xref: /openbmc/linux/drivers/md/bcache/btree.c (revision 87fcfa7b7fe6bf819033fe827a27f710e38639b5)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com>
4  *
5  * Uses a block device as cache for other block devices; optimized for SSDs.
6  * All allocation is done in buckets, which should match the erase block size
7  * of the device.
8  *
9  * Buckets containing cached data are kept on a heap sorted by priority;
10  * bucket priority is increased on cache hit, and periodically all the buckets
11  * on the heap have their priority scaled down. This currently is just used as
12  * an LRU but in the future should allow for more intelligent heuristics.
13  *
14  * Buckets have an 8 bit counter; freeing is accomplished by incrementing the
15  * counter. Garbage collection is used to remove stale pointers.
16  *
17  * Indexing is done via a btree; nodes are not necessarily fully sorted, rather
18  * as keys are inserted we only sort the pages that have not yet been written.
19  * When garbage collection is run, we resort the entire node.
20  *
21  * All configuration is done via sysfs; see Documentation/admin-guide/bcache.rst.
22  */
23 
24 #include "bcache.h"
25 #include "btree.h"
26 #include "debug.h"
27 #include "extents.h"
28 
29 #include <linux/slab.h>
30 #include <linux/bitops.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/prefetch.h>
34 #include <linux/random.h>
35 #include <linux/rcupdate.h>
36 #include <linux/sched/clock.h>
37 #include <linux/sched/signal.h>
38 #include <linux/rculist.h>
39 #include <linux/delay.h>
40 #include <trace/events/bcache.h>
41 
42 /*
43  * Todo:
44  * register_bcache: Return errors out to userspace correctly
45  *
46  * Writeback: don't undirty key until after a cache flush
47  *
48  * Create an iterator for key pointers
49  *
50  * On btree write error, mark bucket such that it won't be freed from the cache
51  *
52  * Journalling:
53  *   Check for bad keys in replay
54  *   Propagate barriers
55  *   Refcount journal entries in journal_replay
56  *
57  * Garbage collection:
58  *   Finish incremental gc
59  *   Gc should free old UUIDs, data for invalid UUIDs
60  *
61  * Provide a way to list backing device UUIDs we have data cached for, and
62  * probably how long it's been since we've seen them, and a way to invalidate
63  * dirty data for devices that will never be attached again
64  *
65  * Keep 1 min/5 min/15 min statistics of how busy a block device has been, so
66  * that based on that and how much dirty data we have we can keep writeback
67  * from being starved
68  *
69  * Add a tracepoint or somesuch to watch for writeback starvation
70  *
71  * When btree depth > 1 and splitting an interior node, we have to make sure
72  * alloc_bucket() cannot fail. This should be true but is not completely
73  * obvious.
74  *
75  * Plugging?
76  *
77  * If data write is less than hard sector size of ssd, round up offset in open
78  * bucket to the next whole sector
79  *
80  * Superblock needs to be fleshed out for multiple cache devices
81  *
82  * Add a sysfs tunable for the number of writeback IOs in flight
83  *
84  * Add a sysfs tunable for the number of open data buckets
85  *
86  * IO tracking: Can we track when one process is doing io on behalf of another?
87  * IO tracking: Don't use just an average, weigh more recent stuff higher
88  *
89  * Test module load/unload
90  */
91 
92 #define MAX_NEED_GC		64
93 #define MAX_SAVE_PRIO		72
94 #define MAX_GC_TIMES		100
95 #define MIN_GC_NODES		100
96 #define GC_SLEEP_MS		100
97 
98 #define PTR_DIRTY_BIT		(((uint64_t) 1 << 36))
99 
100 #define PTR_HASH(c, k)							\
101 	(((k)->ptr[0] >> c->bucket_bits) | PTR_GEN(k, 0))
102 
103 #define insert_lock(s, b)	((b)->level <= (s)->lock)
104 
105 /*
106  * These macros are for recursing down the btree - they handle the details of
107  * locking and looking up nodes in the cache for you. They're best treated as
108  * mere syntax when reading code that uses them.
109  *
110  * op->lock determines whether we take a read or a write lock at a given depth.
111  * If you've got a read lock and find that you need a write lock (i.e. you're
112  * going to have to split), set op->lock and return -EINTR; btree_root() will
113  * call you again and you'll have the correct lock.
114  */
115 
116 /**
117  * btree - recurse down the btree on a specified key
118  * @fn:		function to call, which will be passed the child node
119  * @key:	key to recurse on
120  * @b:		parent btree node
121  * @op:		pointer to struct btree_op
122  */
123 #define btree(fn, key, b, op, ...)					\
124 ({									\
125 	int _r, l = (b)->level - 1;					\
126 	bool _w = l <= (op)->lock;					\
127 	struct btree *_child = bch_btree_node_get((b)->c, op, key, l,	\
128 						  _w, b);		\
129 	if (!IS_ERR(_child)) {						\
130 		_r = bch_btree_ ## fn(_child, op, ##__VA_ARGS__);	\
131 		rw_unlock(_w, _child);					\
132 	} else								\
133 		_r = PTR_ERR(_child);					\
134 	_r;								\
135 })
136 
137 /**
138  * btree_root - call a function on the root of the btree
139  * @fn:		function to call, which will be passed the child node
140  * @c:		cache set
141  * @op:		pointer to struct btree_op
142  */
143 #define btree_root(fn, c, op, ...)					\
144 ({									\
145 	int _r = -EINTR;						\
146 	do {								\
147 		struct btree *_b = (c)->root;				\
148 		bool _w = insert_lock(op, _b);				\
149 		rw_lock(_w, _b, _b->level);				\
150 		if (_b == (c)->root &&					\
151 		    _w == insert_lock(op, _b)) {			\
152 			_r = bch_btree_ ## fn(_b, op, ##__VA_ARGS__);	\
153 		}							\
154 		rw_unlock(_w, _b);					\
155 		bch_cannibalize_unlock(c);				\
156 		if (_r == -EINTR)					\
157 			schedule();					\
158 	} while (_r == -EINTR);						\
159 									\
160 	finish_wait(&(c)->btree_cache_wait, &(op)->wait);		\
161 	_r;								\
162 })
163 
164 static inline struct bset *write_block(struct btree *b)
165 {
166 	return ((void *) btree_bset_first(b)) + b->written * block_bytes(b->c);
167 }
168 
169 static void bch_btree_init_next(struct btree *b)
170 {
171 	/* If not a leaf node, always sort */
172 	if (b->level && b->keys.nsets)
173 		bch_btree_sort(&b->keys, &b->c->sort);
174 	else
175 		bch_btree_sort_lazy(&b->keys, &b->c->sort);
176 
177 	if (b->written < btree_blocks(b))
178 		bch_bset_init_next(&b->keys, write_block(b),
179 				   bset_magic(&b->c->sb));
180 
181 }
182 
183 /* Btree key manipulation */
184 
185 void bkey_put(struct cache_set *c, struct bkey *k)
186 {
187 	unsigned int i;
188 
189 	for (i = 0; i < KEY_PTRS(k); i++)
190 		if (ptr_available(c, k, i))
191 			atomic_dec_bug(&PTR_BUCKET(c, k, i)->pin);
192 }
193 
194 /* Btree IO */
195 
196 static uint64_t btree_csum_set(struct btree *b, struct bset *i)
197 {
198 	uint64_t crc = b->key.ptr[0];
199 	void *data = (void *) i + 8, *end = bset_bkey_last(i);
200 
201 	crc = bch_crc64_update(crc, data, end - data);
202 	return crc ^ 0xffffffffffffffffULL;
203 }
204 
205 void bch_btree_node_read_done(struct btree *b)
206 {
207 	const char *err = "bad btree header";
208 	struct bset *i = btree_bset_first(b);
209 	struct btree_iter *iter;
210 
211 	/*
212 	 * c->fill_iter can allocate an iterator with more memory space
213 	 * than static MAX_BSETS.
214 	 * See the comment arount cache_set->fill_iter.
215 	 */
216 	iter = mempool_alloc(&b->c->fill_iter, GFP_NOIO);
217 	iter->size = b->c->sb.bucket_size / b->c->sb.block_size;
218 	iter->used = 0;
219 
220 #ifdef CONFIG_BCACHE_DEBUG
221 	iter->b = &b->keys;
222 #endif
223 
224 	if (!i->seq)
225 		goto err;
226 
227 	for (;
228 	     b->written < btree_blocks(b) && i->seq == b->keys.set[0].data->seq;
229 	     i = write_block(b)) {
230 		err = "unsupported bset version";
231 		if (i->version > BCACHE_BSET_VERSION)
232 			goto err;
233 
234 		err = "bad btree header";
235 		if (b->written + set_blocks(i, block_bytes(b->c)) >
236 		    btree_blocks(b))
237 			goto err;
238 
239 		err = "bad magic";
240 		if (i->magic != bset_magic(&b->c->sb))
241 			goto err;
242 
243 		err = "bad checksum";
244 		switch (i->version) {
245 		case 0:
246 			if (i->csum != csum_set(i))
247 				goto err;
248 			break;
249 		case BCACHE_BSET_VERSION:
250 			if (i->csum != btree_csum_set(b, i))
251 				goto err;
252 			break;
253 		}
254 
255 		err = "empty set";
256 		if (i != b->keys.set[0].data && !i->keys)
257 			goto err;
258 
259 		bch_btree_iter_push(iter, i->start, bset_bkey_last(i));
260 
261 		b->written += set_blocks(i, block_bytes(b->c));
262 	}
263 
264 	err = "corrupted btree";
265 	for (i = write_block(b);
266 	     bset_sector_offset(&b->keys, i) < KEY_SIZE(&b->key);
267 	     i = ((void *) i) + block_bytes(b->c))
268 		if (i->seq == b->keys.set[0].data->seq)
269 			goto err;
270 
271 	bch_btree_sort_and_fix_extents(&b->keys, iter, &b->c->sort);
272 
273 	i = b->keys.set[0].data;
274 	err = "short btree key";
275 	if (b->keys.set[0].size &&
276 	    bkey_cmp(&b->key, &b->keys.set[0].end) < 0)
277 		goto err;
278 
279 	if (b->written < btree_blocks(b))
280 		bch_bset_init_next(&b->keys, write_block(b),
281 				   bset_magic(&b->c->sb));
282 out:
283 	mempool_free(iter, &b->c->fill_iter);
284 	return;
285 err:
286 	set_btree_node_io_error(b);
287 	bch_cache_set_error(b->c, "%s at bucket %zu, block %u, %u keys",
288 			    err, PTR_BUCKET_NR(b->c, &b->key, 0),
289 			    bset_block_offset(b, i), i->keys);
290 	goto out;
291 }
292 
293 static void btree_node_read_endio(struct bio *bio)
294 {
295 	struct closure *cl = bio->bi_private;
296 
297 	closure_put(cl);
298 }
299 
300 static void bch_btree_node_read(struct btree *b)
301 {
302 	uint64_t start_time = local_clock();
303 	struct closure cl;
304 	struct bio *bio;
305 
306 	trace_bcache_btree_read(b);
307 
308 	closure_init_stack(&cl);
309 
310 	bio = bch_bbio_alloc(b->c);
311 	bio->bi_iter.bi_size = KEY_SIZE(&b->key) << 9;
312 	bio->bi_end_io	= btree_node_read_endio;
313 	bio->bi_private	= &cl;
314 	bio->bi_opf = REQ_OP_READ | REQ_META;
315 
316 	bch_bio_map(bio, b->keys.set[0].data);
317 
318 	bch_submit_bbio(bio, b->c, &b->key, 0);
319 	closure_sync(&cl);
320 
321 	if (bio->bi_status)
322 		set_btree_node_io_error(b);
323 
324 	bch_bbio_free(bio, b->c);
325 
326 	if (btree_node_io_error(b))
327 		goto err;
328 
329 	bch_btree_node_read_done(b);
330 	bch_time_stats_update(&b->c->btree_read_time, start_time);
331 
332 	return;
333 err:
334 	bch_cache_set_error(b->c, "io error reading bucket %zu",
335 			    PTR_BUCKET_NR(b->c, &b->key, 0));
336 }
337 
338 static void btree_complete_write(struct btree *b, struct btree_write *w)
339 {
340 	if (w->prio_blocked &&
341 	    !atomic_sub_return(w->prio_blocked, &b->c->prio_blocked))
342 		wake_up_allocators(b->c);
343 
344 	if (w->journal) {
345 		atomic_dec_bug(w->journal);
346 		__closure_wake_up(&b->c->journal.wait);
347 	}
348 
349 	w->prio_blocked	= 0;
350 	w->journal	= NULL;
351 }
352 
353 static void btree_node_write_unlock(struct closure *cl)
354 {
355 	struct btree *b = container_of(cl, struct btree, io);
356 
357 	up(&b->io_mutex);
358 }
359 
360 static void __btree_node_write_done(struct closure *cl)
361 {
362 	struct btree *b = container_of(cl, struct btree, io);
363 	struct btree_write *w = btree_prev_write(b);
364 
365 	bch_bbio_free(b->bio, b->c);
366 	b->bio = NULL;
367 	btree_complete_write(b, w);
368 
369 	if (btree_node_dirty(b))
370 		schedule_delayed_work(&b->work, 30 * HZ);
371 
372 	closure_return_with_destructor(cl, btree_node_write_unlock);
373 }
374 
375 static void btree_node_write_done(struct closure *cl)
376 {
377 	struct btree *b = container_of(cl, struct btree, io);
378 
379 	bio_free_pages(b->bio);
380 	__btree_node_write_done(cl);
381 }
382 
383 static void btree_node_write_endio(struct bio *bio)
384 {
385 	struct closure *cl = bio->bi_private;
386 	struct btree *b = container_of(cl, struct btree, io);
387 
388 	if (bio->bi_status)
389 		set_btree_node_io_error(b);
390 
391 	bch_bbio_count_io_errors(b->c, bio, bio->bi_status, "writing btree");
392 	closure_put(cl);
393 }
394 
395 static void do_btree_node_write(struct btree *b)
396 {
397 	struct closure *cl = &b->io;
398 	struct bset *i = btree_bset_last(b);
399 	BKEY_PADDED(key) k;
400 
401 	i->version	= BCACHE_BSET_VERSION;
402 	i->csum		= btree_csum_set(b, i);
403 
404 	BUG_ON(b->bio);
405 	b->bio = bch_bbio_alloc(b->c);
406 
407 	b->bio->bi_end_io	= btree_node_write_endio;
408 	b->bio->bi_private	= cl;
409 	b->bio->bi_iter.bi_size	= roundup(set_bytes(i), block_bytes(b->c));
410 	b->bio->bi_opf		= REQ_OP_WRITE | REQ_META | REQ_FUA;
411 	bch_bio_map(b->bio, i);
412 
413 	/*
414 	 * If we're appending to a leaf node, we don't technically need FUA -
415 	 * this write just needs to be persisted before the next journal write,
416 	 * which will be marked FLUSH|FUA.
