xref: /openbmc/linux/drivers/md/bcache/btree.c (revision 8730046c)
1 /*
2  * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com>
3  *
4  * Uses a block device as cache for other block devices; optimized for SSDs.
5  * All allocation is done in buckets, which should match the erase block size
6  * of the device.
7  *
8  * Buckets containing cached data are kept on a heap sorted by priority;
9  * bucket priority is increased on cache hit, and periodically all the buckets
10  * on the heap have their priority scaled down. This currently is just used as
11  * an LRU but in the future should allow for more intelligent heuristics.
12  *
13  * Buckets have an 8 bit counter; freeing is accomplished by incrementing the
14  * counter. Garbage collection is used to remove stale pointers.
15  *
16  * Indexing is done via a btree; nodes are not necessarily fully sorted, rather
17  * as keys are inserted we only sort the pages that have not yet been written.
18  * When garbage collection is run, we resort the entire node.
19  *
20  * All configuration is done via sysfs; see Documentation/bcache.txt.
21  */
22 
23 #include "bcache.h"
24 #include "btree.h"
25 #include "debug.h"
26 #include "extents.h"
27 
28 #include <linux/slab.h>
29 #include <linux/bitops.h>
30 #include <linux/hash.h>
31 #include <linux/kthread.h>
32 #include <linux/prefetch.h>
33 #include <linux/random.h>
34 #include <linux/rcupdate.h>
35 #include <trace/events/bcache.h>
36 
37 /*
38  * Todo:
39  * register_bcache: Return errors out to userspace correctly
40  *
41  * Writeback: don't undirty key until after a cache flush
42  *
43  * Create an iterator for key pointers
44  *
45  * On btree write error, mark bucket such that it won't be freed from the cache
46  *
47  * Journalling:
48  *   Check for bad keys in replay
49  *   Propagate barriers
50  *   Refcount journal entries in journal_replay
51  *
52  * Garbage collection:
53  *   Finish incremental gc
54  *   Gc should free old UUIDs, data for invalid UUIDs
55  *
56  * Provide a way to list backing device UUIDs we have data cached for, and
57  * probably how long it's been since we've seen them, and a way to invalidate
58  * dirty data for devices that will never be attached again
59  *
60  * Keep 1 min/5 min/15 min statistics of how busy a block device has been, so
61  * that based on that and how much dirty data we have we can keep writeback
62  * from being starved
63  *
64  * Add a tracepoint or somesuch to watch for writeback starvation
65  *
66  * When btree depth > 1 and splitting an interior node, we have to make sure
67  * alloc_bucket() cannot fail. This should be true but is not completely
68  * obvious.
69  *
70  * Plugging?
71  *
72  * If data write is less than hard sector size of ssd, round up offset in open
73  * bucket to the next whole sector
74  *
75  * Superblock needs to be fleshed out for multiple cache devices
76  *
77  * Add a sysfs tunable for the number of writeback IOs in flight
78  *
79  * Add a sysfs tunable for the number of open data buckets
80  *
81  * IO tracking: Can we track when one process is doing io on behalf of another?
82  * IO tracking: Don't use just an average, weigh more recent stuff higher
83  *
84  * Test module load/unload
85  */
86 
87 #define MAX_NEED_GC		64
88 #define MAX_SAVE_PRIO		72
89 
90 #define PTR_DIRTY_BIT		(((uint64_t) 1 << 36))
91 
92 #define PTR_HASH(c, k)							\
93 	(((k)->ptr[0] >> c->bucket_bits) | PTR_GEN(k, 0))
94 
95 #define insert_lock(s, b)	((b)->level <= (s)->lock)
96 
97 /*
98  * These macros are for recursing down the btree - they handle the details of
99  * locking and looking up nodes in the cache for you. They're best treated as
100  * mere syntax when reading code that uses them.
101  *
102  * op->lock determines whether we take a read or a write lock at a given depth.
103  * If you've got a read lock and find that you need a write lock (i.e. you're
104  * going to have to split), set op->lock and return -EINTR; btree_root() will
105  * call you again and you'll have the correct lock.
106  */
107 
108 /**
109  * btree - recurse down the btree on a specified key
110  * @fn:		function to call, which will be passed the child node
111  * @key:	key to recurse on
112  * @b:		parent btree node
113  * @op:		pointer to struct btree_op
114  */
115 #define btree(fn, key, b, op, ...)					\
116 ({									\
117 	int _r, l = (b)->level - 1;					\
118 	bool _w = l <= (op)->lock;					\
119 	struct btree *_child = bch_btree_node_get((b)->c, op, key, l,	\
120 						  _w, b);		\
121 	if (!IS_ERR(_child)) {						\
122 		_r = bch_btree_ ## fn(_child, op, ##__VA_ARGS__);	\
123 		rw_unlock(_w, _child);					\
124 	} else								\
125 		_r = PTR_ERR(_child);					\
126 	_r;								\
127 })
128 
129 /**
130  * btree_root - call a function on the root of the btree
131  * @fn:		function to call, which will be passed the child node
132  * @c:		cache set
133  * @op:		pointer to struct btree_op
134  */
135 #define btree_root(fn, c, op, ...)					\
136 ({									\
137 	int _r = -EINTR;						\
138 	do {								\
139 		struct btree *_b = (c)->root;				\
140 		bool _w = insert_lock(op, _b);				\
141 		rw_lock(_w, _b, _b->level);				\
142 		if (_b == (c)->root &&					\
143 		    _w == insert_lock(op, _b)) {			\
144 			_r = bch_btree_ ## fn(_b, op, ##__VA_ARGS__);	\
145 		}							\
146 		rw_unlock(_w, _b);					\
147 		bch_cannibalize_unlock(c);				\
148 		if (_r == -EINTR)					\
149 			schedule();					\
150 	} while (_r == -EINTR);						\
151 									\
152 	finish_wait(&(c)->btree_cache_wait, &(op)->wait);		\
153 	_r;								\
154 })
155 
156 static inline struct bset *write_block(struct btree *b)
157 {
158 	return ((void *) btree_bset_first(b)) + b->written * block_bytes(b->c);
159 }
160 
161 static void bch_btree_init_next(struct btree *b)
162 {
163 	/* If not a leaf node, always sort */
164 	if (b->level && b->keys.nsets)
165 		bch_btree_sort(&b->keys, &b->c->sort);
166 	else
167 		bch_btree_sort_lazy(&b->keys, &b->c->sort);
168 
169 	if (b->written < btree_blocks(b))
170 		bch_bset_init_next(&b->keys, write_block(b),
171 				   bset_magic(&b->c->sb));
172 
173 }
174 
175 /* Btree key manipulation */
176 
177 void bkey_put(struct cache_set *c, struct bkey *k)
178 {
179 	unsigned i;
180 
181 	for (i = 0; i < KEY_PTRS(k); i++)
182 		if (ptr_available(c, k, i))
183 			atomic_dec_bug(&PTR_BUCKET(c, k, i)->pin);
184 }
185 
186 /* Btree IO */
187 
188 static uint64_t btree_csum_set(struct btree *b, struct bset *i)
189 {
190 	uint64_t crc = b->key.ptr[0];
191 	void *data = (void *) i + 8, *end = bset_bkey_last(i);
192 
193 	crc = bch_crc64_update(crc, data, end - data);
194 	return crc ^ 0xffffffffffffffffULL;
195 }
196 
197 void bch_btree_node_read_done(struct btree *b)
198 {
199 	const char *err = "bad btree header";
200 	struct bset *i = btree_bset_first(b);
201 	struct btree_iter *iter;
202 
203 	iter = mempool_alloc(b->c->fill_iter, GFP_NOIO);
204 	iter->size = b->c->sb.bucket_size / b->c->sb.block_size;
205 	iter->used = 0;
206 
207 #ifdef CONFIG_BCACHE_DEBUG
208 	iter->b = &b->keys;
209 #endif
210 
211 	if (!i->seq)
212 		goto err;
213 
214 	for (;
215 	     b->written < btree_blocks(b) && i->seq == b->keys.set[0].data->seq;
216 	     i = write_block(b)) {
217 		err = "unsupported bset version";
218 		if (i->version > BCACHE_BSET_VERSION)
219 			goto err;
220 
221 		err = "bad btree header";
222 		if (b->written + set_blocks(i, block_bytes(b->c)) >
223 		    btree_blocks(b))
224 			goto err;
225 
226 		err = "bad magic";
227 		if (i->magic != bset_magic(&b->c->sb))
228 			goto err;
229 
230 		err = "bad checksum";
231 		switch (i->version) {
232 		case 0:
233 			if (i->csum != csum_set(i))
234 				goto err;
235 			break;
236 		case BCACHE_BSET_VERSION:
237 			if (i->csum != btree_csum_set(b, i))
238 				goto err;
239 			break;
240 		}
241 
242 		err = "empty set";
243 		if (i != b->keys.set[0].data && !i->keys)
244 			goto err;
245 
246 		bch_btree_iter_push(iter, i->start, bset_bkey_last(i));
247 
248 		b->written += set_blocks(i, block_bytes(b->c));
249 	}
250 
251 	err = "corrupted btree";
252 	for (i = write_block(b);
253 	     bset_sector_offset(&b->keys, i) < KEY_SIZE(&b->key);
254 	     i = ((void *) i) + block_bytes(b->c))
255 		if (i->seq == b->keys.set[0].data->seq)
256 			goto err;
257 
258 	bch_btree_sort_and_fix_extents(&b->keys, iter, &b->c->sort);
259 
260 	i = b->keys.set[0].data;
261 	err = "short btree key";
262 	if (b->keys.set[0].size &&
263 	    bkey_cmp(&b->key, &b->keys.set[0].end) < 0)
264 		goto err;
265 
266 	if (b->written < btree_blocks(b))
267 		bch_bset_init_next(&b->keys, write_block(b),
268 				   bset_magic(&b->c->sb));
269 out:
270 	mempool_free(iter, b->c->fill_iter);
271 	return;
272 err:
273 	set_btree_node_io_error(b);
274 	bch_cache_set_error(b->c, "%s at bucket %zu, block %u, %u keys",
275 			    err, PTR_BUCKET_NR(b->c, &b->key, 0),
276 			    bset_block_offset(b, i), i->keys);
277 	goto out;
278 }
279 
280 static void btree_node_read_endio(struct bio *bio)
281 {
282 	struct closure *cl = bio->bi_private;
283 	closure_put(cl);
284 }
285 
286 static void bch_btree_node_read(struct btree *b)
287 {
288 	uint64_t start_time = local_clock();
289 	struct closure cl;
290 	struct bio *bio;
291 
292 	trace_bcache_btree_read(b);
293 
294 	closure_init_stack(&cl);
295 
296 	bio = bch_bbio_alloc(b->c);
297 	bio->bi_iter.bi_size = KEY_SIZE(&b->key) << 9;
298 	bio->bi_end_io	= btree_node_read_endio;
299 	bio->bi_private	= &cl;
300 	bio->bi_opf = REQ_OP_READ | REQ_META;
301 
302 	bch_bio_map(bio, b->keys.set[0].data);
303 
304 	bch_submit_bbio(bio, b->c, &b->key, 0);
305 	closure_sync(&cl);
306 
307 	if (bio->bi_error)
308 		set_btree_node_io_error(b);
309 
310 	bch_bbio_free(bio, b->c);
311 
312 	if (btree_node_io_error(b))
313 		goto err;
314 
315 	bch_btree_node_read_done(b);
316 	bch_time_stats_update(&b->c->btree_read_time, start_time);
317 
318 	return;
319 err:
320 	bch_cache_set_error(b->c, "io error reading bucket %zu",
321 			    PTR_BUCKET_NR(b->c, &b->key, 0));
322 }
323 
324 static void btree_complete_write(struct btree *b, struct btree_write *w)
325 {
326 	if (w->prio_blocked &&
327 	    !atomic_sub_return(w->prio_blocked, &b->c->prio_blocked))
328 		wake_up_allocators(b->c);
329 
330 	if (w->journal) {
331 		atomic_dec_bug(w->journal);
332 		__closure_wake_up(&b->c->journal.wait);
333 	}
334 
335 	w->prio_blocked	= 0;
336 	w->journal	= NULL;
337 }
338 
339 static void btree_node_write_unlock(struct closure *cl)
340 {
341 	struct btree *b = container_of(cl, struct btree, io);
342 
343 	up(&b->io_mutex);
344 }
345 
346 static void __btree_node_write_done(struct closure *cl)
347 {
348 	struct btree *b = container_of(cl, struct btree, io);
349 	struct btree_write *w = btree_prev_write(b);
350 
351 	bch_bbio_free(b->bio, b->c);
352 	b->bio = NULL;
353 	btree_complete_write(b, w);
354 
355 	if (btree_node_dirty(b))
356 		schedule_delayed_work(&b->work, 30 * HZ);
357 
358 	closure_return_with_destructor(cl, btree_node_write_unlock);
359 }
360 
361 static void btree_node_write_done(struct closure *cl)
362 {
363 	struct btree *b = container_of(cl, struct btree, io);
364 
365 	bio_free_pages(b->bio);
366 	__btree_node_write_done(cl);
367 }
368 
369 static void btree_node_write_endio(struct bio *bio)
370 {
371 	struct closure *cl = bio->bi_private;
372 	struct btree *b = container_of(cl, struct btree, io);
373 
374 	if (bio->bi_error)
375 		set_btree_node_io_error(b);
376 
377 	bch_bbio_count_io_errors(b->c, bio, bio->bi_error, "writing btree");
378 	closure_put(cl);
379 }
380 
381 static void do_btree_node_write(struct btree *b)
382 {
383 	struct closure *cl = &b->io;
384 	struct bset *i = btree_bset_last(b);
385 	BKEY_PADDED(key) k;
386 
387 	i->version	= BCACHE_BSET_VERSION;
388 	i->csum		= btree_csum_set(b, i);
389 
390 	BUG_ON(b->bio);
391 	b->bio = bch_bbio_alloc(b->c);
392 
393 	b->bio->bi_end_io	= btree_node_write_endio;
394 	b->bio->bi_private	= cl;
395 	b->bio->bi_iter.bi_size	= roundup(set_bytes(i), block_bytes(b->c));
396 	b->bio->bi_opf		= REQ_OP_WRITE | REQ_META | REQ_FUA;
397 	bch_bio_map(b->bio, i);
398 
399 	/*
400 	 * If we're appending to a leaf node, we don't technically need FUA -
401 	 * this write just needs to be persisted before the next journal write,
402 	 * which will be marked FLUSH|FUA.
