1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com> 4 * 5 * Uses a block device as cache for other block devices; optimized for SSDs. 6 * All allocation is done in buckets, which should match the erase block size 7 * of the device. 8 * 9 * Buckets containing cached data are kept on a heap sorted by priority; 10 * bucket priority is increased on cache hit, and periodically all the buckets 11 * on the heap have their priority scaled down. This currently is just used as 12 * an LRU but in the future should allow for more intelligent heuristics. 13 * 14 * Buckets have an 8 bit counter; freeing is accomplished by incrementing the 15 * counter. Garbage collection is used to remove stale pointers. 16 * 17 * Indexing is done via a btree; nodes are not necessarily fully sorted, rather 18 * as keys are inserted we only sort the pages that have not yet been written. 19 * When garbage collection is run, we resort the entire node. 20 * 21 * All configuration is done via sysfs; see Documentation/admin-guide/bcache.rst. 22 */ 23 24 #include "bcache.h" 25 #include "btree.h" 26 #include "debug.h" 27 #include "extents.h" 28 29 #include <linux/slab.h> 30 #include <linux/bitops.h> 31 #include <linux/hash.h> 32 #include <linux/kthread.h> 33 #include <linux/prefetch.h> 34 #include <linux/random.h> 35 #include <linux/rcupdate.h> 36 #include <linux/sched/clock.h> 37 #include <linux/rculist.h> 38 39 #include <trace/events/bcache.h> 40 41 /* 42 * Todo: 43 * register_bcache: Return errors out to userspace correctly 44 * 45 * Writeback: don't undirty key until after a cache flush 46 * 47 * Create an iterator for key pointers 48 * 49 * On btree write error, mark bucket such that it won't be freed from the cache 50 * 51 * Journalling: 52 * Check for bad keys in replay 53 * Propagate barriers 54 * Refcount journal entries in journal_replay 55 * 56 * Garbage collection: 57 * Finish incremental gc 58 * Gc should free old UUIDs, data for invalid UUIDs 59 * 60 * Provide a way to list backing device UUIDs we have data cached for, and 61 * probably how long it's been since we've seen them, and a way to invalidate 62 * dirty data for devices that will never be attached again 63 * 64 * Keep 1 min/5 min/15 min statistics of how busy a block device has been, so 65 * that based on that and how much dirty data we have we can keep writeback 66 * from being starved 67 * 68 * Add a tracepoint or somesuch to watch for writeback starvation 69 * 70 * When btree depth > 1 and splitting an interior node, we have to make sure 71 * alloc_bucket() cannot fail. This should be true but is not completely 72 * obvious. 73 * 74 * Plugging? 75 * 76 * If data write is less than hard sector size of ssd, round up offset in open 77 * bucket to the next whole sector 78 * 79 * Superblock needs to be fleshed out for multiple cache devices 80 * 81 * Add a sysfs tunable for the number of writeback IOs in flight 82 * 83 * Add a sysfs tunable for the number of open data buckets 84 * 85 * IO tracking: Can we track when one process is doing io on behalf of another? 86 * IO tracking: Don't use just an average, weigh more recent stuff higher 87 * 88 * Test module load/unload 89 */ 90 91 #define MAX_NEED_GC 64 92 #define MAX_SAVE_PRIO 72 93 #define MAX_GC_TIMES 100 94 #define MIN_GC_NODES 100 95 #define GC_SLEEP_MS 100 96 97 #define PTR_DIRTY_BIT (((uint64_t) 1 << 36)) 98 99 #define PTR_HASH(c, k) \ 100 (((k)->ptr[0] >> c->bucket_bits) | PTR_GEN(k, 0)) 101 102 #define insert_lock(s, b) ((b)->level <= (s)->lock) 103 104 /* 105 * These macros are for recursing down the btree - they handle the details of 106 * locking and looking up nodes in the cache for you. They're best treated as 107 * mere syntax when reading code that uses them. 108 * 109 * op->lock determines whether we take a read or a write lock at a given depth. 110 * If you've got a read lock and find that you need a write lock (i.e. you're 111 * going to have to split), set op->lock and return -EINTR; btree_root() will 112 * call you again and you'll have the correct lock. 113 */ 114 115 /** 116 * btree - recurse down the btree on a specified key 117 * @fn: function to call, which will be passed the child node 118 * @key: key to recurse on 119 * @b: parent btree node 120 * @op: pointer to struct btree_op 121 */ 122 #define btree(fn, key, b, op, ...) \ 123 ({ \ 124 int _r, l = (b)->level - 1; \ 125 bool _w = l <= (op)->lock; \ 126 struct btree *_child = bch_btree_node_get((b)->c, op, key, l, \ 127 _w, b); \ 128 if (!IS_ERR(_child)) { \ 129 _r = bch_btree_ ## fn(_child, op, ##__VA_ARGS__); \ 130 rw_unlock(_w, _child); \ 131 } else \ 132 _r = PTR_ERR(_child); \ 133 _r; \ 134 }) 135 136 /** 137 * btree_root - call a function on the root of the btree 138 * @fn: function to call, which will be passed the child node 139 * @c: cache set 140 * @op: pointer to struct btree_op 141 */ 142 #define btree_root(fn, c, op, ...) \ 143 ({ \ 144 int _r = -EINTR; \ 145 do { \ 146 struct btree *_b = (c)->root; \ 147 bool _w = insert_lock(op, _b); \ 148 rw_lock(_w, _b, _b->level); \ 149 if (_b == (c)->root && \ 150 _w == insert_lock(op, _b)) { \ 151 _r = bch_btree_ ## fn(_b, op, ##__VA_ARGS__); \ 152 } \ 153 rw_unlock(_w, _b); \ 154 bch_cannibalize_unlock(c); \ 155 if (_r == -EINTR) \ 156 schedule(); \ 157 } while (_r == -EINTR); \ 158 \ 159 finish_wait(&(c)->btree_cache_wait, &(op)->wait); \ 160 _r; \ 161 }) 162 163 static inline struct bset *write_block(struct btree *b) 164 { 165 return ((void *) btree_bset_first(b)) + b->written * block_bytes(b->c); 166 } 167 168 static void bch_btree_init_next(struct btree *b) 169 { 170 /* If not a leaf node, always sort */ 171 if (b->level && b->keys.nsets) 172 bch_btree_sort(&b->keys, &b->c->sort); 173 else 174 bch_btree_sort_lazy(&b->keys, &b->c->sort); 175 176 if (b->written < btree_blocks(b)) 177 bch_bset_init_next(&b->keys, write_block(b), 178 bset_magic(&b->c->sb)); 179 180 } 181 182 /* Btree key manipulation */ 183 184 void bkey_put(struct cache_set *c, struct bkey *k) 185 { 186 unsigned int i; 187 188 for (i = 0; i < KEY_PTRS(k); i++) 189 if (ptr_available(c, k, i)) 190 atomic_dec_bug(&PTR_BUCKET(c, k, i)->pin); 191 } 192 193 /* Btree IO */ 194 195 static uint64_t btree_csum_set(struct btree *b, struct bset *i) 196 { 197 uint64_t crc = b->key.ptr[0]; 198 void *data = (void *) i + 8, *end = bset_bkey_last(i); 199 200 crc = bch_crc64_update(crc, data, end - data); 201 return crc ^ 0xffffffffffffffffULL; 202 } 203 204 void bch_btree_node_read_done(struct btree *b) 205 { 206 const char *err = "bad btree header"; 207 struct bset *i = btree_bset_first(b); 208 struct btree_iter *iter; 209 210 /* 211 * c->fill_iter can allocate an iterator with more memory space 212 * than static MAX_BSETS. 213 * See the comment arount cache_set->fill_iter. 214 */ 215 iter = mempool_alloc(&b->c->fill_iter, GFP_NOIO); 216 iter->size = b->c->sb.bucket_size / b->c->sb.block_size; 217 iter->used = 0; 218 219 #ifdef CONFIG_BCACHE_DEBUG 220 iter->b = &b->keys; 221 #endif 222 223 if (!i->seq) 224 goto err; 225 226 for (; 227 b->written < btree_blocks(b) && i->seq == b->keys.set[0].data->seq; 228 i = write_block(b)) { 229 err = "unsupported bset version"; 230 if (i->version > BCACHE_BSET_VERSION) 231 goto err; 232 233 err = "bad btree header"; 234 if (b->written + set_blocks(i, block_bytes(b->c)) > 235 btree_blocks(b)) 236 goto err; 237 238 err = "bad magic"; 239 if (i->magic != bset_magic(&b->c->sb)) 240 goto err; 241 242 err = "bad checksum"; 243 switch (i->version) { 244 case 0: 245 if (i->csum != csum_set(i)) 246 goto err; 247 break; 248 case BCACHE_BSET_VERSION: 249 if (i->csum != btree_csum_set(b, i)) 250 goto err; 251 break; 252 } 253 254 err = "empty set"; 255 if (i != b->keys.set[0].data && !i->keys) 256 goto err; 257 258 bch_btree_iter_push(iter, i->start, bset_bkey_last(i)); 259 260 b->written += set_blocks(i, block_bytes(b->c)); 261 } 262 263 err = "corrupted btree"; 264 for (i = write_block(b); 265 bset_sector_offset(&b->keys, i) < KEY_SIZE(&b->key); 266 i = ((void *) i) + block_bytes(b->c)) 267 if (i->seq == b->keys.set[0].data->seq) 268 goto err; 269 270 bch_btree_sort_and_fix_extents(&b->keys, iter, &b->c->sort); 271 272 i = b->keys.set[0].data; 273 err = "short btree key"; 274 if (b->keys.set[0].size && 275 bkey_cmp(&b->key, &b->keys.set[0].end) < 0) 276 goto err; 277 278 if (b->written < btree_blocks(b)) 279 bch_bset_init_next(&b->keys, write_block(b), 280 bset_magic(&b->c->sb)); 281 out: 282 mempool_free(iter, &b->c->fill_iter); 283 