417 	 *
418 	 * Similarly if we're writing a new btree root - the pointer is going to
419 	 * be in the next journal entry.
420 	 *
421 	 * But if we're writing a new btree node (that isn't a root) or
422 	 * appending to a non leaf btree node, we need either FUA or a flush
423 	 * when we write the parent with the new pointer. FUA is cheaper than a
424 	 * flush, and writes appending to leaf nodes aren't blocking anything so
425 	 * just make all btree node writes FUA to keep things sane.
426 	 */
427 
428 	bkey_copy(&k.key, &b->key);
429 	SET_PTR_OFFSET(&k.key, 0, PTR_OFFSET(&k.key, 0) +
430 		       bset_sector_offset(&b->keys, i));
431 
432 	if (!bch_bio_alloc_pages(b->bio, __GFP_NOWARN|GFP_NOWAIT)) {
433 		struct bio_vec *bv;
434 		void *addr = (void *) ((unsigned long) i & ~(PAGE_SIZE - 1));
435 		struct bvec_iter_all iter_all;
436 
437 		bio_for_each_segment_all(bv, b->bio, iter_all) {
438 			memcpy(page_address(bv->bv_page), addr, PAGE_SIZE);
439 			addr += PAGE_SIZE;
440 		}
441 
442 		bch_submit_bbio(b->bio, b->c, &k.key, 0);
443 
444 		continue_at(cl, btree_node_write_done, NULL);
445 	} else {
446 		/*
447 		 * No problem for multipage bvec since the bio is
448 		 * just allocated
449 		 */
450 		b->bio->bi_vcnt = 0;
451 		bch_bio_map(b->bio, i);
452 
453 		bch_submit_bbio(b->bio, b->c, &k.key, 0);
454 
455 		closure_sync(cl);
456 		continue_at_nobarrier(cl, __btree_node_write_done, NULL);
457 	}
458 }
459 
460 void __bch_btree_node_write(struct btree *b, struct closure *parent)
461 {
462 	struct bset *i = btree_bset_last(b);
463 
464 	lockdep_assert_held(&b->write_lock);
465 
466 	trace_bcache_btree_write(b);
467 
468 	BUG_ON(current->bio_list);
469 	BUG_ON(b->written >= btree_blocks(b));
470 	BUG_ON(b->written && !i->keys);
471 	BUG_ON(btree_bset_first(b)->seq != i->seq);
472 	bch_check_keys(&b->keys, "writing");
473 
474 	cancel_delayed_work(&b->work);
475 
476 	/* If caller isn't waiting for write, parent refcount is cache set */
477 	down(&b->io_mutex);
478 	closure_init(&b->io, parent ?: &b->c->cl);
479 
480 	clear_bit(BTREE_NODE_dirty,	 &b->flags);
481 	change_bit(BTREE_NODE_write_idx, &b->flags);
482 
483 	do_btree_node_write(b);
484 
485 	atomic_long_add(set_blocks(i, block_bytes(b->c)) * b->c->sb.block_size,
486 			&PTR_CACHE(b->c, &b->key, 0)->btree_sectors_written);
487 
488 	b->written += set_blocks(i, block_bytes(b->c));
489 }
490 
491 void bch_btree_node_write(struct btree *b, struct closure *parent)
492 {
493 	unsigned int nsets = b->keys.nsets;
494 
495 	lockdep_assert_held(&b->lock);
496 
497 	__bch_btree_node_write(b, parent);
498 
499 	/*
500 	 * do verify if there was more than one set initially (i.e. we did a
501 	 * sort) and we sorted down to a single set:
502 	 */
503 	if (nsets && !b->keys.nsets)
504 		bch_btree_verify(b);
505 
506 	bch_btree_init_next(b);
507 }
508 
509 static void bch_btree_node_write_sync(struct btree *b)
510 {
511 	struct closure cl;
512 
513 	closure_init_stack(&cl);
514 
515 	mutex_lock(&b->write_lock);
516 	bch_btree_node_write(b, &cl);
517 	mutex_unlock(&b->write_lock);
518 
519 	closure_sync(&cl);
520 }
521 
522 static void btree_node_write_work(struct work_struct *w)
523 {
524 	struct btree *b = container_of(to_delayed_work(w), struct btree, work);
525 
526 	mutex_lock(&b->write_lock);
527 	if (btree_node_dirty(b))
528 		__bch_btree_node_write(b, NULL);
529 	mutex_unlock(&b->write_lock);
530 }
531 
532 static void bch_btree_leaf_dirty(struct btree *b, atomic_t *journal_ref)
533 {
534 	struct bset *i = btree_bset_last(b);
535 	struct btree_write *w = btree_current_write(b);
536 
537 	lockdep_assert_held(&b->write_lock);
538 
539 	BUG_ON(!b->written);
540 	BUG_ON(!i->keys);
541 
542 	if (!btree_node_dirty(b))
543 		schedule_delayed_work(&b->work, 30 * HZ);
544 
545 	set_btree_node_dirty(b);
546 
547 	/*
548 	 * w->journal is always the oldest journal pin of all bkeys
549 	 * in the leaf node, to make sure the oldest jset seq won't
550 	 * be increased before this btree node is flushed.
551 	 */
552 	if (journal_ref) {
553 		if (w->journal &&
554 		    journal_pin_cmp(b->c, w->journal, journal_ref)) {
555 			atomic_dec_bug(w->journal);
556 			w->journal = NULL;
557 		}
558 
559 		if (!w->journal) {
560 			w->journal = journal_ref;
561 			atomic_inc(w->journal);
562 		}
563 	}
564 
565 	/* Force write if set is too big */
566 	if (set_bytes(i) > PAGE_SIZE - 48 &&
567 	    !current->bio_list)
568 		bch_btree_node_write(b, NULL);
569 }
570 
571 /*
572  * Btree in memory cache - allocation/freeing
573  * mca -> memory cache
574  */
575 
576 #define mca_reserve(c)	(((c->root && c->root->level)		\
577 			  ? c->root->level : 1) * 8 + 16)
578 #define mca_can_free(c)						\
579 	max_t(int, 0, c->btree_cache_used - mca_reserve(c))
580 
581 static void mca_data_free(struct btree *b)
582 {
583 	BUG_ON(b->io_mutex.count != 1);
584 
585 	bch_btree_keys_free(&b->keys);
586 
587 	b->c->btree_cache_used--;
588 	list_move(&b->list, &b->c->btree_cache_freed);
589 }
590 
591 static void mca_bucket_free(struct btree *b)
592 {
593 	BUG_ON(btree_node_dirty(b));
594 
595 	b->key.ptr[0] = 0;
596 	hlist_del_init_rcu(&b->hash);
597 	list_move(&b->list, &b->c->btree_cache_freeable);
598 }
599 
600 static unsigned int btree_order(struct bkey *k)
601 {
602 	return ilog2(KEY_SIZE(k) / PAGE_SECTORS ?: 1);
603 }
604 
605 static void mca_data_alloc(struct btree *b, struct bkey *k, gfp_t gfp)
606 {
607 	if (!bch_btree_keys_alloc(&b->keys,
608 				  max_t(unsigned int,
609 					ilog2(b->c->btree_pages),
610 					btree_order(k)),
611 				  gfp)) {
612 		b->c->btree_cache_used++;
613 		list_move(&b->list, &b->c->btree_cache);
614 	} else {
615 		list_move(&b->list, &b->c->btree_cache_freed);
616 	}
617 }
618 
619 static struct btree *mca_bucket_alloc(struct cache_set *c,
620 				      struct bkey *k, gfp_t gfp)
621 {
622 	/*
623 	 * kzalloc() is necessary here for initialization,
624 	 * see code comments in bch_btree_keys_init().
625 	 */
626 	struct btree *b = kzalloc(sizeof(struct btree), gfp);
627 
628 	if (!b)
629 		return NULL;
630 
631 	init_rwsem(&b->lock);
632 	lockdep_set_novalidate_class(&b->lock);
633 	mutex_init(&b->write_lock);
634 	lockdep_set_novalidate_class(&b->write_lock);
635 	INIT_LIST_HEAD(&b->list);
636 	INIT_DELAYED_WORK(&b->work, btree_node_write_work);
637 	b->c = c;
638 	sema_init(&b->io_mutex, 1);
639 
640 	mca_data_alloc(b, k, gfp);
641 	return b;
642 }
643 
644 static int mca_reap(struct btree *b, unsigned int min_order, bool flush)
645 {
646 	struct closure cl;
647 
648 	closure_init_stack(&cl);
649 	lockdep_assert_held(&b->c->bucket_lock);
650 
651 	if (!down_write_trylock(&b->lock))
652 		return -ENOMEM;
653 
654 	BUG_ON(btree_node_dirty(b) && !b->keys.set[0].data);
655 
656 	if (b->keys.page_order < min_order)
657 		goto out_unlock;
658 
659 	if (!flush) {
660 		if (btree_node_dirty(b))
661 			goto out_unlock;
662 
663 		if (down_trylock(&b->io_mutex))
664 			goto out_unlock;
665 		up(&b->io_mutex);
666 	}
667 
668 retry:
669 	/*
670 	 * BTREE_NODE_dirty might be cleared in btree_flush_btree() by
671 	 * __bch_btree_node_write(). To avoid an extra flush, acquire
672 	 * b->write_lock before checking BTREE_NODE_dirty bit.