403 	 *
404 	 * Similarly if we're writing a new btree root - the pointer is going to
405 	 * be in the next journal entry.
406 	 *
407 	 * But if we're writing a new btree node (that isn't a root) or
408 	 * appending to a non leaf btree node, we need either FUA or a flush
409 	 * when we write the parent with the new pointer. FUA is cheaper than a
410 	 * flush, and writes appending to leaf nodes aren't blocking anything so
411 	 * just make all btree node writes FUA to keep things sane.
412 	 */
413 
414 	bkey_copy(&k.key, &b->key);
415 	SET_PTR_OFFSET(&k.key, 0, PTR_OFFSET(&k.key, 0) +
416 		       bset_sector_offset(&b->keys, i));
417 
418 	if (!bio_alloc_pages(b->bio, __GFP_NOWARN|GFP_NOWAIT)) {
419 		int j;
420 		struct bio_vec *bv;
421 		void *base = (void *) ((unsigned long) i & ~(PAGE_SIZE - 1));
422 
423 		bio_for_each_segment_all(bv, b->bio, j)
424 			memcpy(page_address(bv->bv_page),
425 			       base + j * PAGE_SIZE, PAGE_SIZE);
426 
427 		bch_submit_bbio(b->bio, b->c, &k.key, 0);
428 
429 		continue_at(cl, btree_node_write_done, NULL);
430 	} else {
431 		b->bio->bi_vcnt = 0;
432 		bch_bio_map(b->bio, i);
433 
434 		bch_submit_bbio(b->bio, b->c, &k.key, 0);
435 
436 		closure_sync(cl);
437 		continue_at_nobarrier(cl, __btree_node_write_done, NULL);
438 	}
439 }
440 
441 void __bch_btree_node_write(struct btree *b, struct closure *parent)
442 {
443 	struct bset *i = btree_bset_last(b);
444 
445 	lockdep_assert_held(&b->write_lock);
446 
447 	trace_bcache_btree_write(b);
448 
449 	BUG_ON(current->bio_list);
450 	BUG_ON(b->written >= btree_blocks(b));
451 	BUG_ON(b->written && !i->keys);
452 	BUG_ON(btree_bset_first(b)->seq != i->seq);
453 	bch_check_keys(&b->keys, "writing");
454 
455 	cancel_delayed_work(&b->work);
456 
457 	/* If caller isn't waiting for write, parent refcount is cache set */
458 	down(&b->io_mutex);
459 	closure_init(&b->io, parent ?: &b->c->cl);
460 
461 	clear_bit(BTREE_NODE_dirty,	 &b->flags);
462 	change_bit(BTREE_NODE_write_idx, &b->flags);
463 
464 	do_btree_node_write(b);
465 
466 	atomic_long_add(set_blocks(i, block_bytes(b->c)) * b->c->sb.block_size,
467 			&PTR_CACHE(b->c, &b->key, 0)->btree_sectors_written);
468 
469 	b->written += set_blocks(i, block_bytes(b->c));
470 }
471 
472 void bch_btree_node_write(struct btree *b, struct closure *parent)
473 {
474 	unsigned nsets = b->keys.nsets;
475 
476 	lockdep_assert_held(&b->lock);
477 
478 	__bch_btree_node_write(b, parent);
479 
480 	/*
481 	 * do verify if there was more than one set initially (i.e. we did a
482 	 * sort) and we sorted down to a single set:
483 	 */
484 	if (nsets && !b->keys.nsets)
485 		bch_btree_verify(b);
486 
487 	bch_btree_init_next(b);
488 }
489 
490 static void bch_btree_node_write_sync(struct btree *b)
491 {
492 	struct closure cl;
493 
494 	closure_init_stack(&cl);
495 
496 	mutex_lock(&b->write_lock);
497 	bch_btree_node_write(b, &cl);
498 	mutex_unlock(&b->write_lock);
499 
500 	closure_sync(&cl);
501 }
502 
503 static void btree_node_write_work(struct work_struct *w)
504 {
505 	struct btree *b = container_of(to_delayed_work(w), struct btree, work);
506 
507 	mutex_lock(&b->write_lock);
508 	if (btree_node_dirty(b))
509 		__bch_btree_node_write(b, NULL);
510 	mutex_unlock(&b->write_lock);
511 }
512 
513 static void bch_btree_leaf_dirty(struct btree *b, atomic_t *journal_ref)
514 {
515 	struct bset *i = btree_bset_last(b);
516 	struct btree_write *w = btree_current_write(b);
517 
518 	lockdep_assert_held(&b->write_lock);
519 
520 	BUG_ON(!b->written);
521 	BUG_ON(!i->keys);
522 
523 	if (!btree_node_dirty(b))
524 		schedule_delayed_work(&b->work, 30 * HZ);
525 
526 	set_btree_node_dirty(b);
527 
528 	if (journal_ref) {
529 		if (w->journal &&
530 		    journal_pin_cmp(b->c, w->journal, journal_ref)) {
531 			atomic_dec_bug(w->journal);
532 			w->journal = NULL;
533 		}
534 
535 		if (!w->journal) {
536 			w->journal = journal_ref;
537 			atomic_inc(w->journal);
538 		}
539 	}
540 
541 	/* Force write if set is too big */
542 	if (set_bytes(i) > PAGE_SIZE - 48 &&
543 	    !current->bio_list)
544 		bch_btree_node_write(b, NULL);
545 }
546 
547 /*
548  * Btree in memory cache - allocation/freeing
549  * mca -> memory cache
550  */
551 
552 #define mca_reserve(c)	(((c->root && c->root->level)		\
553 			  ? c->root->level : 1) * 8 + 16)
554 #define mca_can_free(c)						\
555 	max_t(int, 0, c->btree_cache_used - mca_reserve(c))
556 
557 static void mca_data_free(struct btree *b)
558 {
559 	BUG_ON(b->io_mutex.count != 1);
560 
561 	bch_btree_keys_free(&b->keys);
562 
563 	b->c->btree_cache_used--;
564 	list_move(&b->list, &b->c->btree_cache_freed);
565 }
566 
567 static void mca_bucket_free(struct btree *b)
568 {
569 	BUG_ON(btree_node_dirty(b));
570 
571 	b->key.ptr[0] = 0;
572 	hlist_del_init_rcu(&b->hash);
573 	list_move(&b->list, &b->c->btree_cache_freeable);
574 }
575 
576 static unsigned btree_order(struct bkey *k)
577 {
578 	return ilog2(KEY_SIZE(k) / PAGE_SECTORS ?: 1);
579 }
580 
581 static void mca_data_alloc(struct btree *b, struct bkey *k, gfp_t gfp)
582 {
583 	if (!bch_btree_keys_alloc(&b->keys,
584 				  max_t(unsigned,
585 					ilog2(b->c->btree_pages),
586 					btree_order(k)),
587 				  gfp)) {
588 		b->c->btree_cache_used++;
589 		list_move(&b->list, &b->c->btree_cache);
590 	} else {
591 		list_move(&b->list, &b->c->btree_cache_freed);
592 	}
593 }
594 
595 static struct btree *mca_bucket_alloc(struct cache_set *c,
596 				      struct bkey *k, gfp_t gfp)
597 {
598 	struct btree *b = kzalloc(sizeof(struct btree), gfp);
599 	if (!b)
600 		return NULL;
601 
602 	init_rwsem(&b->lock);
603 	lockdep_set_novalidate_class(&b->lock);
604 	mutex_init(&b->write_lock);
605 	lockdep_set_novalidate_class(&b->write_lock);
606 	INIT_LIST_HEAD(&b->list);
607 	INIT_DELAYED_WORK(&b->work, btree_node_write_work);
608 	b->c = c;
609 	sema_init(&b->io_mutex, 1);
610 
611 	mca_data_alloc(b, k, gfp);
612 	return b;
613 }
614 
615 static int mca_reap(struct btree *b, unsigned min_order, bool flush)
616 {
617 	struct closure cl;
618 
619 	closure_init_stack(&cl);
620 	lockdep_assert_held(&b->c->bucket_lock);
621 
622 	if (!down_write_trylock(&b->lock))
623 		return -ENOMEM;
624 
625 	BUG_ON(btree_node_dirty(b) && !b->keys.set[0].data);
626 
627 	if (b->keys.page_order < min_order)
628 		goto out_unlock;
629 
630 	if (!flush) {
631 		if (btree_node_dirty(b))
632 			goto out_unlock;
633 
634 		if (down_trylock(&b->io_mutex))
635 			goto out_unlock;
636 		up(&b->io_mutex);
637 	}
638 
639 	mutex_lock(&b->write_lock);
640 	if (btree_node_dirty(b))
641 		__bch_btree_node_write(b, &cl);
642 	mutex_unlock(&b->write_lock);
643 
644 	closure_sync(&cl);
645 
646 	/* wait for any in flight btree write */
647 	down(&b->io_mutex);
648 	up(&b->io_mutex);
649 
650 	return 0;
651 out_unlock:
652 	rw_unlock(true, b);
653 	return -ENOMEM;
654 }
655 
656 static unsigned long bch_mca_scan(struct shrinker *shrink,
657 				  struct shrink_control *sc)
658 {
659 	struct cache_set *c = container_of(shrink, struct cache_set, shrink);
660 	struct btree *b, *t;
661 	unsigned long i, nr = sc->nr_to_scan;
662 	unsigned long freed = 0;
663 
664 	if (c->shrinker_disabled)
665 		return SHRINK_STOP;
666 
667 	if (c->btree_cache_alloc_lock)
668 		return SHRINK_STOP;
669 
670 	/* Return -1 if we can't do anything right now */
671 	if (sc->gfp_mask & __GFP_IO)
672 		mutex_lock(&c->bucket_lock);
673 	else if (!mutex_trylock(&c->bucket_lock))
674 		return -1;
675 
676 	/*
677 	 * It's _really_ critical that we don't free too many btree nodes - we
678 	 * have to always leave ourselves a reserve. The reserve is how we
