1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com> 4 * 5 * Uses a block device as cache for other block devices; optimized for SSDs. 6 * All allocation is done in buckets, which should match the erase block size 7 * of the device. 8 * 9 * Buckets containing cached data are kept on a heap sorted by priority; 10 * bucket priority is increased on cache hit, and periodically all the buckets 11 * on the heap have their priority scaled down. This currently is just used as 12 * an LRU but in the future should allow for more intelligent heuristics. 13 * 14 * Buckets have an 8 bit counter; freeing is accomplished by incrementing the 15 * counter. Garbage collection is used to remove stale pointers. 16 * 17 * Indexing is done via a btree; nodes are not necessarily fully sorted, rather 18 * as keys are inserted we only sort the pages that have not yet been written. 19 * When garbage collection is run, we resort the entire node. 20 * 21 * All configuration is done via sysfs; see Documentation/bcache.txt. 22 */ 23 24 #include "bcache.h" 25 #include "btree.h" 26 #include "debug.h" 27 #include "extents.h" 28 29 #include <linux/slab.h> 30 #include <linux/bitops.h> 31 #include <linux/hash.h> 32 #include <linux/kthread.h> 33 #include <linux/prefetch.h> 34 #include <linux/random.h> 35 #include <linux/rcupdate.h> 36 #include <linux/sched/clock.h> 37 #include <linux/rculist.h> 38 39 #include <trace/events/bcache.h> 40 41 /* 42 * Todo: 43 * register_bcache: Return errors out to userspace correctly 44 * 45 * Writeback: don't undirty key until after a cache flush 46 * 47 * Create an iterator for key pointers 48 * 49 * On btree write error, mark bucket such that it won't be freed from the cache 50 * 51 * Journalling: 52 * Check for bad keys in replay 53 * Propagate barriers 54 * Refcount journal entries in journal_replay 55 * 56 * Garbage collection: 57 * Finish incremental gc 58 * Gc should free old UUIDs, data for invalid UUIDs 59 * 60 * Provide a way to list backing device UUIDs we have data cached for, and 61 * probably how long it's been since we've seen them, and a way to invalidate 62 * dirty data for devices that will never be attached again 63 * 64 * Keep 1 min/5 min/15 min statistics of how busy a block device has been, so 65 * that based on that and how much dirty data we have we can keep writeback 66 * from being starved 67 * 68 * Add a tracepoint or somesuch to watch for writeback starvation 69 * 70 * When btree depth > 1 and splitting an interior node, we have to make sure 71 * alloc_bucket() cannot fail. This should be true but is not completely 72 * obvious. 73 * 74 * Plugging? 75 * 76 * If data write is less than hard sector size of ssd, round up offset in open 77 * bucket to the next whole sector 78 * 79 * Superblock needs to be fleshed out for multiple cache devices 80 * 81 * Add a sysfs tunable for the number of writeback IOs in flight 82 * 83 * Add a sysfs tunable for the number of open data buckets 84 * 85 * IO tracking: Can we track when one process is doing io on behalf of another? 