false; 1844 } 1845 1846 static int bch_gc_thread(void *arg) 1847 { 1848 struct cache_set *c = arg; 1849 1850 while (1) { 1851 wait_event_interruptible(c->gc_wait, 1852 kthread_should_stop() || 1853 test_bit(CACHE_SET_IO_DISABLE, &c->flags) || 1854 gc_should_run(c)); 1855 1856 if (kthread_should_stop() || 1857 test_bit(CACHE_SET_IO_DISABLE, &c->flags)) 1858 break; 1859 1860 set_gc_sectors(c); 1861 bch_btree_gc(c); 1862 } 1863 1864 wait_for_kthread_stop(); 1865 return 0; 1866 } 1867 1868 int bch_gc_thread_start(struct cache_set *c) 1869 { 1870 c->gc_thread = kthread_run(bch_gc_thread, c, "bcache_gc"); 1871 return PTR_ERR_OR_ZERO(c->gc_thread); 1872 } 1873 1874 /* Initial partial gc */ 1875 1876 static int bch_btree_check_recurse(struct btree *b, struct btree_op *op) 1877 { 1878 int ret = 0; 1879 struct bkey *k, *p = NULL; 1880 struct btree_iter iter; 1881 1882 for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid) 1883 bch_initial_mark_key(b->c, b->level, k); 1884 1885 bch_initial_mark_key(b->c, b->level + 1, &b->key); 1886 1887 if (b->level) { 1888 bch_btree_iter_init(&b->keys, &iter, NULL); 1889 1890 do { 1891 k = bch_btree_iter_next_filter(&iter, &b->keys, 1892 bch_ptr_bad); 1893 if (k) { 1894 btree_node_prefetch(b, k); 1895 /* 1896 * initiallize c->gc_stats.nodes 1897 * for incremental GC 1898 */ 1899 b->c->gc_stats.nodes++; 1900 } 1901 1902 if (p) 1903 ret = bcache_btree(check_recurse, p, b, op); 1904 1905 p = k; 1906 } while (p && !ret); 1907 } 1908 1909 return ret; 1910 } 1911 1912 1913 static int bch_btree_check_thread(void *arg) 1914 { 1915 int ret; 1916 struct btree_check_info *info = arg; 1917 struct btree_check_state *check_state = info->state; 1918 struct cache_set *c = check_state->c; 1919 struct btree_iter iter; 1920 struct bkey *k, *p; 1921 int cur_idx, prev_idx, skip_nr; 1922 1923 k = p = NULL; 1924 cur_idx = prev_idx = 0; 1925 ret = 0; 1926 1927 /* root node keys are checked before thread created */ 1928 bch_btree_iter_init(&c->root->keys, &iter, NULL); 1929 k = bch_btree_iter_next_filter(&iter, &c->root->keys, bch_ptr_bad); 1930 BUG_ON(!k); 1931 1932 p = k; 1933 while (k) { 1934 /* 1935 * Fetch a root node key index, skip the keys which 1936 * should be fetched by other threads, then check the 1937 * sub-tree indexed by the fetched key. 1938 */ 1939 spin_lock(&check_state->idx_lock); 1940 cur_idx = check_state->key_idx; 1941 check_state->key_idx++; 1942 spin_unlock(&check_state->idx_lock); 1943 1944 skip_nr = cur_idx - prev_idx; 1945 1946 while (skip_nr) { 1947 k = bch_btree_iter_next_filter(&iter, 1948 &c->root->keys, 1949 bch_ptr_bad); 1950 if (k) 1951 p = k; 1952 else { 1953 /* 1954 * No more keys to check in root node, 1955 * current checking threads are enough, 1956 * stop creating more. 1957 */ 1958 atomic_set(&check_state->enough, 1); 1959 /* Update check_state->enough earlier */ 1960 smp_mb__after_atomic(); 1961 goto out; 1962 } 1963 skip_nr--; 1964 cond_resched(); 