xref: /openbmc/linux/drivers/md/bcache/btree.c (revision 7f2e85840871f199057e65232ebde846192ed989)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com>
4  *
5  * Uses a block device as cache for other block devices; optimized for SSDs.
6  * All allocation is done in buckets, which should match the erase block size
7  * of the device.
8  *
9  * Buckets containing cached data are kept on a heap sorted by priority;
10  * bucket priority is increased on cache hit, and periodically all the buckets
11  * on the heap have their priority scaled down. This currently is just used as
12  * an LRU but in the future should allow for more intelligent heuristics.
13  *
14  * Buckets have an 8 bit counter; freeing is accomplished by incrementing the
15  * counter. Garbage collection is used to remove stale pointers.
16  *
17  * Indexing is done via a btree; nodes are not necessarily fully sorted, rather
18  * as keys are inserted we only sort the pages that have not yet been written.
19  * When garbage collection is run, we resort the entire node.
20  *
21  * All configuration is done via sysfs; see Documentation/bcache.txt.
22  */
23 
24 #include "bcache.h"
25 #include "btree.h"
26 #include "debug.h"
27 #include "extents.h"
28 
29 #include <linux/slab.h>
30 #include <linux/bitops.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/prefetch.h>
34 #include <linux/random.h>
35 #include <linux/rcupdate.h>
36 #include <linux/sched/clock.h>
37 #include <linux/rculist.h>
38 
39 #include <trace/events/bcache.h>
40 
41 /*
42  * Todo:
43  * register_bcache: Return errors out to userspace correctly
44  *
45  * Writeback: don't undirty key until after a cache flush
46  *
47  * Create an iterator for key pointers
48  *
49  * On btree write error, mark bucket such that it won't be freed from the cache
50  *
51  * Journalling:
52  *   Check for bad keys in replay
53  *   Propagate barriers
54  *   Refcount journal entries in journal_replay
55  *
56  * Garbage collection:
57  *   Finish incremental gc
58  *   Gc should free old UUIDs, data for invalid UUIDs
59  *
60  * Provide a way to list backing device UUIDs we have data cached for, and
61  * probably how long it's been since we've seen them, and a way to invalidate
62  * dirty data for devices that will never be attached again
63  *
64  * Keep 1 min/5 min/15 min statistics of how busy a block device has been, so
65  * that based on that and how much dirty data we have we can keep writeback
66  * from being starved
67  *
68  * Add a tracepoint or somesuch to watch for writeback starvation
69  *
70  * When btree depth > 1 and splitting an interior node, we have to make sure
71  * alloc_bucket() cannot fail. This should be true but is not completely
72  * obvious.
73  *
74  * Plugging?
75  *
76  * If data write is less than hard sector size of ssd, round up offset in open
77  * bucket to the next whole sector
78  *
79  * Superblock needs to be fleshed out for multiple cache devices
80  *
81  * Add a sysfs tunable for the number of writeback IOs in flight
82  *
83  * Add a sysfs tunable for the number of open data buckets
84  *
85  * IO tracking: Can we track when one process is doing io on behalf of another?
86  * IO tracking: Don't use just an average, weigh more recent stuff higher
87  *
88  * Test module load/unload
89  */
90 
91 #define MAX_NEED_GC		64
92 #define MAX_SAVE_PRIO		72
93 
94 #define PTR_DIRTY_BIT		(((uint64_t) 1 << 36))
95 
96 #define PTR_HASH(c, k)							\
97 	(((k)->ptr[0] >> c->bucket_bits) | PTR_GEN(k, 0))
98 
99 #define insert_lock(s, b)	((b)->level <= (s)->lock)
100 
101 /*
102  * These macros are for recursing down the btree - they handle the details of
103  * locking and looking up nodes in the cache for you. They're best treated as
104  * mere syntax when reading code that uses them.
105  *
106  * op->lock determines whether we take a read or a write lock at a given depth.
107  * If you've got a read lock and find that you need a write lock (i.e. you're
108  * going to have to split), set op->lock and return -EINTR; btree_root() will
109  * call you again and you'll have the correct lock.
110  */
111 
112 /**
113  * btree - recurse down the btree on a specified key
114  * @fn:		function to call, which will be passed the child node
115  * @key:	key to recurse on
116  * @b:		parent btree node
117  * @op:		pointer to struct btree_op
118  */
119 #define btree(fn, key, b, op, ...)					\
120 ({									\
121 	int _r, l = (b)->level - 1;					\
122 	bool _w = l <= (op)->lock;					\
123 	struct btree *_child = bch_btree_node_get((b)->c, op, key, l,	\
124 						  _w, b);		\
125 	if (!IS_ERR(_child)) {						\
126 		_r = bch_btree_ ## fn(_child, op, ##__VA_ARGS__);	\
127 		rw_unlock(_w, _child);					\
128 	} else								\
129 		_r = PTR_ERR(_child);					\
130 	_r;								\
131 })
132 
133 /**
134  * btree_root - call a function on the root of the btree
135  * @fn:		function to call, which will be passed the child node
136  * @c:		cache set
137  * @op:		pointer to struct btree_op
138  */
139 #define btree_root(fn, c, op, ...)					\
140 ({									\
141 	int _r = -EINTR;						\
142 	do {								\
143 		struct btree *_b = (c)->root;				\
144 		bool _w = insert_lock(op, _b);				\
145 		rw_lock(_w, _b, _b->level);				\
146 		if (_b == (c)->root &&					\
147 		    _w == insert_lock(op, _b)) {			\
148 			_r = bch_btree_ ## fn(_b, op, ##__VA_ARGS__);	\
149 		}							\
150 		rw_unlock(_w, _b);					\
151 		bch_cannibalize_unlock(c);				\
152 		if (_r == -EINTR)					\
153 			schedule();					\
154 	} while (_r == -EINTR);						\
155 									\
156 	finish_wait(&(c)->btree_cache_wait, &(op)->wait);		\
157 	_r;								\
158 })
159 
160 static inline struct bset *write_block(struct btree *b)
161 {
162 	return ((void *) btree_bset_first(b)) + b->written * block_bytes(b->c);
163 }
164 
165 static void bch_btree_init_next(struct btree *b)
166 {
167 	/* If not a leaf node, always sort */
168 	if (b->level && b->keys.nsets)
169 		bch_btree_sort(&b->keys, &b->c->sort);
170 	else
171 		bch_btree_sort_lazy(&b->keys, &b->c->sort);
172 
173 	if (b->written < btree_blocks(b))
174 		bch_bset_init_next(&b->keys, write_block(b),
175 				   bset_magic(&b->c->sb));
176 
177 }
178 
179 /* Btree key manipulation */
180 
181 void bkey_put(struct cache_set *c, struct bkey *k)
182 {
183 	unsigned i;
184 
185 	for (i = 0; i < KEY_PTRS(k); i++)
186 		if (ptr_available(c, k, i))
187 			atomic_dec_bug(&PTR_BUCKET(c, k, i)->pin);
188 }
189 
190 /* Btree IO */
191 
192 static uint64_t btree_csum_set(struct btree *b, struct bset *i)
193 {
194 	uint64_t crc = b->key.ptr[0];
195 	void *data = (void *) i + 8, *end = bset_bkey_last(i);
196 
197 	crc = bch_crc64_update(crc, data, end - data);
198 	return crc ^ 0xffffffffffffffffULL;
199 }
200 
201 void bch_btree_node_read_done(struct btree *b)
202 {
203 	const char *err = "bad btree header";
204 	struct bset *i = btree_bset_first(b);
205 	struct btree_iter *iter;
206 
207 	iter = mempool_alloc(b->c->fill_iter, GFP_NOIO);
208 	iter->size = b->c->sb.bucket_size / b->c->sb.block_size;
209 	iter->used = 0;
210 
211 #ifdef CONFIG_BCACHE_DEBUG
212 	iter->b = &b->keys;
213 #endif
214 
215 	if (!i->seq)
216 		goto err;
217 
218 	for (;
219 	     b->written < btree_blocks(b) && i->seq == b->keys.set[0].data->seq;
220 	     i = write_block(b)) {
221 		err = "unsupported bset version";
222 		if (i->version > BCACHE_BSET_VERSION)
223 			goto err;
224 
225 		err = "bad btree header";
226 		if (b->written + set_blocks(i, block_bytes(b->c)) >
227 		    btree_blocks(b))
228 			goto err;
229 
230 		err = "bad magic";
231 		if (i->magic != bset_magic(&b->c->sb))
232 			goto err;
233 
234 		err = "bad checksum";
235 		switch (i->version) {
236 		case 0:
237 			if (i->csum != csum_set(i))
238 				goto err;
239 			break;
240 		case BCACHE_BSET_VERSION:
241 			if (i->csum != btree_csum_set(b, i))
242 				goto err;
243 			break;
244 		}
245 
246 		err = "empty set";
247 		if (i != b->keys.set[0].data && !i->keys)
248 			goto err;
249 
250 		bch_btree_iter_push(iter, i->start, bset_bkey_last(i));
251 
252 		b->written += set_blocks(i, block_bytes(b->c));
253 	}
254 
255 	err = "corrupted btree";
256 	for (i = write_block(b);
257 	     bset_sector_offset(&b->keys, i) < KEY_SIZE(&b->key);
258 	     i = ((void *) i) + block_bytes(b->c))
259 		if (i->seq == b->keys.set[0].data->seq)
260 			goto err;
261 
262 	bch_btree_sort_and_fix_extents(&b->keys, iter, &b->c->sort);
263 
264 	i = b->keys.set[0].data;
265 	err = "short btree key";
266 	if (b->keys.set[0].size &&
267 	    bkey_cmp(&b->key, &b->keys.set[0].end) < 0)
268 		goto err;
269 
270 	if (b->written < btree_blocks(b))
271 		bch_bset_init_next(&b->keys, write_block(b),
272 				   bset_magic(&b->c->sb));
273 out:
274 	mempool_free(iter, b->c->fill_iter);
275 	return;
276 err:
277 	set_btree_node_io_error(b);
278 	bch_cache_set_error(b->c, "%s at bucket %zu, block %u, %u keys",
279 			    err, PTR_BUCKET_NR(b->c, &b->key, 0),
280 			    bset_block_offset(b, i), i->keys);
281 	goto out;
282 }
283 
284 static void btree_node_read_endio(struct bio *bio)
285 {
286 	struct closure *cl = bio->bi_private;
287 	closure_put(cl);
288 }
289 
290 static void bch_btree_node_read(struct btree *b)
291 {
292 	uint64_t start_time = local_clock();
293 	struct closure cl;
294 	struct bio *bio;
295 
296 	trace_bcache_btree_read(b);
297 
298 	closure_init_stack(&cl);
299 
300 	bio = bch_bbio_alloc(b->c);
301 	bio->bi_iter.bi_size = KEY_SIZE(&b->key) << 9;
302 	bio->bi_end_io	= btree_node_read_endio;
303 	bio->bi_private	= &cl;
304 	bio->bi_opf = REQ_OP_READ | REQ_META;
305 
306 	bch_bio_map(bio, b->keys.set[0].data);
307 
308 	bch_submit_bbio(bio, b->c, &b->key, 0);
309 	closure_sync(&cl);
310 
311 	if (bio->bi_status)
312 		set_btree_node_io_error(b);
313 
314 	bch_bbio_free(bio, b->c);
315 
316 	if (btree_node_io_error(b))
317 		goto err;
318 
319 	bch_btree_node_read_done(b);
320 	bch_time_stats_update(&b->c->btree_read_time, start_time);
321 
322 	return;
323 err:
324 	bch_cache_set_error(b->c, "io error reading bucket %zu",
325 			    PTR_BUCKET_NR(b->c, &b->key, 0));
326 }
327 
328 static void btree_complete_write(struct btree *b, struct btree_write *w)
329 {
330 	if (w->prio_blocked &&
331 	    !atomic_sub_return(w->prio_blocked, &b->c->prio_blocked))
332 		wake_up_allocators(b->c);
333 
334 	if (w->journal) {
335 		atomic_dec_bug(w->journal);
336 		__closure_wake_up(&b->c->journal.wait);
337 	}
338 
339 	w->prio_blocked	= 0;
340 	w->journal	= NULL;
341 }
342 
343 static void btree_node_write_unlock(struct closure *cl)
344 {
345 	struct btree *b = container_of(cl, struct btree, io);
346 
347 	up(&b->io_mutex);
348 }
349 
350 static void __btree_node_write_done(struct closure *cl)
351 {
352 	struct btree *b = container_of(cl, struct btree, io);
353 	struct btree_write *w = btree_prev_write(b);
354 
355 	bch_bbio_free(b->bio, b->c);
356 	b->bio = NULL;
357 	btree_complete_write(b, w);
358 
359 	if (btree_node_dirty(b))
360 		schedule_delayed_work(&b->work, 30 * HZ);
361 
362 	closure_return_with_destructor(cl, btree_node_write_unlock);
363 }
364 
365 static void btree_node_write_done(struct closure *cl)
366 {
367 	struct btree *b = container_of(cl, struct btree, io);
368 
369 	bio_free_pages(b->bio);
370 	__btree_node_write_done(cl);
371 }
372 
373 static void btree_node_write_endio(struct bio *bio)
374 {
375 	struct closure *cl = bio->bi_private;
376 	struct btree *b = container_of(cl, struct btree, io);
377 
378 	if (bio->bi_status)
379 		set_btree_node_io_error(b);
380 
381 	bch_bbio_count_io_errors(b->c, bio, bio->bi_status, "writing btree");
382 	closure_put(cl);
383 }
384 
385 static void do_btree_node_write(struct btree *b)
386 {
387 	struct closure *cl = &b->io;
388 	struct bset *i = btree_bset_last(b);
389 	BKEY_PADDED(key) k;
390 
391 	i->version	= BCACHE_BSET_VERSION;
392 	i->csum		= btree_csum_set(b, i);
393 
394 	BUG_ON(b->bio);
395 	b->bio = bch_bbio_alloc(b->c);
396 
397 	b->bio->bi_end_io	= btree_node_write_endio;
398 	b->bio->bi_private	= cl;
399 	b->bio->bi_iter.bi_size	= roundup(set_bytes(i), block_bytes(b->c));
400 	b->bio->bi_opf		= REQ_OP_WRITE | REQ_META | REQ_FUA;
401 	bch_bio_map(b->bio, i);
402 
403 	/*
404 	 * If we're appending to a leaf node, we don't technically need FUA -
405 	 * this write just needs to be persisted before the next journal write,
406 	 * which will be marked FLUSH|FUA.