86 * IO tracking: Don't use just an average, weigh more recent stuff higher 87 * 88 * Test module load/unload 89 */ 90 91 #define MAX_NEED_GC 64 92 #define MAX_SAVE_PRIO 72 93 94 #define PTR_DIRTY_BIT (((uint64_t) 1 << 36)) 95 96 #define PTR_HASH(c, k) \ 97 (((k)->ptr[0] >> c->bucket_bits) | PTR_GEN(k, 0)) 98 99 #define insert_lock(s, b) ((b)->level <= (s)->lock) 100 101 /* 102 * These macros are for recursing down the btree - they handle the details of 103 * locking and looking up nodes in the cache for you. They're best treated as 104 * mere syntax when reading code that uses them. 105 * 106 * op->lock determines whether we take a read or a write lock at a given depth. 107 * If you've got a read lock and find that you need a write lock (i.e. you're 108 * going to have to split), set op->lock and return -EINTR; btree_root() will 109 * call you again and you'll have the correct lock. 110 */ 111 112 /** 113 * btree - recurse down the btree on a specified key 114 * @fn: function to call, which will be passed the child node 115 * @key: key to recurse on 116 * @b: parent btree node 117 * @op: pointer to struct btree_op 118 */ 119 #define btree(fn, key, b, op, ...) \ 120 ({ \ 121 int _r, l = (b)->level - 1; \ 122 bool _w = l <= (op)->lock; \ 123 struct btree *_child = bch_btree_node_get((b)->c, op, key, l, \ 124 _w, b); \ 125 if (!IS_ERR(_child)) { \ 126 _r = bch_btree_ ## fn(_child, op, ##__VA_ARGS__); \ 127 rw_unlock(_w, _child); \ 128 } else \ 129 _r = PTR_ERR(_child); \ 130 _r; \ 131 }) 132 133 /** 134 * btree_root - call a function on the root of the btree 135 * @fn: function to call, which will be passed the child node 136 * @c: cache set 137 * @op: pointer to struct btree_op 138 */ 139 #define btree_root(fn, c, op, ...) \ 140 ({ \ 141 int _r = -EINTR; \ 142 do { \ 143 struct btree *_b = (c)->root; \ 144 bool _w = insert_lock(op, _b); \ 145 rw_lock(_w, _b, _b->level); \ 146 if (_b == (c)->root && \ 147 _w == insert_lock(op, _b)) { \ 148 _r = bch_btree_ ## fn(_b, op, ##__VA_ARGS__); \ 149 } \ 150 rw_unlock(_w, _b); \ 151 bch_cannibalize_unlock(c); \ 152 if (_r == -EINTR) \ 153 schedule(); \ 154 } while (_r == -EINTR); \ 155 \ 156 finish_wait(&(c)->btree_cache_wait, &(op)->wait); \ 157 _r; \ 158 }) 159 160 static inline struct bset *write_block(struct btree *b) 161 { 162 return ((void *) btree_bset_first(b)) + b->written * block_bytes(b->c); 163 } 164 165 static void bch_btree_init_next(struct btree *b) 166 { 167 /* If not a leaf node, always sort */ 168 if (b->level && b->keys.nsets) 169 bch_btree_sort(&b->keys, &b->c->sort); 170 else 171 bch_btree_sort_lazy(&b->keys, &b->c->sort); 172 173 if (b->written < btree_blocks(b)) 174 bch_bset_init_next(&b->keys, write_block(b), 175 bset_magic(&b->c->sb)); 176 177 } 178 179 /* Btree key manipulation */ 180 181 void bkey_put(struct cache_set *c, struct bkey *k) 182 { 183 unsigned i; 184 185 for (i = 0; i < KEY_PTRS(k); i++) 186 if (ptr_available(c, k, i)) 187 atomic_dec_bug(&PTR_BUCKET(c, k, i)->pin); 188 } 189 190 /* Btree IO */ 191 192 static uint64_t btree_csum_set(struct btree *b, struct bset *i) 193 { 194 uint64_t crc = b->key.ptr[0]; 195 void *data = (void *) i + 8, *end = bset_bkey_last(i); 