1965 } 1966 1967 if (p) { 1968 struct btree_op op; 1969 1970 btree_node_prefetch(c->root, p); 1971 c->gc_stats.nodes++; 1972 bch_btree_op_init(&op, 0); 1973 ret = bcache_btree(check_recurse, p, c->root, &op); 1974 if (ret) 1975 goto out; 1976 } 1977 p = NULL; 1978 prev_idx = cur_idx; 1979 cond_resched(); 1980 } 1981 1982 out: 1983 info->result = ret; 1984 /* update check_state->started among all CPUs */ 1985 smp_mb__before_atomic(); 1986 if (atomic_dec_and_test(&check_state->started)) 1987 wake_up(&check_state->wait); 1988 1989 return ret; 1990 } 1991 1992 1993 1994 static int bch_btree_chkthread_nr(void) 1995 { 1996 int n = num_online_cpus()/2; 1997 1998 if (n == 0) 1999 n = 1; 2000 else if (n > BCH_BTR_CHKTHREAD_MAX) 2001 n = BCH_BTR_CHKTHREAD_MAX; 2002 2003 return n; 2004 } 2005 2006 int bch_btree_check(struct cache_set *c) 2007 { 2008 int ret = 0; 2009 int i; 2010 struct bkey *k = NULL; 2011 struct btree_iter iter; 2012 struct btree_check_state *check_state; 2013 char name[32]; 2014 2015 /* check and mark root node keys */ 2016 for_each_key_filter(&c->root->keys, k, &iter, bch_ptr_invalid) 2017 bch_initial_mark_key(c, c->root->level, k); 2018 2019 bch_initial_mark_key(c, c->root->level + 1, &c->root->key); 2020 2021 if (c->root->level == 0) 2022 return 0; 2023 2024 check_state = kzalloc(sizeof(struct btree_check_state), GFP_KERNEL); 2025 if (!check_state) 2026 return -ENOMEM; 2027 2028 check_state->c = c; 2029 check_state->total_threads = bch_btree_chkthread_nr(); 2030 check_state->key_idx = 0; 2031 spin_lock_init(&check_state->idx_lock); 2032 atomic_set(&check_state->started, 0); 2033 atomic_set(&check_state->enough, 0); 2034 init_waitqueue_head(&check_state->wait); 2035 2036 /* 2037 * Run multiple threads to check btree nodes in parallel, 2038 * if check_state->enough is non-zero, it means current 2039 * running check threads are enough, unncessary to create 2040 * more. 2041 */ 2042 for (i = 0; i < check_state->total_threads; i++) { 2043 /* fetch latest check_state->enough earlier */ 2044 smp_mb__before_atomic(); 2045 if (atomic_read(&check_state->enough)) 2046 break; 2047 2048 check_state->infos[i].result = 0; 2049 check_state->infos[i].state = check_state; 2050 snprintf(name, sizeof(name), "bch_btrchk[%u]", i); 2051 atomic_inc(&check_state->started); 2052 2053 check_state->infos[i].thread = 2054 kthread_run(bch_btree_check_thread, 2055 &check_state->infos[i], 2056 name); 2057 if (IS_ERR(check_state->infos[i].thread)) { 2058 pr_err("fails to run thread bch_btrchk[%d]\n", i); 2059 for (--i; i >= 0; i--) 2060 kthread_stop(check_state->infos[i].thread); 2061 ret = -ENOMEM; 2062 goto out; 2063 } 2064 } 2065 2066 wait_event_interruptible(check_state->wait, 2067 atomic_read(&check_state->started) == 0 || 2068 test_bit(CACHE_SET_IO_DISABLE, &c->flags)); 2069 2070 for (i = 0; i < check_state->total_threads; i++) { 2071 if (check_state->infos[i].result) { 2072 ret = check_state->infos[i].result; 2073 