679 	 * guarantee that allocating memory for a new btree node can always
680 	 * succeed, so that inserting keys into the btree can always succeed and
681 	 * IO can always make forward progress:
682 	 */
683 	nr /= c->btree_pages;
684 	nr = min_t(unsigned long, nr, mca_can_free(c));
685 
686 	i = 0;
687 	list_for_each_entry_safe(b, t, &c->btree_cache_freeable, list) {
688 		if (freed >= nr)
689 			break;
690 
691 		if (++i > 3 &&
692 		    !mca_reap(b, 0, false)) {
693 			mca_data_free(b);
694 			rw_unlock(true, b);
695 			freed++;
696 		}
697 	}
698 
699 	for (i = 0; (nr--) && i < c->btree_cache_used; i++) {
700 		if (list_empty(&c->btree_cache))
701 			goto out;
702 
703 		b = list_first_entry(&c->btree_cache, struct btree, list);
704 		list_rotate_left(&c->btree_cache);
705 
706 		if (!b->accessed &&
707 		    !mca_reap(b, 0, false)) {
708 			mca_bucket_free(b);
709 			mca_data_free(b);
710 			rw_unlock(true, b);
711 			freed++;
712 		} else
713 			b->accessed = 0;
714 	}
715 out:
716 	mutex_unlock(&c->bucket_lock);
717 	return freed;
718 }
719 
720 static unsigned long bch_mca_count(struct shrinker *shrink,
721 				   struct shrink_control *sc)
722 {
723 	struct cache_set *c = container_of(shrink, struct cache_set, shrink);
724 
725 	if (c->shrinker_disabled)
726 		return 0;
727 
728 	if (c->btree_cache_alloc_lock)
729 		return 0;
730 
731 	return mca_can_free(c) * c->btree_pages;
732 }
733 
734 void bch_btree_cache_free(struct cache_set *c)
735 {
736 	struct btree *b;
737 	struct closure cl;
738 	closure_init_stack(&cl);
739 
740 	if (c->shrink.list.next)
741 		unregister_shrinker(&c->shrink);
742 
743 	mutex_lock(&c->bucket_lock);
744 
745 #ifdef CONFIG_BCACHE_DEBUG
746 	if (c->verify_data)
747 		list_move(&c->verify_data->list, &c->btree_cache);
748 
749 	free_pages((unsigned long) c->verify_ondisk, ilog2(bucket_pages(c)));
750 #endif
751 
752 	list_splice(&c->btree_cache_freeable,
753 		    &c->btree_cache);
754 
755 	while (!list_empty(&c->btree_cache)) {
756 		b = list_first_entry(&c->btree_cache, struct btree, list);
757 
758 		if (btree_node_dirty(b))
759 			btree_complete_write(b, btree_current_write(b));
760 		clear_bit(BTREE_NODE_dirty, &b->flags);
761 
762 		mca_data_free(b);
763 	}
764 
765 	while (!list_empty(&c->btree_cache_freed)) {
766 		b = list_first_entry(&c->btree_cache_freed,
767 				     struct btree, list);
768 		list_del(&b->list);
769 		cancel_delayed_work_sync(&b->work);
770 		kfree(b);
771 	}
772 
773 	mutex_unlock(&c->bucket_lock);
774 }
775 
776 int bch_btree_cache_alloc(struct cache_set *c)
777 {
778 	unsigned i;
779 
780 	for (i = 0; i < mca_reserve(c); i++)
781 		if (!mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL))
782 			return -ENOMEM;
783 
784 	list_splice_init(&c->btree_cache,
785 			 &c->btree_cache_freeable);
786 
787 #ifdef CONFIG_BCACHE_DEBUG
788 	mutex_init(&c->verify_lock);
789 
790 	c->verify_ondisk = (void *)
791 		__get_free_pages(GFP_KERNEL, ilog2(bucket_pages(c)));
792 
793 	c->verify_data = mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL);
794 
795 	if (c->verify_data &&
796 	    c->verify_data->keys.set->data)
797 		list_del_init(&c->verify_data->list);
798 	else
799 		c->verify_data = NULL;
800 #endif
801 
802 	c->shrink.count_objects = bch_mca_count;
803 	c->shrink.scan_objects = bch_mca_scan;
804 	c->shrink.seeks = 4;
805 	c->shrink.batch = c->btree_pages * 2;
806 	register_shrinker(&c->shrink);
807 
808 	return 0;
809 }
810 
811 /* Btree in memory cache - hash table */
812 
813 static struct hlist_head *mca_hash(struct cache_set *c, struct bkey *k)
814 {
815 	return &c->bucket_hash[hash_32(PTR_HASH(c, k), BUCKET_HASH_BITS)];
816 }
817 
818 static struct btree *mca_find(struct cache_set *c, struct bkey *k)
819 {
820 	struct btree *b;
821 
822 	rcu_read_lock();
823 	hlist_for_each_entry_rcu(b, mca_hash(c, k), hash)
824 		if (PTR_HASH(c, &b->key) == PTR_HASH(c, k))
825 			goto out;
826 	b = NULL;
827 out:
828 	rcu_read_unlock();
829 	return b;
830 }
831 
832 static int mca_cannibalize_lock(struct cache_set *c, struct btree_op *op)
833 {
834 	struct task_struct *old;
835 
836 	old = cmpxchg(&c->btree_cache_alloc_lock, NULL, current);
837 	if (old && old != current) {
838 		if (op)
839 			prepare_to_wait(&c->btree_cache_wait, &op->wait,
840 					TASK_UNINTERRUPTIBLE);
841 		return -EINTR;
842 	}
843 
844 	return 0;
845 }
846 
847 static struct btree *mca_cannibalize(struct cache_set *c, struct btree_op *op,
848 				     struct bkey *k)
849 {
850 	struct btree *b;
851 
852 	trace_bcache_btree_cache_cannibalize(c);
853 
854 	if (mca_cannibalize_lock(c, op))
855 		return ERR_PTR(-EINTR);
856 
857 	list_for_each_entry_reverse(b, &c->btree_cache, list)
858 		if (!mca_reap(b, btree_order(k), false))
859 			return b;
860 
861 	list_for_each_entry_reverse(b, &c->btree_cache, list)
862 		if (!mca_reap(b, btree_order(k), true))
863 			return b;
864 
865 	WARN(1, "btree cache cannibalize failed\n");
866 	return ERR_PTR(-ENOMEM);
867 }
868 
869 /*
870  * We can only have one thread cannibalizing other cached btree nodes at a time,
871  * or we'll deadlock. We use an open coded mutex to ensure that, which a
872  * cannibalize_bucket() will take. This means every time we unlock the root of
873  * the btree, we need to release this lock if we have it held.
874  */
875 static void bch_cannibalize_unlock(struct cache_set *c)
876 {
877 	if (c->btree_cache_alloc_lock == current) {
878 		c->btree_cache_alloc_lock = NULL;
879 		wake_up(&c->btree_cache_wait);
880 	}
881 }
882 
883 static struct btree *mca_alloc(struct cache_set *c, struct btree_op *op,
884 			       struct bkey *k, int level)
885 {
886 	struct btree *b;
887 
888 	BUG_ON(current->bio_list);
889 
890 	lockdep_assert_held(&c->bucket_lock);
891 
892 	if (mca_find(c, k))
893 		return NULL;
894 
895 	/* btree_free() doesn't free memory; it sticks the node on the end of
896 	 * the list. Check if there's any freed nodes there:
897 	 */
898 	list_for_each_entry(b, &c->btree_cache_freeable, list)
899 		if (!mca_reap(b, btree_order(k), false))
900 			goto out;
901 
902 	/* We never free struct btree itself, just the memory that holds the on
903 	 * disk node. Check the freed list before allocating a new one:
904 	 */
905 	list_for_each_entry(b, &c->btree_cache_freed, list)
906 		if (!mca_reap(b, 0, false)) {
907 			mca_data_alloc(b, k, __GFP_NOWARN|GFP_NOIO);
908 			if (!b->keys.set[0].data)
909 				goto err;
910 			else
911 				goto out;
912 		}
913 
914 	b = mca_bucket_alloc(c, k, __GFP_NOWARN|GFP_NOIO);
915 	if (!b)
916 		goto err;
917 
918 	BUG_ON(!down_write_trylock(&b->lock));
919 	if (!b->keys.set->data)
920 		goto err;
921 out:
922 	BUG_ON(b->io_mutex.count != 1);
923 
924 	bkey_copy(&b->key, k);
925 	list_move(&b->list, &c->btree_cache);
926 	hlist_del_init_rcu(&b->hash);
927 	hlist_add_head_rcu(&b->hash, mca_hash(c, k));
928 
929 	lock_set_subclass(&b->lock.dep_map, level + 1, _THIS_IP_);
930 	b->parent	= (void *) ~0UL;
931 	b->flags	= 0;
932 	b->written	= 0;
933 	b->level	= level;
934 
935 	if (!b->level)
936 		bch_btree_keys_init(&b->keys, &bch_extent_keys_ops,
937 				    &b->c->expensive_debug_checks);
938 	else
939 		bch_btree_keys_init(&b->keys, &bch_btree_keys_ops,
940 				    &b->c->expensive_debug_checks);
941 
942 	return b;
943 err:
944 	if (b)
945 		rw_unlock(true, b);
946 
947 	b = mca_cannibalize(c, op, k);
948 	if (!IS_ERR(b))
949 		goto out;
950 
951 	return b;
952 }
953 
954 /**
955  * bch_btree_node_get - find a btree node in the cache and lock it, reading it
956  * in from disk if necessary.
957  *
958  * If IO is necessary and running under generic_make_request, returns -EAGAIN.