673 	 */
674 	mutex_lock(&b->write_lock);
675 	/*
676 	 * If this btree node is selected in btree_flush_write() by journal
677 	 * code, delay and retry until the node is flushed by journal code
678 	 * and BTREE_NODE_journal_flush bit cleared by btree_flush_write().
679 	 */
680 	if (btree_node_journal_flush(b)) {
681 		pr_debug("bnode %p is flushing by journal, retry", b);
682 		mutex_unlock(&b->write_lock);
683 		udelay(1);
684 		goto retry;
685 	}
686 
687 	if (btree_node_dirty(b))
688 		__bch_btree_node_write(b, &cl);
689 	mutex_unlock(&b->write_lock);
690 
691 	closure_sync(&cl);
692 
693 	/* wait for any in flight btree write */
694 	down(&b->io_mutex);
695 	up(&b->io_mutex);
696 
697 	return 0;
698 out_unlock:
699 	rw_unlock(true, b);
700 	return -ENOMEM;
701 }
702 
703 static unsigned long bch_mca_scan(struct shrinker *shrink,
704 				  struct shrink_control *sc)
705 {
706 	struct cache_set *c = container_of(shrink, struct cache_set, shrink);
707 	struct btree *b, *t;
708 	unsigned long i, nr = sc->nr_to_scan;
709 	unsigned long freed = 0;
710 	unsigned int btree_cache_used;
711 
712 	if (c->shrinker_disabled)
713 		return SHRINK_STOP;
714 
715 	if (c->btree_cache_alloc_lock)
716 		return SHRINK_STOP;
717 
718 	/* Return -1 if we can't do anything right now */
719 	if (sc->gfp_mask & __GFP_IO)
720 		mutex_lock(&c->bucket_lock);
721 	else if (!mutex_trylock(&c->bucket_lock))
722 		return -1;
723 
724 	/*
725 	 * It's _really_ critical that we don't free too many btree nodes - we
726 	 * have to always leave ourselves a reserve. The reserve is how we
727 	 * guarantee that allocating memory for a new btree node can always
728 	 * succeed, so that inserting keys into the btree can always succeed and
729 	 * IO can always make forward progress:
730 	 */
731 	nr /= c->btree_pages;
732 	if (nr == 0)
733 		nr = 1;
734 	nr = min_t(unsigned long, nr, mca_can_free(c));
735 
736 	i = 0;
737 	btree_cache_used = c->btree_cache_used;
738 	list_for_each_entry_safe_reverse(b, t, &c->btree_cache_freeable, list) {
739 		if (nr <= 0)
740 			goto out;
741 
742 		if (!mca_reap(b, 0, false)) {
743 			mca_data_free(b);
744 			rw_unlock(true, b);
745 			freed++;
746 		}
747 		nr--;
748 		i++;
749 	}
750 
751 	list_for_each_entry_safe_reverse(b, t, &c->btree_cache, list) {
752 		if (nr <= 0 || i >= btree_cache_used)
753 			goto out;
754 
755 		if (!mca_reap(b, 0, false)) {
756 			mca_bucket_free(b);
757 			mca_data_free(b);
758 			rw_unlock(true, b);
759 			freed++;
760 		}
761 
762 		nr--;
763 		i++;
764 	}
765 out:
766 	mutex_unlock(&c->bucket_lock);
767 	return freed * c->btree_pages;
768 }
769 
770 static unsigned long bch_mca_count(struct shrinker *shrink,
771 				   struct shrink_control *sc)
772 {
773 	struct cache_set *c = container_of(shrink, struct cache_set, shrink);
774 
775 	if (c->shrinker_disabled)
776 		return 0;
777 
778 	if (c->btree_cache_alloc_lock)
779 		return 0;
780 
781 	return mca_can_free(c) * c->btree_pages;
782 }
783 
784 void bch_btree_cache_free(struct cache_set *c)
785 {
786 	struct btree *b;
787 	struct closure cl;
788 
789 	closure_init_stack(&cl);
790 
791 	if (c->shrink.list.next)
792 		unregister_shrinker(&c->shrink);
793 
794 	mutex_lock(&c->bucket_lock);
795 
796 #ifdef CONFIG_BCACHE_DEBUG
797 	if (c->verify_data)
798 		list_move(&c->verify_data->list, &c->btree_cache);
799 
800 	free_pages((unsigned long) c->verify_ondisk, ilog2(bucket_pages(c)));
801 #endif
802 
803 	list_splice(&c->btree_cache_freeable,
804 		    &c->btree_cache);
805 
806 	while (!list_empty(&c->btree_cache)) {
807 		b = list_first_entry(&c->btree_cache, struct btree, list);
808 
809 		/*
810 		 * This function is called by cache_set_free(), no I/O
811 		 * request on cache now, it is unnecessary to acquire
812 		 * b->write_lock before clearing BTREE_NODE_dirty anymore.
813 		 */
814 		if (btree_node_dirty(b)) {
815 			btree_complete_write(b, btree_current_write(b));
816 			clear_bit(BTREE_NODE_dirty, &b->flags);
817 		}
818 		mca_data_free(b);
819 	}
820 
821 	while (!list_empty(&c->btree_cache_freed)) {
822 		b = list_first_entry(&c->btree_cache_freed,
823 				     struct btree, list);
824 		list_del(&b->list);
825 		cancel_delayed_work_sync(&b->work);
826 		kfree(b);
827 	}
828 
829 	mutex_unlock(&c->bucket_lock);
830 }
831 
832 int bch_btree_cache_alloc(struct cache_set *c)
833 {
834 	unsigned int i;
835 
836 	for (i = 0; i < mca_reserve(c); i++)
837 		if (!mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL))
838 			return -ENOMEM;
839 
840 	list_splice_init(&c->btree_cache,
841 			 &c->btree_cache_freeable);
842 
843 #ifdef CONFIG_BCACHE_DEBUG
844 	mutex_init(&c->verify_lock);
845 
846 	c->verify_ondisk = (void *)
847 		__get_free_pages(GFP_KERNEL, ilog2(bucket_pages(c)));
848 
849 	c->verify_data = mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL);
850 
851 	if (c->verify_data &&
852 	    c->verify_data->keys.set->data)
853 		list_del_init(&c->verify_data->list);
854 	else
855 		c->verify_data = NULL;
856 #endif
857 
858 	c->shrink.count_objects = bch_mca_count;
859 	c->shrink.scan_objects = bch_mca_scan;
860 	c->shrink.seeks = 4;
861 	c->shrink.batch = c->btree_pages * 2;
862 
863 	if (register_shrinker(&c->shrink))
864 		pr_warn("bcache: %s: could not register shrinker",
865 				__func__);
866 
867 	return 0;
868 }
869 
870 /* Btree in memory cache - hash table */
871 
872 static struct hlist_head *mca_hash(struct cache_set *c, struct bkey *k)
873 {
874 	return &c->bucket_hash[hash_32(PTR_HASH(c, k), BUCKET_HASH_BITS)];
875 }
876 
877 static struct btree *mca_find(struct cache_set *c, struct bkey *k)
878 {
879 	struct btree *b;
880 
881 	rcu_read_lock();
882 	hlist_for_each_entry_rcu(b, mca_hash(c, k), hash)
883 		if (PTR_HASH(c, &b->key) == PTR_HASH(c, k))
884 			goto out;
885 	b = NULL;
886 out:
887 	rcu_read_unlock();
888 	return b;
889 }
890 
891 static int mca_cannibalize_lock(struct cache_set *c, struct btree_op *op)
892 {
893 	spin_lock(&c->btree_cannibalize_lock);
894 	if (likely(c->btree_cache_alloc_lock == NULL)) {
895 		c->btree_cache_alloc_lock = current;
896 	} else if (c->btree_cache_alloc_lock != current) {
897 		if (op)
898 			prepare_to_wait(&c->btree_cache_wait, &op->wait,
899 					TASK_UNINTERRUPTIBLE);
900 		spin_unlock(&c->btree_cannibalize_lock);
901 		return -EINTR;
902 	}
903 	spin_unlock(&c->btree_cannibalize_lock);
904 
905 	return 0;
906 }
907 
908 static struct btree *mca_cannibalize(struct cache_set *c, struct btree_op *op,
909 				     struct bkey *k)
910 {
911 	struct btree *b;
912 
913 	trace_bcache_btree_cache_cannibalize(c);
914 
915 	if (mca_cannibalize_lock(c, op))
916 		return ERR_PTR(-EINTR);
917 
918 	list_for_each_entry_reverse(b, &c->btree_cache, list)
919 		if (!mca_reap(b, btree_order(k), false))
920 			return b;
921 
922 	list_for_each_entry_reverse(b, &c->btree_cache, list)
923 		if (!mca_reap(b, btree_order(k), true))
924 			return b;
925 
926 	WARN(1, "btree cache cannibalize failed\n");
927 	return ERR_PTR(-ENOMEM);
928 }
929 
930 /*
931  * We can only have one thread cannibalizing other cached btree nodes at a time,
932  * or we'll deadlock. We use an open coded mutex to ensure that, which a
933  * cannibalize_bucket() will take. This means every time we unlock the root of
934  * the btree, we need to release this lock if we have it held.
935  */
936 static void bch_cannibalize_unlock(struct cache_set *c)
937 {
938 	spin_lock(&c->btree_cannibalize_lock);
939 	if (c->btree_cache_alloc_lock == current) {
940 		c->btree_cache_alloc_lock = NULL;
941 		wake_up(&c->btree_cache_wait);
942 	}
943 	spin_unlock(&c->btree_cannibalize_lock);
944 }
945 
946 static struct btree *mca_alloc(struct cache_set *c, struct btree_op *op,
947 			       struct bkey *k, int level)
948 {
949 	struct btree *b;
950 
951 	BUG_ON(current->bio_list);
952 
953 	lockdep_assert_held(&c->bucket_lock);
954 
955 	if (mca_find(c, k))
956 		return NULL;
957 
958 	/* btree_free() doesn't free memory; it sticks the node on the end of
959 	 * the list. Check if there's any freed nodes there:
960 	 */
961 	list_for_each_entry(b, &c->btree_cache_freeable, list)
962 		if (!mca_reap(b, btree_order(k), false))
963 			goto out;
964 
965 	/* We never free struct btree itself, just the memory that holds the on
966 	 * disk node. Check the freed list before allocating a new one:
967 	 */
968 	list_for_each_entry(b, &c->btree_cache_freed, list)
969 		if (!mca_reap(b, 0, false)) {
970 			mca_data_alloc(b, k, __GFP_NOWARN|GFP_NOIO);
971 			if (!b->keys.set[0].data)
972 				goto err;
973 			else
974 				goto out;
975 		}
976 
977 	b = mca_bucket_alloc(c, k, __GFP_NOWARN|GFP_NOIO);
978 	if (!b)
979 		goto err;
980 
981 	BUG_ON(!down_write_trylock(&b->lock));
982 	if (!b->keys.set->data)
983 		goto err;
984 out:
985 	BUG_ON(b->io_mutex.count != 1);
986 
987 	bkey_copy(&b->key, k);
988 	list_move(&b->list, &c->btree_cache);
989 	hlist_del_init_rcu(&b->hash);
990 	hlist_add_head_rcu(&b->hash, mca_hash(c, k));
991 
992 	lock_set_subclass(&b->lock.dep_map, level + 1, _THIS_IP_);
993 	b->parent	= (void *) ~0UL;
994 	b->flags	= 0;
995 	b->written	= 0;
996 	b->level	= level;
997 
998 	if (!b->level)
999 		bch_btree_keys_init(&b->keys, &bch_extent_keys_ops,
1000 				    &b->c->expensive_debug_checks);
1001 	else
1002 		bch_btree_keys_init(&b->keys, &bch_btree_keys_ops,
1003 				    &b->c->expensive_debug_checks);
1004 
1005 	return b;
1006 err:
1007 	if (b)
1008 		rw_unlock(true, b);
1009 
1010 	b = mca_cannibalize(c, op, k);
1011 	if (!IS_ERR(b))
1012 		goto out;
1013 
1014 	return b;
1015 }
1016 
1017 /*
1018  * bch_btree_node_get - find a btree node in the cache and lock it, reading it
1019  * in from disk if necessary.