goto out; 2074 } 2075 } 2076 2077 out: 2078 kfree(check_state); 2079 return ret; 2080 } 2081 2082 void bch_initial_gc_finish(struct cache_set *c) 2083 { 2084 struct cache *ca; 2085 struct bucket *b; 2086 unsigned int i; 2087 2088 bch_btree_gc_finish(c); 2089 2090 mutex_lock(&c->bucket_lock); 2091 2092 /* 2093 * We need to put some unused buckets directly on the prio freelist in 2094 * order to get the allocator thread started - it needs freed buckets in 2095 * order to rewrite the prios and gens, and it needs to rewrite prios 2096 * and gens in order to free buckets. 2097 * 2098 * This is only safe for buckets that have no live data in them, which 2099 * there should always be some of. 2100 */ 2101 for_each_cache(ca, c, i) { 2102 for_each_bucket(b, ca) { 2103 if (fifo_full(&ca->free[RESERVE_PRIO]) && 2104 fifo_full(&ca->free[RESERVE_BTREE])) 2105 break; 2106 2107 if (bch_can_invalidate_bucket(ca, b) && 2108 !GC_MARK(b)) { 2109 __bch_invalidate_one_bucket(ca, b); 2110 if (!fifo_push(&ca->free[RESERVE_PRIO], 2111 b - ca->buckets)) 2112 fifo_push(&ca->free[RESERVE_BTREE], 2113 b - ca->buckets); 2114 } 2115 } 2116 } 2117 2118 mutex_unlock(&c->bucket_lock); 2119 } 2120 2121 /* Btree insertion */ 2122 2123 static bool btree_insert_key(struct btree *b, struct bkey *k, 2124 struct bkey *replace_key) 2125 { 2126 unsigned int status; 2127 2128 BUG_ON(bkey_cmp(k, &b->key) > 0); 2129 2130 status = bch_btree_insert_key(&b->keys, k, replace_key); 2131 if (status != BTREE_INSERT_STATUS_NO_INSERT) { 2132 bch_check_keys(&b->keys, "%u for %s", status, 2133 replace_key ? "replace" : "insert"); 2134 2135 trace_bcache_btree_insert_key(b, k, replace_key != NULL, 2136 status); 2137 return true; 2138 } else 2139 return false; 2140 } 2141 2142 static size_t insert_u64s_remaining(struct btree *b) 2143 { 2144 long ret = bch_btree_keys_u64s_remaining(&b->keys); 2145 2146 /* 2147 * Might land in the middle of an existing extent and have to split it 2148 */ 2149 if (b->keys.ops->is_extents) 2150 ret -= KEY_MAX_U64S; 2151 2152 return max(ret, 0L); 2153 } 2154 2155 static bool bch_btree_insert_keys(struct btree *b, struct btree_op *op, 2156 struct keylist *insert_keys, 2157 struct bkey *replace_key) 2158 { 2159 bool ret = false; 2160 int oldsize = bch_count_data(&b->keys); 2161 2162 while (!bch_keylist_empty(insert_keys)) { 2163 struct bkey *k = insert_keys->keys; 2164 2165 if (bkey_u64s(k) > insert_u64s_remaining(b)) 2166 break; 2167 2168 if (bkey_cmp(k, &b->key) <= 0) { 2169 if (!b->level) 2170 bkey_put(b->c, k); 2171 2172 ret |= btree_insert_key(b, k, replace_key); 2173 bch_keylist_pop_front(insert_keys); 2174 } else if (bkey_cmp(&START_KEY(k), &b->key) < 0) { 2175 BKEY_PADDED(key) temp; 2176 bkey_copy(&temp.key, insert_keys->keys); 2177 2178 bch_cut_back(&b->key, &temp.key); 2179 bch_cut_front(&b->key, insert_keys->keys); 2180 2181 ret |= btree_insert_key(b, &temp.key, replace_key); 2182 break; 2183 } else { 2184 break; 