407 	 *
408 	 * Similarly if we're writing a new btree root - the pointer is going to
409 	 * be in the next journal entry.
410 	 *
411 	 * But if we're writing a new btree node (that isn't a root) or
412 	 * appending to a non leaf btree node, we need either FUA or a flush
413 	 * when we write the parent with the new pointer. FUA is cheaper than a
414 	 * flush, and writes appending to leaf nodes aren't blocking anything so
415 	 * just make all btree node writes FUA to keep things sane.
416 	 */
417 
418 	bkey_copy(&k.key, &b->key);
419 	SET_PTR_OFFSET(&k.key, 0, PTR_OFFSET(&k.key, 0) +
420 		       bset_sector_offset(&b->keys, i));
421 
422 	if (!bch_bio_alloc_pages(b->bio, __GFP_NOWARN|GFP_NOWAIT)) {
423 		int j;
424 		struct bio_vec *bv;
425 		void *base = (void *) ((unsigned long) i & ~(PAGE_SIZE - 1));
426 
427 		bio_for_each_segment_all(bv, b->bio, j)
428 			memcpy(page_address(bv->bv_page),
429 			       base + j * PAGE_SIZE, PAGE_SIZE);
430 
431 		bch_submit_bbio(b->bio, b->c, &k.key, 0);
432 
433 		continue_at(cl, btree_node_write_done, NULL);
434 	} else {
435 		/* No problem for multipage bvec since the bio is just allocated */
436 		b->bio->bi_vcnt = 0;
437 		bch_bio_map(b->bio, i);
438 
439 		bch_submit_bbio(b->bio, b->c, &k.key, 0);
440 
441 		closure_sync(cl);
442 		continue_at_nobarrier(cl, __btree_node_write_done, NULL);
443 	}
444 }
445 
446 void __bch_btree_node_write(struct btree *b, struct closure *parent)
447 {
448 	struct bset *i = btree_bset_last(b);
449 
450 	lockdep_assert_held(&b->write_lock);
451 
452 	trace_bcache_btree_write(b);
453 
454 	BUG_ON(current->bio_list);
455 	BUG_ON(b->written >= btree_blocks(b));
456 	BUG_ON(b->written && !i->keys);
457 	BUG_ON(btree_bset_first(b)->seq != i->seq);
458 	bch_check_keys(&b->keys, "writing");
459 
460 	cancel_delayed_work(&b->work);
461 
462 	/* If caller isn't waiting for write, parent refcount is cache set */
463 	down(&b->io_mutex);
464 	closure_init(&b->io, parent ?: &b->c->cl);
465 
466 	clear_bit(BTREE_NODE_dirty,	 &b->flags);
467 	change_bit(BTREE_NODE_write_idx, &b->flags);
468 
469 	do_btree_node_write(b);
470 
471 	atomic_long_add(set_blocks(i, block_bytes(b->c)) * b->c->sb.block_size,
472 			&PTR_CACHE(b->c, &b->key, 0)->btree_sectors_written);
473 
474 	b->written += set_blocks(i, block_bytes(b->c));
475 }
476 
477 void bch_btree_node_write(struct btree *b, struct closure *parent)
478 {
479 	unsigned nsets = b->keys.nsets;
480 
481 	lockdep_assert_held(&b->lock);
482 
483 	__bch_btree_node_write(b, parent);
484 
485 	/*
486 	 * do verify if there was more than one set initially (i.e. we did a
487 	 * sort) and we sorted down to a single set:
488 	 */
489 	if (nsets && !b->keys.nsets)
490 		bch_btree_verify(b);
491 
492 	bch_btree_init_next(b);
493 }
494 
495 static void bch_btree_node_write_sync(struct btree *b)
496 {
497 	struct closure cl;
498 
499 	closure_init_stack(&cl);
500 
501 	mutex_lock(&b->write_lock);
502 	bch_btree_node_write(b, &cl);
503 	mutex_unlock(&b->write_lock);
504 
505 	closure_sync(&cl);
506 }
507 
508 static void btree_node_write_work(struct work_struct *w)
509 {
510 	struct btree *b = container_of(to_delayed_work(w), struct btree, work);
511 
512 	mutex_lock(&b->write_lock);
513 	if (btree_node_dirty(b))
514 		__bch_btree_node_write(b, NULL);
515 	mutex_unlock(&b->write_lock);
516 }
517 
518 static void bch_btree_leaf_dirty(struct btree *b, atomic_t *journal_ref)
519 {
520 	struct bset *i = btree_bset_last(b);
521 	struct btree_write *w = btree_current_write(b);
522 
523 	lockdep_assert_held(&b->write_lock);
524 
525 	BUG_ON(!b->written);
526 	BUG_ON(!i->keys);
527 
528 	if (!btree_node_dirty(b))
529 		schedule_delayed_work(&b->work, 30 * HZ);
530 
531 	set_btree_node_dirty(b);
532 
533 	if (journal_ref) {
534 		if (w->journal &&
535 		    journal_pin_cmp(b->c, w->journal, journal_ref)) {
536 			atomic_dec_bug(w->journal);
537 			w->journal = NULL;
538 		}
539 
540 		if (!w->journal) {
541 			w->journal = journal_ref;
542 			atomic_inc(w->journal);
543 		}
544 	}
545 
546 	/* Force write if set is too big */
547 	if (set_bytes(i) > PAGE_SIZE - 48 &&
548 	    !current->bio_list)
549 		bch_btree_node_write(b, NULL);
550 }
551 
552 /*
553  * Btree in memory cache - allocation/freeing
554  * mca -> memory cache
555  */
556 
557 #define mca_reserve(c)	(((c->root && c->root->level)		\
558 			  ? c->root->level : 1) * 8 + 16)
559 #define mca_can_free(c)						\
560 	max_t(int, 0, c->btree_cache_used - mca_reserve(c))
561 
562 static void mca_data_free(struct btree *b)
563 {
564 	BUG_ON(b->io_mutex.count != 1);
565 
566 	bch_btree_keys_free(&b->keys);
567 
568 	b->c->btree_cache_used--;
569 	list_move(&b->list, &b->c->btree_cache_freed);
570 }
571 
572 static void mca_bucket_free(struct btree *b)
573 {
574 	BUG_ON(btree_node_dirty(b));
575 
576 	b->key.ptr[0] = 0;
577 	hlist_del_init_rcu(&b->hash);
578 	list_move(&b->list, &b->c->btree_cache_freeable);
579 }
580 
581 static unsigned btree_order(struct bkey *k)
582 {
583 	return ilog2(KEY_SIZE(k) / PAGE_SECTORS ?: 1);
584 }
585 
586 static void mca_data_alloc(struct btree *b, struct bkey *k, gfp_t gfp)
587 {
588 	if (!bch_btree_keys_alloc(&b->keys,
589 				  max_t(unsigned,
590 					ilog2(b->c->btree_pages),
591 					btree_order(k)),
592 				  gfp)) {
593 		b->c->btree_cache_used++;
594 		list_move(&b->list, &b->c->btree_cache);
595 	} else {
596 		list_move(&b->list, &b->c->btree_cache_freed);
597 	}
598 }
599 
600 static struct btree *mca_bucket_alloc(struct cache_set *c,
601 				      struct bkey *k, gfp_t gfp)
602 {
603 	struct btree *b = kzalloc(sizeof(struct btree), gfp);
604 	if (!b)
605 		return NULL;
606 
607 	init_rwsem(&b->lock);
608 	lockdep_set_novalidate_class(&b->lock);
609 	mutex_init(&b->write_lock);
610 	lockdep_set_novalidate_class(&b->write_lock);
611 	INIT_LIST_HEAD(&b->list);
612 	INIT_DELAYED_WORK(&b->work, btree_node_write_work);
613 	b->c = c;
614 	sema_init(&b->io_mutex, 1);
615 
616 	mca_data_alloc(b, k, gfp);
617 	return b;
618 }
619 
620 static int mca_reap(struct btree *b, unsigned min_order, bool flush)
621 {
622 	struct closure cl;
623 
624 	closure_init_stack(&cl);
625 	lockdep_assert_held(&b->c->bucket_lock);
626 
627 	if (!down_write_trylock(&b->lock))
628 		return -ENOMEM;
629 
630 	BUG_ON(btree_node_dirty(b) && !b->keys.set[0].data);
631 
632 	if (b->keys.page_order < min_order)
633 		goto out_unlock;
634 
635 	if (!flush) {
636 		if (btree_node_dirty(b))
637 			goto out_unlock;
638 
639 		if (down_trylock(&b->io_mutex))
640 			goto out_unlock;
641 		up(&b->io_mutex);
642 	}
643 
644 	mutex_lock(&b->write_lock);
645 	if (btree_node_dirty(b))
646 		__bch_btree_node_write(b, &cl);
647 	mutex_unlock(&b->write_lock);
648 
649 	closure_sync(&cl);
650 
651 	/* wait for any in flight btree write */
652 	down(&b->io_mutex);
653 	up(&b->io_mutex);
654 
655 	return 0;
656 out_unlock:
657 	rw_unlock(true, b);
658 	return -ENOMEM;
659 }
660 
661 static unsigned long bch_mca_scan(struct shrinker *shrink,
662 				  struct shrink_control *sc)
663 {
664 	struct cache_set *c = container_of(shrink, struct cache_set, shrink);
665 	struct btree *b, *t;
666 	unsigned long i, nr = sc->nr_to_scan;
667 	unsigned long freed = 0;
668 
669 	if (c->shrinker_disabled)
670 		return SHRINK_STOP;
671 
672 	if (c->btree_cache_alloc_lock)
673 		return SHRINK_STOP;
674 
675 	/* Return -1 if we can't do anything right now */
676 	if (sc->gfp_mask & __GFP_IO)
677 		mutex_lock(&c->bucket_lock);
678 	else if (!mutex_trylock(&c->bucket_lock))
679 		return -1;
680 
681 	/*
682 	 * It's _really_ critical that we don't free too many btree nodes - we
683 	 * have to always leave ourselves a reserve. The reserve is how we