959  *
960  * The btree node will have either a read or a write lock held, depending on
961  * level and op->lock.
962  */
963 struct btree *bch_btree_node_get(struct cache_set *c, struct btree_op *op,
964 				 struct bkey *k, int level, bool write,
965 				 struct btree *parent)
966 {
967 	int i = 0;
968 	struct btree *b;
969 
970 	BUG_ON(level < 0);
971 retry:
972 	b = mca_find(c, k);
973 
974 	if (!b) {
975 		if (current->bio_list)
976 			return ERR_PTR(-EAGAIN);
977 
978 		mutex_lock(&c->bucket_lock);
979 		b = mca_alloc(c, op, k, level);
980 		mutex_unlock(&c->bucket_lock);
981 
982 		if (!b)
983 			goto retry;
984 		if (IS_ERR(b))
985 			return b;
986 
987 		bch_btree_node_read(b);
988 
989 		if (!write)
990 			downgrade_write(&b->lock);
991 	} else {
992 		rw_lock(write, b, level);
993 		if (PTR_HASH(c, &b->key) != PTR_HASH(c, k)) {
994 			rw_unlock(write, b);
995 			goto retry;
996 		}
997 		BUG_ON(b->level != level);
998 	}
999 
1000 	b->parent = parent;
1001 	b->accessed = 1;
1002 
1003 	for (; i <= b->keys.nsets && b->keys.set[i].size; i++) {
1004 		prefetch(b->keys.set[i].tree);
1005 		prefetch(b->keys.set[i].data);
1006 	}
1007 
1008 	for (; i <= b->keys.nsets; i++)
1009 		prefetch(b->keys.set[i].data);
1010 
1011 	if (btree_node_io_error(b)) {
1012 		rw_unlock(write, b);
1013 		return ERR_PTR(-EIO);
1014 	}
1015 
1016 	BUG_ON(!b->written);
1017 
1018 	return b;
1019 }
1020 
1021 static void btree_node_prefetch(struct btree *parent, struct bkey *k)
1022 {
1023 	struct btree *b;
1024 
1025 	mutex_lock(&parent->c->bucket_lock);
1026 	b = mca_alloc(parent->c, NULL, k, parent->level - 1);
1027 	mutex_unlock(&parent->c->bucket_lock);
1028 
1029 	if (!IS_ERR_OR_NULL(b)) {
1030 		b->parent = parent;
1031 		bch_btree_node_read(b);
1032 		rw_unlock(true, b);
1033 	}
1034 }
1035 
1036 /* Btree alloc */
1037 
1038 static void btree_node_free(struct btree *b)
1039 {
1040 	trace_bcache_btree_node_free(b);
1041 
1042 	BUG_ON(b == b->c->root);
1043 
1044 	mutex_lock(&b->write_lock);
1045 
1046 	if (btree_node_dirty(b))
1047 		btree_complete_write(b, btree_current_write(b));
1048 	clear_bit(BTREE_NODE_dirty, &b->flags);
1049 
1050 	mutex_unlock(&b->write_lock);
1051 
1052 	cancel_delayed_work(&b->work);
1053 
1054 	mutex_lock(&b->c->bucket_lock);
1055 	bch_bucket_free(b->c, &b->key);
1056 	mca_bucket_free(b);
1057 	mutex_unlock(&b->c->bucket_lock);
1058 }
1059 
1060 struct btree *__bch_btree_node_alloc(struct cache_set *c, struct btree_op *op,
1061 				     int level, bool wait,
1062 				     struct btree *parent)
1063 {
1064 	BKEY_PADDED(key) k;
1065 	struct btree *b = ERR_PTR(-EAGAIN);
1066 
1067 	mutex_lock(&c->bucket_lock);
1068 retry:
1069 	if (__bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, 1, wait))
1070 		goto err;
1071 
1072 	bkey_put(c, &k.key);
1073 	SET_KEY_SIZE(&k.key, c->btree_pages * PAGE_SECTORS);
1074 
1075 	b = mca_alloc(c, op, &k.key, level);
1076 	if (IS_ERR(b))
1077 		goto err_free;
1078 
1079 	if (!b) {
1080 		cache_bug(c,
1081 			"Tried to allocate bucket that was in btree cache");
1082 		goto retry;
1083 	}
1084 
1085 	b->accessed = 1;
1086 	b->parent = parent;
1087 	bch_bset_init_next(&b->keys, b->keys.set->data, bset_magic(&b->c->sb));
1088 
1089 	mutex_unlock(&c->bucket_lock);
1090 
1091 	trace_bcache_btree_node_alloc(b);
1092 	return b;
1093 err_free:
1094 	bch_bucket_free(c, &k.key);
1095 err:
1096 	mutex_unlock(&c->bucket_lock);
1097 
1098 	trace_bcache_btree_node_alloc_fail(c);
1099 	return b;
1100 }
1101 
1102 static struct btree *bch_btree_node_alloc(struct cache_set *c,
1103 					  struct btree_op *op, int level,
1104 					  struct btree *parent)
1105 {
1106 	return __bch_btree_node_alloc(c, op, level, op != NULL, parent);
1107 }
1108 
1109 static struct btree *btree_node_alloc_replacement(struct btree *b,
1110 						  struct btree_op *op)
1111 {
1112 	struct btree *n = bch_btree_node_alloc(b->c, op, b->level, b->parent);
1113 	if (!IS_ERR_OR_NULL(n)) {
1114 		mutex_lock(&n->write_lock);
1115 		bch_btree_sort_into(&b->keys, &n->keys, &b->c->sort);
1116 		bkey_copy_key(&n->key, &b->key);
1117 		mutex_unlock(&n->write_lock);
1118 	}
1119 
1120 	return n;
1121 }
1122 
1123 static void make_btree_freeing_key(struct btree *b, struct bkey *k)
1124 {
1125 	unsigned i;
1126 
1127 	mutex_lock(&b->c->bucket_lock);
1128 
1129 	atomic_inc(&b->c->prio_blocked);
1130 
1131 	bkey_copy(k, &b->key);
1132 	bkey_copy_key(k, &ZERO_KEY);
1133 
1134 	for (i = 0; i < KEY_PTRS(k); i++)
1135 		SET_PTR_GEN(k, i,
1136 			    bch_inc_gen(PTR_CACHE(b->c, &b->key, i),
1137 					PTR_BUCKET(b->c, &b->key, i)));
1138 
1139 	mutex_unlock(&b->c->bucket_lock);
1140 }
1141 
1142 static int btree_check_reserve(struct btree *b, struct btree_op *op)
1143 {
1144 	struct cache_set *c = b->c;
1145 	struct cache *ca;
1146 	unsigned i, reserve = (c->root->level - b->level) * 2 + 1;
1147 
1148 	mutex_lock(&c->bucket_lock);
1149 
1150 	for_each_cache(ca, c, i)
1151 		if (fifo_used(&ca->free[RESERVE_BTREE]) < reserve) {
1152 			if (op)
1153 				prepare_to_wait(&c->btree_cache_wait, &op->wait,
1154 						TASK_UNINTERRUPTIBLE);
1155 			mutex_unlock(&c->bucket_lock);
1156 			return -EINTR;
1157 		}
1158 
1159 	mutex_unlock(&c->bucket_lock);
1160 
1161 	return mca_cannibalize_lock(b->c, op);
1162 }
1163 
1164 /* Garbage collection */
1165 
1166 static uint8_t __bch_btree_mark_key(struct cache_set *c, int level,
1167 				    struct bkey *k)
1168 {
1169 	uint8_t stale = 0;
1170 	unsigned i;
1171 	struct bucket *g;
1172 
1173 	/*
1174 	 * ptr_invalid() can't return true for the keys that mark btree nodes as
1175 	 * freed, but since ptr_bad() returns true we'll never actually use them
1176 	 * for anything and thus we don't want mark their pointers here
1177 	 */
1178 	if (!bkey_cmp(k, &ZERO_KEY))
1179 		return stale;
1180 
1181 	for (i = 0; i < KEY_PTRS(k); i++) {
1182 		if (!ptr_available(c, k, i))
1183 			continue;
1184 
1185 		g = PTR_BUCKET(c, k, i);
1186 
1187 		if (gen_after(g->last_gc, PTR_GEN(k, i)))
1188 			g->last_gc = PTR_GEN(k, i);
1189 
1190 		if (ptr_stale(c, k, i)) {
1191 			stale = max(stale, ptr_stale(c, k, i));
1192 			continue;
1193 		}
1194 
1195 		cache_bug_on(GC_MARK(g) &&
1196 			     (GC_MARK(g) == GC_MARK_METADATA) != (level != 0),
1197 			     c, "inconsistent ptrs: mark = %llu, level = %i",
1198 			     GC_MARK(g), level);
1199 
1200 		if (level)
1201 			SET_GC_MARK(g, GC_MARK_METADATA);
1202 		else if (KEY_DIRTY(k))
1203 			SET_GC_MARK(g, GC_MARK_DIRTY);
1204 		else if (!GC_MARK(g))
1205 			SET_GC_MARK(g, GC_MARK_RECLAIMABLE);
1206 
1207 		/* guard against overflow */
1208 		SET_GC_SECTORS_USED(g, min_t(unsigned,
1209 					     GC_SECTORS_USED(g) + KEY_SIZE(k),
1210 					     MAX_GC_SECTORS_USED));
1211 
1212 		BUG_ON(!GC_SECTORS_USED(g));
1213 	}
1214 
1215 	return stale;
1216 }
1217 
1218 #define btree_mark_key(b, k)	__bch_btree_mark_key(b->c, b->level, k)
1219 
1220 void bch_initial_mark_key(struct cache_set *c, int level, struct bkey *k)
1221 {
1222 	unsigned i;
1223 
1224 	for (i = 0; i < KEY_PTRS(k); i++)
1225 		if (ptr_available(c, k, i) &&
1226 		    !ptr_stale(c, k, i)) {
1227 			struct bucket *b = PTR_BUCKET(c, k, i);
1228 
1229 			b->gen = PTR_GEN(k, i);
1230 
1231 			if (level && bkey_cmp(k, &ZERO_KEY))
1232 				b->prio = BTREE_PRIO;
1233 			else if (!level && b->prio == BTREE_PRIO)
1234 				b->prio = INITIAL_PRIO;
1235 		}
1236 
1237 	__bch_btree_mark_key(c, level, k);
1238 }
1239 
1240 static bool btree_gc_mark_node(struct btree *b, struct gc_stat *gc)
1241 {
1242 	uint8_t stale = 0;
1243 	unsigned keys = 0, good_keys = 0;
1244 	struct bkey *k;
1245 	struct btree_iter iter;
1246 	struct bset_tree *t;
1247 
1248 	gc->nodes++;
1249 
1250 	for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid) {
1251 		stale = max(stale, btree_mark_key(b, k));
1252 		keys++;
1253 
1254 		if (bch_ptr_bad(&b->keys, k))
1255 			continue;
1256 
1257 		gc->key_bytes += bkey_u64s(k);
1258 		gc->nkeys++;
1259 		good_keys++;
1260 