return; 284 err: 285 set_btree_node_io_error(b); 286 bch_cache_set_error(b->c, "%s at bucket %zu, block %u, %u keys", 287 err, PTR_BUCKET_NR(b->c, &b->key, 0), 288 bset_block_offset(b, i), i->keys); 289 goto out; 290 } 291 292 static void btree_node_read_endio(struct bio *bio) 293 { 294 struct closure *cl = bio->bi_private; 295 296 closure_put(cl); 297 } 298 299 static void bch_btree_node_read(struct btree *b) 300 { 301 uint64_t start_time = local_clock(); 302 struct closure cl; 303 struct bio *bio; 304 305 trace_bcache_btree_read(b); 306 307 closure_init_stack(&cl); 308 309 bio = bch_bbio_alloc(b->c); 310 bio->bi_iter.bi_size = KEY_SIZE(&b->key) << 9; 311 bio->bi_end_io = btree_node_read_endio; 312 bio->bi_private = &cl; 313 bio->bi_opf = REQ_OP_READ | REQ_META; 314 315 bch_bio_map(bio, b->keys.set[0].data); 316 317 bch_submit_bbio(bio, b->c, &b->key, 0); 318 closure_sync(&cl); 319 320 if (bio->bi_status) 321 set_btree_node_io_error(b); 322 323 bch_bbio_free(bio, b->c); 324 325 if (btree_node_io_error(b)) 326 goto err; 327 328 bch_btree_node_read_done(b); 329 bch_time_stats_update(&b->c->btree_read_time, start_time); 330 331 return; 332 err: 333 bch_cache_set_error(b->c, "io error reading bucket %zu", 334 PTR_BUCKET_NR(b->c, &b->key, 0)); 335 } 336 337 static void btree_complete_write(struct btree *b, struct btree_write *w) 338 { 339 if (w->prio_blocked && 340 !atomic_sub_return(w->prio_blocked, &b->c->prio_blocked)) 341 wake_up_allocators(b->c); 342 343 if (w->journal) { 344 atomic_dec_bug(w->journal); 345 __closure_wake_up(&b->c->journal.wait); 346 } 347 348 w->prio_blocked = 0; 349 w->journal = NULL; 350 } 351 352 static void btree_node_write_unlock(struct closure *cl) 353 { 354 struct btree *b = container_of(cl, struct btree, io); 355 356 up(&b->io_mutex); 357 } 358 359 static void __btree_node_write_done(struct closure *cl) 360 { 361 struct btree *b = container_of(cl, struct btree, io); 362 struct btree_write *w = btree_prev_write(b); 363 364 bch_bbio_free(b->bio, b->c); 365 b->bio = NULL; 366 btree_complete_write(b, w); 367 368 if (btree_node_dirty(b)) 369 schedule_delayed_work(&b->work, 30 * HZ); 370 371 closure_return_with_destructor(cl, btree_node_write_unlock); 372 } 373 374 static void btree_node_write_done(struct closure *cl) 375 { 376 struct btree *b = container_of(cl, struct btree, io); 377 378 bio_free_pages(b->bio); 379 __btree_node_write_done(cl); 380 } 381 382 static void btree_node_write_endio(struct bio *bio) 383 { 384 struct closure *cl = bio->bi_private; 385 struct btree *b = container_of(cl, struct btree, io); 386 387 if (bio->bi_status) 388 set_btree_node_io_error(b); 389 390 bch_bbio_count_io_errors(b->c, bio, bio->bi_status, "writing btree"); 391 closure_put(cl); 392 } 393 394 static void do_btree_node_write(struct btree *b) 395 { 396 struct closure *cl = &b->io; 397 struct bset *i = btree_bset_last(b); 398 BKEY_PADDED(key) k; 399 400 i->version = BCACHE_BSET_VERSION; 401 i->csum = btree_csum_set(b, i); 402 403 BUG_ON(b->bio); 404 b->bio = bch_bbio_alloc(b->c); 405 406 b->bio->bi_end_io = btree_node_write_endio; 407 b->bio->bi_private = cl; 408 b->bio->bi_iter.bi_size = roundup(set_bytes(i), block_bytes(b->c)); 409 b->bio->bi_opf = REQ_OP_WRITE | REQ_META | REQ_FUA; 410 bch_bio_map(b->bio, i); 411 412 /* 413 * If we're appending to a leaf node, we don't technically need FUA - 414 * this write just needs to be persisted before the next journal write, 415 * which will be marked FLUSH|FUA. 416 * 417 * Similarly if we're writing a new btree root - the pointer is going to 418 * be in the next journal entry. 419 * 420 * But if we're writing a new btree node (that isn't a root) or 421 * appending to a non leaf btree node, we need either FUA or a flush 422 * when we write the parent with the new pointer. FUA is cheaper than a 423 * flush, and writes appending to leaf nodes aren't blocking anything so 424 * just make all btree node writes FUA to keep things sane. 425 */ 426 427 bkey_copy(&k.key, &b->key); 428 SET_PTR_OFFSET(&k.key, 0, PTR_OFFSET(&k.key, 0) + 429 bset_sector_offset(&b->keys, i)); 430 431 if (!bch_bio_alloc_pages(b->bio, __GFP_NOWARN|GFP_NOWAIT)) { 432 int j; 433 struct bio_vec *bv; 434 void *base = (void *) ((unsigned long) i & ~(PAGE_SIZE - 1)); 435 436 bio_for_each_segment_all(bv, b->bio, j) 437 memcpy(page_address(bv->bv_page), 438 base + j * PAGE_SIZE, PAGE_SIZE); 439 440 bch_submit_bbio(b->bio, b->c, &k.key, 0); 441 442 continue_at(cl, btree_node_write_done, NULL); 443 } else { 444 /* 445 * No problem for multipage bvec since the bio is 446 * just allocated 447 */ 448 b->bio->bi_vcnt = 0; 449 bch_bio_map(b->bio, i); 450 451 bch_submit_bbio(b->bio, b->c, &k.key, 0); 452 453 closure_sync(cl); 454 continue_at_nobarrier(cl, __btree_node_write_done, NULL); 455 } 456 } 457 458 void __bch_btree_node_write(struct btree *b, struct closure *parent) 459 { 460 struct bset *i = btree_bset_last(b); 461 462 lockdep_assert_held(&b->write_lock); 463 464 trace_bcache_btree_write(b); 465 466 BUG_ON(current->bio_list); 467 BUG_ON(b->written >= btree_blocks(b)); 468 BUG_ON(b->written && !i->keys); 469 BUG_ON(btree_bset_first(b)->seq != i->seq); 470 bch_check_keys(&b->keys, "writing"); 471 472 cancel_delayed_work(&b->work); 473 474 /* If caller isn't waiting for write, parent refcount is cache set */ 475 down(&b->io_mutex); 476 closure_init(&b->io, parent ?: &b->c->cl); 477 478 clear_bit(BTREE_NODE_dirty, &b->flags); 479 change_bit(BTREE_NODE_write_idx, &b->flags); 480 481 do_btree_node_write(b); 482 483 atomic_long_add(set_blocks(i, block_bytes(b->c)) * b->c->sb.block_size, 484 &PTR_CACHE(b->c, &b->key, 0)->btree_sectors_written); 485 486 b->written += set_blocks(i, block_bytes(b->c)); 487 } 488 489 void bch_btree_node_write(struct btree *b, struct closure *parent) 490 { 491 unsigned int nsets = b->keys.nsets; 492 493 lockdep_assert_held(&b->lock); 494 495 __bch_btree_node_write(b, parent); 496 497 /* 498 * do verify if there was more than one set initially (i.e. we did a 499 * sort) and we sorted down to a single set: 500 */ 501 if (nsets && !b->keys.nsets) 502 bch_btree_verify(b); 503 504 bch_btree_init_next(b); 505 } 506 507 static void bch_btree_node_write_sync(struct btree *b) 508 { 509 struct closure cl; 510 511 closure_init_stack(&cl); 512 513 mutex_lock(&b->write_lock); 514 bch_btree_node_write(b, &cl); 515 mutex_unlock(&b->write_lock); 516 517 closure_sync(&cl); 518 } 519 520 static void btree_node_write_work(struct work_struct *w) 521 { 522 struct btree *b = container_of(to_delayed_work(w), struct btree, work); 523 524 mutex_lock(&b->write_lock); 525 if (btree_node_dirty(b)) 526 __bch_btree_node_write(b, NULL); 527 mutex_unlock(&b->write_lock); 528 } 529 530 static void bch_btree_leaf_dirty(struct btree *b, atomic_t *journal_ref) 531 { 532 struct bset *i = btree_bset_last(b); 533 struct btree_write *w = btree_current_write(b); 534 535 lockdep_assert_held(&b->write_lock); 536 537 BUG_ON(!b->written); 538 BUG_ON(!i->keys); 539 540 if (!btree_node_dirty(b)) 541 schedule_delayed_work(&b->work, 30 * HZ); 542 543 set_btree_node_dirty(b); 544 545 if (journal_ref) { 546 if (w->journal && 547 journal_pin_cmp(b->c, w->journal, journal_ref)) { 548 atomic_dec_bug(w->journal); 549 w->journal = NULL; 550 } 551 552 if (!w->journal) { 553 w->journal = journal_ref; 554 atomic_inc(w->journal); 555 } 556 } 557 558 /* Force write if set is too big */ 559 if (set_bytes(i) > PAGE_SIZE - 48 && 560 !current->bio_list) 561 bch_btree_node_write(b, NULL); 562 } 563 564 /* 565 * Btree in memory cache - allocation/freeing 566 * mca -> memory cache 567 */ 568 569 #define mca_reserve(c) (((c->root && c->root->level) \ 570 ? c->root->level : 1) * 8 + 16) 571 #define mca_can_free(c) \ 572 max_t(int, 0, c->btree_cache_used - mca_reserve(c)) 573 574 static void mca_data_free(struct btree *b) 575 { 576 BUG_ON(b->io_mutex.count != 1); 577 578 bch_btree_keys_free(&b->keys); 579 580 b->c->btree_cache_used--; 581 list_move(&b->list, &b->c->btree_cache_freed); 582 } 583 584 static void mca_bucket_free(struct btree *b) 585 { 586 BUG_ON(btree_node_dirty(b)); 587 588 b->key.ptr[0] = 0; 589 hlist_del_init_rcu(&b->hash); 590 list_move(&b->list, &b->c->btree_cache_freeable); 591 } 592 593 static unsigned int btree_order(struct bkey *k) 594 { 595 return ilog2(KEY_SIZE(k) / PAGE_SECTORS ?: 1); 596 } 597 598 static void mca_data_alloc(struct btree *b, struct bkey *k, gfp_t gfp) 599 { 600 if (!bch_btree_keys_alloc(&b->keys, 601 max_t(unsigned int, 602 