196 197 crc = bch_crc64_update(crc, data, end - data); 198 return crc ^ 0xffffffffffffffffULL; 199 } 200 201 void bch_btree_node_read_done(struct btree *b) 202 { 203 const char *err = "bad btree header"; 204 struct bset *i = btree_bset_first(b); 205 struct btree_iter *iter; 206 207 iter = mempool_alloc(&b->c->fill_iter, GFP_NOIO); 208 iter->size = b->c->sb.bucket_size / b->c->sb.block_size; 209 iter->used = 0; 210 211 #ifdef CONFIG_BCACHE_DEBUG 212 iter->b = &b->keys; 213 #endif 214 215 if (!i->seq) 216 goto err; 217 218 for (; 219 b->written < btree_blocks(b) && i->seq == b->keys.set[0].data->seq; 220 i = write_block(b)) { 221 err = "unsupported bset version"; 222 if (i->version > BCACHE_BSET_VERSION) 223 goto err; 224 225 err = "bad btree header"; 226 if (b->written + set_blocks(i, block_bytes(b->c)) > 227 btree_blocks(b)) 228 goto err; 229 230 err = "bad magic"; 231 if (i->magic != bset_magic(&b->c->sb)) 232 goto err; 233 234 err = "bad checksum"; 235 switch (i->version) { 236 case 0: 237 if (i->csum != csum_set(i)) 238 goto err; 239 break; 240 case BCACHE_BSET_VERSION: 241 if (i->csum != btree_csum_set(b, i)) 242 goto err; 243 break; 244 } 245 246 err = "empty set"; 247 if (i != b->keys.set[0].data && !i->keys) 248 goto err; 249 250 bch_btree_iter_push(iter, i->start, bset_bkey_last(i)); 251 252 b->written += set_blocks(i, block_bytes(b->c)); 253 } 254 255 err = "corrupted btree"; 256 for (i = write_block(b); 257 bset_sector_offset(&b->keys, i) < KEY_SIZE(&b->key); 258 i = ((void *) i) + block_bytes(b->c)) 259 if (i->seq == b->keys.set[0].data->seq) 260 goto err; 261 262 bch_btree_sort_and_fix_extents(&b->keys, iter, &b->c->sort); 263 264 i = b->keys.set[0].data; 265 err = "short btree key"; 266 if (b->keys.set[0].size && 267 bkey_cmp(&b->key, &b->keys.set[0].end) < 0) 268 goto err; 269 270 if (b->written < btree_blocks(b)) 271 bch_bset_init_next(&b->keys, write_block(b), 272 bset_magic(&b->c->sb)); 273 out: 274 mempool_free(iter, &b->c->fill_iter); 275 return; 276 err: 277 set_btree_node_io_error(b); 278 bch_cache_set_error(b->c, "%s at bucket %zu, block %u, %u keys", 279 err, PTR_BUCKET_NR(b->c, &b->key, 0), 280 bset_block_offset(b, i), i->keys); 281 goto out; 282 } 283 284 static void btree_node_read_endio(struct bio *bio) 285 { 286 struct closure *cl = bio->bi_private; 287 closure_put(cl); 288 } 289 290 static void bch_btree_node_read(struct btree *b) 291 { 292 uint64_t start_time = local_clock(); 293 struct closure cl; 294 struct bio *bio; 295 296 trace_bcache_btree_read(b); 297 298 closure_init_stack(&cl); 299 300 bio = bch_bbio_alloc(b->c); 301 bio->bi_iter.bi_size = KEY_SIZE(&b->key) << 9; 302 bio->bi_end_io = btree_node_read_endio; 303 bio->bi_private = &cl; 304 bio->bi_opf = REQ_OP_READ | REQ_META; 305 306 bch_bio_map(bio, b->keys.set[0].data); 307 308 bch_submit_bbio(bio, b->c, &b->key, 0); 309 closure_sync(&cl); 310 311 if (bio->bi_status) 312 set_btree_node_io_error(b); 313 314 bch_bbio_free(bio, b->c); 315 316 if (btree_node_io_error(b)) 317 goto err; 318 319 bch_btree_node_read_done(b); 320 bch_time_stats_update(&b->c->btree_read_time, start_time); 