1020  *
1021  * If IO is necessary and running under generic_make_request, returns -EAGAIN.
1022  *
1023  * The btree node will have either a read or a write lock held, depending on
1024  * level and op->lock.
1025  */
1026 struct btree *bch_btree_node_get(struct cache_set *c, struct btree_op *op,
1027 				 struct bkey *k, int level, bool write,
1028 				 struct btree *parent)
1029 {
1030 	int i = 0;
1031 	struct btree *b;
1032 
1033 	BUG_ON(level < 0);
1034 retry:
1035 	b = mca_find(c, k);
1036 
1037 	if (!b) {
1038 		if (current->bio_list)
1039 			return ERR_PTR(-EAGAIN);
1040 
1041 		mutex_lock(&c->bucket_lock);
1042 		b = mca_alloc(c, op, k, level);
1043 		mutex_unlock(&c->bucket_lock);
1044 
1045 		if (!b)
1046 			goto retry;
1047 		if (IS_ERR(b))
1048 			return b;
1049 
1050 		bch_btree_node_read(b);
1051 
1052 		if (!write)
1053 			downgrade_write(&b->lock);
1054 	} else {
1055 		rw_lock(write, b, level);
1056 		if (PTR_HASH(c, &b->key) != PTR_HASH(c, k)) {
1057 			rw_unlock(write, b);
1058 			goto retry;
1059 		}
1060 		BUG_ON(b->level != level);
1061 	}
1062 
1063 	if (btree_node_io_error(b)) {
1064 		rw_unlock(write, b);
1065 		return ERR_PTR(-EIO);
1066 	}
1067 
1068 	BUG_ON(!b->written);
1069 
1070 	b->parent = parent;
1071 
1072 	for (; i <= b->keys.nsets && b->keys.set[i].size; i++) {
1073 		prefetch(b->keys.set[i].tree);
1074 		prefetch(b->keys.set[i].data);
1075 	}
1076 
1077 	for (; i <= b->keys.nsets; i++)
1078 		prefetch(b->keys.set[i].data);
1079 
1080 	return b;
1081 }
1082 
1083 static void btree_node_prefetch(struct btree *parent, struct bkey *k)
1084 {
1085 	struct btree *b;
1086 
1087 	mutex_lock(&parent->c->bucket_lock);
1088 	b = mca_alloc(parent->c, NULL, k, parent->level - 1);
1089 	mutex_unlock(&parent->c->bucket_lock);
1090 
1091 	if (!IS_ERR_OR_NULL(b)) {
1092 		b->parent = parent;
1093 		bch_btree_node_read(b);
1094 		rw_unlock(true, b);
1095 	}
1096 }
1097 
1098 /* Btree alloc */
1099 
1100 static void btree_node_free(struct btree *b)
1101 {
1102 	trace_bcache_btree_node_free(b);
1103 
1104 	BUG_ON(b == b->c->root);
1105 
1106 retry:
1107 	mutex_lock(&b->write_lock);
1108 	/*
1109 	 * If the btree node is selected and flushing in btree_flush_write(),
1110 	 * delay and retry until the BTREE_NODE_journal_flush bit cleared,
1111 	 * then it is safe to free the btree node here. Otherwise this btree
1112 	 * node will be in race condition.
1113 	 */
1114 	if (btree_node_journal_flush(b)) {
1115 		mutex_unlock(&b->write_lock);
1116 		pr_debug("bnode %p journal_flush set, retry", b);
1117 		udelay(1);
1118 		goto retry;
1119 	}
1120 
1121 	if (btree_node_dirty(b)) {
1122 		btree_complete_write(b, btree_current_write(b));
1123 		clear_bit(BTREE_NODE_dirty, &b->flags);
1124 	}
1125 
1126 	mutex_unlock(&b->write_lock);
1127 
1128 	cancel_delayed_work(&b->work);
1129 
1130 	mutex_lock(&b->c->bucket_lock);
1131 	bch_bucket_free(b->c, &b->key);
1132 	mca_bucket_free(b);
1133 	mutex_unlock(&b->c->bucket_lock);
1134 }
1135 
1136 struct btree *__bch_btree_node_alloc(struct cache_set *c, struct btree_op *op,
1137 				     int level, bool wait,
1138 				     struct btree *parent)
1139 {
1140 	BKEY_PADDED(key) k;
1141 	struct btree *b = ERR_PTR(-EAGAIN);
1142 
1143 	mutex_lock(&c->bucket_lock);
1144 retry:
1145 	if (__bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, 1, wait))
1146 		goto err;
1147 
1148 	bkey_put(c, &k.key);
1149 	SET_KEY_SIZE(&k.key, c->btree_pages * PAGE_SECTORS);
1150 
1151 	b = mca_alloc(c, op, &k.key, level);
1152 	if (IS_ERR(b))
1153 		goto err_free;
1154 
1155 	if (!b) {
1156 		cache_bug(c,
1157 			"Tried to allocate bucket that was in btree cache");
1158 		goto retry;
1159 	}
1160 
1161 	b->parent = parent;
1162 	bch_bset_init_next(&b->keys, b->keys.set->data, bset_magic(&b->c->sb));
1163 
1164 	mutex_unlock(&c->bucket_lock);
1165 
1166 	trace_bcache_btree_node_alloc(b);
1167 	return b;
1168 err_free:
1169 	bch_bucket_free(c, &k.key);
1170 err:
1171 	mutex_unlock(&c->bucket_lock);
1172 
1173 	trace_bcache_btree_node_alloc_fail(c);
1174 	return b;
1175 }
1176 
1177 static struct btree *bch_btree_node_alloc(struct cache_set *c,
1178 					  struct btree_op *op, int level,
1179 					  struct btree *parent)
1180 {
1181 	return __bch_btree_node_alloc(c, op, level, op != NULL, parent);
1182 }
1183 
1184 static struct btree *btree_node_alloc_replacement(struct btree *b,
1185 						  struct btree_op *op)
1186 {
1187 	struct btree *n = bch_btree_node_alloc(b->c, op, b->level, b->parent);
1188 
1189 	if (!IS_ERR_OR_NULL(n)) {
1190 		mutex_lock(&n->write_lock);
1191 		bch_btree_sort_into(&b->keys, &n->keys, &b->c->sort);
1192 		bkey_copy_key(&n->key, &b->key);
1193 		mutex_unlock(&n->write_lock);
1194 	}
1195 
1196 	return n;
1197 }
1198 
1199 static void make_btree_freeing_key(struct btree *b, struct bkey *k)
1200 {
1201 	unsigned int i;
1202 
1203 	mutex_lock(&b->c->bucket_lock);
1204 
1205 	atomic_inc(&b->c->prio_blocked);
1206 
1207 	bkey_copy(k, &b->key);
1208 	bkey_copy_key(k, &ZERO_KEY);
1209 
1210 	for (i = 0; i < KEY_PTRS(k); i++)
1211 		SET_PTR_GEN(k, i,
1212 			    bch_inc_gen(PTR_CACHE(b->c, &b->key, i),
1213 					PTR_BUCKET(b->c, &b->key, i)));
1214 
1215 	mutex_unlock(&b->c->bucket_lock);
1216 }
1217 
1218 static int btree_check_reserve(struct btree *b, struct btree_op *op)
1219 {
1220 	struct cache_set *c = b->c;
1221 	struct cache *ca;
1222 	unsigned int i, reserve = (c->root->level - b->level) * 2 + 1;
1223 
1224 	mutex_lock(&c->bucket_lock);
1225 
1226 	for_each_cache(ca, c, i)
1227 		if (fifo_used(&ca->free[RESERVE_BTREE]) < reserve) {
1228 			if (op)
1229 				prepare_to_wait(&c->btree_cache_wait, &op->wait,
1230 						TASK_UNINTERRUPTIBLE);
1231 			mutex_unlock(&c->bucket_lock);
1232 			return -EINTR;
1233 		}
1234 
1235 	mutex_unlock(&c->bucket_lock);
1236 
1237 	return mca_cannibalize_lock(b->c, op);
1238 }
1239 
1240 /* Garbage collection */
1241 
1242 static uint8_t __bch_btree_mark_key(struct cache_set *c, int level,
1243 				    struct bkey *k)
1244 {
1245 	uint8_t stale = 0;
1246 	unsigned int i;
1247 	struct bucket *g;
1248 
1249 	/*
1250 	 * ptr_invalid() can't return true for the keys that mark btree nodes as
1251 	 * freed, but since ptr_bad() returns true we'll never actually use them
1252 	 * for anything and thus we don't want mark their pointers here
1253 	 */
1254 	if (!bkey_cmp(k, &ZERO_KEY))
1255 		return stale;
1256 
1257 	for (i = 0; i < KEY_PTRS(k); i++) {
1258 		if (!ptr_available(c, k, i))
1259 			continue;
1260 
1261 		g = PTR_BUCKET(c, k, i);
1262 
1263 		if (gen_after(g->last_gc, PTR_GEN(k, i)))
1264 			g->last_gc = PTR_GEN(k, i);
1265 
1266 		if (ptr_stale(c, k, i)) {
1267 			stale = max(stale, ptr_stale(c, k, i));
1268 			continue;
1269 		}
1270 
1271 		cache_bug_on(GC_MARK(g) &&
1272 			     (GC_MARK(g) == GC_MARK_METADATA) != (level != 0),
1273 			     c, "inconsistent ptrs: mark = %llu, level = %i",
1274 			     GC_MARK(g), level);
1275 
1276 		if (level)
1277 			SET_GC_MARK(g, GC_MARK_METADATA);
1278 		else if (KEY_DIRTY(k))
1279 			SET_GC_MARK(g, GC_MARK_DIRTY);
1280 		else if (!GC_MARK(g))
1281 			SET_GC_MARK(g, GC_MARK_RECLAIMABLE);
1282 
1283 		/* guard against overflow */
1284 		SET_GC_SECTORS_USED(g, min_t(unsigned int,
1285 					     GC_SECTORS_USED(g) + KEY_SIZE(k),
1286 					     MAX_GC_SECTORS_USED));
1287 
1288 		BUG_ON(!GC_SECTORS_USED(g));
1289 	}
1290 
1291 	return stale;
1292 }
1293 
1294 #define btree_mark_key(b, k)	__bch_btree_mark_key(b->c, b->level, k)
1295 
1296 void bch_initial_mark_key(struct cache_set *c, int level, struct bkey *k)
1297 {
1298 	unsigned int i;
1299 
1300 	for (i = 0; i < KEY_PTRS(k); i++)
1301 		if (ptr_available(c, k, i) &&
1302 		    !ptr_stale(c, k, i)) {
1303 			struct bucket *b = PTR_BUCKET(c, k, i);
1304 
1305 			b->gen = PTR_GEN(k, i);
1306 
1307 			if (level && bkey_cmp(k, &ZERO_KEY))
1308 				b->prio = BTREE_PRIO;
1309 			else if (!level && b->prio == BTREE_PRIO)
1310 				b->prio = INITIAL_PRIO;
1311 		}
1312 
1313 	__bch_btree_mark_key(c, level, k);
1314 }
1315 