ilog2(b->c->btree_pages), 603 btree_order(k)), 604 gfp)) { 605 b->c->btree_cache_used++; 606 list_move(&b->list, &b->c->btree_cache); 607 } else { 608 list_move(&b->list, &b->c->btree_cache_freed); 609 } 610 } 611 612 static struct btree *mca_bucket_alloc(struct cache_set *c, 613 struct bkey *k, gfp_t gfp) 614 { 615 struct btree *b = kzalloc(sizeof(struct btree), gfp); 616 617 if (!b) 618 return NULL; 619 620 init_rwsem(&b->lock); 621 lockdep_set_novalidate_class(&b->lock); 622 mutex_init(&b->write_lock); 623 lockdep_set_novalidate_class(&b->write_lock); 624 INIT_LIST_HEAD(&b->list); 625 INIT_DELAYED_WORK(&b->work, btree_node_write_work); 626 b->c = c; 627 sema_init(&b->io_mutex, 1); 628 629 mca_data_alloc(b, k, gfp); 630 return b; 631 } 632 633 static int mca_reap(struct btree *b, unsigned int min_order, bool flush) 634 { 635 struct closure cl; 636 637 closure_init_stack(&cl); 638 lockdep_assert_held(&b->c->bucket_lock); 639 640 if (!down_write_trylock(&b->lock)) 641 return -ENOMEM; 642 643 BUG_ON(btree_node_dirty(b) && !b->keys.set[0].data); 644 645 if (b->keys.page_order < min_order) 646 goto out_unlock; 647 648 if (!flush) { 649 if (btree_node_dirty(b)) 650 goto out_unlock; 651 652 if (down_trylock(&b->io_mutex)) 653 goto out_unlock; 654 up(&b->io_mutex); 655 } 656 657 mutex_lock(&b->write_lock); 658 if (btree_node_dirty(b)) 659 __bch_btree_node_write(b, &cl); 660 mutex_unlock(&b->write_lock); 661 662 closure_sync(&cl); 663 664 /* wait for any in flight btree write */ 665 down(&b->io_mutex); 666 up(&b->io_mutex); 667 668 return 0; 669 out_unlock: 670 rw_unlock(true, b); 671 return -ENOMEM; 672 } 673 674 static unsigned long bch_mca_scan(struct shrinker *shrink, 675 struct shrink_control *sc) 676 { 677 struct cache_set *c = container_of(shrink, struct cache_set, shrink); 678 struct btree *b, *t; 679 unsigned long i, nr = sc->nr_to_scan; 680 unsigned long freed = 0; 681 unsigned int btree_cache_used; 682 683 if (c->shrinker_disabled) 684 return SHRINK_STOP; 685 686 if (c->btree_cache_alloc_lock) 687 return SHRINK_STOP; 688 689 /* Return -1 if we can't do anything right now */ 690 if (sc->gfp_mask & __GFP_IO) 691 mutex_lock(&c->bucket_lock); 692 else if (!mutex_trylock(&c->bucket_lock)) 693 return -1; 694 695 /* 696 * It's _really_ critical that we don't free too many btree nodes - we 697 * have to always leave ourselves a reserve. The reserve is how we 698 * guarantee that allocating memory for a new btree node can always 699 * succeed, so that inserting keys into the btree can always succeed and 700 * IO can always make forward progress: 701 */ 702 nr /= c->btree_pages; 703 nr = min_t(unsigned long, nr, mca_can_free(c)); 704 705 i = 0; 706 btree_cache_used = c->btree_cache_used; 707 list_for_each_entry_safe(b, t, &c->btree_cache_freeable, list) { 708 if (nr <= 0) 709 goto out; 710 711 if (++i > 3 && 712 !mca_reap(b, 0, false)) { 713 mca_data_free(b); 714 rw_unlock(true, b); 715 freed++; 716 } 717 nr--; 718 } 719 720 for (; (nr--) && i < btree_cache_used; i++) { 721 if (list_empty(&c->btree_cache)) 722 goto out; 723 724 b = list_first_entry(&c->btree_cache, struct btree, list); 725 list_rotate_left(&c->btree_cache); 726 727 if (!b->accessed && 728 !mca_reap(b, 0, false)) { 729 mca_bucket_free(b); 730 mca_data_free(b); 731 rw_unlock(true, b); 732 freed++; 733 } else 734 b->accessed = 0; 735 } 736 out: 737 mutex_unlock(&c->bucket_lock); 738 return freed * c->btree_pages; 739 } 740 741 static unsigned long bch_mca_count(struct shrinker *shrink, 742 struct shrink_control *sc) 743 { 744 struct cache_set *c = container_of(shrink, struct cache_set, shrink); 745 746 if (c->shrinker_disabled) 747 return 0; 748 749 if (c->btree_cache_alloc_lock) 750 return 0; 751 752 return mca_can_free(c) * c->btree_pages; 753 } 754 755 void bch_btree_cache_free(struct cache_set *c) 756 { 757 struct btree *b; 758 struct closure cl; 759 760 closure_init_stack(&cl); 761 762 if (c->shrink.list.next) 763 unregister_shrinker(&c->shrink); 764 765 mutex_lock(&c->bucket_lock); 766 767 #ifdef CONFIG_BCACHE_DEBUG 768 if (c->verify_data) 769 list_move(&c->verify_data->list, &c->btree_cache); 770 771 free_pages((unsigned long) c->verify_ondisk, ilog2(bucket_pages(c))); 772 #endif 773 774 list_splice(&c->btree_cache_freeable, 775 &c->btree_cache); 776 777 while (!list_empty(&c->btree_cache)) { 778 b = list_first_entry(&c->btree_cache, struct btree, list); 779 780 if (btree_node_dirty(b)) 781 btree_complete_write(b, btree_current_write(b)); 782 clear_bit(BTREE_NODE_dirty, &b->flags); 783 784 mca_data_free(b); 785 } 786 787 while (!list_empty(&c->btree_cache_freed)) { 788 b = list_first_entry(&c->btree_cache_freed, 789 struct btree, list); 790 list_del(&b->list); 791 cancel_delayed_work_sync(&b->work); 792 kfree(b); 793 } 794 795 mutex_unlock(&c->bucket_lock); 796 } 797 798 int bch_btree_cache_alloc(struct cache_set *c) 799 { 800 unsigned int i; 801 802 for (i = 0; i < mca_reserve(c); i++) 803 if (!mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL)) 804 return -ENOMEM; 805 806 list_splice_init(&c->btree_cache, 807 &c->btree_cache_freeable); 808 809 #ifdef CONFIG_BCACHE_DEBUG 810 mutex_init(&c->verify_lock); 811 812 c->verify_ondisk = (void *) 813 __get_free_pages(GFP_KERNEL, ilog2(bucket_pages(c))); 814 815 c->verify_data = mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL); 816 817 if (c->verify_data && 818 c->verify_data->keys.set->data) 819 list_del_init(&c->verify_data->list); 820 else 821 c->verify_data = NULL; 822 #endif 823 824 c->shrink.count_objects = bch_mca_count; 825 c->shrink.scan_objects = bch_mca_scan; 826 c->shrink.seeks = 4; 827 c->shrink.batch = c->btree_pages * 2; 828 829 if (register_shrinker(&c->shrink)) 830 pr_warn("bcache: %s: could not register shrinker", 831 __func__); 832 833 return 0; 834 } 835 836 /* Btree in memory cache - hash table */ 837 838 static struct hlist_head *mca_hash(struct cache_set *c, struct bkey *k) 839 { 840 return &c->bucket_hash[hash_32(PTR_HASH(c, k), BUCKET_HASH_BITS)]; 841 } 842 843 static struct btree *mca_find(struct cache_set *c, struct bkey *k) 844 { 845 struct btree *b; 846 847 rcu_read_lock(); 848 hlist_for_each_entry_rcu(b, mca_hash(c, k), hash) 849 if (PTR_HASH(c, &b->key) == PTR_HASH(c, k)) 850 goto out; 851 b = NULL; 852 out: 853 rcu_read_unlock(); 854 return b; 855 } 856 857 static int mca_cannibalize_lock(struct cache_set *c, struct btree_op *op) 858 { 859 struct task_struct *old; 860 861 old = cmpxchg(&c->btree_cache_alloc_lock, NULL, current); 862 if (old && old != current) { 863 if (op) 864 prepare_to_wait(&c->btree_cache_wait, &op->wait, 865 TASK_UNINTERRUPTIBLE); 866 return -EINTR; 867 } 868 869 return 0; 870 } 871 872 static struct btree *mca_cannibalize(struct cache_set *c, struct btree_op *op, 873 struct bkey *k) 874 { 875 struct btree *b; 876 877 trace_bcache_btree_cache_cannibalize(c); 878 879 if (mca_cannibalize_lock(c, op)) 880 return ERR_PTR(-EINTR); 881 882 list_for_each_entry_reverse(b, &c->btree_cache, list) 883 if (!mca_reap(b, btree_order(k), false)) 884 return b; 885 886 list_for_each_entry_reverse(b, &c->btree_cache, list) 887 if (!mca_reap(b, btree_order(k), true)) 888 return b; 889 890 WARN(1, "btree cache cannibalize failed\n"); 891 return ERR_PTR(-ENOMEM); 892 } 893 894 /* 895 * We can only have one thread cannibalizing other cached btree nodes at a time, 896 * or we'll deadlock. We use an open coded mutex to ensure that, which a 897 * cannibalize_bucket() will take. This means every time we unlock the root of 898 * the btree, we need to release this lock if we have it held. 899 */ 900 static void bch_cannibalize_unlock(struct cache_set *c) 901 { 902 if (c->btree_cache_alloc_lock == current) { 903 c->btree_cache_alloc_lock = NULL; 904 wake_up(&c->btree_cache_wait); 905 } 906 } 907 908 static struct btree *mca_alloc(struct cache_set *c, struct btree_op *op, 909 struct bkey *k, int level) 910 { 911 struct btree *b; 912 913 BUG_ON(current->bio_list); 914 915 lockdep_assert_held(&c->bucket_lock); 916 917 if (mca_find(c, k)) 918 return NULL; 919 920 /* btree_free() doesn't free memory; it sticks the node on the end of 921 * the list. Check if there's any freed nodes there: 922 */ 923 list_for_each_entry(b, &c->btree_cache_freeable, list) 924 if (!mca_reap(b, btree_order(k), false)) 925 goto out; 926 927 /* We never free struct btree itself, just the memory that holds the on 928 * disk node. Check the freed list before allocating a new one: 929 */ 930 list_for_each_entry(b, &c->btree_cache_freed, list) 931 if (!mca_reap(b, 0, false)) { 932 mca_data_alloc(b, k, __GFP_NOWARN|GFP_NOIO); 933 if (!b->keys.set[0].data) 934 goto err; 935 else 936 goto out; 937 } 938 939 b = mca_bucket_alloc(c, k, __GFP_NOWARN|GFP_NOIO); 940 if (!b) 941 goto err; 942 943 BUG_ON(!down_write_trylock(&b->lock)); 944 if (!b->keys.set->data) 945 goto err; 946 out: 947 BUG_ON(b->io_mutex.count != 1); 948 949 bkey_copy(&b->key, k); 950 list_move(&b->list, &c->btree_cache); 951 hlist_del_init_rcu(&b->hash); 952 hlist_add_head_rcu(&b->hash, mca_hash(c, k)); 953 954 lock_set_subclass(&b->lock.dep_map, level + 1, _THIS_IP_); 955 b->parent = (void *) ~0UL; 956 b->flags = 0; 957 b->written = 0; 958 b->level = level; 959 960 if (!b->level) 961 bch_btree_keys_init(&b->keys, &bch_extent_keys_ops, 962 &b->c->expensive_debug_checks); 963 else 964 bch_btree_keys_init(&b->keys, &bch_btree_keys_ops, 965 &b->c->expensive_debug_checks); 966 967 return b; 968 err: 969 if (b) 970 rw_unlock(true, b); 971 972 b = mca_cannibalize(c, op, k); 973 if (!IS_ERR(b)) 974 goto out; 975 976 return b; 977 } 978 979 /* 980 * bch_btree_node_get - find a btree node in the cache and lock it, reading it 981 * in from disk if necessary. 