321 322 return; 323 err: 324 bch_cache_set_error(b->c, "io error reading bucket %zu", 325 PTR_BUCKET_NR(b->c, &b->key, 0)); 326 } 327 328 static void btree_complete_write(struct btree *b, struct btree_write *w) 329 { 330 if (w->prio_blocked && 331 !atomic_sub_return(w->prio_blocked, &b->c->prio_blocked)) 332 wake_up_allocators(b->c); 333 334 if (w->journal) { 335 atomic_dec_bug(w->journal); 336 __closure_wake_up(&b->c->journal.wait); 337 } 338 339 w->prio_blocked = 0; 340 w->journal = NULL; 341 } 342 343 static void btree_node_write_unlock(struct closure *cl) 344 { 345 struct btree *b = container_of(cl, struct btree, io); 346 347 up(&b->io_mutex); 348 } 349 350 static void __btree_node_write_done(struct closure *cl) 351 { 352 struct btree *b = container_of(cl, struct btree, io); 353 struct btree_write *w = btree_prev_write(b); 354 355 bch_bbio_free(b->bio, b->c); 356 b->bio = NULL; 357 btree_complete_write(b, w); 358 359 if (btree_node_dirty(b)) 360 schedule_delayed_work(&b->work, 30 * HZ); 361 362 closure_return_with_destructor(cl, btree_node_write_unlock); 363 } 364 365 static void btree_node_write_done(struct closure *cl) 366 { 367 struct btree *b = container_of(cl, struct btree, io); 368 369 bio_free_pages(b->bio); 370 __btree_node_write_done(cl); 371 } 372 373 static void btree_node_write_endio(struct bio *bio) 374 { 375 struct closure *cl = bio->bi_private; 376 struct btree *b = container_of(cl, struct btree, io); 377 378 if (bio->bi_status) 379 set_btree_node_io_error(b); 380 381 bch_bbio_count_io_errors(b->c, bio, bio->bi_status, "writing btree"); 382 closure_put(cl); 383 } 384 385 static void do_btree_node_write(struct btree *b) 386 { 387 struct closure *cl = &b->io; 388 struct bset *i = btree_bset_last(b); 389 BKEY_PADDED(key) k; 390 391 i->version = BCACHE_BSET_VERSION; 392 i->csum = btree_csum_set(b, i); 393 394 BUG_ON(b->bio); 395 b->bio = bch_bbio_alloc(b->c); 396 397 b->bio->bi_end_io = btree_node_write_endio; 398 b->bio->bi_private = cl; 399 b->bio->bi_iter.bi_size = roundup(set_bytes(i), block_bytes(b->c)); 400 b->bio->bi_opf = REQ_OP_WRITE | REQ_META | REQ_FUA; 401 bch_bio_map(b->bio, i); 402 403 /* 404 * If we're appending to a leaf node, we don't technically need FUA - 405 * this write just needs to be persisted before the next journal write, 406 * which will be marked FLUSH|FUA. 407 * 408 * Similarly if we're writing a new btree root - the pointer is going to 409 * be in the next journal entry. 410 * 411 * But if we're writing a new btree node (that isn't a root) or 412 * appending to a non leaf btree node, we need either FUA or a flush 413 * when we write the parent with the new pointer. FUA is cheaper than a 414 * flush, and writes appending to leaf nodes aren't blocking anything so 415 * just make all btree node writes FUA to keep things sane. 416 */ 417 418 bkey_copy(&k.key, &b->key); 419 SET_PTR_OFFSET(&k.key, 0, PTR_OFFSET(&k.key, 0) + 420 bset_sector_offset(&b->keys, i)); 421 422 if (!bch_bio_alloc_pages(b->bio, __GFP_NOWARN|GFP_NOWAIT)) { 423 int j; 424 struct bio_vec *bv; 425 void *base = (void *) ((unsigned