1316 void bch_update_bucket_in_use(struct cache_set *c, struct gc_stat *stats)
1317 {
1318 	stats->in_use = (c->nbuckets - c->avail_nbuckets) * 100 / c->nbuckets;
1319 }
1320 
1321 static bool btree_gc_mark_node(struct btree *b, struct gc_stat *gc)
1322 {
1323 	uint8_t stale = 0;
1324 	unsigned int keys = 0, good_keys = 0;
1325 	struct bkey *k;
1326 	struct btree_iter iter;
1327 	struct bset_tree *t;
1328 
1329 	gc->nodes++;
1330 
1331 	for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid) {
1332 		stale = max(stale, btree_mark_key(b, k));
1333 		keys++;
1334 
1335 		if (bch_ptr_bad(&b->keys, k))
1336 			continue;
1337 
1338 		gc->key_bytes += bkey_u64s(k);
1339 		gc->nkeys++;
1340 		good_keys++;
1341 
1342 		gc->data += KEY_SIZE(k);
1343 	}
1344 
1345 	for (t = b->keys.set; t <= &b->keys.set[b->keys.nsets]; t++)
1346 		btree_bug_on(t->size &&
1347 			     bset_written(&b->keys, t) &&
1348 			     bkey_cmp(&b->key, &t->end) < 0,
1349 			     b, "found short btree key in gc");
1350 
1351 	if (b->c->gc_always_rewrite)
1352 		return true;
1353 
1354 	if (stale > 10)
1355 		return true;
1356 
1357 	if ((keys - good_keys) * 2 > keys)
1358 		return true;
1359 
1360 	return false;
1361 }
1362 
1363 #define GC_MERGE_NODES	4U
1364 
1365 struct gc_merge_info {
1366 	struct btree	*b;
1367 	unsigned int	keys;
1368 };
1369 
1370 static int bch_btree_insert_node(struct btree *b, struct btree_op *op,
1371 				 struct keylist *insert_keys,
1372 				 atomic_t *journal_ref,
1373 				 struct bkey *replace_key);
1374 
1375 static int btree_gc_coalesce(struct btree *b, struct btree_op *op,
1376 			     struct gc_stat *gc, struct gc_merge_info *r)
1377 {
1378 	unsigned int i, nodes = 0, keys = 0, blocks;
1379 	struct btree *new_nodes[GC_MERGE_NODES];
1380 	struct keylist keylist;
1381 	struct closure cl;
1382 	struct bkey *k;
1383 
1384 	bch_keylist_init(&keylist);
1385 
1386 	if (btree_check_reserve(b, NULL))
1387 		return 0;
1388 
1389 	memset(new_nodes, 0, sizeof(new_nodes));
1390 	closure_init_stack(&cl);
1391 
1392 	while (nodes < GC_MERGE_NODES && !IS_ERR_OR_NULL(r[nodes].b))
1393 		keys += r[nodes++].keys;
1394 
1395 	blocks = btree_default_blocks(b->c) * 2 / 3;
1396 
1397 	if (nodes < 2 ||
1398 	    __set_blocks(b->keys.set[0].data, keys,
1399 			 block_bytes(b->c)) > blocks * (nodes - 1))
1400 		return 0;
1401 
1402 	for (i = 0; i < nodes; i++) {
1403 		new_nodes[i] = btree_node_alloc_replacement(r[i].b, NULL);
1404 		if (IS_ERR_OR_NULL(new_nodes[i]))
1405 			goto out_nocoalesce;
1406 	}
1407 
1408 	/*
1409 	 * We have to check the reserve here, after we've allocated our new
1410 	 * nodes, to make sure the insert below will succeed - we also check
1411 	 * before as an optimization to potentially avoid a bunch of expensive
1412 	 * allocs/sorts
1413 	 */
1414 	if (btree_check_reserve(b, NULL))
1415 		goto out_nocoalesce;
1416 
1417 	for (i = 0; i < nodes; i++)
1418 		mutex_lock(&new_nodes[i]->write_lock);
1419 
1420 	for (i = nodes - 1; i > 0; --i) {
1421 		struct bset *n1 = btree_bset_first(new_nodes[i]);
1422 		struct bset *n2 = btree_bset_first(new_nodes[i - 1]);
1423 		struct bkey *k, *last = NULL;
1424 
1425 		keys = 0;
1426 
1427 		if (i > 1) {
1428 			for (k = n2->start;
1429 			     k < bset_bkey_last(n2);
1430 			     k = bkey_next(k)) {
1431 				if (__set_blocks(n1, n1->keys + keys +
1432 						 bkey_u64s(k),
1433 						 block_bytes(b->c)) > blocks)
1434 					break;
1435 
1436 				last = k;
1437 				keys += bkey_u64s(k);
1438 			}
1439 		} else {
1440 			/*
1441 			 * Last node we're not getting rid of - we're getting
1442 			 * rid of the node at r[0]. Have to try and fit all of
1443 			 * the remaining keys into this node; we can't ensure
1444 			 * they will always fit due to rounding and variable
1445 			 * length keys (shouldn't be possible in practice,
1446 			 * though)
1447 			 */
1448 			if (__set_blocks(n1, n1->keys + n2->keys,
1449 					 block_bytes(b->c)) >
1450 			    btree_blocks(new_nodes[i]))
1451 				goto out_nocoalesce;
1452 
1453 			keys = n2->keys;
1454 			/* Take the key of the node we're getting rid of */
1455 			last = &r->b->key;
1456 		}
1457 
1458 		BUG_ON(__set_blocks(n1, n1->keys + keys, block_bytes(b->c)) >
1459 		       btree_blocks(new_nodes[i]));
1460 
1461 		if (last)
1462 			bkey_copy_key(&new_nodes[i]->key, last);
1463 
1464 		memcpy(bset_bkey_last(n1),
1465 		       n2->start,
1466 		       (void *) bset_bkey_idx(n2, keys) - (void *) n2->start);
1467 
1468 		n1->keys += keys;
1469 		r[i].keys = n1->keys;
1470 
1471 		memmove(n2->start,
1472 			bset_bkey_idx(n2, keys),
1473 			(void *) bset_bkey_last(n2) -
1474 			(void *) bset_bkey_idx(n2, keys));
1475 
1476 		n2->keys -= keys;
1477 
1478 		if (__bch_keylist_realloc(&keylist,
1479 					  bkey_u64s(&new_nodes[i]->key)))
1480 			goto out_nocoalesce;
1481 
1482 		bch_btree_node_write(new_nodes[i], &cl);
1483 		bch_keylist_add(&keylist, &new_nodes[i]->key);
1484 	}
1485 
1486 	for (i = 0; i < nodes; i++)
1487 		mutex_unlock(&new_nodes[i]->write_lock);
1488 
1489 	closure_sync(&cl);
1490 
1491 	/* We emptied out this node */
1492 	BUG_ON(btree_bset_first(new_nodes[0])->keys);
1493 	btree_node_free(new_nodes[0]);
1494 	rw_unlock(true, new_nodes[0]);
1495 	new_nodes[0] = NULL;
1496 
1497 	for (i = 0; i < nodes; i++) {
1498 		if (__bch_keylist_realloc(&keylist, bkey_u64s(&r[i].b->key)))
1499 			goto out_nocoalesce;
1500 
1501 		make_btree_freeing_key(r[i].b, keylist.top);
1502 		bch_keylist_push(&keylist);
1503 	}
1504 
1505 	bch_btree_insert_node(b, op, &keylist, NULL, NULL);
1506 	BUG_ON(!bch_keylist_empty(&keylist));
1507 
1508 	for (i = 0; i < nodes; i++) {
1509 		btree_node_free(r[i].b);
1510 		rw_unlock(true, r[i].b);
1511 
1512 		r[i].b = new_nodes[i];
1513 	}
1514 
1515 	memmove(r, r + 1, sizeof(r[0]) * (nodes - 1));
1516 	r[nodes - 1].b = ERR_PTR(-EINTR);
1517 
1518 	trace_bcache_btree_gc_coalesce(nodes);
1519 	gc->nodes--;
1520 
1521 	bch_keylist_free(&keylist);
1522 
1523 	/* Invalidated our iterator */
1524 	return -EINTR;
1525 
1526 out_nocoalesce:
1527 	closure_sync(&cl);
1528 
1529 	while ((k = bch_keylist_pop(&keylist)))
1530 		if (!bkey_cmp(k, &ZERO_KEY))
1531 			atomic_dec(&b->c->prio_blocked);
1532 	bch_keylist_free(&keylist);
1533 
1534 	for (i = 0; i < nodes; i++)
1535 		if (!IS_ERR_OR_NULL(new_nodes[i])) {
1536 			btree_node_free(new_nodes[i]);
1537 			rw_unlock(true, new_nodes[i]);
1538 		}
1539 	return 0;
1540 }
1541 
1542 static int btree_gc_rewrite_node(struct btree *b, struct btree_op *op,
1543 				 struct btree *replace)
1544 {
1545 	struct keylist keys;
1546 	struct btree *n;
1547 
1548 	if (btree_check_reserve(b, NULL))
1549 		return 0;
1550 
1551 	n = btree_node_alloc_replacement(replace, NULL);
1552 
1553 	/* recheck reserve after allocating replacement node */
1554 	if (btree_check_reserve(b, NULL)) {
1555 		btree_node_free(n);
1556 		rw_unlock(true, n);
1557 		return 0;
1558 	}
1559 
1560 	bch_btree_node_write_sync(n);
1561 
1562 	bch_keylist_init(&keys);
1563 	bch_keylist_add(&keys, &n->key);
1564 
1565 	make_btree_freeing_key(replace, keys.top);
1566 	bch_keylist_push(&keys);
1567 
1568 	bch_btree_insert_node(b, op, &keys, NULL, NULL);
1569 	BUG_ON(!bch_keylist_empty(&keys));
1570 
1571 	btree_node_free(replace);
1572 	rw_unlock(true, n);
1573 
1574 	/* Invalidated our iterator */
1575 	return -EINTR;
1576 }
1577 
1578 static unsigned int btree_gc_count_keys(struct btree *b)
1579 {
1580 	struct bkey *k;
1581 	struct btree_iter iter;
1582 	unsigned int ret = 0;
1583 
1584 	for_each_key_filter(&b->keys, k, &iter, bch_ptr_bad)
1585 		ret += bkey_u64s(k);
1586 
1587 	return ret;
1588 }
1589 
1590 static size_t btree_gc_min_nodes(struct cache_set *c)
1591 {
1592 	size_t min_nodes;
1593 
1594 	/*
1595 	 * Since incremental GC would stop 100ms when front
1596 	 * side I/O comes, so when there are many btree nodes,
1597 	 * if GC only processes constant (100) nodes each time,
1598 	 * GC would last a long time, and the front side I/Os
1599 	 * would run out of the buckets (since no new bucket
1600 	 * can be allocated during GC), and be blocked again.