684 	 * guarantee that allocating memory for a new btree node can always
685 	 * succeed, so that inserting keys into the btree can always succeed and
686 	 * IO can always make forward progress:
687 	 */
688 	nr /= c->btree_pages;
689 	nr = min_t(unsigned long, nr, mca_can_free(c));
690 
691 	i = 0;
692 	list_for_each_entry_safe(b, t, &c->btree_cache_freeable, list) {
693 		if (freed >= nr)
694 			break;
695 
696 		if (++i > 3 &&
697 		    !mca_reap(b, 0, false)) {
698 			mca_data_free(b);
699 			rw_unlock(true, b);
700 			freed++;
701 		}
702 	}
703 
704 	for (i = 0; (nr--) && i < c->btree_cache_used; i++) {
705 		if (list_empty(&c->btree_cache))
706 			goto out;
707 
708 		b = list_first_entry(&c->btree_cache, struct btree, list);
709 		list_rotate_left(&c->btree_cache);
710 
711 		if (!b->accessed &&
712 		    !mca_reap(b, 0, false)) {
713 			mca_bucket_free(b);
714 			mca_data_free(b);
715 			rw_unlock(true, b);
716 			freed++;
717 		} else
718 			b->accessed = 0;
719 	}
720 out:
721 	mutex_unlock(&c->bucket_lock);
722 	return freed;
723 }
724 
725 static unsigned long bch_mca_count(struct shrinker *shrink,
726 				   struct shrink_control *sc)
727 {
728 	struct cache_set *c = container_of(shrink, struct cache_set, shrink);
729 
730 	if (c->shrinker_disabled)
731 		return 0;
732 
733 	if (c->btree_cache_alloc_lock)
734 		return 0;
735 
736 	return mca_can_free(c) * c->btree_pages;
737 }
738 
739 void bch_btree_cache_free(struct cache_set *c)
740 {
741 	struct btree *b;
742 	struct closure cl;
743 	closure_init_stack(&cl);
744 
745 	if (c->shrink.list.next)
746 		unregister_shrinker(&c->shrink);
747 
748 	mutex_lock(&c->bucket_lock);
749 
750 #ifdef CONFIG_BCACHE_DEBUG
751 	if (c->verify_data)
752 		list_move(&c->verify_data->list, &c->btree_cache);
753 
754 	free_pages((unsigned long) c->verify_ondisk, ilog2(bucket_pages(c)));
755 #endif
756 
757 	list_splice(&c->btree_cache_freeable,
758 		    &c->btree_cache);
759 
760 	while (!list_empty(&c->btree_cache)) {
761 		b = list_first_entry(&c->btree_cache, struct btree, list);
762 
763 		if (btree_node_dirty(b))
764 			btree_complete_write(b, btree_current_write(b));
765 		clear_bit(BTREE_NODE_dirty, &b->flags);
766 
767 		mca_data_free(b);
768 	}
769 
770 	while (!list_empty(&c->btree_cache_freed)) {
771 		b = list_first_entry(&c->btree_cache_freed,
772 				     struct btree, list);
773 		list_del(&b->list);
774 		cancel_delayed_work_sync(&b->work);
775 		kfree(b);
776 	}
777 
778 	mutex_unlock(&c->bucket_lock);
779 }
780 
781 int bch_btree_cache_alloc(struct cache_set *c)
782 {
783 	unsigned i;
784 
785 	for (i = 0; i < mca_reserve(c); i++)
786 		if (!mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL))
787 			return -ENOMEM;
788 
789 	list_splice_init(&c->btree_cache,
790 			 &c->btree_cache_freeable);
791 
792 #ifdef CONFIG_BCACHE_DEBUG
793 	mutex_init(&c->verify_lock);
794 
795 	c->verify_ondisk = (void *)
796 		__get_free_pages(GFP_KERNEL, ilog2(bucket_pages(c)));
797 
798 	c->verify_data = mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL);
799 
800 	if (c->verify_data &&
801 	    c->verify_data->keys.set->data)
802 		list_del_init(&c->verify_data->list);
803 	else
804 		c->verify_data = NULL;
805 #endif
806 
807 	c->shrink.count_objects = bch_mca_count;
808 	c->shrink.scan_objects = bch_mca_scan;
809 	c->shrink.seeks = 4;
810 	c->shrink.batch = c->btree_pages * 2;
811 
812 	if (register_shrinker(&c->shrink))
813 		pr_warn("bcache: %s: could not register shrinker",
814 				__func__);
815 
816 	return 0;
817 }
818 
819 /* Btree in memory cache - hash table */
820 
821 static struct hlist_head *mca_hash(struct cache_set *c, struct bkey *k)
822 {
823 	return &c->bucket_hash[hash_32(PTR_HASH(c, k), BUCKET_HASH_BITS)];
824 }
825 
826 static struct btree *mca_find(struct cache_set *c, struct bkey *k)
827 {
828 	struct btree *b;
829 
830 	rcu_read_lock();
831 	hlist_for_each_entry_rcu(b, mca_hash(c, k), hash)
832 		if (PTR_HASH(c, &b->key) == PTR_HASH(c, k))
833 			goto out;
834 	b = NULL;
835 out:
836 	rcu_read_unlock();
837 	return b;
838 }
839 
840 static int mca_cannibalize_lock(struct cache_set *c, struct btree_op *op)
841 {
842 	struct task_struct *old;
843 
844 	old = cmpxchg(&c->btree_cache_alloc_lock, NULL, current);
845 	if (old && old != current) {
846 		if (op)
847 			prepare_to_wait(&c->btree_cache_wait, &op->wait,
848 					TASK_UNINTERRUPTIBLE);
849 		return -EINTR;
850 	}
851 
852 	return 0;
853 }
854 
855 static struct btree *mca_cannibalize(struct cache_set *c, struct btree_op *op,
856 				     struct bkey *k)
857 {
858 	struct btree *b;
859 
860 	trace_bcache_btree_cache_cannibalize(c);
861 
862 	if (mca_cannibalize_lock(c, op))
863 		return ERR_PTR(-EINTR);
864 
865 	list_for_each_entry_reverse(b, &c->btree_cache, list)
866 		if (!mca_reap(b, btree_order(k), false))
867 			return b;
868 
869 	list_for_each_entry_reverse(b, &c->btree_cache, list)
870 		if (!mca_reap(b, btree_order(k), true))
871 			return b;
872 
873 	WARN(1, "btree cache cannibalize failed\n");
874 	return ERR_PTR(-ENOMEM);
875 }
876 
877 /*
878  * We can only have one thread cannibalizing other cached btree nodes at a time,
879  * or we'll deadlock. We use an open coded mutex to ensure that, which a
880  * cannibalize_bucket() will take. This means every time we unlock the root of
881  * the btree, we need to release this lock if we have it held.
882  */
883 static void bch_cannibalize_unlock(struct cache_set *c)
884 {
885 	if (c->btree_cache_alloc_lock == current) {
886 		c->btree_cache_alloc_lock = NULL;
887 		wake_up(&c->btree_cache_wait);
888 	}
889 }
890 
891 static struct btree *mca_alloc(struct cache_set *c, struct btree_op *op,
892 			       struct bkey *k, int level)
893 {
894 	struct btree *b;
895 
896 	BUG_ON(current->bio_list);
897 
898 	lockdep_assert_held(&c->bucket_lock);
899 
900 	if (mca_find(c, k))
901 		return NULL;
902 
903 	/* btree_free() doesn't free memory; it sticks the node on the end of
904 	 * the list. Check if there's any freed nodes there:
905 	 */
906 	list_for_each_entry(b, &c->btree_cache_freeable, list)
907 		if (!mca_reap(b, btree_order(k), false))
908 			goto out;
909 
910 	/* We never free struct btree itself, just the memory that holds the on
911 	 * disk node. Check the freed list before allocating a new one:
912 	 */
913 	list_for_each_entry(b, &c->btree_cache_freed, list)
914 		if (!mca_reap(b, 0, false)) {
915 			mca_data_alloc(b, k, __GFP_NOWARN|GFP_NOIO);
916 			if (!b->keys.set[0].data)
917 				goto err;
918 			else
919 				goto out;
920 		}
921 
922 	b = mca_bucket_alloc(c, k, __GFP_NOWARN|GFP_NOIO);
923 	if (!b)
924 		goto err;
925 
926 	BUG_ON(!down_write_trylock(&b->lock));
927 	if (!b->keys.set->data)
928 		goto err;
929 out:
930 	BUG_ON(b->io_mutex.count != 1);
931 
932 	bkey_copy(&b->key, k);
933 	list_move(&b->list, &c->btree_cache);
934 	hlist_del_init_rcu(&b->hash);
935 	hlist_add_head_rcu(&b->hash, mca_hash(c, k));
936 
937 	lock_set_subclass(&b->lock.dep_map, level + 1, _THIS_IP_);
938 	b->parent	= (void *) ~0UL;
939 	b->flags	= 0;
940 	b->written	= 0;
941 	b->level	= level;
942 
943 	if (!b->level)
944 		bch_btree_keys_init(&b->keys, &bch_extent_keys_ops,
945 				    &b->c->expensive_debug_checks);
946 	else
947 		bch_btree_keys_init(&b->keys, &bch_btree_keys_ops,
948 				    &b->c->expensive_debug_checks);
949 
950 	return b;
951 err:
952 	if (b)
953 		rw_unlock(true, b);
954 
955 	b = mca_cannibalize(c, op, k);
956 	if (!IS_ERR(b))
957 		goto out;
958 
959 	return b;
960 }
961 
962 /**
963  * bch_btree_node_get - find a btree node in the cache and lock it, reading it
964  * in from disk if necessary.
965  *
966  * If IO is necessary and running under generic_make_request, returns -EAGAIN.