long) i & ~(PAGE_SIZE - 1)); 426 427 bio_for_each_segment_all(bv, b->bio, j) 428 memcpy(page_address(bv->bv_page), 429 base + j * PAGE_SIZE, PAGE_SIZE); 430 431 bch_submit_bbio(b->bio, b->c, &k.key, 0); 432 433 continue_at(cl, btree_node_write_done, NULL); 434 } else { 435 /* No problem for multipage bvec since the bio is just allocated */ 436 b->bio->bi_vcnt = 0; 437 bch_bio_map(b->bio, i); 438 439 bch_submit_bbio(b->bio, b->c, &k.key, 0); 440 441 closure_sync(cl); 442 continue_at_nobarrier(cl, __btree_node_write_done, NULL); 443 } 444 } 445 446 void __bch_btree_node_write(struct btree *b, struct closure *parent) 447 { 448 struct bset *i = btree_bset_last(b); 449 450 lockdep_assert_held(&b->write_lock); 451 452 trace_bcache_btree_write(b); 453 454 BUG_ON(current->bio_list); 455 BUG_ON(b->written >= btree_blocks(b)); 456 BUG_ON(b->written && !i->keys); 457 BUG_ON(btree_bset_first(b)->seq != i->seq); 458 bch_check_keys(&b->keys, "writing"); 459 460 cancel_delayed_work(&b->work); 461 462 /* If caller isn't waiting for write, parent refcount is cache set */ 463 down(&b->io_mutex); 464 closure_init(&b->io, parent ?: &b->c->cl); 465 466 clear_bit(BTREE_NODE_dirty, &b->flags); 467 change_bit(BTREE_NODE_write_idx, &b->flags); 468 469 do_btree_node_write(b); 470 471 atomic_long_add(set_blocks(i, block_bytes(b->c)) * b->c->sb.block_size, 472 &PTR_CACHE(b->c, &b->key, 0)->btree_sectors_written); 473 474 b->written += set_blocks(i, block_bytes(b->c)); 475 } 476 477 void bch_btree_node_write(struct btree *b, struct closure *parent) 478 { 479 unsigned nsets = b->keys.nsets; 480 481 lockdep_assert_held(&b->lock); 482 483 __bch_btree_node_write(b, parent); 484 485 /* 486 * do verify if there was more than one set initially (i.e. we did a 487 * sort) and we sorted down to a single set: 488 */ 489 if (nsets && !b->keys.nsets) 490 bch_btree_verify(b); 491 492 bch_btree_init_next(b); 493 } 494 495 static void bch_btree_node_write_sync(struct btree *b) 496 { 497 struct closure cl; 498 499 closure_init_stack(&cl); 500 501 mutex_lock(&b->write_lock); 502 bch_btree_node_write(b, &cl); 503 mutex_unlock(&b->write_lock); 504 505 closure_sync(&cl); 506 } 507 508 static void btree_node_write_work(struct work_struct *w) 509 { 510 struct btree *b = container_of(to_delayed_work(w), struct btree, work); 511 512 mutex_lock(&b->write_lock); 513 if (btree_node_dirty(b)) 514 __bch_btree_node_write(b, NULL); 515 mutex_unlock(&b->write_lock); 516 } 517 518 static void bch_btree_leaf_dirty(struct btree *b, atomic_t *journal_ref) 519 { 520 struct bset *i = btree_bset_last(b); 521 struct btree_write *w = btree_current_write(b); 522 523 lockdep_assert_held(&b->write_lock); 524 525 BUG_ON(!b->written); 526 BUG_ON(!i->keys); 527 528 if (!btree_node_dirty(b)) 529 schedule_delayed_work(&b->work, 30 * HZ); 530 531 set_btree_node_dirty(b); 532 533 if (journal_ref) { 534 if (w->journal && 535 journal_pin_cmp(b->c, w->journal, journal_ref)) { 536 atomic_dec_bug(w->journal); 537 w->journal = NULL; 538 } 539 540 if (!w->journal) { 541 w->journal = journal_ref; 542 atomic_inc(w->journal); 543 } 544 } 545 546 /* Force