1261 		gc->data += KEY_SIZE(k);
1262 	}
1263 
1264 	for (t = b->keys.set; t <= &b->keys.set[b->keys.nsets]; t++)
1265 		btree_bug_on(t->size &&
1266 			     bset_written(&b->keys, t) &&
1267 			     bkey_cmp(&b->key, &t->end) < 0,
1268 			     b, "found short btree key in gc");
1269 
1270 	if (b->c->gc_always_rewrite)
1271 		return true;
1272 
1273 	if (stale > 10)
1274 		return true;
1275 
1276 	if ((keys - good_keys) * 2 > keys)
1277 		return true;
1278 
1279 	return false;
1280 }
1281 
1282 #define GC_MERGE_NODES	4U
1283 
1284 struct gc_merge_info {
1285 	struct btree	*b;
1286 	unsigned	keys;
1287 };
1288 
1289 static int bch_btree_insert_node(struct btree *, struct btree_op *,
1290 				 struct keylist *, atomic_t *, struct bkey *);
1291 
1292 static int btree_gc_coalesce(struct btree *b, struct btree_op *op,
1293 			     struct gc_stat *gc, struct gc_merge_info *r)
1294 {
1295 	unsigned i, nodes = 0, keys = 0, blocks;
1296 	struct btree *new_nodes[GC_MERGE_NODES];
1297 	struct keylist keylist;
1298 	struct closure cl;
1299 	struct bkey *k;
1300 
1301 	bch_keylist_init(&keylist);
1302 
1303 	if (btree_check_reserve(b, NULL))
1304 		return 0;
1305 
1306 	memset(new_nodes, 0, sizeof(new_nodes));
1307 	closure_init_stack(&cl);
1308 
1309 	while (nodes < GC_MERGE_NODES && !IS_ERR_OR_NULL(r[nodes].b))
1310 		keys += r[nodes++].keys;
1311 
1312 	blocks = btree_default_blocks(b->c) * 2 / 3;
1313 
1314 	if (nodes < 2 ||
1315 	    __set_blocks(b->keys.set[0].data, keys,
1316 			 block_bytes(b->c)) > blocks * (nodes - 1))
1317 		return 0;
1318 
1319 	for (i = 0; i < nodes; i++) {
1320 		new_nodes[i] = btree_node_alloc_replacement(r[i].b, NULL);
1321 		if (IS_ERR_OR_NULL(new_nodes[i]))
1322 			goto out_nocoalesce;
1323 	}
1324 
1325 	/*
1326 	 * We have to check the reserve here, after we've allocated our new
1327 	 * nodes, to make sure the insert below will succeed - we also check
1328 	 * before as an optimization to potentially avoid a bunch of expensive
1329 	 * allocs/sorts
1330 	 */
1331 	if (btree_check_reserve(b, NULL))
1332 		goto out_nocoalesce;
1333 
1334 	for (i = 0; i < nodes; i++)
1335 		mutex_lock(&new_nodes[i]->write_lock);
1336 
1337 	for (i = nodes - 1; i > 0; --i) {
1338 		struct bset *n1 = btree_bset_first(new_nodes[i]);
1339 		struct bset *n2 = btree_bset_first(new_nodes[i - 1]);
1340 		struct bkey *k, *last = NULL;
1341 
1342 		keys = 0;
1343 
1344 		if (i > 1) {
1345 			for (k = n2->start;
1346 			     k < bset_bkey_last(n2);
1347 			     k = bkey_next(k)) {
1348 				if (__set_blocks(n1, n1->keys + keys +
1349 						 bkey_u64s(k),
1350 						 block_bytes(b->c)) > blocks)
1351 					break;
1352 
1353 				last = k;
1354 				keys += bkey_u64s(k);
1355 			}
1356 		} else {
1357 			/*
1358 			 * Last node we're not getting rid of - we're getting
1359 			 * rid of the node at r[0]. Have to try and fit all of
1360 			 * the remaining keys into this node; we can't ensure
1361 			 * they will always fit due to rounding and variable
1362 			 * length keys (shouldn't be possible in practice,
1363 			 * though)
1364 			 */
1365 			if (__set_blocks(n1, n1->keys + n2->keys,
1366 					 block_bytes(b->c)) >
1367 			    btree_blocks(new_nodes[i]))
1368 				goto out_nocoalesce;
1369 
1370 			keys = n2->keys;
1371 			/* Take the key of the node we're getting rid of */
1372 			last = &r->b->key;
1373 		}
1374 
1375 		BUG_ON(__set_blocks(n1, n1->keys + keys, block_bytes(b->c)) >
1376 		       btree_blocks(new_nodes[i]));
1377 
1378 		if (last)
1379 			bkey_copy_key(&new_nodes[i]->key, last);
1380 
1381 		memcpy(bset_bkey_last(n1),
1382 		       n2->start,
1383 		       (void *) bset_bkey_idx(n2, keys) - (void *) n2->start);
1384 
1385 		n1->keys += keys;
1386 		r[i].keys = n1->keys;
1387 
1388 		memmove(n2->start,
1389 			bset_bkey_idx(n2, keys),
1390 			(void *) bset_bkey_last(n2) -
1391 			(void *) bset_bkey_idx(n2, keys));
1392 
1393 		n2->keys -= keys;
1394 
1395 		if (__bch_keylist_realloc(&keylist,
1396 					  bkey_u64s(&new_nodes[i]->key)))
1397 			goto out_nocoalesce;
1398 
1399 		bch_btree_node_write(new_nodes[i], &cl);
1400 		bch_keylist_add(&keylist, &new_nodes[i]->key);
1401 	}
1402 
1403 	for (i = 0; i < nodes; i++)
1404 		mutex_unlock(&new_nodes[i]->write_lock);
1405 
1406 	closure_sync(&cl);
1407 
1408 	/* We emptied out this node */
1409 	BUG_ON(btree_bset_first(new_nodes[0])->keys);
1410 	btree_node_free(new_nodes[0]);
1411 	rw_unlock(true, new_nodes[0]);
1412 	new_nodes[0] = NULL;
1413 
1414 	for (i = 0; i < nodes; i++) {
1415 		if (__bch_keylist_realloc(&keylist, bkey_u64s(&r[i].b->key)))
1416 			goto out_nocoalesce;
1417 
1418 		make_btree_freeing_key(r[i].b, keylist.top);
1419 		bch_keylist_push(&keylist);
1420 	}
1421 
1422 	bch_btree_insert_node(b, op, &keylist, NULL, NULL);
1423 	BUG_ON(!bch_keylist_empty(&keylist));
1424 
1425 	for (i = 0; i < nodes; i++) {
1426 		btree_node_free(r[i].b);
1427 		rw_unlock(true, r[i].b);
1428 
1429 		r[i].b = new_nodes[i];
1430 	}
1431 
1432 	memmove(r, r + 1, sizeof(r[0]) * (nodes - 1));
1433 	r[nodes - 1].b = ERR_PTR(-EINTR);
1434 
1435 	trace_bcache_btree_gc_coalesce(nodes);
1436 	gc->nodes--;
1437 
1438 	bch_keylist_free(&keylist);
1439 
1440 	/* Invalidated our iterator */
1441 	return -EINTR;
1442 
1443 out_nocoalesce:
1444 	closure_sync(&cl);
1445 	bch_keylist_free(&keylist);
1446 
1447 	while ((k = bch_keylist_pop(&keylist)))
1448 		if (!bkey_cmp(k, &ZERO_KEY))
1449 			atomic_dec(&b->c->prio_blocked);
1450 
1451 	for (i = 0; i < nodes; i++)
1452 		if (!IS_ERR_OR_NULL(new_nodes[i])) {
1453 			btree_node_free(new_nodes[i]);
1454 			rw_unlock(true, new_nodes[i]);
1455 		}
1456 	return 0;
1457 }
1458 
1459 static int btree_gc_rewrite_node(struct btree *b, struct btree_op *op,
1460 				 struct btree *replace)
1461 {
1462 	struct keylist keys;
1463 	struct btree *n;
1464 
1465 	if (btree_check_reserve(b, NULL))
1466 		return 0;
1467 
1468 	n = btree_node_alloc_replacement(replace, NULL);
1469 
1470 	/* recheck reserve after allocating replacement node */
1471 	if (btree_check_reserve(b, NULL)) {
1472 		btree_node_free(n);
1473 		rw_unlock(true, n);
1474 		return 0;
1475 	}
1476 
1477 	bch_btree_node_write_sync(n);
1478 
1479 	bch_keylist_init(&keys);
1480 	bch_keylist_add(&keys, &n->key);
1481 
1482 	make_btree_freeing_key(replace, keys.top);
1483 	bch_keylist_push(&keys);
1484 
1485 	bch_btree_insert_node(b, op, &keys, NULL, NULL);
1486 	BUG_ON(!bch_keylist_empty(&keys));
1487 
1488 	btree_node_free(replace);
1489 	rw_unlock(true, n);
1490 
1491 	/* Invalidated our iterator */
1492 	return -EINTR;
1493 }
1494 
1495 static unsigned btree_gc_count_keys(struct btree *b)
1496 {
1497 	struct bkey *k;
1498 	struct btree_iter iter;
1499 	unsigned ret = 0;
1500 
1501 	for_each_key_filter(&b->keys, k, &iter, bch_ptr_bad)
1502 		ret += bkey_u64s(k);
1503 
1504 	return ret;
1505 }
1506 
1507 static int btree_gc_recurse(struct btree *b, struct btree_op *op,
1508 			    struct closure *writes, struct gc_stat *gc)
1509 {
1510 	int ret = 0;
1511 	bool should_rewrite;
1512 	struct bkey *k;
1513 	struct btree_iter iter;
1514 	struct gc_merge_info r[GC_MERGE_NODES];
1515 	struct gc_merge_info *i, *last = r + ARRAY_SIZE(r) - 1;
1516 
1517 	bch_btree_iter_init(&b->keys, &iter, &b->c->gc_done);
1518 
1519 	for (i = r; i < r + ARRAY_SIZE(r); i++)
1520 		i->b = ERR_PTR(-EINTR);
1521 
1522 	while (1) {
1523 		k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad);
1524 		if (k) {
1525 			r->b = bch_btree_node_get(b->c, op, k, b->level - 1,
1526 						  true, b);
1527 			if (IS_ERR(r->b)) {
1528 				ret = PTR_ERR(r->b);
1529 				break;
1530 			}
1531 
1532 			r->keys = btree_gc_count_keys(r->b);
1533 
1534 			ret = btree_gc_coalesce(b, op, gc, r);
1535 			if (ret)
1536 				break;
1537 		}
1538 
1539 		if (!last->b)
1540 			break;
1541 
1542 		if (!IS_ERR(last->b)) {
1543 			should_rewrite = btree_gc_mark_node(last->b, gc);
1544 			if (should_rewrite) {
1545 				ret = btree_gc_rewrite_node(b, op, last->b);
1546 				if (ret)