967  *
968  * The btree node will have either a read or a write lock held, depending on
969  * level and op->lock.
970  */
971 struct btree *bch_btree_node_get(struct cache_set *c, struct btree_op *op,
972 				 struct bkey *k, int level, bool write,
973 				 struct btree *parent)
974 {
975 	int i = 0;
976 	struct btree *b;
977 
978 	BUG_ON(level < 0);
979 retry:
980 	b = mca_find(c, k);
981 
982 	if (!b) {
983 		if (current->bio_list)
984 			return ERR_PTR(-EAGAIN);
985 
986 		mutex_lock(&c->bucket_lock);
987 		b = mca_alloc(c, op, k, level);
988 		mutex_unlock(&c->bucket_lock);
989 
990 		if (!b)
991 			goto retry;
992 		if (IS_ERR(b))
993 			return b;
994 
995 		bch_btree_node_read(b);
996 
997 		if (!write)
998 			downgrade_write(&b->lock);
999 	} else {
1000 		rw_lock(write, b, level);
1001 		if (PTR_HASH(c, &b->key) != PTR_HASH(c, k)) {
1002 			rw_unlock(write, b);
1003 			goto retry;
1004 		}
1005 		BUG_ON(b->level != level);
1006 	}
1007 
1008 	b->parent = parent;
1009 	b->accessed = 1;
1010 
1011 	for (; i <= b->keys.nsets && b->keys.set[i].size; i++) {
1012 		prefetch(b->keys.set[i].tree);
1013 		prefetch(b->keys.set[i].data);
1014 	}
1015 
1016 	for (; i <= b->keys.nsets; i++)
1017 		prefetch(b->keys.set[i].data);
1018 
1019 	if (btree_node_io_error(b)) {
1020 		rw_unlock(write, b);
1021 		return ERR_PTR(-EIO);
1022 	}
1023 
1024 	BUG_ON(!b->written);
1025 
1026 	return b;
1027 }
1028 
1029 static void btree_node_prefetch(struct btree *parent, struct bkey *k)
1030 {
1031 	struct btree *b;
1032 
1033 	mutex_lock(&parent->c->bucket_lock);
1034 	b = mca_alloc(parent->c, NULL, k, parent->level - 1);
1035 	mutex_unlock(&parent->c->bucket_lock);
1036 
1037 	if (!IS_ERR_OR_NULL(b)) {
1038 		b->parent = parent;
1039 		bch_btree_node_read(b);
1040 		rw_unlock(true, b);
1041 	}
1042 }
1043 
1044 /* Btree alloc */
1045 
1046 static void btree_node_free(struct btree *b)
1047 {
1048 	trace_bcache_btree_node_free(b);
1049 
1050 	BUG_ON(b == b->c->root);
1051 
1052 	mutex_lock(&b->write_lock);
1053 
1054 	if (btree_node_dirty(b))
1055 		btree_complete_write(b, btree_current_write(b));
1056 	clear_bit(BTREE_NODE_dirty, &b->flags);
1057 
1058 	mutex_unlock(&b->write_lock);
1059 
1060 	cancel_delayed_work(&b->work);
1061 
1062 	mutex_lock(&b->c->bucket_lock);
1063 	bch_bucket_free(b->c, &b->key);
1064 	mca_bucket_free(b);
1065 	mutex_unlock(&b->c->bucket_lock);
1066 }
1067 
1068 struct btree *__bch_btree_node_alloc(struct cache_set *c, struct btree_op *op,
1069 				     int level, bool wait,
1070 				     struct btree *parent)
1071 {
1072 	BKEY_PADDED(key) k;
1073 	struct btree *b = ERR_PTR(-EAGAIN);
1074 
1075 	mutex_lock(&c->bucket_lock);
1076 retry:
1077 	if (__bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, 1, wait))
1078 		goto err;
1079 
1080 	bkey_put(c, &k.key);
1081 	SET_KEY_SIZE(&k.key, c->btree_pages * PAGE_SECTORS);
1082 
1083 	b = mca_alloc(c, op, &k.key, level);
1084 	if (IS_ERR(b))
1085 		goto err_free;
1086 
1087 	if (!b) {
1088 		cache_bug(c,
1089 			"Tried to allocate bucket that was in btree cache");
1090 		goto retry;
1091 	}
1092 
1093 	b->accessed = 1;
1094 	b->parent = parent;
1095 	bch_bset_init_next(&b->keys, b->keys.set->data, bset_magic(&b->c->sb));
1096 
1097 	mutex_unlock(&c->bucket_lock);
1098 
1099 	trace_bcache_btree_node_alloc(b);
1100 	return b;
1101 err_free:
1102 	bch_bucket_free(c, &k.key);
1103 err:
1104 	mutex_unlock(&c->bucket_lock);
1105 
1106 	trace_bcache_btree_node_alloc_fail(c);
1107 	return b;
1108 }
1109 
1110 static struct btree *bch_btree_node_alloc(struct cache_set *c,
1111 					  struct btree_op *op, int level,
1112 					  struct btree *parent)
1113 {
1114 	return __bch_btree_node_alloc(c, op, level, op != NULL, parent);
1115 }
1116 
1117 static struct btree *btree_node_alloc_replacement(struct btree *b,
1118 						  struct btree_op *op)
1119 {
1120 	struct btree *n = bch_btree_node_alloc(b->c, op, b->level, b->parent);
1121 	if (!IS_ERR_OR_NULL(n)) {
1122 		mutex_lock(&n->write_lock);
1123 		bch_btree_sort_into(&b->keys, &n->keys, &b->c->sort);
1124 		bkey_copy_key(&n->key, &b->key);
1125 		mutex_unlock(&n->write_lock);
1126 	}
1127 
1128 	return n;
1129 }
1130 
1131 static void make_btree_freeing_key(struct btree *b, struct bkey *k)
1132 {
1133 	unsigned i;
1134 
1135 	mutex_lock(&b->c->bucket_lock);
1136 
1137 	atomic_inc(&b->c->prio_blocked);
1138 
1139 	bkey_copy(k, &b->key);
1140 	bkey_copy_key(k, &ZERO_KEY);
1141 
1142 	for (i = 0; i < KEY_PTRS(k); i++)
1143 		SET_PTR_GEN(k, i,
1144 			    bch_inc_gen(PTR_CACHE(b->c, &b->key, i),
1145 					PTR_BUCKET(b->c, &b->key, i)));
1146 
1147 	mutex_unlock(&b->c->bucket_lock);
1148 }
1149 
1150 static int btree_check_reserve(struct btree *b, struct btree_op *op)
1151 {
1152 	struct cache_set *c = b->c;
1153 	struct cache *ca;
1154 	unsigned i, reserve = (c->root->level - b->level) * 2 + 1;
1155 
1156 	mutex_lock(&c->bucket_lock);
1157 
1158 	for_each_cache(ca, c, i)
1159 		if (fifo_used(&ca->free[RESERVE_BTREE]) < reserve) {
1160 			if (op)
1161 				prepare_to_wait(&c->btree_cache_wait, &op->wait,
1162 						TASK_UNINTERRUPTIBLE);
1163 			mutex_unlock(&c->bucket_lock);
1164 			return -EINTR;
1165 		}
1166 
1167 	mutex_unlock(&c->bucket_lock);
1168 
1169 	return mca_cannibalize_lock(b->c, op);
1170 }
1171 
1172 /* Garbage collection */
1173 
1174 static uint8_t __bch_btree_mark_key(struct cache_set *c, int level,
1175 				    struct bkey *k)
1176 {
1177 	uint8_t stale = 0;
1178 	unsigned i;
1179 	struct bucket *g;
1180 
1181 	/*
1182 	 * ptr_invalid() can't return true for the keys that mark btree nodes as
1183 	 * freed, but since ptr_bad() returns true we'll never actually use them
1184 	 * for anything and thus we don't want mark their pointers here
1185 	 */
1186 	if (!bkey_cmp(k, &ZERO_KEY))
1187 		return stale;
1188 
1189 	for (i = 0; i < KEY_PTRS(k); i++) {
1190 		if (!ptr_available(c, k, i))
1191 			continue;
1192 
1193 		g = PTR_BUCKET(c, k, i);
1194 
1195 		if (gen_after(g->last_gc, PTR_GEN(k, i)))
1196 			g->last_gc = PTR_GEN(k, i);
1197 
1198 		if (ptr_stale(c, k, i)) {
1199 			stale = max(stale, ptr_stale(c, k, i));
1200 			continue;
1201 		}
1202 
1203 		cache_bug_on(GC_MARK(g) &&
1204 			     (GC_MARK(g) == GC_MARK_METADATA) != (level != 0),
1205 			     c, "inconsistent ptrs: mark = %llu, level = %i",
1206 			     GC_MARK(g), level);
1207 
1208 		if (level)
1209 			SET_GC_MARK(g, GC_MARK_METADATA);
1210 		else if (KEY_DIRTY(k))
1211 			SET_GC_MARK(g, GC_MARK_DIRTY);
1212 		else if (!GC_MARK(g))
1213 			SET_GC_MARK(g, GC_MARK_RECLAIMABLE);
1214 
1215 		/* guard against overflow */
1216 		SET_GC_SECTORS_USED(g, min_t(unsigned,
1217 					     GC_SECTORS_USED(g) + KEY_SIZE(k),
1218 					     MAX_GC_SECTORS_USED));
1219 
1220 		BUG_ON(!GC_SECTORS_USED(g));
1221 	}
1222 
1223 	return stale;
1224 }
1225 
1226 #define btree_mark_key(b, k)	__bch_btree_mark_key(b->c, b->level, k)
1227 
1228 void bch_initial_mark_key(struct cache_set *c, int level, struct bkey *k)
1229 {
1230 	unsigned i;
1231 
1232 	for (i = 0; i < KEY_PTRS(k); i++)
1233 		if (ptr_available(c, k, i) &&
1234 		    !ptr_stale(c, k, i)) {
1235 			struct bucket *b = PTR_BUCKET(c, k, i);
1236 
1237 			b->gen = PTR_GEN(k, i);
1238 
1239 			if (level && bkey_cmp(k, &ZERO_KEY))
1240 				b->prio = BTREE_PRIO;
1241 			else if (!level && b->prio == BTREE_PRIO)
1242 				b->prio = INITIAL_PRIO;
1243 		}
1244 
1245 	__bch_btree_mark_key(c, level, k);
1246 }
1247 
1248 void bch_update_bucket_in_use(struct cache_set *c, struct gc_stat *stats)
1249 {
1250 	stats->in_use = (c->nbuckets - c->avail_nbuckets) * 100 / c->nbuckets;
1251 }
1252 
1253 static bool btree_gc_mark_node(struct btree *b, struct gc_stat *gc)
1254 {
1255 	uint8_t stale = 0;
1256 	unsigned keys = 0, good_keys = 0;
1257 	struct bkey *k;
1258 	struct btree_iter iter;
1259 	struct bset_tree *t;
1260 
1261 	gc->nodes++;
1262 
1263 	for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid) {
1264 		stale = max(stale, btree_mark_key(b, k));
1265 		keys++;