2185 } 2186 } 2187 2188 if (!ret) 2189 op->insert_collision = true; 2190 2191 BUG_ON(!bch_keylist_empty(insert_keys) && b->level); 2192 2193 BUG_ON(bch_count_data(&b->keys) < oldsize); 2194 return ret; 2195 } 2196 2197 static int btree_split(struct btree *b, struct btree_op *op, 2198 struct keylist *insert_keys, 2199 struct bkey *replace_key) 2200 { 2201 bool split; 2202 struct btree *n1, *n2 = NULL, *n3 = NULL; 2203 uint64_t start_time = local_clock(); 2204 struct closure cl; 2205 struct keylist parent_keys; 2206 2207 closure_init_stack(&cl); 2208 bch_keylist_init(&parent_keys); 2209 2210 if (btree_check_reserve(b, op)) { 2211 if (!b->level) 2212 return -EINTR; 2213 else 2214 WARN(1, "insufficient reserve for split\n"); 2215 } 2216 2217 n1 = btree_node_alloc_replacement(b, op); 2218 if (IS_ERR(n1)) 2219 goto err; 2220 2221 split = set_blocks(btree_bset_first(n1), 2222 block_bytes(n1->c)) > (btree_blocks(b) * 4) / 5; 2223 2224 if (split) { 2225 unsigned int keys = 0; 2226 2227 trace_bcache_btree_node_split(b, btree_bset_first(n1)->keys); 2228 2229 n2 = bch_btree_node_alloc(b->c, op, b->level, b->parent); 2230 if (IS_ERR(n2)) 2231 goto err_free1; 2232 2233 if (!b->parent) { 2234 n3 = bch_btree_node_alloc(b->c, op, b->level + 1, NULL); 2235 if (IS_ERR(n3)) 2236 goto err_free2; 2237 } 2238 2239 mutex_lock(&n1->write_lock); 2240 mutex_lock(&n2->write_lock); 2241 2242 bch_btree_insert_keys(n1, op, insert_keys, replace_key); 2243 2244 /* 2245 * Has to be a linear search because we don't have an auxiliary 2246 * search tree yet 2247 */ 2248 2249 while (keys < (btree_bset_first(n1)->keys * 3) / 5) 2250 keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1), 2251 keys)); 2252 2253 bkey_copy_key(&n1->key, 2254 bset_bkey_idx(btree_bset_first(n1), keys)); 2255 keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1), keys)); 2256 2257 btree_bset_first(n2)->keys = btree_bset_first(n1)->keys - keys; 2258 btree_bset_first(n1)->keys = keys; 2259 2260 memcpy(btree_bset_first(n2)->start, 2261 bset_bkey_last(btree_bset_first(n1)), 2262 btree_bset_first(n2)->keys * sizeof(uint64_t)); 2263 2264 bkey_copy_key(&n2->key, &b->key); 2265 2266 bch_keylist_add(&parent_keys, &n2->key); 2267 bch_btree_node_write(n2, &cl); 2268 mutex_unlock(&n2->write_lock); 2269 rw_unlock(true, n2); 2270 } else { 2271 trace_bcache_btree_node_compact(b, btree_bset_first(n1)->keys); 2272 2273 mutex_lock(&n1->write_lock); 2274 bch_btree_insert_keys(n1, op, insert_keys, replace_key); 2275 } 2276 2277 bch_keylist_add(&parent_keys, &n1->key); 2278 bch_btree_node_write(n1, &cl); 2279 mutex_unlock(&n1->write_lock); 2280 2281 if (n3) { 2282 /* Depth increases, make a new root */ 2283 mutex_lock(&n3->write_lock); 2284 bkey_copy_key(&n3->key, &MAX_KEY); 2285 bch_btree_insert_keys(n3, op, &parent_keys, NULL); 2286 bch_btree_node_write(n3, &cl); 2287 mutex_unlock(&n3->write_lock); 2288 2289 closure_sync(&cl); 2290 bch_btree_set_root(n3); 2291 