1547 					break;
1548 			}
1549 
1550 			if (last->b->level) {
1551 				ret = btree_gc_recurse(last->b, op, writes, gc);
1552 				if (ret)
1553 					break;
1554 			}
1555 
1556 			bkey_copy_key(&b->c->gc_done, &last->b->key);
1557 
1558 			/*
1559 			 * Must flush leaf nodes before gc ends, since replace
1560 			 * operations aren't journalled
1561 			 */
1562 			mutex_lock(&last->b->write_lock);
1563 			if (btree_node_dirty(last->b))
1564 				bch_btree_node_write(last->b, writes);
1565 			mutex_unlock(&last->b->write_lock);
1566 			rw_unlock(true, last->b);
1567 		}
1568 
1569 		memmove(r + 1, r, sizeof(r[0]) * (GC_MERGE_NODES - 1));
1570 		r->b = NULL;
1571 
1572 		if (need_resched()) {
1573 			ret = -EAGAIN;
1574 			break;
1575 		}
1576 	}
1577 
1578 	for (i = r; i < r + ARRAY_SIZE(r); i++)
1579 		if (!IS_ERR_OR_NULL(i->b)) {
1580 			mutex_lock(&i->b->write_lock);
1581 			if (btree_node_dirty(i->b))
1582 				bch_btree_node_write(i->b, writes);
1583 			mutex_unlock(&i->b->write_lock);
1584 			rw_unlock(true, i->b);
1585 		}
1586 
1587 	return ret;
1588 }
1589 
1590 static int bch_btree_gc_root(struct btree *b, struct btree_op *op,
1591 			     struct closure *writes, struct gc_stat *gc)
1592 {
1593 	struct btree *n = NULL;
1594 	int ret = 0;
1595 	bool should_rewrite;
1596 
1597 	should_rewrite = btree_gc_mark_node(b, gc);
1598 	if (should_rewrite) {
1599 		n = btree_node_alloc_replacement(b, NULL);
1600 
1601 		if (!IS_ERR_OR_NULL(n)) {
1602 			bch_btree_node_write_sync(n);
1603 
1604 			bch_btree_set_root(n);
1605 			btree_node_free(b);
1606 			rw_unlock(true, n);
1607 
1608 			return -EINTR;
1609 		}
1610 	}
1611 
1612 	__bch_btree_mark_key(b->c, b->level + 1, &b->key);
1613 
1614 	if (b->level) {
1615 		ret = btree_gc_recurse(b, op, writes, gc);
1616 		if (ret)
1617 			return ret;
1618 	}
1619 
1620 	bkey_copy_key(&b->c->gc_done, &b->key);
1621 
1622 	return ret;
1623 }
1624 
1625 static void btree_gc_start(struct cache_set *c)
1626 {
1627 	struct cache *ca;
1628 	struct bucket *b;
1629 	unsigned i;
1630 
1631 	if (!c->gc_mark_valid)
1632 		return;
1633 
1634 	mutex_lock(&c->bucket_lock);
1635 
1636 	c->gc_mark_valid = 0;
1637 	c->gc_done = ZERO_KEY;
1638 
1639 	for_each_cache(ca, c, i)
1640 		for_each_bucket(b, ca) {
1641 			b->last_gc = b->gen;
1642 			if (!atomic_read(&b->pin)) {
1643 				SET_GC_MARK(b, 0);
1644 				SET_GC_SECTORS_USED(b, 0);
1645 			}
1646 		}
1647 
1648 	mutex_unlock(&c->bucket_lock);
1649 }
1650 
1651 static size_t bch_btree_gc_finish(struct cache_set *c)
1652 {
1653 	size_t available = 0;
1654 	struct bucket *b;
1655 	struct cache *ca;
1656 	unsigned i;
1657 
1658 	mutex_lock(&c->bucket_lock);
1659 
1660 	set_gc_sectors(c);
1661 	c->gc_mark_valid = 1;
1662 	c->need_gc	= 0;
1663 
1664 	for (i = 0; i < KEY_PTRS(&c->uuid_bucket); i++)
1665 		SET_GC_MARK(PTR_BUCKET(c, &c->uuid_bucket, i),
1666 			    GC_MARK_METADATA);
1667 
1668 	/* don't reclaim buckets to which writeback keys point */
1669 	rcu_read_lock();
1670 	for (i = 0; i < c->nr_uuids; i++) {
1671 		struct bcache_device *d = c->devices[i];
1672 		struct cached_dev *dc;
1673 		struct keybuf_key *w, *n;
1674 		unsigned j;
1675 
1676 		if (!d || UUID_FLASH_ONLY(&c->uuids[i]))
1677 			continue;
1678 		dc = container_of(d, struct cached_dev, disk);
1679 
1680 		spin_lock(&dc->writeback_keys.lock);
1681 		rbtree_postorder_for_each_entry_safe(w, n,
1682 					&dc->writeback_keys.keys, node)
1683 			for (j = 0; j < KEY_PTRS(&w->key); j++)
1684 				SET_GC_MARK(PTR_BUCKET(c, &w->key, j),
1685 					    GC_MARK_DIRTY);
1686 		spin_unlock(&dc->writeback_keys.lock);
1687 	}
1688 	rcu_read_unlock();
1689 
1690 	for_each_cache(ca, c, i) {
1691 		uint64_t *i;
1692 
1693 		ca->invalidate_needs_gc = 0;
1694 
1695 		for (i = ca->sb.d; i < ca->sb.d + ca->sb.keys; i++)
1696 			SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA);
1697 
1698 		for (i = ca->prio_buckets;
1699 		     i < ca->prio_buckets + prio_buckets(ca) * 2; i++)
1700 			SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA);
1701 
1702 		for_each_bucket(b, ca) {
1703 			c->need_gc	= max(c->need_gc, bucket_gc_gen(b));
1704 
1705 			if (atomic_read(&b->pin))
1706 				continue;
1707 
1708 			BUG_ON(!GC_MARK(b) && GC_SECTORS_USED(b));
1709 
1710 			if (!GC_MARK(b) || GC_MARK(b) == GC_MARK_RECLAIMABLE)
1711 				available++;
1712 		}
1713 	}
1714 
1715 	mutex_unlock(&c->bucket_lock);
1716 	return available;
1717 }
1718 
1719 static void bch_btree_gc(struct cache_set *c)
1720 {
1721 	int ret;
1722 	unsigned long available;
1723 	struct gc_stat stats;
1724 	struct closure writes;
1725 	struct btree_op op;
1726 	uint64_t start_time = local_clock();
1727 
1728 	trace_bcache_gc_start(c);
1729 
1730 	memset(&stats, 0, sizeof(struct gc_stat));
1731 	closure_init_stack(&writes);
1732 	bch_btree_op_init(&op, SHRT_MAX);
1733 
1734 	btree_gc_start(c);
1735 
1736 	do {
1737 		ret = btree_root(gc_root, c, &op, &writes, &stats);
1738 		closure_sync(&writes);
1739 		cond_resched();
1740 
1741 		if (ret && ret != -EAGAIN)
1742 			pr_warn("gc failed!");
1743 	} while (ret);
1744 
1745 	available = bch_btree_gc_finish(c);
1746 	wake_up_allocators(c);
1747 
1748 	bch_time_stats_update(&c->btree_gc_time, start_time);
1749 
1750 	stats.key_bytes *= sizeof(uint64_t);
1751 	stats.data	<<= 9;
1752 	stats.in_use	= (c->nbuckets - available) * 100 / c->nbuckets;
1753 	memcpy(&c->gc_stats, &stats, sizeof(struct gc_stat));
1754 
1755 	trace_bcache_gc_end(c);
1756 
1757 	bch_moving_gc(c);
1758 }
1759 
1760 static bool gc_should_run(struct cache_set *c)
1761 {
1762 	struct cache *ca;
1763 	unsigned i;
1764 
1765 	for_each_cache(ca, c, i)
1766 		if (ca->invalidate_needs_gc)
1767 			return true;
1768 
1769 	if (atomic_read(&c->sectors_to_gc) < 0)
1770 		return true;
1771 
1772 	return false;
1773 }
1774 
1775 static int bch_gc_thread(void *arg)
1776 {
1777 	struct cache_set *c = arg;
1778 
1779 	while (1) {
1780 		wait_event_interruptible(c->gc_wait,
1781 			   kthread_should_stop() || gc_should_run(c));
1782 
1783 		if (kthread_should_stop())
1784 			break;
1785 
1786 		set_gc_sectors(c);
1787 		bch_btree_gc(c);
1788 	}
1789 
1790 	return 0;
1791 }
1792 
1793 int bch_gc_thread_start(struct cache_set *c)
1794 {
1795 	c->gc_thread = kthread_run(bch_gc_thread, c, "bcache_gc");
1796 	if (IS_ERR(c->gc_thread))
1797 		return PTR_ERR(c->gc_thread);
1798 
1799 	return 0;
1800 }
1801 
1802 /* Initial partial gc */
1803 
1804 static int bch_btree_check_recurse(struct btree *b, struct btree_op *op)
1805 {
1806 	int ret = 0;
1807 	struct bkey *k, *p = NULL;
1808 	struct btree_iter iter;
1809 
1810 	for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid)
1811 		bch_initial_mark_key(b->c, b->level, k);
1812 
1813 	bch_initial_mark_key(b->c, b->level + 1, &b->key);
1814 
1815 	if (b->level) {
1816 		bch_btree_iter_init(&b->keys, &iter, NULL);
1817 
1818 		do {
1819 			k = bch_btree_iter_next_filter(&iter, &b->keys,
1820 						       bch_ptr_bad);
1821 			if (k)
1822 				btree_node_prefetch(b, k);
1823 
1824 			if (p)
1825 				ret = btree(check_recurse, p, b, op);
1826 
1827 			p = k;
1828 		} while (p && !ret);
1829 	}
1830 
1831 	return ret;
1832 }
1833 
1834 int bch_btree_check(struct cache_set *c)
1835 {
1836 	struct btree_op op;
1837 
1838 	bch_btree_op_init(&op, SHRT_MAX);
1839 
1840 	return btree_root(check_recurse, c, &op);
1841 }
1842 
1843 void bch_initial_gc_finish(struct cache_set *c)
1844 {
1845 	struct cache *ca;
1846 	struct bucket *b;
1847 	unsigned i;
1848 
1849 	bch_btree_gc_finish(c);
1850 
1851 	mutex_lock(&c->bucket_lock);
1852 
1853 	/*
1854 	 * We need to put some unused buckets directly on the prio freelist in
1855 	 * order to get the allocator thread started - it needs freed buckets in
1856 	 * order to rewrite the prios and gens, and it needs to rewrite prios
1857 	 * and gens in order to free buckets.
1858 	 *
1859 	 * This is only safe for buckets that have no live data in them, which
1860 	 * there should always be some of.