982 * 983 * If IO is necessary and running under generic_make_request, returns -EAGAIN. 984 * 985 * The btree node will have either a read or a write lock held, depending on 986 * level and op->lock. 987 */ 988 struct btree *bch_btree_node_get(struct cache_set *c, struct btree_op *op, 989 struct bkey *k, int level, bool write, 990 struct btree *parent) 991 { 992 int i = 0; 993 struct btree *b; 994 995 BUG_ON(level < 0); 996 retry: 997 b = mca_find(c, k); 998 999 if (!b) { 1000 if (current->bio_list) 1001 return ERR_PTR(-EAGAIN); 1002 1003 mutex_lock(&c->bucket_lock); 1004 b = mca_alloc(c, op, k, level); 1005 mutex_unlock(&c->bucket_lock); 1006 1007 if (!b) 1008 goto retry; 1009 if (IS_ERR(b)) 1010 return b; 1011 1012 bch_btree_node_read(b); 1013 1014 if (!write) 1015 downgrade_write(&b->lock); 1016 } else { 1017 rw_lock(write, b, level); 1018 if (PTR_HASH(c, &b->key) != PTR_HASH(c, k)) { 1019 rw_unlock(write, b); 1020 goto retry; 1021 } 1022 BUG_ON(b->level != level); 1023 } 1024 1025 if (btree_node_io_error(b)) { 1026 rw_unlock(write, b); 1027 return ERR_PTR(-EIO); 1028 } 1029 1030 BUG_ON(!b->written); 1031 1032 b->parent = parent; 1033 b->accessed = 1; 1034 1035 for (; i <= b->keys.nsets && b->keys.set[i].size; i++) { 1036 prefetch(b->keys.set[i].tree); 1037 prefetch(b->keys.set[i].data); 1038 } 1039 1040 for (; i <= b->keys.nsets; i++) 1041 prefetch(b->keys.set[i].data); 1042 1043 return b; 1044 } 1045 1046 static void btree_node_prefetch(struct btree *parent, struct bkey *k) 1047 { 1048 struct btree *b; 1049 1050 mutex_lock(&parent->c->bucket_lock); 1051 b = mca_alloc(parent->c, NULL, k, parent->level - 1); 1052 mutex_unlock(&parent->c->bucket_lock); 1053 1054 if (!IS_ERR_OR_NULL(b)) { 1055 b->parent = parent; 1056 bch_btree_node_read(b); 1057 rw_unlock(true, b); 1058 } 1059 } 1060 1061 /* Btree alloc */ 1062 1063 static void btree_node_free(struct btree *b) 1064 { 1065 trace_bcache_btree_node_free(b); 1066 1067 BUG_ON(b == b->c->root); 1068 1069 mutex_lock(&b->write_lock); 1070 1071 if (btree_node_dirty(b)) 1072 btree_complete_write(b, btree_current_write(b)); 1073 clear_bit(BTREE_NODE_dirty, &b->flags); 1074 1075 mutex_unlock(&b->write_lock); 1076 1077 cancel_delayed_work(&b->work); 1078 1079 mutex_lock(&b->c->bucket_lock); 1080 bch_bucket_free(b->c, &b->key); 1081 mca_bucket_free(b); 1082 mutex_unlock(&b->c->bucket_lock); 1083 } 1084 1085 struct btree *__bch_btree_node_alloc(struct cache_set *c, struct btree_op *op, 1086 int level, bool wait, 1087 struct btree *parent) 1088 { 1089 BKEY_PADDED(key) k; 1090 struct btree *b = ERR_PTR(-EAGAIN); 1091 1092 mutex_lock(&c->bucket_lock); 1093 retry: 1094 if (__bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, 1, wait)) 1095 goto err; 1096 1097 bkey_put(c, &k.key); 1098 SET_KEY_SIZE(&k.key, c->btree_pages * PAGE_SECTORS); 1099 1100 b = mca_alloc(c, op, &k.key, level); 1101 if (IS_ERR(b)) 1102 goto err_free; 1103 1104 if (!b) { 1105 cache_bug(c, 1106 "Tried to allocate bucket that was in btree cache"); 1107 goto retry; 1108 } 1109 1110 b->accessed = 1; 1111 b->parent = parent; 1112 bch_bset_init_next(&b->keys, b->keys.set->data, bset_magic(&b->c->sb)); 1113 1114 mutex_unlock(&c->bucket_lock); 1115 1116 trace_bcache_btree_node_alloc(b); 1117 return b; 1118 err_free: 1119 bch_bucket_free(c, &k.key); 1120 err: 1121 mutex_unlock(&c->bucket_lock); 1122 1123 trace_bcache_btree_node_alloc_fail(c); 1124 return b; 1125 } 1126 1127 static struct btree *bch_btree_node_alloc(struct cache_set *c, 1128 struct btree_op *op, int level, 1129 struct btree *parent) 1130 { 1131 return __bch_btree_node_alloc(c, op, level, op != NULL, parent); 1132 } 1133 1134 static struct btree *btree_node_alloc_replacement(struct btree *b, 1135 struct btree_op *op) 1136 { 1137 struct btree *n = bch_btree_node_alloc(b->c, op, b->level, b->parent); 1138 1139 if (!IS_ERR_OR_NULL(n)) { 1140 mutex_lock(&n->write_lock); 1141 bch_btree_sort_into(&b->keys, &n->keys, &b->c->sort); 1142 bkey_copy_key(&n->key, &b->key); 1143 mutex_unlock(&n->write_lock); 1144 } 1145 1146 return n; 1147 } 1148 1149 static void make_btree_freeing_key(struct btree *b, struct bkey *k) 1150 { 1151 unsigned int i; 1152 1153 mutex_lock(&b->c->bucket_lock); 1154 1155 atomic_inc(&b->c->prio_blocked); 1156 1157 bkey_copy(k, &b->key); 1158 bkey_copy_key(k, &ZERO_KEY); 1159 1160 for (i = 0; i < KEY_PTRS(k); i++) 1161 SET_PTR_GEN(k, i, 1162 bch_inc_gen(PTR_CACHE(b->c, &b->key, i), 1163 PTR_BUCKET(b->c, &b->key, i))); 1164 1165 mutex_unlock(&b->c->bucket_lock); 1166 } 1167 1168 static int btree_check_reserve(struct btree *b, struct btree_op *op) 1169 { 1170 struct cache_set *c = b->c; 1171 struct cache *ca; 1172 unsigned int i, reserve = (c->root->level - b->level) * 2 + 1; 1173 1174 mutex_lock(&c->bucket_lock); 1175 1176 for_each_cache(ca, c, i) 1177 if (fifo_used(&ca->free[RESERVE_BTREE]) < reserve) { 1178 if (op) 1179 prepare_to_wait(&c->btree_cache_wait, &op->wait, 1180 TASK_UNINTERRUPTIBLE); 1181 mutex_unlock(&c->bucket_lock); 1182 return -EINTR; 1183 } 1184 1185 mutex_unlock(&c->bucket_lock); 1186 1187 return mca_cannibalize_lock(b->c, op); 1188 } 1189 1190 /* Garbage collection */ 1191 1192 static uint8_t __bch_btree_mark_key(struct cache_set *c, int level, 1193 struct bkey *k) 1194 { 1195 uint8_t stale = 0; 1196 unsigned int i; 1197 struct bucket *g; 1198 1199 /* 1200 * ptr_invalid() can't return true for the keys that mark btree nodes as 1201 * freed, but since ptr_bad() returns true we'll never actually use them 1202 * for anything and thus we don't want mark their pointers here 1203 */ 1204 if (!bkey_cmp(k, &ZERO_KEY)) 1205 return stale; 1206 1207 for (i = 0; i < KEY_PTRS(k); i++) { 1208 if (!ptr_available(c, k, i)) 1209 continue; 1210 1211 g = PTR_BUCKET(c, k, i); 1212 1213 if (gen_after(g->last_gc, PTR_GEN(k, i))) 1214 g->last_gc = PTR_GEN(k, i); 1215 1216 if (ptr_stale(c, k, i)) { 1217 stale = max(stale, ptr_stale(c, k, i)); 1218 continue; 1219 } 1220 1221 cache_bug_on(GC_MARK(g) && 1222 (GC_MARK(g) == GC_MARK_METADATA) != (level != 0), 1223 c, "inconsistent ptrs: mark = %llu, level = %i", 1224 GC_MARK(g), level); 1225 1226 if (level) 1227 SET_GC_MARK(g, GC_MARK_METADATA); 1228 else if (KEY_DIRTY(k)) 1229 SET_GC_MARK(g, GC_MARK_DIRTY); 1230 else if (!GC_MARK(g)) 1231 SET_GC_MARK(g, GC_MARK_RECLAIMABLE); 1232 1233 /* guard against overflow */ 1234 SET_GC_SECTORS_USED(g, min_t(unsigned int, 1235 GC_SECTORS_USED(g) + KEY_SIZE(k), 1236 MAX_GC_SECTORS_USED)); 1237 1238 BUG_ON(!GC_SECTORS_USED(g)); 1239 } 1240 1241 return stale; 1242 } 1243 1244 #define btree_mark_key(b, k) __bch_btree_mark_key(b->c, b->level, k) 1245 1246 void bch_initial_mark_key(struct cache_set *c, int level, struct bkey *k) 1247 { 1248 unsigned int i; 1249 1250 for (i = 0; i < KEY_PTRS(k); i++) 1251 if (ptr_available(c, k, i) && 1252 !ptr_stale(c, k, i)) { 1253 struct bucket *b = PTR_BUCKET(c, k, i); 1254 1255 b->gen = PTR_GEN(k, i); 1256 1257 if (level && bkey_cmp(k, &ZERO_KEY)) 1258 b->prio = BTREE_PRIO; 1259 else if (!level && b->prio == BTREE_PRIO) 1260 b->prio = INITIAL_PRIO; 1261 } 1262 1263 __bch_btree_mark_key(c, level, k); 1264 } 1265 1266 void bch_update_bucket_in_use(struct cache_set *c, struct gc_stat *stats) 1267 { 1268 stats->in_use = (c->nbuckets - c->avail_nbuckets) * 100 / c->nbuckets; 1269 } 1270 1271 static bool btree_gc_mark_node(struct btree *b, struct gc_stat *gc) 1272 { 1273 uint8_t stale = 0; 1274 unsigned int keys = 0, good_keys = 0; 1275 struct bkey *k; 1276 struct btree_iter iter; 1277 struct bset_tree *t; 1278 1279 gc->nodes++; 1280 1281 for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid) { 1282 stale = max(stale, btree_mark_key(b, k)); 1283 keys++; 1284 1285 if (bch_ptr_bad(&b->keys, k)) 1286 continue; 1287 1288 gc->key_bytes += bkey_u64s(k); 1289 gc->nkeys++; 1290 good_keys++; 1291 1292 gc->data += KEY_SIZE(k); 1293 } 1294 1295 for (t = b->keys.set; t <= &b->keys.set[b->keys.nsets]; t++) 1296 btree_bug_on(t->size && 1297 bset_written(&b->keys, t) && 1298 bkey_cmp(&b->key, &t->end) < 0, 1299 b, "found short btree key in gc"); 1300 1301 if (b->c->gc_always_rewrite) 1302 return true; 1303 1304 if (stale > 10) 1305 return true; 1306 1307 if ((keys - good_keys) * 2 > keys) 1308 return true; 1309 1310 return false; 1311 } 1312 1313 #define GC_MERGE_NODES 4U 1314 1315 struct gc_merge_info { 1316 struct btree *b; 1317 unsigned int keys; 1318 }; 1319 1320 static int bch_btree_insert_node(struct btree *b, struct btree_op *op, 1321 struct keylist *insert_keys, 1322 atomic_t *journal_ref, 1323 struct bkey *replace_key); 1324 1325 static int btree_gc_coalesce(struct btree *b, struct btree_op *op, 1326 struct gc_stat *gc, struct gc_merge_info *r) 1327 { 1328 unsigned int i, nodes = 0, keys = 0, blocks; 1329 struct btree *new_nodes[GC_MERGE_NODES]; 1330 struct keylist keylist; 1331 struct closure cl; 1332 struct bkey *k; 1333 1334 bch_keylist_init(&keylist); 1335 1336 if (btree_check_reserve(b, NULL)) 1337 return 0; 1338 1339 memset(new_nodes, 0, sizeof(new_nodes)); 1340 closure_init_stack(&cl); 1341 1342 while (nodes < GC_MERGE_NODES && !IS_ERR_OR_NULL(r[nodes].b)) 1343 keys += r[nodes++].keys; 1344 1345 blocks = btree_default_blocks(b->c) * 2 / 3; 1346 1347 if (nodes < 2 || 1348 __set_blocks(b->keys.set[0].data, keys, 1349 block_bytes(b->c)) > blocks * (nodes - 1)) 1350 return 0; 1351 1352 for (i = 0; i < nodes; i++) { 1353 new_nodes[i] = btree_node_alloc_replacement(r[i].b, NULL); 1354 if (IS_ERR_OR_NULL(new_nodes[i])) 1355 goto out_nocoalesce; 1356 } 1357 1358 /* 1359 * We have to check the reserve here, after we've allocated our new 1360 * nodes, to make sure the insert below will succeed - we also check 1361 * before as an optimization to potentially avoid a bunch of expensive 1362 * allocs/sorts 1363 */ 1364 if (btree_check_reserve(b, NULL)) 1365 goto out_nocoalesce; 1366 1367 for (i = 0; i < nodes; i++) 1368 mutex_lock(&new_nodes[i]->write_lock); 1369 1370 for (i = nodes - 1; i > 0; --i) { 1371 struct bset *n1 = btree_bset_first(new_nodes[i]); 1372 struct bset *n2 = btree_bset_first(new_nodes[i - 1]); 1373 struct bkey *k, *last = NULL; 1374 1375 keys = 0; 1376 1377 if (i > 1) { 1378 for (k = n2->start; 1379 k < bset_bkey_last(n2); 1380 k = bkey_next(k)) { 1381 if (__set_blocks(n1, n1->keys + keys + 1382 bkey_u64s(k), 1383 block_bytes(b->c)) > blocks) 1384 break; 1385 1386 last = k; 1387 keys += bkey_u64s(k); 1388 } 1389 } else { 1390 /* 1391 * Last node we're not getting rid of - we're getting 1392 * rid of the node at r[0]. Have to try and fit all of 1393 * the remaining keys into this node; we can't ensure 1394 * they will always fit due to rounding and variable 1395 * length keys (shouldn't be possible in practice, 1396 * though) 1397 */ 1398 if (__set_blocks(n1, n1->keys + n2->keys, 1399 block_bytes(b->c)) > 1400 btree_blocks(new_nodes[i])) 1401 goto out_nocoalesce; 1402 1403 keys = n2->keys; 1404 /* Take the key of the node we're getting rid of */ 1405 last = &r->b->key; 1406 } 1407 1408 BUG_ON(__set_blocks(n1, n1->keys + keys, block_bytes(b->c)) > 1409 btree_blocks(new_nodes[i])); 1410 1411 if (last) 1412 bkey_copy_key(&new_nodes[i]->key, last); 1413 1414 memcpy(bset_bkey_last(n1), 1415 n2->start, 1416 (void *) bset_bkey_idx(n2, keys) - (void *) n2->start); 1417 1418 n1->keys += keys; 1419 r[i].keys = n1->keys; 1420 1421 memmove(n2->start, 1422 bset_bkey_idx(n2, keys), 1423 (void *) bset_bkey_last(n2) - 1424 (void *) bset_bkey_idx(n2, keys)); 1425 1426 n2->keys -= keys; 1427 1428 if (__bch_keylist_realloc(&keylist, 1429 bkey_u64s(&new_nodes[i]->key))) 1430 goto out_nocoalesce; 1431 1432 bch_btree_node_write(new_nodes[i], &cl); 1433 bch_keylist_add(&keylist, &new_nodes[i]->key); 1434 } 1435 1436 for (i = 0; i < nodes; i++) 1437 mutex_unlock(&new_nodes[i]->write_lock); 1438 1439 closure_sync(&cl); 1440 1441 /* We emptied out this node */ 1442 BUG_ON(btree_bset_first(new_nodes[0])->keys); 1443 btree_node_free(new_nodes[0]); 1444 rw_unlock(true, new_nodes[0]); 1445 new_nodes[0] = NULL; 1446 1447 for (i = 0; i < nodes; i++) { 1448 if (__bch_keylist_realloc(&keylist, bkey_u64s(&r[i].b->key))) 1449 goto out_nocoalesce; 1450 1451 make_btree_freeing_key(r[i].b, keylist.top); 1452 bch_keylist_push(&keylist); 1453 } 1454 1455 bch_btree_insert_node(b, op, &keylist, NULL, NULL); 1456 BUG_ON(!bch_keylist_empty(&keylist)); 1457 1458 for (i = 0; i < nodes; i++) { 1459 btree_node_free(r[i].b); 1460 rw_unlock(true, r[i].b); 1461 1462 r[i].b = new_nodes[i]; 1463 } 1464 1465 memmove(r, r + 1, sizeof(r[0]) * (nodes - 1)); 1466 r[nodes - 1].b = ERR_PTR(-EINTR); 1467 1468 trace_bcache_btree_gc_coalesce(nodes); 1469 gc->nodes--; 1470 1471 bch_keylist_free(&keylist); 1472 1473 /* Invalidated our iterator */ 1474 return -EINTR; 1475 1476 out_nocoalesce: 1477 closure_sync(&cl); 1478 bch_keylist_free(&keylist); 1479 1480 while ((k = bch_keylist_pop(&keylist))) 1481 if (!bkey_cmp(k, &ZERO_KEY)) 1482 atomic_dec(&b->c->prio_blocked); 1483 1484 for (i = 0; i < nodes; i++) 1485 if (!IS_ERR_OR_NULL(new_nodes[i])) { 1486 btree_node_free(new_nodes[i]); 1487 rw_unlock(true, new_nodes[i]); 1488 } 1489 return 0; 1490 } 1491 1492 static int btree_gc_rewrite_node(struct btree *b, struct btree_op *op, 1493 struct btree *replace) 1494 { 1495 struct keylist keys; 1496 struct btree *n; 1497 1498 if (btree_check_reserve(b, NULL)) 1499 return 0; 1500 1501 n = btree_node_alloc_replacement(replace, NULL); 1502 1503 /* recheck reserve after allocating replacement node */ 1504 if (btree_check_reserve(b, NULL)) { 1505 btree_node_free(n); 1506 rw_unlock(true, n); 1507 return 0; 1508 } 1509 1510 bch_btree_node_write_sync(n); 1511 1512 bch_keylist_init(&keys); 1513 bch_keylist_add(&keys, &n->key); 1514 1515 make_btree_freeing_key(replace, keys.top); 1516 bch_keylist_push(&keys); 1517 1518 bch_btree_insert_node(b, op, &keys, NULL, NULL); 1519 BUG_ON(!bch_keylist_empty(&keys)); 1520 1521 btree_node_free(replace); 1522 rw_unlock(true, n); 1523 1524 /* Invalidated our iterator */ 1525 return -EINTR; 1526 } 1527 1528 static unsigned int btree_gc_count_keys(struct btree *b) 1529 { 1530 struct bkey *k; 1531 struct btree_iter iter; 1532 unsigned int ret = 0; 1533 1534 for_each_key_filter(&b->keys, k, &iter, bch_ptr_bad) 1535 ret += bkey_u64s(k); 1536 1537 return ret; 1538 } 1539 1540 static size_t btree_gc_min_nodes(struct cache_set *c) 1541 { 1542 size_t min_nodes; 1543 1544 /* 1545 * Since incremental GC would stop 100ms when front 1546 * side I/O comes, so when there are many btree nodes, 1547 * if GC only processes constant (100) nodes each time, 1548 * GC would last a long time, and the front side I/Os 1549 * would run out of the buckets (since no new bucket 1550 * can be allocated during GC), and be blocked again. 