rw_unlock(true, n3); 2292 } else if (!b->parent) { 2293 /* Root filled up but didn't need to be split */ 2294 closure_sync(&cl); 2295 bch_btree_set_root(n1); 2296 } else { 2297 /* Split a non root node */ 2298 closure_sync(&cl); 2299 make_btree_freeing_key(b, parent_keys.top); 2300 bch_keylist_push(&parent_keys); 2301 2302 bch_btree_insert_node(b->parent, op, &parent_keys, NULL, NULL); 2303 BUG_ON(!bch_keylist_empty(&parent_keys)); 2304 } 2305 2306 btree_node_free(b); 2307 rw_unlock(true, n1); 2308 2309 bch_time_stats_update(&b->c->btree_split_time, start_time); 2310 2311 return 0; 2312 err_free2: 2313 bkey_put(b->c, &n2->key); 2314 btree_node_free(n2); 2315 rw_unlock(true, n2); 2316 err_free1: 2317 bkey_put(b->c, &n1->key); 2318 btree_node_free(n1); 2319 rw_unlock(true, n1); 2320 err: 2321 WARN(1, "bcache: btree split failed (level %u)", b->level); 2322 2323 if (n3 == ERR_PTR(-EAGAIN) || 2324 n2 == ERR_PTR(-EAGAIN) || 2325 n1 == ERR_PTR(-EAGAIN)) 2326 return -EAGAIN; 2327 2328 return -ENOMEM; 2329 } 2330 2331 static int bch_btree_insert_node(struct btree *b, struct btree_op *op, 2332 struct keylist *insert_keys, 2333 atomic_t *journal_ref, 2334 struct bkey *replace_key) 2335 { 2336 struct closure cl; 2337 2338 BUG_ON(b->level && replace_key); 2339 2340 closure_init_stack(&cl); 2341 2342 mutex_lock(&b->write_lock); 2343 2344 if (write_block(b) != btree_bset_last(b) && 2345 b->keys.last_set_unwritten) 2346 bch_btree_init_next(b); /* just wrote a set */ 2347 2348 if (bch_keylist_nkeys(insert_keys) > insert_u64s_remaining(b)) { 2349 mutex_unlock(&b->write_lock); 2350 goto split; 2351 } 2352 2353 BUG_ON(write_block(b) != btree_bset_last(b)); 2354 2355 if (bch_btree_insert_keys(b, op, insert_keys, replace_key)) { 2356 if (!b->level) 2357 bch_btree_leaf_dirty(b, journal_ref); 2358 else 2359 bch_btree_node_write(b, &cl); 2360 } 2361 2362 mutex_unlock(&b->write_lock); 2363 2364 /* wait for btree node write if necessary, after unlock */ 2365 closure_sync(&cl); 2366 2367 return 0; 2368 split: 2369 if (current->bio_list) { 2370 op->lock = b->c->root->level + 1; 2371 return -EAGAIN; 2372 } else if (op->lock <= b->c->root->level) { 2373 op->lock = b->c->root->level + 1; 2374 return -EINTR; 2375 } else { 2376 /* Invalidated all iterators */ 2377 int ret = btree_split(b, op, insert_keys, replace_key); 2378 2379 if (bch_keylist_empty(insert_keys)) 2380 return 0; 2381 else if (!ret) 2382 return -EINTR; 2383 return ret; 2384 } 2385 } 2386 2387 int bch_btree_insert_check_key(struct btree *b, struct btree_op *op, 2388 struct bkey *check_key) 2389 { 2390 int ret = -EINTR; 2391 uint64_t btree_ptr = b->key.ptr[0]; 2392 unsigned long seq = b->seq; 2393 struct keylist insert; 2394 bool upgrade = op->lock == -1; 2395 2396 bch_keylist_init(&insert); 2397 2398 if (upgrade) { 2399 rw_unlock(false, b); 2400 rw_lock(true, b, b->level); 2401 2402 if (b->key.ptr[0] != btree_ptr || 2403 b->seq != seq + 1) { 2404 op->lock = b->level; 2405 