1861 	 */
1862 	for_each_cache(ca, c, i) {
1863 		for_each_bucket(b, ca) {
1864 			if (fifo_full(&ca->free[RESERVE_PRIO]))
1865 				break;
1866 
1867 			if (bch_can_invalidate_bucket(ca, b) &&
1868 			    !GC_MARK(b)) {
1869 				__bch_invalidate_one_bucket(ca, b);
1870 				fifo_push(&ca->free[RESERVE_PRIO],
1871 					  b - ca->buckets);
1872 			}
1873 		}
1874 	}
1875 
1876 	mutex_unlock(&c->bucket_lock);
1877 }
1878 
1879 /* Btree insertion */
1880 
1881 static bool btree_insert_key(struct btree *b, struct bkey *k,
1882 			     struct bkey *replace_key)
1883 {
1884 	unsigned status;
1885 
1886 	BUG_ON(bkey_cmp(k, &b->key) > 0);
1887 
1888 	status = bch_btree_insert_key(&b->keys, k, replace_key);
1889 	if (status != BTREE_INSERT_STATUS_NO_INSERT) {
1890 		bch_check_keys(&b->keys, "%u for %s", status,
1891 			       replace_key ? "replace" : "insert");
1892 
1893 		trace_bcache_btree_insert_key(b, k, replace_key != NULL,
1894 					      status);
1895 		return true;
1896 	} else
1897 		return false;
1898 }
1899 
1900 static size_t insert_u64s_remaining(struct btree *b)
1901 {
1902 	long ret = bch_btree_keys_u64s_remaining(&b->keys);
1903 
1904 	/*
1905 	 * Might land in the middle of an existing extent and have to split it
1906 	 */
1907 	if (b->keys.ops->is_extents)
1908 		ret -= KEY_MAX_U64S;
1909 
1910 	return max(ret, 0L);
1911 }
1912 
1913 static bool bch_btree_insert_keys(struct btree *b, struct btree_op *op,
1914 				  struct keylist *insert_keys,
1915 				  struct bkey *replace_key)
1916 {
1917 	bool ret = false;
1918 	int oldsize = bch_count_data(&b->keys);
1919 
1920 	while (!bch_keylist_empty(insert_keys)) {
1921 		struct bkey *k = insert_keys->keys;
1922 
1923 		if (bkey_u64s(k) > insert_u64s_remaining(b))
1924 			break;
1925 
1926 		if (bkey_cmp(k, &b->key) <= 0) {
1927 			if (!b->level)
1928 				bkey_put(b->c, k);
1929 
1930 			ret |= btree_insert_key(b, k, replace_key);
1931 			bch_keylist_pop_front(insert_keys);
1932 		} else if (bkey_cmp(&START_KEY(k), &b->key) < 0) {
1933 			BKEY_PADDED(key) temp;
1934 			bkey_copy(&temp.key, insert_keys->keys);
1935 
1936 			bch_cut_back(&b->key, &temp.key);
1937 			bch_cut_front(&b->key, insert_keys->keys);
1938 
1939 			ret |= btree_insert_key(b, &temp.key, replace_key);
1940 			break;
1941 		} else {
1942 			break;
1943 		}
1944 	}
1945 
1946 	if (!ret)
1947 		op->insert_collision = true;
1948 
1949 	BUG_ON(!bch_keylist_empty(insert_keys) && b->level);
1950 
1951 	BUG_ON(bch_count_data(&b->keys) < oldsize);
1952 	return ret;
1953 }
1954 
1955 static int btree_split(struct btree *b, struct btree_op *op,
1956 		       struct keylist *insert_keys,
1957 		       struct bkey *replace_key)
1958 {
1959 	bool split;
1960 	struct btree *n1, *n2 = NULL, *n3 = NULL;
1961 	uint64_t start_time = local_clock();
1962 	struct closure cl;
1963 	struct keylist parent_keys;
1964 
1965 	closure_init_stack(&cl);
1966 	bch_keylist_init(&parent_keys);
1967 
1968 	if (btree_check_reserve(b, op)) {
1969 		if (!b->level)
1970 			return -EINTR;
1971 		else
1972 			WARN(1, "insufficient reserve for split\n");
1973 	}
1974 
1975 	n1 = btree_node_alloc_replacement(b, op);
1976 	if (IS_ERR(n1))
1977 		goto err;
1978 
1979 	split = set_blocks(btree_bset_first(n1),
1980 			   block_bytes(n1->c)) > (btree_blocks(b) * 4) / 5;
1981 
1982 	if (split) {
1983 		unsigned keys = 0;
1984 
1985 		trace_bcache_btree_node_split(b, btree_bset_first(n1)->keys);
1986 
1987 		n2 = bch_btree_node_alloc(b->c, op, b->level, b->parent);
1988 		if (IS_ERR(n2))
1989 			goto err_free1;
1990 
1991 		if (!b->parent) {
1992 			n3 = bch_btree_node_alloc(b->c, op, b->level + 1, NULL);
1993 			if (IS_ERR(n3))
1994 				goto err_free2;
1995 		}
1996 
1997 		mutex_lock(&n1->write_lock);
1998 		mutex_lock(&n2->write_lock);
1999 
2000 		bch_btree_insert_keys(n1, op, insert_keys, replace_key);
2001 
2002 		/*
2003 		 * Has to be a linear search because we don't have an auxiliary
2004 		 * search tree yet
2005 		 */
2006 
2007 		while (keys < (btree_bset_first(n1)->keys * 3) / 5)
2008 			keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1),
2009 							keys));
2010 
2011 		bkey_copy_key(&n1->key,
2012 			      bset_bkey_idx(btree_bset_first(n1), keys));
2013 		keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1), keys));
2014 
2015 		btree_bset_first(n2)->keys = btree_bset_first(n1)->keys - keys;
2016 		btree_bset_first(n1)->keys = keys;
2017 
2018 		memcpy(btree_bset_first(n2)->start,
2019 		       bset_bkey_last(btree_bset_first(n1)),
2020 		       btree_bset_first(n2)->keys * sizeof(uint64_t));
2021 
2022 		bkey_copy_key(&n2->key, &b->key);
2023 
2024 		bch_keylist_add(&parent_keys, &n2->key);
2025 		bch_btree_node_write(n2, &cl);
2026 		mutex_unlock(&n2->write_lock);
2027 		rw_unlock(true, n2);
2028 	} else {
2029 		trace_bcache_btree_node_compact(b, btree_bset_first(n1)->keys);
2030 
2031 		mutex_lock(&n1->write_lock);
2032 		bch_btree_insert_keys(n1, op, insert_keys, replace_key);
2033 	}
2034 
2035 	bch_keylist_add(&parent_keys, &n1->key);
2036 	bch_btree_node_write(n1, &cl);
2037 	mutex_unlock(&n1->write_lock);
2038 
2039 	if (n3) {
2040 		/* Depth increases, make a new root */
2041 		mutex_lock(&n3->write_lock);
2042 		bkey_copy_key(&n3->key, &MAX_KEY);
2043 		bch_btree_insert_keys(n3, op, &parent_keys, NULL);
2044 		bch_btree_node_write(n3, &cl);
2045 		mutex_unlock(&n3->write_lock);
2046 
2047 		closure_sync(&cl);
2048 		bch_btree_set_root(n3);
2049 		rw_unlock(true, n3);
2050 	} else if (!b->parent) {
2051 		/* Root filled up but didn't need to be split */
2052 		closure_sync(&cl);
2053 		bch_btree_set_root(n1);
2054 	} else {
2055 		/* Split a non root node */
2056 		closure_sync(&cl);
2057 		make_btree_freeing_key(b, parent_keys.top);
2058 		bch_keylist_push(&parent_keys);
2059 
2060 		bch_btree_insert_node(b->parent, op, &parent_keys, NULL, NULL);
2061 		BUG_ON(!bch_keylist_empty(&parent_keys));
2062 	}
2063 
2064 	btree_node_free(b);
2065 	rw_unlock(true, n1);
2066 
2067 	bch_time_stats_update(&b->c->btree_split_time, start_time);
2068 
2069 	return 0;
2070 err_free2:
2071 	bkey_put(b->c, &n2->key);
2072 	btree_node_free(n2);
2073 	rw_unlock(true, n2);
2074 err_free1:
2075 	bkey_put(b->c, &n1->key);
2076 	btree_node_free(n1);
2077 	rw_unlock(true, n1);
2078 err:
2079 	WARN(1, "bcache: btree split failed (level %u)", b->level);
2080 
2081 	if (n3 == ERR_PTR(-EAGAIN) ||
2082 	    n2 == ERR_PTR(-EAGAIN) ||
2083 	    n1 == ERR_PTR(-EAGAIN))
2084 		return -EAGAIN;
2085 
2086 	return -ENOMEM;
2087 }
2088 
2089 static int bch_btree_insert_node(struct btree *b, struct btree_op *op,
2090 				 struct keylist *insert_keys,
2091 				 atomic_t *journal_ref,
2092 				 struct bkey *replace_key)
2093 {
2094 	struct closure cl;
2095 
2096 	BUG_ON(b->level && replace_key);
2097 
2098 	closure_init_stack(&cl);
2099 
2100 	mutex_lock(&b->write_lock);
2101 
2102 	if (write_block(b) != btree_bset_last(b) &&
2103 	    b->keys.last_set_unwritten)
2104 		bch_btree_init_next(b); /* just wrote a set */
2105 
2106 	if (bch_keylist_nkeys(insert_keys) > insert_u64s_remaining(b)) {
2107 		mutex_unlock(&b->write_lock);
2108 		goto split;
2109 	}
2110 
2111 	BUG_ON(write_block(b) != btree_bset_last(b));
2112 
2113 	if (bch_btree_insert_keys(b, op, insert_keys, replace_key)) {
2114 		if (!b->level)
2115 			bch_btree_leaf_dirty(b, journal_ref);
2116 		else
2117 			bch_btree_node_write(b, &cl);
2118 	}
2119 
2120 	mutex_unlock(&b->write_lock);
2121 
2122 	/* wait for btree node write if necessary, after unlock */
2123 	closure_sync(&cl);
2124 
2125 	return 0;
2126 split:
2127 	if (current->bio_list) {
2128 		op->lock = b->c->root->level + 1;
2129 		return -EAGAIN;
2130 	} else if (op->lock <= b->c->root->level) {
2131 		op->lock = b->c->root->level + 1;
2132 		return -EINTR;
2133 	} else {
2134 		/* Invalidated all iterators */
2135 		int ret = btree_split(b, op, insert_keys, replace_key);
2136 
2137 		if (bch_keylist_empty(insert_keys))
2138 			return 0;
2139 		else if (!ret)
2140 			return -EINTR;
2141 		return ret;
2142 	}
2143 }
2144 
2145 int bch_btree_insert_check_key(struct btree *b, struct btree_op *op,
2146 			       struct bkey *check_key)
2147 {
2148 	int ret = -EINTR;
2149 	uint64_t btree_ptr = b->key.ptr[0];
2150 	unsigned long seq = b->seq;
2151 	struct keylist insert;
2152 	bool upgrade = op->lock == -1;
2153 
2154 	bch_keylist_init(&insert);
2155 
2156 	if (upgrade) {
2157 		rw_unlock(false, b);
2158 		rw_lock(true, b, b->level);
2159 
2160 		if (b->key.ptr[0] != btree_ptr ||
2161                    b->seq != seq + 1) {
2162                        op->lock = b->level;
2163 			goto out;
2164                }
2165 	}
2166 
2167 	SET_KEY_PTRS(check_key, 1);
2168 	get_random_bytes(&check_key->ptr[0], sizeof(uint64_t));
2169 
2170 	SET_PTR_DEV(check_key, 0, PTR_CHECK_DEV);
2171 
2172 	bch_keylist_add(&insert, check_key);
2173 
2174 	ret = bch_btree_insert_node(b, op, &insert, NULL, NULL);
2175 
2176 	BUG_ON(!ret && !bch_keylist_empty(&insert));
2177 out:
2178 	if (upgrade)
2179 		downgrade_write(&b->lock);
2180 	return ret;
2181 }
2182 
2183 struct btree_insert_op {
2184 	struct btree_op	op;
2185 	struct keylist	*keys;
2186 	atomic_t	*journal_ref;
2187 	struct bkey	*replace_key;
2188 };
2189 
2190 static int btree_insert_fn(struct btree_op *b_op, struct btree *b)
2191 {
2192 	struct btree_insert_op *op = container_of(b_op,
2193 					struct btree_insert_op, op);
2194 
2195 	int ret = bch_btree_insert_node(b, &op->op, op->keys,
2196 					op->journal_ref, op->replace_key);
2197 	if (ret && !bch_keylist_empty(op->keys))
2198 		return ret;
2199 	else
2200 		return MAP_DONE;
2201 }
2202 
2203 int bch_btree_insert(struct cache_set *c, struct keylist *keys,
2204 		     atomic_t *journal_ref, struct bkey *replace_key)
2205 {
2206 	struct btree_insert_op op;
2207 	int ret = 0;
2208 
2209 	BUG_ON(current->bio_list);
2210 	BUG_ON(bch_keylist_empty(keys));
2211 
2212 	bch_btree_op_init(&op.op, 0);
2213 	op.keys		= keys;
2214 	op.journal_ref	= journal_ref;
2215 	op.replace_key	= replace_key;
2216 
2217 	while (!ret && !bch_keylist_empty(keys)) {
2218 		op.op.lock = 0;
2219 		ret = bch_btree_map_leaf_nodes(&op.op, c,
2220 					       &START_KEY(keys->keys),
2221 					       btree_insert_fn);
2222 	}
2223 
2224 	if (ret) {
2225 		struct bkey *k;
2226 
2227 		pr_err("error %i", ret);
2228 
2229 		while ((k = bch_keylist_pop(keys)))
2230 			bkey_put(c, k);
2231 	} else if (op.op.insert_collision)
2232 		ret = -ESRCH;
2233 
2234 	return ret;
2235 }
2236 
2237 void bch_btree_set_root(struct btree *b)
2238 {
2239 	unsigned i;
2240 	struct closure cl;
2241 
2242 	closure_init_stack(&cl);
2243 
2244 	trace_bcache_btree_set_root(b);
2245 
2246 	BUG_ON(!b->written);
2247 
2248 	for (i = 0; i < KEY_PTRS(&b->key); i++)
2249 		BUG_ON(PTR_BUCKET(b->c, &b->key, i)->prio != BTREE_PRIO);
2250 
2251 	mutex_lock(&b->c->bucket_lock);
2252 	list_del_init(&b->list);
2253 	mutex_unlock(&b->c->bucket_lock);
2254 
2255 	b->c->root = b;
2256 
2257 	bch_journal_meta(b->c, &cl);
2258 	closure_sync(&cl);
2259 }
2260 
2261 /* Map across nodes or keys */
2262 
2263 static int bch_btree_map_nodes_recurse(struct btree *b, struct btree_op *op,
2264 				       struct bkey *from,
2265 				       btree_map_nodes_fn *fn, int flags)
2266 {
2267 	int ret = MAP_CONTINUE;
2268 
2269 	if (b->level) {
2270 		struct bkey *k;
2271 		struct btree_iter iter;
2272 
2273 		bch_btree_iter_init(&b->keys, &iter, from);
2274 
2275 		while ((k = bch_btree_iter_next_filter(&iter, &b->keys,
2276 						       bch_ptr_bad))) {
2277 			ret = btree(map_nodes_recurse, k, b,
2278 				    op, from, fn, flags);
2279 			from = NULL;
2280 
2281 			if (ret != MAP_CONTINUE)
2282 				return ret;
2283 		}
2284 	}
2285 
2286 	if (!b->level || flags == MAP_ALL_NODES)
2287 		ret = fn(op, b);
2288 
2289 	return ret;
2290 }
2291 
2292 int __bch_btree_map_nodes(struct btree_op *op, struct cache_set *c,
2293 			  struct bkey *from, btree_map_nodes_fn *fn, int flags)
2294 {
2295 	return btree_root(map_nodes_recurse, c, op, from, fn, flags);
2296 }
2297 
2298 static int bch_btree_map_keys_recurse(struct btree *b, struct btree_op *op,
2299 				      struct bkey *from, btree_map_keys_fn *fn,
2300 				      int flags)
2301 {
2302 	int ret = MAP_CONTINUE;
2303 	struct bkey *k;
2304 	struct btree_iter iter;
2305 
2306 	bch_btree_iter_init(&b->keys, &iter, from);
2307 
2308 	while ((k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad))) {
2309 		ret = !b->level
2310 			? fn(op, b, k)
2311 			: btree(map_keys_recurse, k, b, op, from, fn, flags);
2312 		from = NULL;
2313 
2314 		if (ret != MAP_CONTINUE)
2315 			return ret;
2316 	}
2317 
2318 	if (!b->level && (flags & MAP_END_KEY))
2319 		ret = fn(op, b, &KEY(KEY_INODE(&b->key),
2320 				     KEY_OFFSET(&b->key), 0));
2321 
2322 	return ret;
2323 }
2324 
2325 int bch_btree_map_keys(struct btree_op *op, struct cache_set *c,
2326 		       struct bkey *from, btree_map_keys_fn *fn, int flags)
2327 {
2328 	return btree_root(map_keys_recurse, c, op, from, fn, flags);
2329 }
2330 
2331 /* Keybuf code */
2332 
2333 static inline int keybuf_cmp(struct keybuf_key *l, struct keybuf_key *r)
2334 {
2335 	/* Overlapping keys compare equal */
2336 	if (bkey_cmp(&l->key, &START_KEY(&r->key)) <= 0)
2337 		return -1;
2338 	if (bkey_cmp(&START_KEY(&l->key), &r->key) >= 0)
2339 		return 1;
2340 	return 0;
2341 }
2342 
2343 static inline int keybuf_nonoverlapping_cmp(struct keybuf_key *l,
2344 					    struct keybuf_key *r)
2345 {
2346 	return clamp_t(int64_t, bkey_cmp(&l->key, &r->key), -1, 1);
2347 }
2348 
2349 struct refill {
2350 	struct btree_op	op;
2351 	unsigned	nr_found;
2352 	struct keybuf	*buf;
2353 	struct bkey	*end;
2354 	keybuf_pred_fn	*pred;
2355 };
2356 
2357 static int refill_keybuf_fn(struct btree_op *op, struct btree *b,
2358 			    struct bkey *k)
2359 {
2360 	struct refill *refill = container_of(op, struct refill, op);
2361 	struct keybuf *buf = refill->buf;
2362 	int ret = MAP_CONTINUE;
2363 
2364 	if (bkey_cmp(k, refill->end) >= 0) {
2365 		ret = MAP_DONE;
2366 		goto out;
2367 	}
2368 
2369 	if (!KEY_SIZE(k)) /* end key */
2370 		goto out;
2371 
2372 	if (refill->pred(buf, k)) {
2373 		struct keybuf_key *w;
2374 
2375 		spin_lock(&buf->lock);
2376 
2377 		w = array_alloc(&buf->freelist);
2378 		if (!w) {
2379 			spin_unlock(&buf->lock);
2380 			return MAP_DONE;
2381 		}
2382 
2383 		w->private = NULL;
2384 		bkey_copy(&w->key, k);
2385 
2386 		if (RB_INSERT(&buf->keys, w, node, keybuf_cmp))
2387 			array_free(&buf->freelist, w);
2388 		else
2389 			refill->nr_found++;
2390 
2391 		if (array_freelist_empty(&buf->freelist))
2392 			ret = MAP_DONE;
2393 
2394 		spin_unlock(&buf->lock);
2395 	}
2396 out:
2397 	buf->last_scanned = *k;
2398 	return ret;
2399 }
2400 
2401 void bch_refill_keybuf(struct cache_set *c, struct keybuf *buf,
2402 		       struct bkey *end, keybuf_pred_fn *pred)
2403 {
2404 	struct bkey start = buf->last_scanned;
2405 	struct refill refill;
2406 
2407 	cond_resched();
2408 
2409 	bch_btree_op_init(&refill.op, -1);
2410 	refill.nr_found	= 0;
2411 	refill.buf	= buf;
2412 	refill.end	= end;
2413 	refill.pred	= pred;
2414 
2415 	bch_btree_map_keys(&refill.op, c, &buf->last_scanned,
2416 			   refill_keybuf_fn, MAP_END_KEY);
2417 
2418 	trace_bcache_keyscan(refill.nr_found,
2419 			     KEY_INODE(&start), KEY_OFFSET(&start),
2420 			     KEY_INODE(&buf->last_scanned),
2421 			     KEY_OFFSET(&buf->last_scanned));
2422 
2423 	spin_lock(&buf->lock);
2424 
2425 	if (!RB_EMPTY_ROOT(&buf->keys)) {
2426 		struct keybuf_key *w;
2427 		w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2428 		buf->start	= START_KEY(&w->key);
2429 
2430 		w = RB_LAST(&buf->keys, struct keybuf_key, node);
2431 		buf->end	= w->key;
2432 	} else {
2433 		buf->start	= MAX_KEY;
2434 		buf->end	= MAX_KEY;
2435 	}
2436 
2437 	spin_unlock(&buf->lock);
2438 }
2439 
2440 static void __bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2441 {
2442 	rb_erase(&w->node, &buf->keys);
2443 	array_free(&buf->freelist, w);
2444 }
2445 
2446 void bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2447 {
2448 	spin_lock(&buf->lock);
2449 	__bch_keybuf_del(buf, w);
2450 	spin_unlock(&buf->lock);
2451 }
2452 
2453 bool bch_keybuf_check_overlapping(struct keybuf *buf, struct bkey *start,
2454 				  struct bkey *end)
2455 {
2456 	bool ret = false;
2457 	struct keybuf_key *p, *w, s;
2458 	s.key = *start;
2459 
2460 	if (bkey_cmp(end, &buf->start) <= 0 ||
2461 	    bkey_cmp(start, &buf->end) >= 0)
2462 		return false;
2463 
2464 	spin_lock(&buf->lock);
2465 	w = RB_GREATER(&buf->keys, s, node, keybuf_nonoverlapping_cmp);
2466 
2467 	while (w && bkey_cmp(&START_KEY(&w->key), end) < 0) {
2468 		p = w;
2469 		w = RB_NEXT(w, node);
2470 
2471 		if (p->private)
2472 			ret = true;
2473 		else
2474 			__bch_keybuf_del(buf, p);
2475 	}
2476 
2477 	spin_unlock(&buf->lock);
2478 	return ret;
2479 }
2480 
2481 struct keybuf_key *bch_keybuf_next(struct keybuf *buf)
2482 {
2483 	struct keybuf_key *w;
2484 	spin_lock(&buf->lock);
2485 
2486 	w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2487 
2488 	while (w && w->private)
2489 		w = RB_NEXT(w, node);
2490 
2491 	if (w)
2492 		w->private = ERR_PTR(-EINTR);
2493 
2494 	spin_unlock(&buf->lock);
2495 	return w;
2496 }
2497 
2498 struct keybuf_key *bch_keybuf_next_rescan(struct cache_set *c,
2499 					  struct keybuf *buf,
2500 					  struct bkey *end,
2501 					  keybuf_pred_fn *pred)
2502 {
2503 	struct keybuf_key *ret;
2504 
2505 	while (1) {
2506 		ret = bch_keybuf_next(buf);
2507 		if (ret)
2508 			break;
2509 
2510 		if (bkey_cmp(&buf->last_scanned, end) >= 0) {
2511 			pr_debug("scan finished");
2512 			break;
2513 		}
2514 
2515 		bch_refill_keybuf(c, buf, end, pred);
2516 	}
2517 
2518 	return ret;
2519 }
2520 
2521 void bch_keybuf_init(struct keybuf *buf)
2522 {
2523 	buf->last_scanned	= MAX_KEY;
2524 	buf->keys		= RB_ROOT;
2525 
2526 	spin_lock_init(&buf->lock);
2527 	array_allocator_init(&buf->freelist);
2528 }
2529