1601 	 * So GC should not process constant nodes, but varied
1602 	 * nodes according to the number of btree nodes, which
1603 	 * realized by dividing GC into constant(100) times,
1604 	 * so when there are many btree nodes, GC can process
1605 	 * more nodes each time, otherwise, GC will process less
1606 	 * nodes each time (but no less than MIN_GC_NODES)
1607 	 */
1608 	min_nodes = c->gc_stats.nodes / MAX_GC_TIMES;
1609 	if (min_nodes < MIN_GC_NODES)
1610 		min_nodes = MIN_GC_NODES;
1611 
1612 	return min_nodes;
1613 }
1614 
1615 
1616 static int btree_gc_recurse(struct btree *b, struct btree_op *op,
1617 			    struct closure *writes, struct gc_stat *gc)
1618 {
1619 	int ret = 0;
1620 	bool should_rewrite;
1621 	struct bkey *k;
1622 	struct btree_iter iter;
1623 	struct gc_merge_info r[GC_MERGE_NODES];
1624 	struct gc_merge_info *i, *last = r + ARRAY_SIZE(r) - 1;
1625 
1626 	bch_btree_iter_init(&b->keys, &iter, &b->c->gc_done);
1627 
1628 	for (i = r; i < r + ARRAY_SIZE(r); i++)
1629 		i->b = ERR_PTR(-EINTR);
1630 
1631 	while (1) {
1632 		k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad);
1633 		if (k) {
1634 			r->b = bch_btree_node_get(b->c, op, k, b->level - 1,
1635 						  true, b);
1636 			if (IS_ERR(r->b)) {
1637 				ret = PTR_ERR(r->b);
1638 				break;
1639 			}
1640 
1641 			r->keys = btree_gc_count_keys(r->b);
1642 
1643 			ret = btree_gc_coalesce(b, op, gc, r);
1644 			if (ret)
1645 				break;
1646 		}
1647 
1648 		if (!last->b)
1649 			break;
1650 
1651 		if (!IS_ERR(last->b)) {
1652 			should_rewrite = btree_gc_mark_node(last->b, gc);
1653 			if (should_rewrite) {
1654 				ret = btree_gc_rewrite_node(b, op, last->b);
1655 				if (ret)
1656 					break;
1657 			}
1658 
1659 			if (last->b->level) {
1660 				ret = btree_gc_recurse(last->b, op, writes, gc);
1661 				if (ret)
1662 					break;
1663 			}
1664 
1665 			bkey_copy_key(&b->c->gc_done, &last->b->key);
1666 
1667 			/*
1668 			 * Must flush leaf nodes before gc ends, since replace
1669 			 * operations aren't journalled
1670 			 */
1671 			mutex_lock(&last->b->write_lock);
1672 			if (btree_node_dirty(last->b))
1673 				bch_btree_node_write(last->b, writes);
1674 			mutex_unlock(&last->b->write_lock);
1675 			rw_unlock(true, last->b);
1676 		}
1677 
1678 		memmove(r + 1, r, sizeof(r[0]) * (GC_MERGE_NODES - 1));
1679 		r->b = NULL;
1680 
1681 		if (atomic_read(&b->c->search_inflight) &&
1682 		    gc->nodes >= gc->nodes_pre + btree_gc_min_nodes(b->c)) {
1683 			gc->nodes_pre =  gc->nodes;
1684 			ret = -EAGAIN;
1685 			break;
1686 		}
1687 
1688 		if (need_resched()) {
1689 			ret = -EAGAIN;
1690 			break;
1691 		}
1692 	}
1693 
1694 	for (i = r; i < r + ARRAY_SIZE(r); i++)
1695 		if (!IS_ERR_OR_NULL(i->b)) {
1696 			mutex_lock(&i->b->write_lock);
1697 			if (btree_node_dirty(i->b))
1698 				bch_btree_node_write(i->b, writes);
1699 			mutex_unlock(&i->b->write_lock);
1700 			rw_unlock(true, i->b);
1701 		}
1702 
1703 	return ret;
1704 }
1705 
1706 static int bch_btree_gc_root(struct btree *b, struct btree_op *op,
1707 			     struct closure *writes, struct gc_stat *gc)
1708 {
1709 	struct btree *n = NULL;
1710 	int ret = 0;
1711 	bool should_rewrite;
1712 
1713 	should_rewrite = btree_gc_mark_node(b, gc);
1714 	if (should_rewrite) {
1715 		n = btree_node_alloc_replacement(b, NULL);
1716 
1717 		if (!IS_ERR_OR_NULL(n)) {
1718 			bch_btree_node_write_sync(n);
1719 
1720 			bch_btree_set_root(n);
1721 			btree_node_free(b);
1722 			rw_unlock(true, n);
1723 
1724 			return -EINTR;
1725 		}
1726 	}
1727 
1728 	__bch_btree_mark_key(b->c, b->level + 1, &b->key);
1729 
1730 	if (b->level) {
1731 		ret = btree_gc_recurse(b, op, writes, gc);
1732 		if (ret)
1733 			return ret;
1734 	}
1735 
1736 	bkey_copy_key(&b->c->gc_done, &b->key);
1737 
1738 	return ret;
1739 }
1740 
1741 static void btree_gc_start(struct cache_set *c)
1742 {
1743 	struct cache *ca;
1744 	struct bucket *b;
1745 	unsigned int i;
1746 
1747 	if (!c->gc_mark_valid)
1748 		return;
1749 
1750 	mutex_lock(&c->bucket_lock);
1751 
1752 	c->gc_mark_valid = 0;
1753 	c->gc_done = ZERO_KEY;
1754 
1755 	for_each_cache(ca, c, i)
1756 		for_each_bucket(b, ca) {
1757 			b->last_gc = b->gen;
1758 			if (!atomic_read(&b->pin)) {
1759 				SET_GC_MARK(b, 0);
1760 				SET_GC_SECTORS_USED(b, 0);
1761 			}
1762 		}
1763 
1764 	mutex_unlock(&c->bucket_lock);
1765 }
1766 
1767 static void bch_btree_gc_finish(struct cache_set *c)
1768 {
1769 	struct bucket *b;
1770 	struct cache *ca;
1771 	unsigned int i;
1772 
1773 	mutex_lock(&c->bucket_lock);
1774 
1775 	set_gc_sectors(c);
1776 	c->gc_mark_valid = 1;
1777 	c->need_gc	= 0;
1778 
1779 	for (i = 0; i < KEY_PTRS(&c->uuid_bucket); i++)
1780 		SET_GC_MARK(PTR_BUCKET(c, &c->uuid_bucket, i),
1781 			    GC_MARK_METADATA);
1782 
1783 	/* don't reclaim buckets to which writeback keys point */
1784 	rcu_read_lock();
1785 	for (i = 0; i < c->devices_max_used; i++) {
1786 		struct bcache_device *d = c->devices[i];
1787 		struct cached_dev *dc;
1788 		struct keybuf_key *w, *n;
1789 		unsigned int j;
1790 
1791 		if (!d || UUID_FLASH_ONLY(&c->uuids[i]))
1792 			continue;
1793 		dc = container_of(d, struct cached_dev, disk);
1794 
1795 		spin_lock(&dc->writeback_keys.lock);
1796 		rbtree_postorder_for_each_entry_safe(w, n,
1797 					&dc->writeback_keys.keys, node)
1798 			for (j = 0; j < KEY_PTRS(&w->key); j++)
1799 				SET_GC_MARK(PTR_BUCKET(c, &w->key, j),
1800 					    GC_MARK_DIRTY);
1801 		spin_unlock(&dc->writeback_keys.lock);
1802 	}
1803 	rcu_read_unlock();
1804 
1805 	c->avail_nbuckets = 0;
1806 	for_each_cache(ca, c, i) {
1807 		uint64_t *i;
1808 
1809 		ca->invalidate_needs_gc = 0;
1810 
1811 		for (i = ca->sb.d; i < ca->sb.d + ca->sb.keys; i++)
1812 			SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA);
1813 
1814 		for (i = ca->prio_buckets;
1815 		     i < ca->prio_buckets + prio_buckets(ca) * 2; i++)
1816 			SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA);
1817 
1818 		for_each_bucket(b, ca) {
1819 			c->need_gc	= max(c->need_gc, bucket_gc_gen(b));
1820 
1821 			if (atomic_read(&b->pin))
1822 				continue;
1823 
1824 			BUG_ON(!GC_MARK(b) && GC_SECTORS_USED(b));
1825 
1826 			if (!GC_MARK(b) || GC_MARK(b) == GC_MARK_RECLAIMABLE)
1827 				c->avail_nbuckets++;
1828 		}
1829 	}
1830 
1831 	mutex_unlock(&c->bucket_lock);
1832 }
1833 
1834 static void bch_btree_gc(struct cache_set *c)
1835 {
1836 	int ret;
1837 	struct gc_stat stats;
1838 	struct closure writes;
1839 	struct btree_op op;
1840 	uint64_t start_time = local_clock();
1841 
1842 	trace_bcache_gc_start(c);
1843 
1844 	memset(&stats, 0, sizeof(struct gc_stat));
1845 	closure_init_stack(&writes);
1846 	bch_btree_op_init(&op, SHRT_MAX);
1847 
1848 	btree_gc_start(c);
1849 
1850 	/* if CACHE_SET_IO_DISABLE set, gc thread should stop too */
1851 	do {
1852 		ret = btree_root(gc_root, c, &op, &writes, &stats);
1853 		closure_sync(&writes);
1854 		cond_resched();
1855 
1856 		if (ret == -EAGAIN)
1857 			schedule_timeout_interruptible(msecs_to_jiffies
1858 						       (GC_SLEEP_MS));
1859 		else if (ret)
1860 			pr_warn("gc failed!");
1861 	} while (ret && !test_bit(CACHE_SET_IO_DISABLE, &c->flags));
1862 
1863 	bch_btree_gc_finish(c);
1864 	wake_up_allocators(c);
1865 
1866 	bch_time_stats_update(&c->btree_gc_time, start_time);
1867 
1868 	stats.key_bytes *= sizeof(uint64_t);
1869 	stats.data	<<= 9;
1870 	bch_update_bucket_in_use(c, &stats);
1871 	memcpy(&c->gc_stats, &stats, sizeof(struct gc_stat));
1872 
1873 	trace_bcache_gc_end(c);
1874 
1875 	bch_moving_gc(c);
1876 }
1877 
1878 static bool gc_should_run(struct cache_set *c)
1879 {
1880 	struct cache *ca;
1881 	unsigned int i;
1882 
1883 	for_each_cache(ca, c, i)
1884 		if (ca->invalidate_needs_gc)
1885 			return true;
1886 
1887 	if (atomic_read(&c->sectors_to_gc) < 0)
1888 		return true;
1889 
1890 	return false;
1891 }
1892 
1893 static int bch_gc_thread(void *arg)
1894 {
1895 	struct cache_set *c = arg;
1896 
1897 	while (1) {
1898 		wait_event_interruptible(c->gc_wait,
1899 			   kthread_should_stop() ||
1900 			   test_bit(CACHE_SET_IO_DISABLE, &c->flags) ||
1901 			   gc_should_run(c));
1902 
1903 		if (kthread_should_stop() ||
1904 		    test_bit(CACHE_SET_IO_DISABLE, &c->flags))
1905 			break;
1906 
1907 		set_gc_sectors(c);
1908 		bch_btree_gc(c);
1909 	}
1910 
1911 	wait_for_kthread_stop();
1912 	return 0;
1913 }
1914 
1915 int bch_gc_thread_start(struct cache_set *c)
1916 {
1917 	/*
1918 	 * In case previous btree check operation occupies too many
1919 	 * system memory for bcache btree node cache, and the
1920 	 * registering process is selected by OOM killer. Here just
1921 	 * ignore the SIGKILL sent by OOM killer if there is, to
1922 	 * avoid kthread_run() being failed by pending signals. The
1923 	 * bcache registering process will exit after the registration
1924 	 * done.
1925 	 */
1926 	if (signal_pending(current))
1927 		flush_signals(current);
1928 
1929 	c->gc_thread = kthread_run(bch_gc_thread, c, "bcache_gc");
1930 	return PTR_ERR_OR_ZERO(c->gc_thread);
1931 }
1932 
1933 /* Initial partial gc */
1934 
1935 static int bch_btree_check_recurse(struct btree *b, struct btree_op *op)
1936 {
1937 	int ret = 0;
1938 	struct bkey *k, *p = NULL;
1939 	struct btree_iter iter;
1940 
1941 	for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid)
1942 		bch_initial_mark_key(b->c, b->level, k);
1943 
1944 	bch_initial_mark_key(b->c, b->level + 1, &b->key);
1945 
1946 	if (b->level) {
1947 		bch_btree_iter_init(&b->keys, &iter, NULL);
1948 
1949 		do {
1950 			k = bch_btree_iter_next_filter(&iter, &b->keys,
1951 						       bch_ptr_bad);
1952 			if (k) {
1953 				btree_node_prefetch(b, k);
1954 				/*
1955 				 * initiallize c->gc_stats.nodes
1956 				 * for incremental GC
1957 				 */
1958 				b->c->gc_stats.nodes++;
1959 			}
1960 
1961 			if (p)
1962 				ret = btree(check_recurse, p, b, op);
1963 
1964 			p = k;
1965 		} while (p && !ret);
1966 	}
1967 
1968 	return ret;
1969 }
1970 
1971 int bch_btree_check(struct cache_set *c)
1972 {
1973 	struct btree_op op;
1974 
1975 	bch_btree_op_init(&op, SHRT_MAX);
1976 
1977 	return btree_root(check_recurse, c, &op);
1978 }
1979 
1980 void bch_initial_gc_finish(struct cache_set *c)
1981 {
1982 	struct cache *ca;
1983 	struct bucket *b;
1984 	unsigned int i;
1985 
1986 	bch_btree_gc_finish(c);
1987 
1988 	mutex_lock(&c->bucket_lock);
1989 
1990 	/*
1991 	 * We need to put some unused buckets directly on the prio freelist in
1992 	 * order to get the allocator thread started - it needs freed buckets in
1993 	 * order to rewrite the prios and gens, and it needs to rewrite prios
1994 	 * and gens in order to free buckets.
1995 	 *
1996 	 * This is only safe for buckets that have no live data in them, which
1997 	 * there should always be some of.