goto out; 2406 } 2407 } 2408 2409 SET_KEY_PTRS(check_key, 1); 2410 get_random_bytes(&check_key->ptr[0], sizeof(uint64_t)); 2411 2412 SET_PTR_DEV(check_key, 0, PTR_CHECK_DEV); 2413 2414 bch_keylist_add(&insert, check_key); 2415 2416 ret = bch_btree_insert_node(b, op, &insert, NULL, NULL); 2417 2418 BUG_ON(!ret && !bch_keylist_empty(&insert)); 2419 out: 2420 if (upgrade) 2421 downgrade_write(&b->lock); 2422 return ret; 2423 } 2424 2425 struct btree_insert_op { 2426 struct btree_op op; 2427 struct keylist *keys; 2428 atomic_t *journal_ref; 2429 struct bkey *replace_key; 2430 }; 2431 2432 static int btree_insert_fn(struct btree_op *b_op, struct btree *b) 2433 { 2434 struct btree_insert_op *op = container_of(b_op, 2435 struct btree_insert_op, op); 2436 2437 int ret = bch_btree_insert_node(b, &op->op, op->keys, 2438 op->journal_ref, op->replace_key); 2439 if (ret && !bch_keylist_empty(op->keys)) 2440 return ret; 2441 else 2442 return MAP_DONE; 2443 } 2444 2445 int bch_btree_insert(struct cache_set *c, struct keylist *keys, 2446 atomic_t *journal_ref, struct bkey *replace_key) 2447 { 2448 struct btree_insert_op op; 2449 int ret = 0; 2450 2451 BUG_ON(current->bio_list); 2452 BUG_ON(bch_keylist_empty(keys)); 2453 2454 bch_btree_op_init(&op.op, 0); 2455 op.keys = keys; 2456 op.journal_ref = journal_ref; 2457 op.replace_key = replace_key; 2458 2459 while (!ret && !bch_keylist_empty(keys)) { 2460 op.op.lock = 0; 2461 ret = bch_btree_map_leaf_nodes(&op.op, c, 2462 &START_KEY(keys->keys), 2463 btree_insert_fn); 2464 } 2465 2466 if (ret) { 2467 struct bkey *k; 2468 2469 pr_err("error %i\n", ret); 2470 2471 while ((k = bch_keylist_pop(keys))) 2472 bkey_put(c, k); 2473 } else if (op.op.insert_collision) 2474 ret = -ESRCH; 2475 2476 return ret; 2477 } 2478 2479 void bch_btree_set_root(struct btree *b) 2480 { 2481 unsigned int i; 2482 struct closure cl; 2483 2484 closure_init_stack(&cl); 2485 2486 trace_bcache_btree_set_root(b); 2487 2488 BUG_ON(!b->written); 2489 2490 for (i = 0; i < KEY_PTRS(&b->key); i++) 2491 BUG_ON(PTR_BUCKET(b->c, &b->key, i)->prio != BTREE_PRIO); 2492 2493 mutex_lock(&b->c->bucket_lock); 2494 list_del_init(&b->list); 2495 mutex_unlock(&b->c->bucket_lock); 2496 2497 b->c->root = b; 2498 2499 bch_journal_meta(b->c, &cl); 2500 closure_sync(&cl); 2501 } 2502 2503 /* Map across nodes or keys */ 2504 2505 static int bch_btree_map_nodes_recurse(struct btree *b, struct btree_op *op, 2506 struct bkey *from, 2507 btree_map_nodes_fn *fn, int flags) 2508 { 2509 int ret = MAP_CONTINUE; 2510 2511 if (b->level) { 2512 struct bkey *k; 2513 struct btree_iter iter; 2514 2515 bch_btree_iter_init(&b->keys, &iter, from); 2516 2517 while ((k = bch_btree_iter_next_filter(&iter, &b->keys, 2518 bch_ptr_bad))) { 2519 ret = bcache_btree(map_nodes_recurse, k, b, 2520 op, from, fn, flags); 2521 from = NULL; 2522 2523 if (ret != MAP_CONTINUE) 2524 return ret; 2525 } 2526 } 2527 2528 if (!b->level || flags == MAP_ALL_NODES) 