1266 
1267 		if (bch_ptr_bad(&b->keys, k))
1268 			continue;
1269 
1270 		gc->key_bytes += bkey_u64s(k);
1271 		gc->nkeys++;
1272 		good_keys++;
1273 
1274 		gc->data += KEY_SIZE(k);
1275 	}
1276 
1277 	for (t = b->keys.set; t <= &b->keys.set[b->keys.nsets]; t++)
1278 		btree_bug_on(t->size &&
1279 			     bset_written(&b->keys, t) &&
1280 			     bkey_cmp(&b->key, &t->end) < 0,
1281 			     b, "found short btree key in gc");
1282 
1283 	if (b->c->gc_always_rewrite)
1284 		return true;
1285 
1286 	if (stale > 10)
1287 		return true;
1288 
1289 	if ((keys - good_keys) * 2 > keys)
1290 		return true;
1291 
1292 	return false;
1293 }
1294 
1295 #define GC_MERGE_NODES	4U
1296 
1297 struct gc_merge_info {
1298 	struct btree	*b;
1299 	unsigned	keys;
1300 };
1301 
1302 static int bch_btree_insert_node(struct btree *, struct btree_op *,
1303 				 struct keylist *, atomic_t *, struct bkey *);
1304 
1305 static int btree_gc_coalesce(struct btree *b, struct btree_op *op,
1306 			     struct gc_stat *gc, struct gc_merge_info *r)
1307 {
1308 	unsigned i, nodes = 0, keys = 0, blocks;
1309 	struct btree *new_nodes[GC_MERGE_NODES];
1310 	struct keylist keylist;
1311 	struct closure cl;
1312 	struct bkey *k;
1313 
1314 	bch_keylist_init(&keylist);
1315 
1316 	if (btree_check_reserve(b, NULL))
1317 		return 0;
1318 
1319 	memset(new_nodes, 0, sizeof(new_nodes));
1320 	closure_init_stack(&cl);
1321 
1322 	while (nodes < GC_MERGE_NODES && !IS_ERR_OR_NULL(r[nodes].b))
1323 		keys += r[nodes++].keys;
1324 
1325 	blocks = btree_default_blocks(b->c) * 2 / 3;
1326 
1327 	if (nodes < 2 ||
1328 	    __set_blocks(b->keys.set[0].data, keys,
1329 			 block_bytes(b->c)) > blocks * (nodes - 1))
1330 		return 0;
1331 
1332 	for (i = 0; i < nodes; i++) {
1333 		new_nodes[i] = btree_node_alloc_replacement(r[i].b, NULL);
1334 		if (IS_ERR_OR_NULL(new_nodes[i]))
1335 			goto out_nocoalesce;
1336 	}
1337 
1338 	/*
1339 	 * We have to check the reserve here, after we've allocated our new
1340 	 * nodes, to make sure the insert below will succeed - we also check
1341 	 * before as an optimization to potentially avoid a bunch of expensive
1342 	 * allocs/sorts
1343 	 */
1344 	if (btree_check_reserve(b, NULL))
1345 		goto out_nocoalesce;
1346 
1347 	for (i = 0; i < nodes; i++)
1348 		mutex_lock(&new_nodes[i]->write_lock);
1349 
1350 	for (i = nodes - 1; i > 0; --i) {
1351 		struct bset *n1 = btree_bset_first(new_nodes[i]);
1352 		struct bset *n2 = btree_bset_first(new_nodes[i - 1]);
1353 		struct bkey *k, *last = NULL;
1354 
1355 		keys = 0;
1356 
1357 		if (i > 1) {
1358 			for (k = n2->start;
1359 			     k < bset_bkey_last(n2);
1360 			     k = bkey_next(k)) {
1361 				if (__set_blocks(n1, n1->keys + keys +
1362 						 bkey_u64s(k),
1363 						 block_bytes(b->c)) > blocks)
1364 					break;
1365 
1366 				last = k;
1367 				keys += bkey_u64s(k);
1368 			}
1369 		} else {
1370 			/*
1371 			 * Last node we're not getting rid of - we're getting
1372 			 * rid of the node at r[0]. Have to try and fit all of
1373 			 * the remaining keys into this node; we can't ensure
1374 			 * they will always fit due to rounding and variable
1375 			 * length keys (shouldn't be possible in practice,
1376 			 * though)
1377 			 */
1378 			if (__set_blocks(n1, n1->keys + n2->keys,
1379 					 block_bytes(b->c)) >
1380 			    btree_blocks(new_nodes[i]))
1381 				goto out_nocoalesce;
1382 
1383 			keys = n2->keys;
1384 			/* Take the key of the node we're getting rid of */
1385 			last = &r->b->key;
1386 		}
1387 
1388 		BUG_ON(__set_blocks(n1, n1->keys + keys, block_bytes(b->c)) >
1389 		       btree_blocks(new_nodes[i]));
1390 
1391 		if (last)
1392 			bkey_copy_key(&new_nodes[i]->key, last);
1393 
1394 		memcpy(bset_bkey_last(n1),
1395 		       n2->start,
1396 		       (void *) bset_bkey_idx(n2, keys) - (void *) n2->start);
1397 
1398 		n1->keys += keys;
1399 		r[i].keys = n1->keys;
1400 
1401 		memmove(n2->start,
1402 			bset_bkey_idx(n2, keys),
1403 			(void *) bset_bkey_last(n2) -
1404 			(void *) bset_bkey_idx(n2, keys));
1405 
1406 		n2->keys -= keys;
1407 
1408 		if (__bch_keylist_realloc(&keylist,
1409 					  bkey_u64s(&new_nodes[i]->key)))
1410 			goto out_nocoalesce;
1411 
1412 		bch_btree_node_write(new_nodes[i], &cl);
1413 		bch_keylist_add(&keylist, &new_nodes[i]->key);
1414 	}
1415 
1416 	for (i = 0; i < nodes; i++)
1417 		mutex_unlock(&new_nodes[i]->write_lock);
1418 
1419 	closure_sync(&cl);
1420 
1421 	/* We emptied out this node */
1422 	BUG_ON(btree_bset_first(new_nodes[0])->keys);
1423 	btree_node_free(new_nodes[0]);
1424 	rw_unlock(true, new_nodes[0]);
1425 	new_nodes[0] = NULL;
1426 
1427 	for (i = 0; i < nodes; i++) {
1428 		if (__bch_keylist_realloc(&keylist, bkey_u64s(&r[i].b->key)))
1429 			goto out_nocoalesce;
1430 
1431 		make_btree_freeing_key(r[i].b, keylist.top);
1432 		bch_keylist_push(&keylist);
1433 	}
1434 
1435 	bch_btree_insert_node(b, op, &keylist, NULL, NULL);
1436 	BUG_ON(!bch_keylist_empty(&keylist));
1437 
1438 	for (i = 0; i < nodes; i++) {
1439 		btree_node_free(r[i].b);
1440 		rw_unlock(true, r[i].b);
1441 
1442 		r[i].b = new_nodes[i];
1443 	}
1444 
1445 	memmove(r, r + 1, sizeof(r[0]) * (nodes - 1));
1446 	r[nodes - 1].b = ERR_PTR(-EINTR);
1447 
1448 	trace_bcache_btree_gc_coalesce(nodes);
1449 	gc->nodes--;
1450 
1451 	bch_keylist_free(&keylist);
1452 
1453 	/* Invalidated our iterator */
1454 	return -EINTR;
1455 
1456 out_nocoalesce:
1457 	closure_sync(&cl);
1458 	bch_keylist_free(&keylist);
1459 
1460 	while ((k = bch_keylist_pop(&keylist)))
1461 		if (!bkey_cmp(k, &ZERO_KEY))
1462 			atomic_dec(&b->c->prio_blocked);
1463 
1464 	for (i = 0; i < nodes; i++)
1465 		if (!IS_ERR_OR_NULL(new_nodes[i])) {
1466 			btree_node_free(new_nodes[i]);
1467 			rw_unlock(true, new_nodes[i]);
1468 		}
1469 	return 0;
1470 }
1471 
1472 static int btree_gc_rewrite_node(struct btree *b, struct btree_op *op,
1473 				 struct btree *replace)
1474 {
1475 	struct keylist keys;
1476 	struct btree *n;
1477 
1478 	if (btree_check_reserve(b, NULL))
1479 		return 0;
1480 
1481 	n = btree_node_alloc_replacement(replace, NULL);
1482 
1483 	/* recheck reserve after allocating replacement node */
1484 	if (btree_check_reserve(b, NULL)) {
1485 		btree_node_free(n);
1486 		rw_unlock(true, n);
1487 		return 0;
1488 	}
1489 
1490 	bch_btree_node_write_sync(n);
1491 
1492 	bch_keylist_init(&keys);
1493 	bch_keylist_add(&keys, &n->key);
1494 
1495 	make_btree_freeing_key(replace, keys.top);
1496 	bch_keylist_push(&keys);
1497 
1498 	bch_btree_insert_node(b, op, &keys, NULL, NULL);
1499 	BUG_ON(!bch_keylist_empty(&keys));
1500 
1501 	btree_node_free(replace);
1502 	rw_unlock(true, n);
1503 
1504 	/* Invalidated our iterator */
1505 	return -EINTR;
1506 }
1507 
1508 static unsigned btree_gc_count_keys(struct btree *b)
1509 {
1510 	struct bkey *k;
1511 	struct btree_iter iter;
1512 	unsigned ret = 0;
1513 
1514 	for_each_key_filter(&b->keys, k, &iter, bch_ptr_bad)
1515 		ret += bkey_u64s(k);
1516 
1517 	return ret;
1518 }
1519 
1520 static int btree_gc_recurse(struct btree *b, struct btree_op *op,
1521 			    struct closure *writes, struct gc_stat *gc)
1522 {
1523 	int ret = 0;
1524 	bool should_rewrite;
1525 	struct bkey *k;
1526 	struct btree_iter iter;
1527 	struct gc_merge_info r[GC_MERGE_NODES];
1528 	struct gc_merge_info *i, *last = r + ARRAY_SIZE(r) - 1;
1529 
1530 	bch_btree_iter_init(&b->keys, &iter, &b->c->gc_done);
1531 
1532 	for (i = r; i < r + ARRAY_SIZE(r); i++)
1533 		i->b = ERR_PTR(-EINTR);
1534 
1535 	while (1) {
1536 		k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad);
1537 		if (k) {
1538 			r->b = bch_btree_node_get(b->c, op, k, b->level - 1,
1539 						  true, b);
1540 			if (IS_ERR(r->b)) {
1541 				ret = PTR_ERR(r->b);
1542 				break;
1543 			}
1544 
1545 			r->keys = btree_gc_count_keys(r->b);
1546 
1547 			ret = btree_gc_coalesce(b, op, gc, r);
1548 			if (ret)
1549 				break;
1550 		}
1551 
1552 		if (!last->b)
1553 			break;
1554 
1555 		if (!IS_ERR(last->b)) {