1551 * So GC should not process constant nodes, but varied 1552 * nodes according to the number of btree nodes, which 1553 * realized by dividing GC into constant(100) times, 1554 * so when there are many btree nodes, GC can process 1555 * more nodes each time, otherwise, GC will process less 1556 * nodes each time (but no less than MIN_GC_NODES) 1557 */ 1558 min_nodes = c->gc_stats.nodes / MAX_GC_TIMES; 1559 if (min_nodes < MIN_GC_NODES) 1560 min_nodes = MIN_GC_NODES; 1561 1562 return min_nodes; 1563 } 1564 1565 1566 static int btree_gc_recurse(struct btree *b, struct btree_op *op, 1567 struct closure *writes, struct gc_stat *gc) 1568 { 1569 int ret = 0; 1570 bool should_rewrite; 1571 struct bkey *k; 1572 struct btree_iter iter; 1573 struct gc_merge_info r[GC_MERGE_NODES]; 1574 struct gc_merge_info *i, *last = r + ARRAY_SIZE(r) - 1; 1575 1576 bch_btree_iter_init(&b->keys, &iter, &b->c->gc_done); 1577 1578 for (i = r; i < r + ARRAY_SIZE(r); i++) 1579 i->b = ERR_PTR(-EINTR); 1580 1581 while (1) { 1582 k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad); 1583 if (k) { 1584 r->b = bch_btree_node_get(b->c, op, k, b->level - 1, 1585 true, b); 1586 if (IS_ERR(r->b)) { 1587 ret = PTR_ERR(r->b); 1588 break; 1589 } 1590 1591 r->keys = btree_gc_count_keys(r->b); 1592 1593 ret = btree_gc_coalesce(b, op, gc, r); 1594 if (ret) 1595 break; 1596 } 1597 1598 if (!last->b) 1599 break; 1600 1601 if (!IS_ERR(last->b)) { 1602 should_rewrite = btree_gc_mark_node(last->b, gc); 1603 if (should_rewrite) { 1604 ret = btree_gc_rewrite_node(b, op, last->b); 1605 if (ret) 1606 break; 1607 } 1608 1609 if (last->b->level) { 1610 ret = btree_gc_recurse(last->b, op, writes, gc); 1611 if (ret) 1612 break; 1613 } 1614 1615 bkey_copy_key(&b->c->gc_done, &last->b->key); 1616 1617 /* 1618 * Must flush leaf nodes before gc ends, since replace 1619 * operations aren't journalled 1620 */ 1621 mutex_lock(&last->b->write_lock); 1622 if (btree_node_dirty(last->b)) 1623 bch_btree_node_write(last->b, writes); 1624 mutex_unlock(&last->b->write_lock); 1625 rw_unlock(true, last->b); 1626 } 1627 1628 memmove(r + 1, r, sizeof(r[0]) * (GC_MERGE_NODES - 1)); 1629 r->b = NULL; 1630 1631 if (atomic_read(&b->c->search_inflight) && 1632 gc->nodes >= gc->nodes_pre + btree_gc_min_nodes(b->c)) { 1633 gc->nodes_pre = gc->nodes; 1634 ret = -EAGAIN; 1635 break; 1636 } 1637 1638 if (need_resched()) { 1639 ret = -EAGAIN; 1640 break; 1641 } 1642 } 1643 1644 for (i = r; i < r + ARRAY_SIZE(r); i++) 1645 if (!IS_ERR_OR_NULL(i->b)) { 1646 mutex_lock(&i->b->write_lock); 1647 if (btree_node_dirty(i->b)) 1648 bch_btree_node_write(i->b, writes); 1649 mutex_unlock(&i->b->write_lock); 1650 rw_unlock(true, i->b); 1651 } 1652 1653 return ret; 1654 } 1655 1656 static int bch_btree_gc_root(struct btree *b, struct btree_op *op, 1657 struct closure *writes, struct gc_stat *gc) 1658 { 1659 struct btree *n = NULL; 1660 int ret = 0; 1661 bool should_rewrite; 1662 1663 should_rewrite = btree_gc_mark_node(b, gc); 1664 if (should_rewrite) { 1665 n = btree_node_alloc_replacement(b, NULL); 1666 1667 if (!IS_ERR_OR_NULL(n)) { 1668 bch_btree_node_write_sync(n); 1669 1670 bch_btree_set_root(n); 1671 btree_node_free(b); 1672 rw_unlock(true, n); 1673 1674 return -EINTR; 1675 } 1676 } 1677 1678 __bch_btree_mark_key(b->c, b->level + 1, &b->key); 1679 1680 if (b->level) { 1681 ret = btree_gc_recurse(b, op, writes, gc); 1682 if (ret) 1683 return ret; 1684 } 1685 1686 bkey_copy_key(&b->c->gc_done, &b->key); 1687 1688 return ret; 1689 } 1690 1691 static void btree_gc_start(struct cache_set *c) 1692 { 1693 struct cache *ca; 1694 struct bucket *b; 1695 unsigned int i; 1696 1697 if (!c->gc_mark_valid) 1698 return; 1699 1700 mutex_lock(&c->bucket_lock); 1701 1702 c->gc_mark_valid = 0; 1703 c->gc_done = ZERO_KEY; 1704 1705 for_each_cache(ca, c, i) 1706 for_each_bucket(b, ca) { 1707 b->last_gc = b->gen; 1708 if (!atomic_read(&b->pin)) { 1709 SET_GC_MARK(b, 0); 1710 SET_GC_SECTORS_USED(b, 0); 1711 } 1712 } 1713 1714 mutex_unlock(&c->bucket_lock); 1715 } 1716 1717 static void bch_btree_gc_finish(struct cache_set *c) 1718 { 1719 struct bucket *b; 1720 struct cache *ca; 1721 unsigned int i; 1722 1723 mutex_lock(&c->bucket_lock); 1724 1725 set_gc_sectors(c); 1726 c->gc_mark_valid = 1; 1727 c->need_gc = 0; 1728 1729 for (i = 0; i < KEY_PTRS(&c->uuid_bucket); i++) 1730 SET_GC_MARK(PTR_BUCKET(c, &c->uuid_bucket, i), 1731 GC_MARK_METADATA); 1732 1733 /* don't reclaim buckets to which writeback keys point */ 1734 rcu_read_lock(); 1735 for (i = 0; i < c->devices_max_used; i++) { 1736 struct bcache_device *d = c->devices[i]; 1737 struct cached_dev *dc; 1738 struct keybuf_key *w, *n; 1739 unsigned int j; 1740 1741 if (!d || UUID_FLASH_ONLY(&c->uuids[i])) 1742 continue; 1743 dc = container_of(d, struct cached_dev, disk); 1744 1745 spin_lock(&dc->writeback_keys.lock); 1746 rbtree_postorder_for_each_entry_safe(w, n, 1747 &dc->writeback_keys.keys, node) 1748 for (j = 0; j < KEY_PTRS(&w->key); j++) 1749 SET_GC_MARK(PTR_BUCKET(c, &w->key, j), 1750 GC_MARK_DIRTY); 1751 spin_unlock(&dc->writeback_keys.lock); 1752 } 1753 rcu_read_unlock(); 1754 1755 c->avail_nbuckets = 0; 1756 for_each_cache(ca, c, i) { 1757 uint64_t *i; 1758 1759 ca->invalidate_needs_gc = 0; 1760 1761 for (i = ca->sb.d; i < ca->sb.d + ca->sb.keys; i++) 1762 SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA); 1763 1764 for (i = ca->prio_buckets; 1765 i < ca->prio_buckets + prio_buckets(ca) * 2; i++) 1766 SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA); 1767 1768 for_each_bucket(b, ca) { 1769 c->need_gc = max(c->need_gc, bucket_gc_gen(b)); 1770 1771 if (atomic_read(&b->pin)) 1772 continue; 1773 1774 BUG_ON(!GC_MARK(b) && GC_SECTORS_USED(b)); 1775 1776 if (!GC_MARK(b) || GC_MARK(b) == GC_MARK_RECLAIMABLE) 1777 c->avail_nbuckets++; 1778 } 1779 } 1780 1781 mutex_unlock(&c->bucket_lock); 1782 } 1783 1784 static void bch_btree_gc(struct cache_set *c) 1785 { 1786 int ret; 1787 struct gc_stat stats; 1788 struct closure writes; 1789 struct btree_op op; 1790 uint64_t start_time = local_clock(); 1791 1792 trace_bcache_gc_start(c); 1793 1794 memset(&stats, 0, sizeof(struct gc_stat)); 1795 closure_init_stack(&writes); 1796 bch_btree_op_init(&op, SHRT_MAX); 1797 1798 btree_gc_start(c); 1799 1800 /* if CACHE_SET_IO_DISABLE set, gc thread should stop too */ 1801 do { 1802 ret = btree_root(gc_root, c, &op, &writes, &stats); 1803 closure_sync(&writes); 1804 cond_resched(); 1805 1806 if (ret == -EAGAIN) 1807 schedule_timeout_interruptible(msecs_to_jiffies 1808 (GC_SLEEP_MS)); 1809 else if (ret) 1810 pr_warn("gc failed!"); 1811 } while (ret && !test_bit(CACHE_SET_IO_DISABLE, &c->flags)); 1812 1813 bch_btree_gc_finish(c); 1814 wake_up_allocators(c); 1815 1816 bch_time_stats_update(&c->btree_gc_time, start_time); 1817 1818 stats.key_bytes *= sizeof(uint64_t); 1819 stats.data <<= 9; 1820 bch_update_bucket_in_use(c, &stats); 1821 memcpy(&c->gc_stats, &stats, sizeof(struct gc_stat)); 1822 1823 trace_bcache_gc_end(c); 1824 1825 bch_moving_gc(c); 1826 } 1827 1828 static bool gc_should_run(struct cache_set *c) 1829 { 1830 struct cache *ca; 1831 unsigned int i; 1832 1833 for_each_cache(ca, c, i) 1834 if (ca->invalidate_needs_gc) 1835 return true; 1836 1837 if (atomic_read(&c->sectors_to_gc) < 0) 1838 return true; 1839 1840 return false; 1841 } 1842 1843 static int bch_gc_thread(void *arg) 1844 { 1845 struct cache_set *c = arg; 1846 1847 while (1) { 1848 wait_event_interruptible(c->gc_wait, 1849 kthread_should_stop() || 1850 test_bit(CACHE_SET_IO_DISABLE, &c->flags) || 1851 gc_should_run(c)); 1852 1853 if (kthread_should_stop() || 1854 test_bit(CACHE_SET_IO_DISABLE, &c->flags)) 1855 break; 1856 1857 set_gc_sectors(c); 1858 bch_btree_gc(c); 1859 } 1860 1861 wait_for_kthread_stop(); 1862 return 0; 1863 } 1864 1865 int bch_gc_thread_start(struct cache_set *c) 1866 { 1867 c->gc_thread = kthread_run(bch_gc_thread, c, "bcache_gc"); 1868 return PTR_ERR_OR_ZERO(c->gc_thread); 1869 } 1870 1871 /* Initial partial gc */ 1872 1873 static int bch_btree_check_recurse(struct btree *b, struct btree_op *op) 1874 { 1875 int ret = 0; 1876 struct bkey *k, *p = NULL; 1877 struct btree_iter iter; 1878 1879 for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid) 1880 bch_initial_mark_key(b->c, b->level, k); 1881 1882 bch_initial_mark_key(b->c, b->level + 1, &b->key); 1883 1884 if (b->level) { 1885 bch_btree_iter_init(&b->keys, &iter, NULL); 1886 1887 do { 1888 k = bch_btree_iter_next_filter(&iter, &b->keys, 1889 bch_ptr_bad); 1890 if (k) { 1891 btree_node_prefetch(b, k); 1892 /* 1893 * initiallize c->gc_stats.nodes 1894 * for incremental GC 1895 */ 1896 b->c->gc_stats.nodes++; 1897 } 1898 1899 if (p) 1900 ret = btree(check_recurse, p, b, op); 1901 1902 p = k; 1903 } while (p && !ret); 1904 } 1905 1906 return ret; 1907 } 1908 1909 int bch_btree_check(struct cache_set *c) 1910 { 1911 struct btree_op op; 1912 1913 bch_btree_op_init(&op, SHRT_MAX); 1914 1915 return btree_root(check_recurse, c, &op); 1916 } 1917 1918 void bch_initial_gc_finish(struct cache_set *c) 1919 { 1920 struct cache *ca; 1921 struct bucket *b; 1922 unsigned int i; 1923 1924 bch_btree_gc_finish(c); 1925 1926 mutex_lock(&c->bucket_lock); 1927 1928 /* 1929 * We need to put some unused buckets directly on the prio freelist in 1930 * order to get the allocator thread started - it needs freed buckets in 1931 * order to rewrite the prios and gens, and it needs to rewrite prios 1932 * and gens in order to free buckets. 