2529 ret = fn(op, b); 2530 2531 return ret; 2532 } 2533 2534 int __bch_btree_map_nodes(struct btree_op *op, struct cache_set *c, 2535 struct bkey *from, btree_map_nodes_fn *fn, int flags) 2536 { 2537 return bcache_btree_root(map_nodes_recurse, c, op, from, fn, flags); 2538 } 2539 2540 int bch_btree_map_keys_recurse(struct btree *b, struct btree_op *op, 2541 struct bkey *from, btree_map_keys_fn *fn, 2542 int flags) 2543 { 2544 int ret = MAP_CONTINUE; 2545 struct bkey *k; 2546 struct btree_iter iter; 2547 2548 bch_btree_iter_init(&b->keys, &iter, from); 2549 2550 while ((k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad))) { 2551 ret = !b->level 2552 ? fn(op, b, k) 2553 : bcache_btree(map_keys_recurse, k, 2554 b, op, from, fn, flags); 2555 from = NULL; 2556 2557 if (ret != MAP_CONTINUE) 2558 return ret; 2559 } 2560 2561 if (!b->level && (flags & MAP_END_KEY)) 2562 ret = fn(op, b, &KEY(KEY_INODE(&b->key), 2563 KEY_OFFSET(&b->key), 0)); 2564 2565 return ret; 2566 } 2567 2568 int bch_btree_map_keys(struct btree_op *op, struct cache_set *c, 2569 struct bkey *from, btree_map_keys_fn *fn, int flags) 2570 { 2571 return bcache_btree_root(map_keys_recurse, c, op, from, fn, flags); 2572 } 2573 2574 /* Keybuf code */ 2575 2576 static inline int keybuf_cmp(struct keybuf_key *l, struct keybuf_key *r) 2577 { 2578 /* Overlapping keys compare equal */ 2579 if (bkey_cmp(&l->key, &START_KEY(&r->key)) <= 0) 2580 return -1; 2581 if (bkey_cmp(&START_KEY(&l->key), &r->key) >= 0) 2582 return 1; 2583 return 0; 2584 } 2585 2586 static inline int keybuf_nonoverlapping_cmp(struct keybuf_key *l, 2587 struct keybuf_key *r) 2588 { 2589 return clamp_t(int64_t, bkey_cmp(&l->key, &r->key), -1, 1); 2590 } 2591 2592 struct refill { 2593 struct btree_op op; 2594 unsigned int nr_found; 2595 struct keybuf *buf; 2596 struct bkey *end; 2597 keybuf_pred_fn *pred; 2598 }; 2599 2600 static int refill_keybuf_fn(struct btree_op *op, struct btree *b, 2601 struct bkey *k) 2602 { 2603 struct refill *refill = container_of(op, struct refill, op); 2604 struct keybuf *buf = refill->buf; 2605 int ret = MAP_CONTINUE; 2606 2607 if (bkey_cmp(k, refill->end) > 0) { 2608 ret = MAP_DONE; 2609 goto out; 2610 } 2611 2612 if (!KEY_SIZE(k)) /* end key */ 2613 goto out; 2614 2615 if (refill->pred(buf, k)) { 2616 struct keybuf_key *w; 2617 2618 spin_lock(&buf->lock); 2619 2620 w = array_alloc(&buf->freelist); 2621 if (!w) { 2622 spin_unlock(&buf->lock); 2623 return MAP_DONE; 2624 } 2625 2626 w->private = NULL; 2627 bkey_copy(&w->key, k); 2628 2629 if (RB_INSERT(&buf->keys, w, node, keybuf_cmp)) 2630 array_free(&buf->freelist, w); 2631 else 2632 refill->nr_found++; 2633 2634 if (array_freelist_empty(&buf->freelist)) 2635 ret = MAP_DONE; 2636 2637 spin_unlock(&buf->lock); 2638 } 2639 out: 2640 buf->last_scanned = *k; 2641 return ret; 2642 } 2643 2644 void bch_refill_keybuf(struct cache_set *c, struct keybuf *buf, 2645 struct bkey *end, keybuf_pred_fn *pred) 