1556 			should_rewrite = btree_gc_mark_node(last->b, gc);
1557 			if (should_rewrite) {
1558 				ret = btree_gc_rewrite_node(b, op, last->b);
1559 				if (ret)
1560 					break;
1561 			}
1562 
1563 			if (last->b->level) {
1564 				ret = btree_gc_recurse(last->b, op, writes, gc);
1565 				if (ret)
1566 					break;
1567 			}
1568 
1569 			bkey_copy_key(&b->c->gc_done, &last->b->key);
1570 
1571 			/*
1572 			 * Must flush leaf nodes before gc ends, since replace
1573 			 * operations aren't journalled
1574 			 */
1575 			mutex_lock(&last->b->write_lock);
1576 			if (btree_node_dirty(last->b))
1577 				bch_btree_node_write(last->b, writes);
1578 			mutex_unlock(&last->b->write_lock);
1579 			rw_unlock(true, last->b);
1580 		}
1581 
1582 		memmove(r + 1, r, sizeof(r[0]) * (GC_MERGE_NODES - 1));
1583 		r->b = NULL;
1584 
1585 		if (need_resched()) {
1586 			ret = -EAGAIN;
1587 			break;
1588 		}
1589 	}
1590 
1591 	for (i = r; i < r + ARRAY_SIZE(r); i++)
1592 		if (!IS_ERR_OR_NULL(i->b)) {
1593 			mutex_lock(&i->b->write_lock);
1594 			if (btree_node_dirty(i->b))
1595 				bch_btree_node_write(i->b, writes);
1596 			mutex_unlock(&i->b->write_lock);
1597 			rw_unlock(true, i->b);
1598 		}
1599 
1600 	return ret;
1601 }
1602 
1603 static int bch_btree_gc_root(struct btree *b, struct btree_op *op,
1604 			     struct closure *writes, struct gc_stat *gc)
1605 {
1606 	struct btree *n = NULL;
1607 	int ret = 0;
1608 	bool should_rewrite;
1609 
1610 	should_rewrite = btree_gc_mark_node(b, gc);
1611 	if (should_rewrite) {
1612 		n = btree_node_alloc_replacement(b, NULL);
1613 
1614 		if (!IS_ERR_OR_NULL(n)) {
1615 			bch_btree_node_write_sync(n);
1616 
1617 			bch_btree_set_root(n);
1618 			btree_node_free(b);
1619 			rw_unlock(true, n);
1620 
1621 			return -EINTR;
1622 		}
1623 	}
1624 
1625 	__bch_btree_mark_key(b->c, b->level + 1, &b->key);
1626 
1627 	if (b->level) {
1628 		ret = btree_gc_recurse(b, op, writes, gc);
1629 		if (ret)
1630 			return ret;
1631 	}
1632 
1633 	bkey_copy_key(&b->c->gc_done, &b->key);
1634 
1635 	return ret;
1636 }
1637 
1638 static void btree_gc_start(struct cache_set *c)
1639 {
1640 	struct cache *ca;
1641 	struct bucket *b;
1642 	unsigned i;
1643 
1644 	if (!c->gc_mark_valid)
1645 		return;
1646 
1647 	mutex_lock(&c->bucket_lock);
1648 
1649 	c->gc_mark_valid = 0;
1650 	c->gc_done = ZERO_KEY;
1651 
1652 	for_each_cache(ca, c, i)
1653 		for_each_bucket(b, ca) {
1654 			b->last_gc = b->gen;
1655 			if (!atomic_read(&b->pin)) {
1656 				SET_GC_MARK(b, 0);
1657 				SET_GC_SECTORS_USED(b, 0);
1658 			}
1659 		}
1660 
1661 	mutex_unlock(&c->bucket_lock);
1662 }
1663 
1664 static void bch_btree_gc_finish(struct cache_set *c)
1665 {
1666 	struct bucket *b;
1667 	struct cache *ca;
1668 	unsigned i;
1669 
1670 	mutex_lock(&c->bucket_lock);
1671 
1672 	set_gc_sectors(c);
1673 	c->gc_mark_valid = 1;
1674 	c->need_gc	= 0;
1675 
1676 	for (i = 0; i < KEY_PTRS(&c->uuid_bucket); i++)
1677 		SET_GC_MARK(PTR_BUCKET(c, &c->uuid_bucket, i),
1678 			    GC_MARK_METADATA);
1679 
1680 	/* don't reclaim buckets to which writeback keys point */
1681 	rcu_read_lock();
1682 	for (i = 0; i < c->devices_max_used; i++) {
1683 		struct bcache_device *d = c->devices[i];
1684 		struct cached_dev *dc;
1685 		struct keybuf_key *w, *n;
1686 		unsigned j;
1687 
1688 		if (!d || UUID_FLASH_ONLY(&c->uuids[i]))
1689 			continue;
1690 		dc = container_of(d, struct cached_dev, disk);
1691 
1692 		spin_lock(&dc->writeback_keys.lock);
1693 		rbtree_postorder_for_each_entry_safe(w, n,
1694 					&dc->writeback_keys.keys, node)
1695 			for (j = 0; j < KEY_PTRS(&w->key); j++)
1696 				SET_GC_MARK(PTR_BUCKET(c, &w->key, j),
1697 					    GC_MARK_DIRTY);
1698 		spin_unlock(&dc->writeback_keys.lock);
1699 	}
1700 	rcu_read_unlock();
1701 
1702 	c->avail_nbuckets = 0;
1703 	for_each_cache(ca, c, i) {
1704 		uint64_t *i;
1705 
1706 		ca->invalidate_needs_gc = 0;
1707 
1708 		for (i = ca->sb.d; i < ca->sb.d + ca->sb.keys; i++)
1709 			SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA);
1710 
1711 		for (i = ca->prio_buckets;
1712 		     i < ca->prio_buckets + prio_buckets(ca) * 2; i++)
1713 			SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA);
1714 
1715 		for_each_bucket(b, ca) {
1716 			c->need_gc	= max(c->need_gc, bucket_gc_gen(b));
1717 
1718 			if (atomic_read(&b->pin))
1719 				continue;
1720 
1721 			BUG_ON(!GC_MARK(b) && GC_SECTORS_USED(b));
1722 
1723 			if (!GC_MARK(b) || GC_MARK(b) == GC_MARK_RECLAIMABLE)
1724 				c->avail_nbuckets++;
1725 		}
1726 	}
1727 
1728 	mutex_unlock(&c->bucket_lock);
1729 }
1730 
1731 static void bch_btree_gc(struct cache_set *c)
1732 {
1733 	int ret;
1734 	struct gc_stat stats;
1735 	struct closure writes;
1736 	struct btree_op op;
1737 	uint64_t start_time = local_clock();
1738 
1739 	trace_bcache_gc_start(c);
1740 
1741 	memset(&stats, 0, sizeof(struct gc_stat));
1742 	closure_init_stack(&writes);
1743 	bch_btree_op_init(&op, SHRT_MAX);
1744 
1745 	btree_gc_start(c);
1746 
1747 	do {
1748 		ret = btree_root(gc_root, c, &op, &writes, &stats);
1749 		closure_sync(&writes);
1750 		cond_resched();
1751 
1752 		if (ret && ret != -EAGAIN)
1753 			pr_warn("gc failed!");
1754 	} while (ret);
1755 
1756 	bch_btree_gc_finish(c);
1757 	wake_up_allocators(c);
1758 
1759 	bch_time_stats_update(&c->btree_gc_time, start_time);
1760 
1761 	stats.key_bytes *= sizeof(uint64_t);
1762 	stats.data	<<= 9;
1763 	bch_update_bucket_in_use(c, &stats);
1764 	memcpy(&c->gc_stats, &stats, sizeof(struct gc_stat));
1765 
1766 	trace_bcache_gc_end(c);
1767 
1768 	bch_moving_gc(c);
1769 }
1770 
1771 static bool gc_should_run(struct cache_set *c)
1772 {
1773 	struct cache *ca;
1774 	unsigned i;
1775 
1776 	for_each_cache(ca, c, i)
1777 		if (ca->invalidate_needs_gc)
1778 			return true;
1779 
1780 	if (atomic_read(&c->sectors_to_gc) < 0)
1781 		return true;
1782 
1783 	return false;
1784 }
1785 
1786 static int bch_gc_thread(void *arg)
1787 {
1788 	struct cache_set *c = arg;
1789 
1790 	while (1) {
1791 		wait_event_interruptible(c->gc_wait,
1792 			   kthread_should_stop() || gc_should_run(c));
1793 
1794 		if (kthread_should_stop())
1795 			break;
1796 
1797 		set_gc_sectors(c);
1798 		bch_btree_gc(c);
1799 	}
1800 
1801 	return 0;
1802 }
1803 
1804 int bch_gc_thread_start(struct cache_set *c)
1805 {
1806 	c->gc_thread = kthread_run(bch_gc_thread, c, "bcache_gc");
1807 	return PTR_ERR_OR_ZERO(c->gc_thread);
1808 }
1809 
1810 /* Initial partial gc */
1811 
1812 static int bch_btree_check_recurse(struct btree *b, struct btree_op *op)
1813 {
1814 	int ret = 0;
1815 	struct bkey *k, *p = NULL;
1816 	struct btree_iter iter;
1817 
1818 	for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid)
1819 		bch_initial_mark_key(b->c, b->level, k);
1820 
1821 	bch_initial_mark_key(b->c, b->level + 1, &b->key);
1822 
1823 	if (b->level) {
1824 		bch_btree_iter_init(&b->keys, &iter, NULL);
1825 
1826 		do {
1827 			k = bch_btree_iter_next_filter(&iter, &b->keys,
1828 						       bch_ptr_bad);
1829 			if (k)
1830 				btree_node_prefetch(b, k);
1831 
1832 			if (p)
1833 				ret = btree(check_recurse, p, b, op);
1834 
1835 			p = k;
1836 		} while (p && !ret);
1837 	}
1838 
1839 	return ret;
1840 }
1841 
1842 int bch_btree_check(struct cache_set *c)
1843 {
1844 	struct btree_op op;
1845 
1846 	bch_btree_op_init(&op, SHRT_MAX);
1847 
1848 	return btree_root(check_recurse, c, &op);
1849 }
1850 
1851 void bch_initial_gc_finish(struct cache_set *c)
1852 {
1853 	struct cache *ca;
1854 	struct bucket *b;
1855 	unsigned i;
1856 
1857 	bch_btree_gc_finish(c);
1858 
1859 	mutex_lock(&c->bucket_lock);
1860 
1861 	/*
1862 	 * We need to put some unused buckets directly on the prio freelist in
1863 	 * order to get the allocator thread started - it needs freed buckets in
1864 	 * order to rewrite the prios and gens, and it needs to rewrite prios
1865 	 * and gens in order to free buckets.
1866 	 *
1867 	 * This is only safe for buckets that have no live data in them, which
1868 	 * there should always be some of.