1933 * 1934 * This is only safe for buckets that have no live data in them, which 1935 * there should always be some of. 1936 */ 1937 for_each_cache(ca, c, i) { 1938 for_each_bucket(b, ca) { 1939 if (fifo_full(&ca->free[RESERVE_PRIO]) && 1940 fifo_full(&ca->free[RESERVE_BTREE])) 1941 break; 1942 1943 if (bch_can_invalidate_bucket(ca, b) && 1944 !GC_MARK(b)) { 1945 __bch_invalidate_one_bucket(ca, b); 1946 if (!fifo_push(&ca->free[RESERVE_PRIO], 1947 b - ca->buckets)) 1948 fifo_push(&ca->free[RESERVE_BTREE], 1949 b - ca->buckets); 1950 } 1951 } 1952 } 1953 1954 mutex_unlock(&c->bucket_lock); 1955 } 1956 1957 /* Btree insertion */ 1958 1959 static bool btree_insert_key(struct btree *b, struct bkey *k, 1960 struct bkey *replace_key) 1961 { 1962 unsigned int status; 1963 1964 BUG_ON(bkey_cmp(k, &b->key) > 0); 1965 1966 status = bch_btree_insert_key(&b->keys, k, replace_key); 1967 if (status != BTREE_INSERT_STATUS_NO_INSERT) { 1968 bch_check_keys(&b->keys, "%u for %s", status, 1969 replace_key ? "replace" : "insert"); 1970 1971 trace_bcache_btree_insert_key(b, k, replace_key != NULL, 1972 status); 1973 return true; 1974 } else 1975 return false; 1976 } 1977 1978 static size_t insert_u64s_remaining(struct btree *b) 1979 { 1980 long ret = bch_btree_keys_u64s_remaining(&b->keys); 1981 1982 /* 1983 * Might land in the middle of an existing extent and have to split it 1984 */ 1985 if (b->keys.ops->is_extents) 1986 ret -= KEY_MAX_U64S; 1987 1988 return max(ret, 0L); 1989 } 1990 1991 static bool bch_btree_insert_keys(struct btree *b, struct btree_op *op, 1992 struct keylist *insert_keys, 1993 struct bkey *replace_key) 1994 { 1995 bool ret = false; 1996 int oldsize = bch_count_data(&b->keys); 1997 1998 while (!bch_keylist_empty(insert_keys)) { 1999 struct bkey *k = insert_keys->keys; 2000 2001 if (bkey_u64s(k) > insert_u64s_remaining(b)) 2002 break; 2003 2004 if (bkey_cmp(k, &b->key) <= 0) { 2005 if (!b->level) 2006 bkey_put(b->c, k); 2007 2008 ret |= btree_insert_key(b, k, replace_key); 2009 bch_keylist_pop_front(insert_keys); 2010 } else if (bkey_cmp(&START_KEY(k), &b->key) < 0) { 2011 BKEY_PADDED(key) temp; 2012 bkey_copy(&temp.key, insert_keys->keys); 2013 2014 bch_cut_back(&b->key, &temp.key); 2015 bch_cut_front(&b->key, insert_keys->keys); 2016 2017 ret |= btree_insert_key(b, &temp.key, replace_key); 2018 break; 2019 } else { 2020 break; 2021 } 2022 } 2023 2024 if (!ret) 2025 op->insert_collision = true; 2026 2027 BUG_ON(!bch_keylist_empty(insert_keys) && b->level); 2028 2029 BUG_ON(bch_count_data(&b->keys) < oldsize); 2030 return ret; 2031 } 2032 2033 static int btree_split(struct btree *b, struct btree_op *op, 2034 struct keylist *insert_keys, 2035 struct bkey *replace_key) 2036 { 2037 bool split; 2038 struct btree *n1, *n2 = NULL, *n3 = NULL; 2039 uint64_t start_time = local_clock(); 2040 struct closure cl; 2041 struct keylist parent_keys; 2042 2043 closure_init_stack(&cl); 2044 bch_keylist_init(&parent_keys); 2045 2046 if (btree_check_reserve(b, op)) { 2047 if (!b->level) 2048 return -EINTR; 2049 else 2050 WARN(1, "insufficient reserve for split\n"); 2051 } 2052 2053 n1 = btree_node_alloc_replacement(b, op); 2054 if (IS_ERR(n1)) 2055 goto err; 2056 2057 split = set_blocks(btree_bset_first(n1), 2058 block_bytes(n1->c)) > (btree_blocks(b) * 4) / 5; 2059 2060 if (split) { 2061 unsigned int keys = 0; 2062 2063 trace_bcache_btree_node_split(b, btree_bset_first(n1)->keys); 2064 2065 n2 = bch_btree_node_alloc(b->c, op, b->level, b->parent); 2066 if (IS_ERR(n2)) 2067 goto err_free1; 2068 2069 if (!b->parent) { 2070 n3 = bch_btree_node_alloc(b->c, op, b->level + 1, NULL); 2071 if (IS_ERR(n3)) 2072 goto err_free2; 2073 } 2074 2075 mutex_lock(&n1->write_lock); 2076 mutex_lock(&n2->write_lock); 2077 2078 bch_btree_insert_keys(n1, op, insert_keys, replace_key); 2079 2080 /* 2081 * Has to be a linear search because we don't have an auxiliary 2082 * search tree yet 2083 */ 2084 2085 while (keys < (btree_bset_first(n1)->keys * 3) / 5) 2086 keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1), 2087 keys)); 2088 2089 bkey_copy_key(&n1->key, 2090 bset_bkey_idx(btree_bset_first(n1), keys)); 2091 keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1), keys)); 2092 2093 btree_bset_first(n2)->keys = btree_bset_first(n1)->keys - keys; 2094 btree_bset_first(n1)->keys = keys; 2095 2096 memcpy(btree_bset_first(n2)->start, 2097 bset_bkey_last(btree_bset_first(n1)), 2098 btree_bset_first(n2)->keys * sizeof(uint64_t)); 2099 2100 bkey_copy_key(&n2->key, &b->key); 2101 2102 bch_keylist_add(&parent_keys, &n2->key); 2103 bch_btree_node_write(n2, &cl); 2104 mutex_unlock(&n2->write_lock); 2105 rw_unlock(true, n2); 2106 } else { 2107 trace_bcache_btree_node_compact(b, btree_bset_first(n1)->keys); 2108 2109 mutex_lock(&n1->write_lock); 2110 bch_btree_insert_keys(n1, op, insert_keys, replace_key); 2111 } 2112 2113 bch_keylist_add(&parent_keys, &n1->key); 2114 bch_btree_node_write(n1, &cl); 2115 mutex_unlock(&n1->write_lock); 2116 2117 if (n3) { 2118 /* Depth increases, make a new root */ 2119 mutex_lock(&n3->write_lock); 2120 bkey_copy_key(&n3->key, &MAX_KEY); 2121 bch_btree_insert_keys(n3, op, &parent_keys, NULL); 2122 bch_btree_node_write(n3, &cl); 2123 mutex_unlock(&n3->write_lock); 2124 2125 closure_sync(&cl); 2126 bch_btree_set_root(n3); 2127 rw_unlock(true, n3); 2128 } else if (!b->parent) { 2129 /* Root filled up but didn't need to be split */ 2130 closure_sync(&cl); 2131 bch_btree_set_root(n1); 2132 } else { 2133 /* Split a non root node */ 2134 closure_sync(&cl); 2135 make_btree_freeing_key(b, parent_keys.top); 2136 bch_keylist_push(&parent_keys); 2137 2138 bch_btree_insert_node(b->parent, op, &parent_keys, NULL, NULL); 2139 BUG_ON(!bch_keylist_empty(&parent_keys)); 2140 } 2141 2142 btree_node_free(b); 2143 rw_unlock(true, n1); 2144 2145 bch_time_stats_update(&b->c->btree_split_time, start_time); 2146 2147 return 0; 2148 err_free2: 2149 bkey_put(b->c, &n2->key); 2150 btree_node_free(n2); 2151 rw_unlock(true, n2); 2152 err_free1: 2153 bkey_put(b->c, &n1->key); 2154 btree_node_free(n1); 2155 rw_unlock(true, n1); 2156 err: 2157 WARN(1, "bcache: btree split failed (level %u)", b->level); 2158 2159 if (n3 == ERR_PTR(-EAGAIN) || 2160 n2 == ERR_PTR(-EAGAIN) || 2161 n1 == ERR_PTR(-EAGAIN)) 2162 return -EAGAIN; 2163 2164 return -ENOMEM; 2165 } 2166 2167 static int bch_btree_insert_node(struct btree *b, struct btree_op *op, 2168 struct keylist *insert_keys, 2169 atomic_t *journal_ref, 2170 struct bkey *replace_key) 2171 { 2172 struct closure cl; 2173 2174 BUG_ON(b->level && replace_key); 2175 2176 closure_init_stack(&cl); 2177 2178 mutex_lock(&b->write_lock); 2179 2180 if (write_block(b) != btree_bset_last(b) && 2181 b->keys.last_set_unwritten) 2182 bch_btree_init_next(b); /* just wrote a set */ 2183 2184 if (bch_keylist_nkeys(insert_keys) > insert_u64s_remaining(b)) { 2185 mutex_unlock(&b->write_lock); 2186 goto split; 2187 } 2188 2189 BUG_ON(write_block(b) != btree_bset_last(b)); 2190 2191 if (bch_btree_insert_keys(b, op, insert_keys, replace_key)) { 2192 if (!b->level) 2193 bch_btree_leaf_dirty(b, journal_ref); 2194 else 2195 bch_btree_node_write(b, &cl); 2196 } 2197 2198 mutex_unlock(&b->write_lock); 2199 2200 /* wait for btree node write if necessary, after unlock */ 2201 closure_sync(&cl); 2202 2203 return 0; 2204 split: 2205 if (current->bio_list) { 2206 op->lock = b->c->root->level + 1; 2207 return -EAGAIN; 2208 } else if (op->lock <= b->c->root->level) { 2209 op->lock = b->c->root->level + 1; 2210 return -EINTR; 2211 } else { 2212 /* Invalidated all iterators */ 2213 int ret = btree_split(b, op, insert_keys, replace_key); 2214 2215 if (bch_keylist_empty(insert_keys)) 2216 return 0; 2217 else if (!ret) 2218 return -EINTR; 2219 return ret; 2220 } 2221 } 2222 2223 int bch_btree_insert_check_key(struct btree *b, struct btree_op *op, 2224 struct bkey *check_key) 2225 { 2226 int ret = -EINTR; 2227 uint64_t btree_ptr = b->key.ptr[0]; 2228 unsigned long seq = b->seq; 2229 struct keylist insert; 2230 bool upgrade = op->lock == -1; 2231 2232 bch_keylist_init(&insert); 2233 2234 if (upgrade) { 2235 rw_unlock(false, b); 2236 rw_lock(true, b, b->level); 2237 2238 if (b->key.ptr[0] != btree_ptr || 2239 b->seq != seq + 1) { 2240 op->lock = b->level; 2241 goto out; 2242 } 2243 } 2244 2245 SET_KEY_PTRS(check_key, 1); 2246 get_random_bytes(&check_key->ptr[0], sizeof(uint64_t)); 2247 2248 SET_PTR_DEV(check_key, 0, PTR_CHECK_DEV); 2249 2250 bch_keylist_add(&insert, check_key); 2251 2252 ret = bch_btree_insert_node(b, op, &insert, NULL, NULL); 2253 2254 BUG_ON(!ret && !bch_keylist_empty(&insert)); 2255 out: 2256 if (upgrade) 2257 downgrade_write(&b->lock); 2258 return ret; 2259 } 2260 2261 struct btree_insert_op { 2262 struct btree_op op; 2263 struct keylist *keys; 2264 atomic_t *journal_ref; 2265 struct bkey *replace_key; 2266 }; 2267 2268 static int btree_insert_fn(struct btree_op *b_op, struct btree *b) 2269 { 2270 struct btree_insert_op *op = container_of(b_op, 2271 struct btree_insert_op, op); 2272 2273 int ret = bch_btree_insert_node(b, &op->op, op->keys, 2274 op->journal_ref, op->replace_key); 2275 if (ret && !bch_keylist_empty(op->keys)) 2276 return ret; 2277 else 2278 return MAP_DONE; 2279 } 2280 2281 int bch_btree_insert(struct cache_set *c, struct keylist *keys, 2282 atomic_t *journal_ref, struct bkey *replace_key) 2283 { 2284 struct btree_insert_op op; 2285 int ret = 0; 2286 2287 BUG_ON(current->bio_list); 2288 BUG_ON(bch_keylist_empty(keys)); 2289 2290 bch_btree_op_init(&op.op, 0); 2291 op.keys = keys; 2292 op.journal_ref = journal_ref; 2293 op.replace_key = replace_key; 2294 2295 while (!ret && !bch_keylist_empty(keys)) { 2296 op.op.lock = 0; 2297 ret = bch_btree_map_leaf_nodes(&op.op, c, 2298 &START_KEY(keys->keys), 2299 btree_insert_fn); 2300 } 2301 2302 if (ret) { 2303 struct bkey *k; 2304 2305 pr_err("error %i", ret); 2306 2307 while ((k = bch_keylist_pop(keys))) 2308 bkey_put(c, k); 2309 } else if (op.op.insert_collision) 2310 ret = -ESRCH; 2311 2312 return ret; 2313 } 2314 2315 void bch_btree_set_root(struct btree *b) 2316 { 2317 unsigned int i; 2318 struct closure cl; 2319 2320 closure_init_stack(&cl); 2321 2322 trace_bcache_btree_set_root(b); 2323 2324 BUG_ON(!b->written); 2325 2326 for (i = 0; i < KEY_PTRS(&b->key); i++) 2327 BUG_ON(PTR_BUCKET(b->c, &b->key, i)->prio != BTREE_PRIO); 2328 2329 mutex_lock(&b->c->bucket_lock); 2330 list_del_init(&b->list); 2331 mutex_unlock(&b->c->bucket_lock); 2332 2333 b->c->root = b; 2334 2335 bch_journal_meta(b->c, &cl); 2336 closure_sync(&cl); 2337 } 2338 2339 /* Map across nodes or keys */ 2340 2341 static int bch_btree_map_nodes_recurse(struct btree *b, struct btree_op *op, 2342 struct bkey *from, 2343 btree_map_nodes_fn *fn, int flags) 2344 { 2345 int ret = MAP_CONTINUE; 2346 2347 if (b->level) { 2348 struct bkey *k; 2349 struct btree_iter iter; 2350 2351 bch_btree_iter_init(&b->keys, &iter, from); 2352 2353 while ((k = bch_btree_iter_next_filter(&iter, &b->keys, 2354 bch_ptr_bad))) { 2355 ret = btree(map_nodes_recurse, k, b, 2356 op, from, fn, flags); 2357 from = NULL; 2358 2359 if (ret != MAP_CONTINUE) 2360 return ret; 2361 } 2362 } 2363 2364 if (!b->level || flags == MAP_ALL_NODES) 2365 ret = fn(op, b); 2366 2367 return ret; 2368 } 2369 2370 int __bch_btree_map_nodes(struct btree_op *op, struct cache_set *c, 2371 struct bkey *from, btree_map_nodes_fn *fn, int flags) 2372 { 2373 return btree_root(map_nodes_recurse, c, op, from, fn, flags); 2374 } 2375 2376 static int bch_btree_map_keys_recurse(struct btree *b, struct btree_op *op, 2377 struct bkey *from, btree_map_keys_fn *fn, 2378 int flags) 2379 { 2380 int ret = MAP_CONTINUE; 2381 struct bkey *k; 2382 struct btree_iter iter; 2383 2384 bch_btree_iter_init(&b->keys, &iter, from); 2385 2386 while ((k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad))) { 2387 ret = !b->level 2388 ? fn(op, b, k) 2389 : btree(map_keys_recurse, k, b, op, from, fn, flags); 2390 from = NULL; 2391 2392 if (ret != MAP_CONTINUE) 2393 return ret; 2394 } 2395 2396 if (!b->level && (flags & MAP_END_KEY)) 2397 ret = fn(op, b, &KEY(KEY_INODE(&b->key), 2398 KEY_OFFSET(&b->key), 0)); 2399 2400 return ret; 2401 } 2402 2403 int bch_btree_map_keys(struct btree_op *op, struct cache_set *c, 2404 struct bkey *from, btree_map_keys_fn *fn, int flags) 2405 { 2406 return btree_root(map_keys_recurse, c, op, from, fn, flags); 2407 } 2408 2409 /* Keybuf code */ 2410 2411 static inline int keybuf_cmp(struct keybuf_key *l, struct keybuf_key *r) 2412 { 2413 /* Overlapping keys compare equal */ 2414 if (bkey_cmp(&l->key, &START_KEY(&r->key)) <= 0) 2415 return -1; 2416 if (bkey_cmp(&START_KEY(&l->key), &r->key) >= 0) 2417 return 1; 2418 return 0; 2419 } 2420 2421 static inline int keybuf_nonoverlapping_cmp(struct keybuf_key *l, 2422 struct keybuf_key *r) 2423 { 2424 return clamp_t(int64_t, bkey_cmp(&l->key, &r->key), -1, 1); 2425 } 2426 2427 struct refill { 2428 struct btree_op op; 2429 unsigned int nr_found; 2430 struct keybuf *buf; 2431 struct bkey *end; 2432 keybuf_pred_fn *pred; 2433 }; 2434 2435 static int refill_keybuf_fn(struct btree_op *op, struct btree *b, 2436 struct bkey *k) 2437 { 2438 struct refill *refill = container_of(op, struct refill, op); 2439 struct keybuf *buf = refill->buf; 2440 int ret = MAP_CONTINUE; 2441 2442 if (bkey_cmp(k, refill->end) > 0) { 2443 ret = MAP_DONE; 2444 goto out; 2445 } 2446 2447 if (!KEY_SIZE(k)) /* end key */ 2448 goto out; 2449 2450 if (refill->pred(buf, k)) { 2451 struct keybuf_key *w; 2452 2453 spin_lock(&buf->lock); 2454 2455 w = array_alloc(&buf->freelist); 2456 if (!w) { 2457 spin_unlock(&buf->lock); 2458 return MAP_DONE; 2459 } 2460 2461 w->private = NULL; 2462 bkey_copy(&w->key, k); 2463 2464 if (RB_INSERT(&buf->keys, w, node, keybuf_cmp)) 2465 array_free(&buf->freelist, w); 2466 else 2467 refill->nr_found++; 2468 2469 if (array_freelist_empty(&buf->freelist)) 2470 ret = MAP_DONE; 2471 2472 spin_unlock(&buf->lock); 2473 } 2474 out: 2475 buf->last_scanned = *k; 2476 return ret; 2477 } 2478 2479 void bch_refill_keybuf(struct cache_set *c, struct keybuf *buf, 2480 struct bkey *end, keybuf_pred_fn *pred) 2481 { 2482 struct bkey start = buf->last_scanned; 2483 struct refill refill; 2484 2485 cond_resched(); 2486 2487 bch_btree_op_init(&refill.op, -1); 2488 refill.nr_found = 0; 2489 refill.buf = buf; 2490 refill.end = end; 2491 refill.pred = pred; 2492 2493 bch_btree_map_keys(&refill.op, c, &buf->last_scanned, 2494 refill_keybuf_fn, MAP_END_KEY); 2495 2496 trace_bcache_keyscan(refill.nr_found, 2497 KEY_INODE(&start), KEY_OFFSET(&start), 2498 KEY_INODE(&buf->last_scanned), 2499 KEY_OFFSET(&buf->last_scanned)); 2500 2501 spin_lock(&buf->lock); 2502 2503 if (!RB_EMPTY_ROOT(&buf->keys)) { 2504 struct keybuf_key *w; 2505 2506 w = RB_FIRST(&buf->keys, struct keybuf_key, node); 2507 buf->start = START_KEY(&w->key); 2508 2509 w = RB_LAST(&buf->keys, struct keybuf_key, node); 2510 buf->end = w->key; 2511 } else { 2512 buf->start = MAX_KEY; 2513 buf->end = MAX_KEY; 2514 } 2515 2516 spin_unlock(&buf->lock); 2517 } 2518 2519 static void __bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w) 2520 { 2521 rb_erase(&w->node, &buf->keys); 2522 array_free(&buf->freelist, w); 2523 } 2524 2525 void bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w) 2526 { 2527 spin_lock(&buf->lock); 2528 __bch_keybuf_del(buf, w); 2529 spin_unlock(&buf->lock); 2530 } 2531 2532 bool bch_keybuf_check_overlapping(struct keybuf *buf, struct bkey *start, 2533 struct bkey *end) 2534 { 2535 bool ret = false; 2536 struct keybuf_key *p, *w, s; 2537 2538 s.key = *start; 2539 2540 if (bkey_cmp(end, &buf->start) <= 0 || 2541 bkey_cmp(start, &buf->end) >= 0) 2542 return false; 2543 2544 spin_lock(&buf->lock); 2545 w = RB_GREATER(&buf->keys, s, node, keybuf_nonoverlapping_cmp); 2546 2547 while (w && bkey_cmp(&START_KEY(&w->key), end) < 0) { 2548 p = w; 2549 w = RB_NEXT(w, node); 2550 2551 if (p->private) 2552 ret = true; 2553 else 2554 __bch_keybuf_del(buf, p); 2555 } 2556 2557 spin_unlock(&buf->lock); 2558 return ret; 2559 } 2560 2561 struct keybuf_key *bch_keybuf_next(struct keybuf *buf) 2562 { 2563 struct keybuf_key *w; 2564 2565 spin_lock(&buf->lock); 2566 2567 w = RB_FIRST(&buf->keys, struct keybuf_key, node); 2568 2569 while (w && w->private) 2570 w = RB_NEXT(w, node); 2571 2572 if (w) 2573 w->private = ERR_PTR(-EINTR); 2574 2575 spin_unlock(&buf->lock); 2576 return w; 2577 } 2578 2579 struct keybuf_key *bch_keybuf_next_rescan(struct cache_set *c, 2580 struct keybuf *buf, 2581 struct bkey *end, 2582 keybuf_pred_fn *pred) 2583 { 2584 struct keybuf_key *ret; 2585 2586 while (1) { 2587 ret = bch_keybuf_next(buf); 2588 if (ret) 2589 break; 2590 2591 if (bkey_cmp(&buf->last_scanned, end) >= 0) { 2592 pr_debug("scan finished"); 2593 break; 2594 } 2595 2596 bch_refill_keybuf(c, buf, end, pred); 2597 } 2598 2599 return ret; 2600 } 2601 2602 void bch_keybuf_init(struct keybuf *buf) 2603 { 2604 buf->last_scanned = MAX_KEY; 2605 buf->keys = RB_ROOT; 2606 2607 spin_lock_init(&buf->lock); 2608 array_allocator_init(&buf->freelist); 2609 } 2610