2646 { 2647 struct bkey start = buf->last_scanned; 2648 struct refill refill; 2649 2650 cond_resched(); 2651 2652 bch_btree_op_init(&refill.op, -1); 2653 refill.nr_found = 0; 2654 refill.buf = buf; 2655 refill.end = end; 2656 refill.pred = pred; 2657 2658 bch_btree_map_keys(&refill.op, c, &buf->last_scanned, 2659 refill_keybuf_fn, MAP_END_KEY); 2660 2661 trace_bcache_keyscan(refill.nr_found, 2662 KEY_INODE(&start), KEY_OFFSET(&start), 2663 KEY_INODE(&buf->last_scanned), 2664 KEY_OFFSET(&buf->last_scanned)); 2665 2666 spin_lock(&buf->lock); 2667 2668 if (!RB_EMPTY_ROOT(&buf->keys)) { 2669 struct keybuf_key *w; 2670 2671 w = RB_FIRST(&buf->keys, struct keybuf_key, node); 2672 buf->start = START_KEY(&w->key); 2673 2674 w = RB_LAST(&buf->keys, struct keybuf_key, node); 2675 buf->end = w->key; 2676 } else { 2677 buf->start = MAX_KEY; 2678 buf->end = MAX_KEY; 2679 } 2680 2681 spin_unlock(&buf->lock); 2682 } 2683 2684 static void __bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w) 2685 { 2686 rb_erase(&w->node, &buf->keys); 2687 array_free(&buf->freelist, w); 2688 } 2689 2690 void bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w) 2691 { 2692 spin_lock(&buf->lock); 2693 __bch_keybuf_del(buf, w); 2694 spin_unlock(&buf->lock); 2695 } 2696 2697 bool bch_keybuf_check_overlapping(struct keybuf *buf, struct bkey *start, 2698 struct bkey *end) 2699 { 2700 bool ret = false; 2701 struct keybuf_key *p, *w, s; 2702 2703 s.key = *start; 2704 2705 if (bkey_cmp(end, &buf->start) <= 0 || 2706 bkey_cmp(start, &buf->end) >= 0) 2707 return false; 2708 2709 spin_lock(&buf->lock); 2710 w = RB_GREATER(&buf->keys, s, node, keybuf_nonoverlapping_cmp); 2711 2712 while (w && bkey_cmp(&START_KEY(&w->key), end) < 0) { 2713 p = w; 2714 w = RB_NEXT(w, node); 2715 2716 if (p->private) 2717 ret = true; 2718 else 2719 __bch_keybuf_del(buf, p); 2720 } 2721 2722 spin_unlock(&buf->lock); 2723 return ret; 2724 } 2725 2726 struct keybuf_key *bch_keybuf_next(struct keybuf *buf) 2727 { 2728 struct keybuf_key *w; 2729 2730 spin_lock(&buf->lock); 2731 2732 w = RB_FIRST(&buf->keys, struct keybuf_key, node); 2733 2734 while (w && w->private) 2735 w = RB_NEXT(w, node); 2736 2737 if (w) 2738 w->private = ERR_PTR(-EINTR); 2739 2740 spin_unlock(&buf->lock); 2741 return w; 2742 } 2743 2744 struct keybuf_key *bch_keybuf_next_rescan(struct cache_set *c, 2745 struct keybuf *buf, 2746 struct bkey *end, 2747 keybuf_pred_fn *pred) 2748 { 2749 struct keybuf_key *ret; 2750 2751 while (1) { 2752 ret = bch_keybuf_next(buf); 2753 if (ret) 2754 break; 2755 2756 if (bkey_cmp(&buf->last_scanned, end) >= 0) { 2757 pr_debug("scan finished\n"); 2758 break; 2759 } 2760 2761 bch_refill_keybuf(c, buf, end, pred); 2762 } 2763 2764 return ret; 2765 } 2766 2767 void bch_keybuf_init(struct keybuf *buf) 2768 { 2769 buf->last_scanned = MAX_KEY; 2770 buf->keys = RB_ROOT; 2771 2772 spin_lock_init(&buf->lock); 2773 array_allocator_init(&buf->freelist); 2774 } 2775