1869 	 */
1870 	for_each_cache(ca, c, i) {
1871 		for_each_bucket(b, ca) {
1872 			if (fifo_full(&ca->free[RESERVE_PRIO]) &&
1873 			    fifo_full(&ca->free[RESERVE_BTREE]))
1874 				break;
1875 
1876 			if (bch_can_invalidate_bucket(ca, b) &&
1877 			    !GC_MARK(b)) {
1878 				__bch_invalidate_one_bucket(ca, b);
1879 				if (!fifo_push(&ca->free[RESERVE_PRIO],
1880 				   b - ca->buckets))
1881 					fifo_push(&ca->free[RESERVE_BTREE],
1882 						  b - ca->buckets);
1883 			}
1884 		}
1885 	}
1886 
1887 	mutex_unlock(&c->bucket_lock);
1888 }
1889 
1890 /* Btree insertion */
1891 
1892 static bool btree_insert_key(struct btree *b, struct bkey *k,
1893 			     struct bkey *replace_key)
1894 {
1895 	unsigned status;
1896 
1897 	BUG_ON(bkey_cmp(k, &b->key) > 0);
1898 
1899 	status = bch_btree_insert_key(&b->keys, k, replace_key);
1900 	if (status != BTREE_INSERT_STATUS_NO_INSERT) {
1901 		bch_check_keys(&b->keys, "%u for %s", status,
1902 			       replace_key ? "replace" : "insert");
1903 
1904 		trace_bcache_btree_insert_key(b, k, replace_key != NULL,
1905 					      status);
1906 		return true;
1907 	} else
1908 		return false;
1909 }
1910 
1911 static size_t insert_u64s_remaining(struct btree *b)
1912 {
1913 	long ret = bch_btree_keys_u64s_remaining(&b->keys);
1914 
1915 	/*
1916 	 * Might land in the middle of an existing extent and have to split it
1917 	 */
1918 	if (b->keys.ops->is_extents)
1919 		ret -= KEY_MAX_U64S;
1920 
1921 	return max(ret, 0L);
1922 }
1923 
1924 static bool bch_btree_insert_keys(struct btree *b, struct btree_op *op,
1925 				  struct keylist *insert_keys,
1926 				  struct bkey *replace_key)
1927 {
1928 	bool ret = false;
1929 	int oldsize = bch_count_data(&b->keys);
1930 
1931 	while (!bch_keylist_empty(insert_keys)) {
1932 		struct bkey *k = insert_keys->keys;
1933 
1934 		if (bkey_u64s(k) > insert_u64s_remaining(b))
1935 			break;
1936 
1937 		if (bkey_cmp(k, &b->key) <= 0) {
1938 			if (!b->level)
1939 				bkey_put(b->c, k);
1940 
1941 			ret |= btree_insert_key(b, k, replace_key);
1942 			bch_keylist_pop_front(insert_keys);
1943 		} else if (bkey_cmp(&START_KEY(k), &b->key) < 0) {
1944 			BKEY_PADDED(key) temp;
1945 			bkey_copy(&temp.key, insert_keys->keys);
1946 
1947 			bch_cut_back(&b->key, &temp.key);
1948 			bch_cut_front(&b->key, insert_keys->keys);
1949 
1950 			ret |= btree_insert_key(b, &temp.key, replace_key);
1951 			break;
1952 		} else {
1953 			break;
1954 		}
1955 	}
1956 
1957 	if (!ret)
1958 		op->insert_collision = true;
1959 
1960 	BUG_ON(!bch_keylist_empty(insert_keys) && b->level);
1961 
1962 	BUG_ON(bch_count_data(&b->keys) < oldsize);
1963 	return ret;
1964 }
1965 
1966 static int btree_split(struct btree *b, struct btree_op *op,
1967 		       struct keylist *insert_keys,
1968 		       struct bkey *replace_key)
1969 {
1970 	bool split;
1971 	struct btree *n1, *n2 = NULL, *n3 = NULL;
1972 	uint64_t start_time = local_clock();
1973 	struct closure cl;
1974 	struct keylist parent_keys;
1975 
1976 	closure_init_stack(&cl);
1977 	bch_keylist_init(&parent_keys);
1978 
1979 	if (btree_check_reserve(b, op)) {
1980 		if (!b->level)
1981 			return -EINTR;
1982 		else
1983 			WARN(1, "insufficient reserve for split\n");
1984 	}
1985 
1986 	n1 = btree_node_alloc_replacement(b, op);
1987 	if (IS_ERR(n1))
1988 		goto err;
1989 
1990 	split = set_blocks(btree_bset_first(n1),
1991 			   block_bytes(n1->c)) > (btree_blocks(b) * 4) / 5;
1992 
1993 	if (split) {
1994 		unsigned keys = 0;
1995 
1996 		trace_bcache_btree_node_split(b, btree_bset_first(n1)->keys);
1997 
1998 		n2 = bch_btree_node_alloc(b->c, op, b->level, b->parent);
1999 		if (IS_ERR(n2))
2000 			goto err_free1;
2001 
2002 		if (!b->parent) {
2003 			n3 = bch_btree_node_alloc(b->c, op, b->level + 1, NULL);
2004 			if (IS_ERR(n3))
2005 				goto err_free2;
2006 		}
2007 
2008 		mutex_lock(&n1->write_lock);
2009 		mutex_lock(&n2->write_lock);
2010 
2011 		bch_btree_insert_keys(n1, op, insert_keys, replace_key);
2012 
2013 		/*
2014 		 * Has to be a linear search because we don't have an auxiliary
2015 		 * search tree yet
2016 		 */
2017 
2018 		while (keys < (btree_bset_first(n1)->keys * 3) / 5)
2019 			keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1),
2020 							keys));
2021 
2022 		bkey_copy_key(&n1->key,
2023 			      bset_bkey_idx(btree_bset_first(n1), keys));
2024 		keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1), keys));
2025 
2026 		btree_bset_first(n2)->keys = btree_bset_first(n1)->keys - keys;
2027 		btree_bset_first(n1)->keys = keys;
2028 
2029 		memcpy(btree_bset_first(n2)->start,
2030 		       bset_bkey_last(btree_bset_first(n1)),
2031 		       btree_bset_first(n2)->keys * sizeof(uint64_t));
2032 
2033 		bkey_copy_key(&n2->key, &b->key);
2034 
2035 		bch_keylist_add(&parent_keys, &n2->key);
2036 		bch_btree_node_write(n2, &cl);
2037 		mutex_unlock(&n2->write_lock);
2038 		rw_unlock(true, n2);
2039 	} else {
2040 		trace_bcache_btree_node_compact(b, btree_bset_first(n1)->keys);
2041 
2042 		mutex_lock(&n1->write_lock);
2043 		bch_btree_insert_keys(n1, op, insert_keys, replace_key);
2044 	}
2045 
2046 	bch_keylist_add(&parent_keys, &n1->key);
2047 	bch_btree_node_write(n1, &cl);
2048 	mutex_unlock(&n1->write_lock);
2049 
2050 	if (n3) {
2051 		/* Depth increases, make a new root */
2052 		mutex_lock(&n3->write_lock);
2053 		bkey_copy_key(&n3->key, &MAX_KEY);
2054 		bch_btree_insert_keys(n3, op, &parent_keys, NULL);
2055 		bch_btree_node_write(n3, &cl);
2056 		mutex_unlock(&n3->write_lock);
2057 
2058 		closure_sync(&cl);
2059 		bch_btree_set_root(n3);
2060 		rw_unlock(true, n3);
2061 	} else if (!b->parent) {
2062 		/* Root filled up but didn't need to be split */
2063 		closure_sync(&cl);
2064 		bch_btree_set_root(n1);
2065 	} else {
2066 		/* Split a non root node */
2067 		closure_sync(&cl);
2068 		make_btree_freeing_key(b, parent_keys.top);
2069 		bch_keylist_push(&parent_keys);
2070 
2071 		bch_btree_insert_node(b->parent, op, &parent_keys, NULL, NULL);
2072 		BUG_ON(!bch_keylist_empty(&parent_keys));
2073 	}
2074 
2075 	btree_node_free(b);
2076 	rw_unlock(true, n1);
2077 
2078 	bch_time_stats_update(&b->c->btree_split_time, start_time);
2079 
2080 	return 0;
2081 err_free2:
2082 	bkey_put(b->c, &n2->key);
2083 	btree_node_free(n2);
2084 	rw_unlock(true, n2);
2085 err_free1:
2086 	bkey_put(b->c, &n1->key);
2087 	btree_node_free(n1);
2088 	rw_unlock(true, n1);
2089 err:
2090 	WARN(1, "bcache: btree split failed (level %u)", b->level);
2091 
2092 	if (n3 == ERR_PTR(-EAGAIN) ||
2093 	    n2 == ERR_PTR(-EAGAIN) ||
2094 	    n1 == ERR_PTR(-EAGAIN))
2095 		return -EAGAIN;
2096 
2097 	return -ENOMEM;
2098 }
2099 
2100 static int bch_btree_insert_node(struct btree *b, struct btree_op *op,
2101 				 struct keylist *insert_keys,
2102 				 atomic_t *journal_ref,
2103 				 struct bkey *replace_key)
2104 {
2105 	struct closure cl;
2106 
2107 	BUG_ON(b->level && replace_key);
2108 
2109 	closure_init_stack(&cl);
2110 
2111 	mutex_lock(&b->write_lock);
2112 
2113 	if (write_block(b) != btree_bset_last(b) &&
2114 	    b->keys.last_set_unwritten)
2115 		bch_btree_init_next(b); /* just wrote a set */
2116 
2117 	if (bch_keylist_nkeys(insert_keys) > insert_u64s_remaining(b)) {
2118 		mutex_unlock(&b->write_lock);
2119 		goto split;
2120 	}
2121 
2122 	BUG_ON(write_block(b) != btree_bset_last(b));
2123 
2124 	if (bch_btree_insert_keys(b, op, insert_keys, replace_key)) {
2125 		if (!b->level)
2126 			bch_btree_leaf_dirty(b, journal_ref);
2127 		else
2128 			bch_btree_node_write(b, &cl);
2129 	}
2130 
2131 	mutex_unlock(&b->write_lock);
2132 
2133 	/* wait for btree node write if necessary, after unlock */
2134 	closure_sync(&cl);
2135 
2136 	return 0;
2137 split:
2138 	if (current->bio_list) {
2139 		op->lock = b->c->root->level + 1;
2140 		return -EAGAIN;
2141 	} else if (op->lock <= b->c->root->level) {
2142 		op->lock = b->c->root->level + 1;
2143 		return -EINTR;
2144 	} else {
2145 		/* Invalidated all iterators */
2146 		int ret = btree_split(b, op, insert_keys, replace_key);
2147 
2148 		if (bch_keylist_empty(insert_keys))
2149 			return 0;
2150 		else if (!ret)
2151 			return -EINTR;
2152 		return ret;
2153 	}
2154 }
2155 
2156 int bch_btree_insert_check_key(struct btree *b, struct btree_op *op,
2157 			       struct bkey *check_key)
2158 {
2159 	int ret = -EINTR;
2160 	uint64_t btree_ptr = b->key.ptr[0];
2161 	unsigned long seq = b->seq;
2162 	struct keylist insert;
2163 	bool upgrade = op->lock == -1;
2164 
2165 	bch_keylist_init(&insert);
2166 
2167 	if (upgrade) {
2168 		rw_unlock(false, b);
2169 		rw_lock(true, b, b->level);
2170 
2171 		if (b->key.ptr[0] != btree_ptr ||
2172                    b->seq != seq + 1) {
2173                        op->lock = b->level;
2174 			goto out;
2175                }
2176 	}
2177 
2178 	SET_KEY_PTRS(check_key, 1);
2179 	get_random_bytes(&check_key->ptr[0], sizeof(uint64_t));
2180 
2181 	SET_PTR_DEV(check_key, 0, PTR_CHECK_DEV);
2182 
2183 	bch_keylist_add(&insert, check_key);
2184 
2185 	ret = bch_btree_insert_node(b, op, &insert, NULL, NULL);