1998 	 */
1999 	for_each_cache(ca, c, i) {
2000 		for_each_bucket(b, ca) {
2001 			if (fifo_full(&ca->free[RESERVE_PRIO]) &&
2002 			    fifo_full(&ca->free[RESERVE_BTREE]))
2003 				break;
2004 
2005 			if (bch_can_invalidate_bucket(ca, b) &&
2006 			    !GC_MARK(b)) {
2007 				__bch_invalidate_one_bucket(ca, b);
2008 				if (!fifo_push(&ca->free[RESERVE_PRIO],
2009 				   b - ca->buckets))
2010 					fifo_push(&ca->free[RESERVE_BTREE],
2011 						  b - ca->buckets);
2012 			}
2013 		}
2014 	}
2015 
2016 	mutex_unlock(&c->bucket_lock);
2017 }
2018 
2019 /* Btree insertion */
2020 
2021 static bool btree_insert_key(struct btree *b, struct bkey *k,
2022 			     struct bkey *replace_key)
2023 {
2024 	unsigned int status;
2025 
2026 	BUG_ON(bkey_cmp(k, &b->key) > 0);
2027 
2028 	status = bch_btree_insert_key(&b->keys, k, replace_key);
2029 	if (status != BTREE_INSERT_STATUS_NO_INSERT) {
2030 		bch_check_keys(&b->keys, "%u for %s", status,
2031 			       replace_key ? "replace" : "insert");
2032 
2033 		trace_bcache_btree_insert_key(b, k, replace_key != NULL,
2034 					      status);
2035 		return true;
2036 	} else
2037 		return false;
2038 }
2039 
2040 static size_t insert_u64s_remaining(struct btree *b)
2041 {
2042 	long ret = bch_btree_keys_u64s_remaining(&b->keys);
2043 
2044 	/*
2045 	 * Might land in the middle of an existing extent and have to split it
2046 	 */
2047 	if (b->keys.ops->is_extents)
2048 		ret -= KEY_MAX_U64S;
2049 
2050 	return max(ret, 0L);
2051 }
2052 
2053 static bool bch_btree_insert_keys(struct btree *b, struct btree_op *op,
2054 				  struct keylist *insert_keys,
2055 				  struct bkey *replace_key)
2056 {
2057 	bool ret = false;
2058 	int oldsize = bch_count_data(&b->keys);
2059 
2060 	while (!bch_keylist_empty(insert_keys)) {
2061 		struct bkey *k = insert_keys->keys;
2062 
2063 		if (bkey_u64s(k) > insert_u64s_remaining(b))
2064 			break;
2065 
2066 		if (bkey_cmp(k, &b->key) <= 0) {
2067 			if (!b->level)
2068 				bkey_put(b->c, k);
2069 
2070 			ret |= btree_insert_key(b, k, replace_key);
2071 			bch_keylist_pop_front(insert_keys);
2072 		} else if (bkey_cmp(&START_KEY(k), &b->key) < 0) {
2073 			BKEY_PADDED(key) temp;
2074 			bkey_copy(&temp.key, insert_keys->keys);
2075 
2076 			bch_cut_back(&b->key, &temp.key);
2077 			bch_cut_front(&b->key, insert_keys->keys);
2078 
2079 			ret |= btree_insert_key(b, &temp.key, replace_key);
2080 			break;
2081 		} else {
2082 			break;
2083 		}
2084 	}
2085 
2086 	if (!ret)
2087 		op->insert_collision = true;
2088 
2089 	BUG_ON(!bch_keylist_empty(insert_keys) && b->level);
2090 
2091 	BUG_ON(bch_count_data(&b->keys) < oldsize);
2092 	return ret;
2093 }
2094 
2095 static int btree_split(struct btree *b, struct btree_op *op,
2096 		       struct keylist *insert_keys,
2097 		       struct bkey *replace_key)
2098 {
2099 	bool split;
2100 	struct btree *n1, *n2 = NULL, *n3 = NULL;
2101 	uint64_t start_time = local_clock();
2102 	struct closure cl;
2103 	struct keylist parent_keys;
2104 
2105 	closure_init_stack(&cl);
2106 	bch_keylist_init(&parent_keys);
2107 
2108 	if (btree_check_reserve(b, op)) {
2109 		if (!b->level)
2110 			return -EINTR;
2111 		else
2112 			WARN(1, "insufficient reserve for split\n");
2113 	}
2114 
2115 	n1 = btree_node_alloc_replacement(b, op);
2116 	if (IS_ERR(n1))
2117 		goto err;
2118 
2119 	split = set_blocks(btree_bset_first(n1),
2120 			   block_bytes(n1->c)) > (btree_blocks(b) * 4) / 5;
2121 
2122 	if (split) {
2123 		unsigned int keys = 0;
2124 
2125 		trace_bcache_btree_node_split(b, btree_bset_first(n1)->keys);
2126 
2127 		n2 = bch_btree_node_alloc(b->c, op, b->level, b->parent);
2128 		if (IS_ERR(n2))
2129 			goto err_free1;
2130 
2131 		if (!b->parent) {
2132 			n3 = bch_btree_node_alloc(b->c, op, b->level + 1, NULL);
2133 			if (IS_ERR(n3))
2134 				goto err_free2;
2135 		}
2136 
2137 		mutex_lock(&n1->write_lock);
2138 		mutex_lock(&n2->write_lock);
2139 
2140 		bch_btree_insert_keys(n1, op, insert_keys, replace_key);
2141 
2142 		/*
2143 		 * Has to be a linear search because we don't have an auxiliary
2144 		 * search tree yet
2145 		 */
2146 
2147 		while (keys < (btree_bset_first(n1)->keys * 3) / 5)
2148 			keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1),
2149 							keys));
2150 
2151 		bkey_copy_key(&n1->key,
2152 			      bset_bkey_idx(btree_bset_first(n1), keys));
2153 		keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1), keys));
2154 
2155 		btree_bset_first(n2)->keys = btree_bset_first(n1)->keys - keys;
2156 		btree_bset_first(n1)->keys = keys;
2157 
2158 		memcpy(btree_bset_first(n2)->start,
2159 		       bset_bkey_last(btree_bset_first(n1)),
2160 		       btree_bset_first(n2)->keys * sizeof(uint64_t));
2161 
2162 		bkey_copy_key(&n2->key, &b->key);
2163 
2164 		bch_keylist_add(&parent_keys, &n2->key);
2165 		bch_btree_node_write(n2, &cl);
2166 		mutex_unlock(&n2->write_lock);
2167 		rw_unlock(true, n2);
2168 	} else {
2169 		trace_bcache_btree_node_compact(b, btree_bset_first(n1)->keys);
2170 
2171 		mutex_lock(&n1->write_lock);
2172 		bch_btree_insert_keys(n1, op, insert_keys, replace_key);
2173 	}
2174 
2175 	bch_keylist_add(&parent_keys, &n1->key);
2176 	bch_btree_node_write(n1, &cl);
2177 	mutex_unlock(&n1->write_lock);
2178 
2179 	if (n3) {
2180 		/* Depth increases, make a new root */
2181 		mutex_lock(&n3->write_lock);
2182 		bkey_copy_key(&n3->key, &MAX_KEY);
2183 		bch_btree_insert_keys(n3, op, &parent_keys, NULL);
2184 		bch_btree_node_write(n3, &cl);
2185 		mutex_unlock(&n3->write_lock);
2186 
2187 		closure_sync(&cl);
2188 		bch_btree_set_root(n3);
2189 		rw_unlock(true, n3);
2190 	} else if (!b->parent) {
2191 		/* Root filled up but didn't need to be split */
2192 		closure_sync(&cl);
2193 		bch_btree_set_root(n1);
2194 	} else {
2195 		/* Split a non root node */
2196 		closure_sync(&cl);
2197 		make_btree_freeing_key(b, parent_keys.top);
2198 		bch_keylist_push(&parent_keys);
2199 
2200 		bch_btree_insert_node(b->parent, op, &parent_keys, NULL, NULL);
2201 		BUG_ON(!bch_keylist_empty(&parent_keys));
2202 	}
2203 
2204 	btree_node_free(b);
2205 	rw_unlock(true, n1);
2206 
2207 	bch_time_stats_update(&b->c->btree_split_time, start_time);
2208 
2209 	return 0;
2210 err_free2:
2211 	bkey_put(b->c, &n2->key);
2212 	btree_node_free(n2);
2213 	rw_unlock(true, n2);
2214 err_free1:
2215 	bkey_put(b->c, &n1->key);
2216 	btree_node_free(n1);
2217 	rw_unlock(true, n1);
2218 err:
2219 	WARN(1, "bcache: btree split failed (level %u)", b->level);
2220 
2221 	if (n3 == ERR_PTR(-EAGAIN) ||
2222 	    n2 == ERR_PTR(-EAGAIN) ||
2223 	    n1 == ERR_PTR(-EAGAIN))
2224 		return -EAGAIN;
2225 
2226 	return -ENOMEM;
2227 }
2228 
2229 static int bch_btree_insert_node(struct btree *b, struct btree_op *op,
2230 				 struct keylist *insert_keys,
2231 				 atomic_t *journal_ref,
2232 				 struct bkey *replace_key)
2233 {
2234 	struct closure cl;
2235 
2236 	BUG_ON(b->level && replace_key);
2237 
2238 	closure_init_stack(&cl);
2239 
2240 	mutex_lock(&b->write_lock);
2241 
2242 	if (write_block(b) != btree_bset_last(b) &&
2243 	    b->keys.last_set_unwritten)
2244 		bch_btree_init_next(b); /* just wrote a set */
2245 
2246 	if (bch_keylist_nkeys(insert_keys) > insert_u64s_remaining(b)) {
2247 		mutex_unlock(&b->write_lock);
2248 		goto split;
2249 	}
2250 
2251 	BUG_ON(write_block(b) != btree_bset_last(b));
2252 
2253 	if (bch_btree_insert_keys(b, op, insert_keys, replace_key)) {
2254 		if (!b->level)
2255 			bch_btree_leaf_dirty(b, journal_ref);
2256 		else
2257 			bch_btree_node_write(b, &cl);
2258 	}
2259 
2260 	mutex_unlock(&b->write_lock);
2261 
2262 	/* wait for btree node write if necessary, after unlock */
2263 	closure_sync(&cl);
2264 
2265 	return 0;
2266 split:
2267 	if (current->bio_list) {
2268 		op->lock = b->c->root->level + 1;
2269 		return -EAGAIN;
2270 	} else if (op->lock <= b->c->root->level) {
2271 		op->lock = b->c->root->level + 1;
2272 		return -EINTR;
2273 	} else {
2274 		/* Invalidated all iterators */
2275 		int ret = btree_split(b, op, insert_keys, replace_key);
2276 
2277 		if (bch_keylist_empty(insert_keys))
2278 			return 0;
2279 		else if (!ret)
2280 			return -EINTR;
2281 		return ret;
2282 	}
2283 }
2284 
2285 int bch_btree_insert_check_key(struct btree *b, struct btree_op *op,
2286 			       struct bkey *check_key)
2287 {
2288 	int ret = -EINTR;
2289 	uint64_t btree_ptr = b->key.ptr[0];
2290 	unsigned long seq = b->seq;
2291 	struct keylist insert;
2292 	bool upgrade = op->lock == -1;
2293 
2294 	bch_keylist_init(&insert);
2295 
2296 	if (upgrade) {
2297 		rw_unlock(false, b);
2298 		rw_lock(true, b, b->level);
2299 
2300 		if (b->key.ptr[0] != btree_ptr ||
2301 		    b->seq != seq + 1) {
2302 			op->lock = b->level;
2303 			goto out;
2304 		}
2305 	}
2306 
2307 	SET_KEY_PTRS(check_key, 1);
2308 	get_random_bytes(&check_key->ptr[0], sizeof(uint64_t));
2309 
2310 	SET_PTR_DEV(check_key, 0, PTR_CHECK_DEV);
2311 
2312 	bch_keylist_add(&insert, check_key);
2313 
2314 	ret = bch_btree_insert_node(b, op, &insert, NULL, NULL);
2315 
2316 	BUG_ON(!ret && !bch_keylist_empty(&insert));