2186 
2187 	BUG_ON(!ret && !bch_keylist_empty(&insert));
2188 out:
2189 	if (upgrade)
2190 		downgrade_write(&b->lock);
2191 	return ret;
2192 }
2193 
2194 struct btree_insert_op {
2195 	struct btree_op	op;
2196 	struct keylist	*keys;
2197 	atomic_t	*journal_ref;
2198 	struct bkey	*replace_key;
2199 };
2200 
2201 static int btree_insert_fn(struct btree_op *b_op, struct btree *b)
2202 {
2203 	struct btree_insert_op *op = container_of(b_op,
2204 					struct btree_insert_op, op);
2205 
2206 	int ret = bch_btree_insert_node(b, &op->op, op->keys,
2207 					op->journal_ref, op->replace_key);
2208 	if (ret && !bch_keylist_empty(op->keys))
2209 		return ret;
2210 	else
2211 		return MAP_DONE;
2212 }
2213 
2214 int bch_btree_insert(struct cache_set *c, struct keylist *keys,
2215 		     atomic_t *journal_ref, struct bkey *replace_key)
2216 {
2217 	struct btree_insert_op op;
2218 	int ret = 0;
2219 
2220 	BUG_ON(current->bio_list);
2221 	BUG_ON(bch_keylist_empty(keys));
2222 
2223 	bch_btree_op_init(&op.op, 0);
2224 	op.keys		= keys;
2225 	op.journal_ref	= journal_ref;
2226 	op.replace_key	= replace_key;
2227 
2228 	while (!ret && !bch_keylist_empty(keys)) {
2229 		op.op.lock = 0;
2230 		ret = bch_btree_map_leaf_nodes(&op.op, c,
2231 					       &START_KEY(keys->keys),
2232 					       btree_insert_fn);
2233 	}
2234 
2235 	if (ret) {
2236 		struct bkey *k;
2237 
2238 		pr_err("error %i", ret);
2239 
2240 		while ((k = bch_keylist_pop(keys)))
2241 			bkey_put(c, k);
2242 	} else if (op.op.insert_collision)
2243 		ret = -ESRCH;
2244 
2245 	return ret;
2246 }
2247 
2248 void bch_btree_set_root(struct btree *b)
2249 {
2250 	unsigned i;
2251 	struct closure cl;
2252 
2253 	closure_init_stack(&cl);
2254 
2255 	trace_bcache_btree_set_root(b);
2256 
2257 	BUG_ON(!b->written);
2258 
2259 	for (i = 0; i < KEY_PTRS(&b->key); i++)
2260 		BUG_ON(PTR_BUCKET(b->c, &b->key, i)->prio != BTREE_PRIO);
2261 
2262 	mutex_lock(&b->c->bucket_lock);
2263 	list_del_init(&b->list);
2264 	mutex_unlock(&b->c->bucket_lock);
2265 
2266 	b->c->root = b;
2267 
2268 	bch_journal_meta(b->c, &cl);
2269 	closure_sync(&cl);
2270 }
2271 
2272 /* Map across nodes or keys */
2273 
2274 static int bch_btree_map_nodes_recurse(struct btree *b, struct btree_op *op,
2275 				       struct bkey *from,
2276 				       btree_map_nodes_fn *fn, int flags)
2277 {
2278 	int ret = MAP_CONTINUE;
2279 
2280 	if (b->level) {
2281 		struct bkey *k;
2282 		struct btree_iter iter;
2283 
2284 		bch_btree_iter_init(&b->keys, &iter, from);
2285 
2286 		while ((k = bch_btree_iter_next_filter(&iter, &b->keys,
2287 						       bch_ptr_bad))) {
2288 			ret = btree(map_nodes_recurse, k, b,
2289 				    op, from, fn, flags);
2290 			from = NULL;
2291 
2292 			if (ret != MAP_CONTINUE)
2293 				return ret;
2294 		}
2295 	}
2296 
2297 	if (!b->level || flags == MAP_ALL_NODES)
2298 		ret = fn(op, b);
2299 
2300 	return ret;
2301 }
2302 
2303 int __bch_btree_map_nodes(struct btree_op *op, struct cache_set *c,
2304 			  struct bkey *from, btree_map_nodes_fn *fn, int flags)
2305 {
2306 	return btree_root(map_nodes_recurse, c, op, from, fn, flags);
2307 }
2308 
2309 static int bch_btree_map_keys_recurse(struct btree *b, struct btree_op *op,
2310 				      struct bkey *from, btree_map_keys_fn *fn,
2311 				      int flags)
2312 {
2313 	int ret = MAP_CONTINUE;
2314 	struct bkey *k;
2315 	struct btree_iter iter;
2316 
2317 	bch_btree_iter_init(&b->keys, &iter, from);
2318 
2319 	while ((k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad))) {
2320 		ret = !b->level
2321 			? fn(op, b, k)
2322 			: btree(map_keys_recurse, k, b, op, from, fn, flags);
2323 		from = NULL;
2324 
2325 		if (ret != MAP_CONTINUE)
2326 			return ret;
2327 	}
2328 
2329 	if (!b->level && (flags & MAP_END_KEY))
2330 		ret = fn(op, b, &KEY(KEY_INODE(&b->key),
2331 				     KEY_OFFSET(&b->key), 0));
2332 
2333 	return ret;
2334 }
2335 
2336 int bch_btree_map_keys(struct btree_op *op, struct cache_set *c,
2337 		       struct bkey *from, btree_map_keys_fn *fn, int flags)
2338 {
2339 	return btree_root(map_keys_recurse, c, op, from, fn, flags);
2340 }
2341 
2342 /* Keybuf code */
2343 
2344 static inline int keybuf_cmp(struct keybuf_key *l, struct keybuf_key *r)
2345 {
2346 	/* Overlapping keys compare equal */
2347 	if (bkey_cmp(&l->key, &START_KEY(&r->key)) <= 0)
2348 		return -1;
2349 	if (bkey_cmp(&START_KEY(&l->key), &r->key) >= 0)
2350 		return 1;
2351 	return 0;
2352 }
2353 
2354 static inline int keybuf_nonoverlapping_cmp(struct keybuf_key *l,
2355 					    struct keybuf_key *r)
2356 {
2357 	return clamp_t(int64_t, bkey_cmp(&l->key, &r->key), -1, 1);
2358 }
2359 
2360 struct refill {
2361 	struct btree_op	op;
2362 	unsigned	nr_found;
2363 	struct keybuf	*buf;
2364 	struct bkey	*end;
2365 	keybuf_pred_fn	*pred;
2366 };
2367 
2368 static int refill_keybuf_fn(struct btree_op *op, struct btree *b,
2369 			    struct bkey *k)
2370 {
2371 	struct refill *refill = container_of(op, struct refill, op);
2372 	struct keybuf *buf = refill->buf;
2373 	int ret = MAP_CONTINUE;
2374 
2375 	if (bkey_cmp(k, refill->end) >= 0) {
2376 		ret = MAP_DONE;
2377 		goto out;
2378 	}
2379 
2380 	if (!KEY_SIZE(k)) /* end key */
2381 		goto out;
2382 
2383 	if (refill->pred(buf, k)) {
2384 		struct keybuf_key *w;
2385 
2386 		spin_lock(&buf->lock);
2387 
2388 		w = array_alloc(&buf->freelist);
2389 		if (!w) {
2390 			spin_unlock(&buf->lock);
2391 			return MAP_DONE;
2392 		}
2393 
2394 		w->private = NULL;
2395 		bkey_copy(&w->key, k);
2396 
2397 		if (RB_INSERT(&buf->keys, w, node, keybuf_cmp))
2398 			array_free(&buf->freelist, w);
2399 		else
2400 			refill->nr_found++;
2401 
2402 		if (array_freelist_empty(&buf->freelist))
2403 			ret = MAP_DONE;
2404 
2405 		spin_unlock(&buf->lock);
2406 	}
2407 out:
2408 	buf->last_scanned = *k;
2409 	return ret;
2410 }
2411 
2412 void bch_refill_keybuf(struct cache_set *c, struct keybuf *buf,
2413 		       struct bkey *end, keybuf_pred_fn *pred)
2414 {
2415 	struct bkey start = buf->last_scanned;
2416 	struct refill refill;
2417 
2418 	cond_resched();
2419 
2420 	bch_btree_op_init(&refill.op, -1);
2421 	refill.nr_found	= 0;
2422 	refill.buf	= buf;
2423 	refill.end	= end;
2424 	refill.pred	= pred;
2425 
2426 	bch_btree_map_keys(&refill.op, c, &buf->last_scanned,
2427 			   refill_keybuf_fn, MAP_END_KEY);
2428 
2429 	trace_bcache_keyscan(refill.nr_found,
2430 			     KEY_INODE(&start), KEY_OFFSET(&start),
2431 			     KEY_INODE(&buf->last_scanned),
2432 			     KEY_OFFSET(&buf->last_scanned));
2433 
2434 	spin_lock(&buf->lock);
2435 
2436 	if (!RB_EMPTY_ROOT(&buf->keys)) {
2437 		struct keybuf_key *w;
2438 		w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2439 		buf->start	= START_KEY(&w->key);
2440 
2441 		w = RB_LAST(&buf->keys, struct keybuf_key, node);
2442 		buf->end	= w->key;
2443 	} else {
2444 		buf->start	= MAX_KEY;
2445 		buf->end	= MAX_KEY;
2446 	}
2447 
2448 	spin_unlock(&buf->lock);
2449 }
2450 
2451 static void __bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2452 {
2453 	rb_erase(&w->node, &buf->keys);
2454 	array_free(&buf->freelist, w);
2455 }
2456 
2457 void bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2458 {
2459 	spin_lock(&buf->lock);
2460 	__bch_keybuf_del(buf, w);
2461 	spin_unlock(&buf->lock);
2462 }
2463 
2464 bool bch_keybuf_check_overlapping(struct keybuf *buf, struct bkey *start,
2465 				  struct bkey *end)
2466 {
2467 	bool ret = false;
2468 	struct keybuf_key *p, *w, s;
2469 	s.key = *start;
2470 
2471 	if (bkey_cmp(end, &buf->start) <= 0 ||
2472 	    bkey_cmp(start, &buf->end) >= 0)
2473 		return false;
2474 
2475 	spin_lock(&buf->lock);
2476 	w = RB_GREATER(&buf->keys, s, node, keybuf_nonoverlapping_cmp);
2477 
2478 	while (w && bkey_cmp(&START_KEY(&w->key), end) < 0) {
2479 		p = w;
2480 		w = RB_NEXT(w, node);
2481 
2482 		if (p->private)
2483 			ret = true;
2484 		else
2485 			__bch_keybuf_del(buf, p);
2486 	}
2487 
2488 	spin_unlock(&buf->lock);
2489 	return ret;
2490 }
2491 
2492 struct keybuf_key *bch_keybuf_next(struct keybuf *buf)
2493 {
2494 	struct keybuf_key *w;
2495 	spin_lock(&buf->lock);
2496 
2497 	w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2498 
2499 	while (w && w->private)
2500 		w = RB_NEXT(w, node);
2501 
2502 	if (w)
2503 		w->private = ERR_PTR(-EINTR);
2504 
2505 	spin_unlock(&buf->lock);
2506 	return w;
2507 }
2508 
2509 struct keybuf_key *bch_keybuf_next_rescan(struct cache_set *c,
2510 					  struct keybuf *buf,
2511 					  struct bkey *end,
2512 					  keybuf_pred_fn *pred)
2513 {
2514 	struct keybuf_key *ret;
2515 
2516 	while (1) {
2517 		ret = bch_keybuf_next(buf);
2518 		if (ret)
2519 			break;
2520 
2521 		if (bkey_cmp(&buf->last_scanned, end) >= 0) {
2522 			pr_debug("scan finished");
2523 			break;
2524 		}
2525 
2526 		bch_refill_keybuf(c, buf, end, pred);
2527 	}
2528 
2529 	return ret;
2530 }
2531 
2532 void bch_keybuf_init(struct keybuf *buf)
2533 {
2534 	buf->last_scanned	= MAX_KEY;
2535 	buf->keys		= RB_ROOT;
2536 
2537 	spin_lock_init(&buf->lock);
2538 	array_allocator_init(&buf->freelist);
2539 }
2540