2317 out:
2318 	if (upgrade)
2319 		downgrade_write(&b->lock);
2320 	return ret;
2321 }
2322 
2323 struct btree_insert_op {
2324 	struct btree_op	op;
2325 	struct keylist	*keys;
2326 	atomic_t	*journal_ref;
2327 	struct bkey	*replace_key;
2328 };
2329 
2330 static int btree_insert_fn(struct btree_op *b_op, struct btree *b)
2331 {
2332 	struct btree_insert_op *op = container_of(b_op,
2333 					struct btree_insert_op, op);
2334 
2335 	int ret = bch_btree_insert_node(b, &op->op, op->keys,
2336 					op->journal_ref, op->replace_key);
2337 	if (ret && !bch_keylist_empty(op->keys))
2338 		return ret;
2339 	else
2340 		return MAP_DONE;
2341 }
2342 
2343 int bch_btree_insert(struct cache_set *c, struct keylist *keys,
2344 		     atomic_t *journal_ref, struct bkey *replace_key)
2345 {
2346 	struct btree_insert_op op;
2347 	int ret = 0;
2348 
2349 	BUG_ON(current->bio_list);
2350 	BUG_ON(bch_keylist_empty(keys));
2351 
2352 	bch_btree_op_init(&op.op, 0);
2353 	op.keys		= keys;
2354 	op.journal_ref	= journal_ref;
2355 	op.replace_key	= replace_key;
2356 
2357 	while (!ret && !bch_keylist_empty(keys)) {
2358 		op.op.lock = 0;
2359 		ret = bch_btree_map_leaf_nodes(&op.op, c,
2360 					       &START_KEY(keys->keys),
2361 					       btree_insert_fn);
2362 	}
2363 
2364 	if (ret) {
2365 		struct bkey *k;
2366 
2367 		pr_err("error %i", ret);
2368 
2369 		while ((k = bch_keylist_pop(keys)))
2370 			bkey_put(c, k);
2371 	} else if (op.op.insert_collision)
2372 		ret = -ESRCH;
2373 
2374 	return ret;
2375 }
2376 
2377 void bch_btree_set_root(struct btree *b)
2378 {
2379 	unsigned int i;
2380 	struct closure cl;
2381 
2382 	closure_init_stack(&cl);
2383 
2384 	trace_bcache_btree_set_root(b);
2385 
2386 	BUG_ON(!b->written);
2387 
2388 	for (i = 0; i < KEY_PTRS(&b->key); i++)
2389 		BUG_ON(PTR_BUCKET(b->c, &b->key, i)->prio != BTREE_PRIO);
2390 
2391 	mutex_lock(&b->c->bucket_lock);
2392 	list_del_init(&b->list);
2393 	mutex_unlock(&b->c->bucket_lock);
2394 
2395 	b->c->root = b;
2396 
2397 	bch_journal_meta(b->c, &cl);
2398 	closure_sync(&cl);
2399 }
2400 
2401 /* Map across nodes or keys */
2402 
2403 static int bch_btree_map_nodes_recurse(struct btree *b, struct btree_op *op,
2404 				       struct bkey *from,
2405 				       btree_map_nodes_fn *fn, int flags)
2406 {
2407 	int ret = MAP_CONTINUE;
2408 
2409 	if (b->level) {
2410 		struct bkey *k;
2411 		struct btree_iter iter;
2412 
2413 		bch_btree_iter_init(&b->keys, &iter, from);
2414 
2415 		while ((k = bch_btree_iter_next_filter(&iter, &b->keys,
2416 						       bch_ptr_bad))) {
2417 			ret = btree(map_nodes_recurse, k, b,
2418 				    op, from, fn, flags);
2419 			from = NULL;
2420 
2421 			if (ret != MAP_CONTINUE)
2422 				return ret;
2423 		}
2424 	}
2425 
2426 	if (!b->level || flags == MAP_ALL_NODES)
2427 		ret = fn(op, b);
2428 
2429 	return ret;
2430 }
2431 
2432 int __bch_btree_map_nodes(struct btree_op *op, struct cache_set *c,
2433 			  struct bkey *from, btree_map_nodes_fn *fn, int flags)
2434 {
2435 	return btree_root(map_nodes_recurse, c, op, from, fn, flags);
2436 }
2437 
2438 static int bch_btree_map_keys_recurse(struct btree *b, struct btree_op *op,
2439 				      struct bkey *from, btree_map_keys_fn *fn,
2440 				      int flags)
2441 {
2442 	int ret = MAP_CONTINUE;
2443 	struct bkey *k;
2444 	struct btree_iter iter;
2445 
2446 	bch_btree_iter_init(&b->keys, &iter, from);
2447 
2448 	while ((k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad))) {
2449 		ret = !b->level
2450 			? fn(op, b, k)
2451 			: btree(map_keys_recurse, k, b, op, from, fn, flags);
2452 		from = NULL;
2453 
2454 		if (ret != MAP_CONTINUE)
2455 			return ret;
2456 	}
2457 
2458 	if (!b->level && (flags & MAP_END_KEY))
2459 		ret = fn(op, b, &KEY(KEY_INODE(&b->key),
2460 				     KEY_OFFSET(&b->key), 0));
2461 
2462 	return ret;
2463 }
2464 
2465 int bch_btree_map_keys(struct btree_op *op, struct cache_set *c,
2466 		       struct bkey *from, btree_map_keys_fn *fn, int flags)
2467 {
2468 	return btree_root(map_keys_recurse, c, op, from, fn, flags);
2469 }
2470 
2471 /* Keybuf code */
2472 
2473 static inline int keybuf_cmp(struct keybuf_key *l, struct keybuf_key *r)
2474 {
2475 	/* Overlapping keys compare equal */
2476 	if (bkey_cmp(&l->key, &START_KEY(&r->key)) <= 0)
2477 		return -1;
2478 	if (bkey_cmp(&START_KEY(&l->key), &r->key) >= 0)
2479 		return 1;
2480 	return 0;
2481 }
2482 
2483 static inline int keybuf_nonoverlapping_cmp(struct keybuf_key *l,
2484 					    struct keybuf_key *r)
2485 {
2486 	return clamp_t(int64_t, bkey_cmp(&l->key, &r->key), -1, 1);
2487 }
2488 
2489 struct refill {
2490 	struct btree_op	op;
2491 	unsigned int	nr_found;
2492 	struct keybuf	*buf;
2493 	struct bkey	*end;
2494 	keybuf_pred_fn	*pred;
2495 };
2496 
2497 static int refill_keybuf_fn(struct btree_op *op, struct btree *b,
2498 			    struct bkey *k)
2499 {
2500 	struct refill *refill = container_of(op, struct refill, op);
2501 	struct keybuf *buf = refill->buf;
2502 	int ret = MAP_CONTINUE;
2503 
2504 	if (bkey_cmp(k, refill->end) > 0) {
2505 		ret = MAP_DONE;
2506 		goto out;
2507 	}
2508 
2509 	if (!KEY_SIZE(k)) /* end key */
2510 		goto out;
2511 
2512 	if (refill->pred(buf, k)) {
2513 		struct keybuf_key *w;
2514 
2515 		spin_lock(&buf->lock);
2516 
2517 		w = array_alloc(&buf->freelist);
2518 		if (!w) {
2519 			spin_unlock(&buf->lock);
2520 			return MAP_DONE;
2521 		}
2522 
2523 		w->private = NULL;
2524 		bkey_copy(&w->key, k);
2525 
2526 		if (RB_INSERT(&buf->keys, w, node, keybuf_cmp))
2527 			array_free(&buf->freelist, w);
2528 		else
2529 			refill->nr_found++;
2530 
2531 		if (array_freelist_empty(&buf->freelist))
2532 			ret = MAP_DONE;
2533 
2534 		spin_unlock(&buf->lock);
2535 	}
2536 out:
2537 	buf->last_scanned = *k;
2538 	return ret;
2539 }
2540 
2541 void bch_refill_keybuf(struct cache_set *c, struct keybuf *buf,
2542 		       struct bkey *end, keybuf_pred_fn *pred)
2543 {
2544 	struct bkey start = buf->last_scanned;
2545 	struct refill refill;
2546 
2547 	cond_resched();
2548 
2549 	bch_btree_op_init(&refill.op, -1);
2550 	refill.nr_found	= 0;
2551 	refill.buf	= buf;
2552 	refill.end	= end;
2553 	refill.pred	= pred;
2554 
2555 	bch_btree_map_keys(&refill.op, c, &buf->last_scanned,
2556 			   refill_keybuf_fn, MAP_END_KEY);
2557 
2558 	trace_bcache_keyscan(refill.nr_found,
2559 			     KEY_INODE(&start), KEY_OFFSET(&start),
2560 			     KEY_INODE(&buf->last_scanned),
2561 			     KEY_OFFSET(&buf->last_scanned));
2562 
2563 	spin_lock(&buf->lock);
2564 
2565 	if (!RB_EMPTY_ROOT(&buf->keys)) {
2566 		struct keybuf_key *w;
2567 
2568 		w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2569 		buf->start	= START_KEY(&w->key);
2570 
2571 		w = RB_LAST(&buf->keys, struct keybuf_key, node);
2572 		buf->end	= w->key;
2573 	} else {
2574 		buf->start	= MAX_KEY;
2575 		buf->end	= MAX_KEY;
2576 	}
2577 
2578 	spin_unlock(&buf->lock);
2579 }
2580 
2581 static void __bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2582 {
2583 	rb_erase(&w->node, &buf->keys);
2584 	array_free(&buf->freelist, w);
2585 }
2586 
2587 void bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2588 {
2589 	spin_lock(&buf->lock);
2590 	__bch_keybuf_del(buf, w);
2591 	spin_unlock(&buf->lock);
2592 }
2593 
2594 bool bch_keybuf_check_overlapping(struct keybuf *buf, struct bkey *start,
2595 				  struct bkey *end)
2596 {
2597 	bool ret = false;
2598 	struct keybuf_key *p, *w, s;
2599 
2600 	s.key = *start;
2601 
2602 	if (bkey_cmp(end, &buf->start) <= 0 ||
2603 	    bkey_cmp(start, &buf->end) >= 0)
2604 		return false;
2605 
2606 	spin_lock(&buf->lock);
2607 	w = RB_GREATER(&buf->keys, s, node, keybuf_nonoverlapping_cmp);
2608 
2609 	while (w && bkey_cmp(&START_KEY(&w->key), end) < 0) {
2610 		p = w;
2611 		w = RB_NEXT(w, node);
2612 
2613 		if (p->private)
2614 			ret = true;
2615 		else
2616 			__bch_keybuf_del(buf, p);
2617 	}
2618 
2619 	spin_unlock(&buf->lock);
2620 	return ret;
2621 }
2622 
2623 struct keybuf_key *bch_keybuf_next(struct keybuf *buf)
2624 {
2625 	struct keybuf_key *w;
2626 
2627 	spin_lock(&buf->lock);
2628 
2629 	w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2630 
2631 	while (w && w->private)
2632 		w = RB_NEXT(w, node);
2633 
2634 	if (w)
2635 		w->private = ERR_PTR(-EINTR);
2636 
2637 	spin_unlock(&buf->lock);
2638 	return w;
2639 }
2640 
2641 struct keybuf_key *bch_keybuf_next_rescan(struct cache_set *c,
2642 					  struct keybuf *buf,
2643 					  struct bkey *end,
2644 					  keybuf_pred_fn *pred)
2645 {
2646 	struct keybuf_key *ret;
2647 
2648 	while (1) {
2649 		ret = bch_keybuf_next(buf);
2650 		if (ret)
2651 			break;
2652 
2653 		if (bkey_cmp(&buf->last_scanned, end) >= 0) {
2654 			pr_debug("scan finished");
2655 			break;
2656 		}
2657 
2658 		bch_refill_keybuf(c, buf, end, pred);
2659 	}
2660 
2661 	return ret;
2662 }
2663 
2664 void bch_keybuf_init(struct keybuf *buf)
2665 {
2666 	buf->last_scanned	= MAX_KEY;
2667 	buf->keys		= RB_ROOT;
2668 
2669 	spin_lock_init(&buf->lock);
2670 	array_allocator_init(&buf->freelist);
2671 }
2672