write if set is too big */ 547 if (set_bytes(i) > PAGE_SIZE - 48 && 548 !current->bio_list) 549 bch_btree_node_write(b, NULL); 550 } 551 552 /* 553 * Btree in memory cache - allocation/freeing 554 * mca -> memory cache 555 */ 556 557 #define mca_reserve(c) (((c->root && c->root->level) \ 558 ? c->root->level : 1) * 8 + 16) 559 #define mca_can_free(c) \ 560 max_t(int, 0, c->btree_cache_used - mca_reserve(c)) 561 562 static void mca_data_free(struct btree *b) 563 { 564 BUG_ON(b->io_mutex.count != 1); 565 566 bch_btree_keys_free(&b->keys); 567 568 b->c->btree_cache_used--; 569 list_move(&b->list, &b->c->btree_cache_freed); 570 } 571 572 static void mca_bucket_free(struct btree *b) 573 { 574 BUG_ON(btree_node_dirty(b)); 575 576 b->key.ptr[0] = 0; 577 hlist_del_init_rcu(&b->hash); 578 list_move(&b->list, &b->c->btree_cache_freeable); 579 } 580 581 static unsigned btree_order(struct bkey *k) 582 { 583 return ilog2(KEY_SIZE(k) / PAGE_SECTORS ?: 1); 584 } 585 586 static void mca_data_alloc(struct btree *b, struct bkey *k, gfp_t gfp) 587 { 588 if (!bch_btree_keys_alloc(&b->keys, 589 max_t(unsigned, 590 ilog2(b->c->btree_pages), 591 btree_order(k)), 592 gfp)) { 593 b->c->btree_cache_used++; 594 list_move(&b->list, &b->c->btree_cache); 595 } else { 596 list_move(&b->list, &b->c->btree_cache_freed); 597 } 598 } 599 600 static struct btree *mca_bucket_alloc(struct cache_set *c, 601 struct bkey *k, gfp_t gfp) 602 { 603 struct btree *b = kzalloc(sizeof(struct btree), gfp); 604 if (!b) 605 return NULL; 606 607 init_rwsem(&b->lock); 608 lockdep_set_novalidate_class(&b->lock); 609 mutex_init(&b->write_lock); 610 lockdep_set_novalidate_class(&b->write_lock); 611 INIT_LIST_HEAD(&b->list); 612 INIT_DELAYED_WORK(&b->work, btree_node_write_work); 613 b->c = c; 614 sema_init(&b->io_mutex, 1); 615 616 mca_data_alloc(b, k, gfp); 617 return b; 618 } 619 620 static int mca_reap(struct btree *b, unsigned min_order, bool flush) 621 { 622 struct closure cl; 623 624 closure_init_stack(&cl); 625 lockdep_assert_held(&b->c->bucket_lock); 626 627 if (!down_write_trylock(&b->lock)) 628 return -ENOMEM; 629 630 BUG_ON(btree_node_dirty(b) && !b->keys.set[0].data); 631 632 if (b->keys.page_order < min_order) 633 goto out_unlock; 634 635 if (!flush) { 636 if (btree_node_dirty(b)) 637 goto out_unlock; 638 639 if (down_trylock(&b->io_mutex)) 640 goto out_unlock; 641 up(&b->io_mutex); 642 } 643 644 mutex_lock(&b->write_lock); 645 if (btree_node_dirty(b)) 646 __bch_btree_node_write(b, &cl); 647 mutex_unlock(&b->write_lock); 648 649 closure_sync(&cl); 650 651 /* wait for any in flight btree write */ 652 down(&b->io_mutex); 653 up(&b->io_mutex); 654 655 return 0; 656 out_unlock: 657 rw_unlock(true, b); 658 return -ENOMEM; 659 } 660 661 static unsigned long bch_mca_scan(struct shrinker *shrink, 662 struct shrink_control *sc) 663 { 664 struct cache_set *c = container_of(shrink, struct cache_set, shrink); 665 struct btree *b, *t; 666 unsigned long i, nr = sc->nr_to_scan; 667 unsigned long freed = 0; 668 unsigned int btree_cache_used; 669 670 if (c->shrinker_disabled) 671 return SHRINK_STOP; 672 673 if (c->btree_cache_alloc_lock) 674 return SHRINK_STOP; 675 676 /* Return -1 if we can't do anything right now */ 677 if (sc->gfp_mask & __GFP_IO) 678 mutex_lock(&c->bucket_lock); 679 else if (!mutex_trylock(&c->bucket_lock)) 680 return -1; 681 682 /* 683 * It's _really_ critical that we don't free too many btree nodes - we 684 * have to always leave ourselves a reserve. The reserve is how we 685 * guarantee that allocating memory for a new btree node can always 686 * succeed, so that inserting keys into the btree can always succeed and 687 * IO can always make forward progress: 688 */ 689 nr /= c->btree_pages; 690 nr = min_t(unsigned long, nr, mca_can_free(c)); 691 692 i = 0; 693 btree_cache_used = c->btree_cache_used; 694 list_for_each_entry_safe(b, t, &c->btree_cache_freeable, list) { 695 if (nr <= 0) 696 goto out; 697 698 if (++i > 3 && 699 !mca_reap(b, 0, false)) { 700 mca_data_free(b); 701 rw_unlock(true, b); 702 freed++; 703 } 704 nr--; 705 } 706 707 for (; (nr--) && i < btree_cache_used; i++) { 708 if (list_empty(&c->btree_cache)) 709 goto out; 710 711 b = list_first_entry(&c->btree_cache, struct btree, list); 712 list_rotate_left(&c->btree_cache); 713 714 if (!b->accessed && 715 !mca_reap(b, 0, false)) { 716 mca_bucket_free(b); 717 mca_data_free(b); 718 rw_unlock(true, b); 719 freed++; 720 } else 721 b->accessed = 0; 722 } 723 out: 724 mutex_unlock(&c->bucket_lock); 725 return freed * c->btree_pages; 726 } 727 728 static unsigned long bch_mca_count(struct shrinker *shrink, 729 struct shrink_control *sc) 730 { 731 struct cache_set *c = container_of(shrink, struct cache_set, shrink); 732 733 if (c->shrinker_disabled) 734 return 0; 735 736 if (c->btree_cache_alloc_lock) 737 return 0; 738 739 return mca_can_free(c) * c->btree_pages; 740 } 741 742 void bch_btree_cache_free(struct cache_set *c) 743 { 744 struct btree *b; 745 struct closure cl; 746 closure_init_stack(&cl); 747 748 if (c->shrink.list.next) 749 unregister_shrinker(&c->shrink); 750 751 mutex_lock(&c->bucket_lock); 752 753 #ifdef CONFIG_BCACHE_DEBUG 754 if (c->verify_data) 755 list_move(&c->verify_data->list, &c->btree_cache); 756 757 free_pages((unsigned long) c->verify_ondisk, ilog2(bucket_pages(c))); 758 #endif 759 760 list_splice(&c->btree_cache_freeable, 761 &c->btree_cache); 762 763 while (!list_empty(&c->btree_cache)) { 764 b = list_first_entry(&c->btree_cache, struct btree, list); 765 766 if (btree_node_dirty(b)) 767 btree_complete_write(b, btree_current_write(b)); 768 clear_bit(BTREE_NODE_dirty, &b->flags); 769 770 mca_data_free(b); 771 } 772 773 while (!list_empty(&c->btree_cache_freed)) { 774 b = list_first_entry(&c->btree_cache_freed, 775 struct btree, list); 776 list_del(&b->list); 777 cancel_delayed_work_sync(&b->work); 778 kfree(b); 779 } 780 781 mutex_unlock(&c->bucket_lock); 782 } 783 784 int bch_btree_cache_alloc(struct cache_set *c) 785 { 786 unsigned i; 787 788 for (i = 0; i < mca_reserve(c); i++) 789 if (!mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL)) 790 return -ENOMEM; 791 792 list_splice_init(&c->btree_cache, 793 &c->btree_cache_freeable); 794 795 #ifdef CONFIG_BCACHE_DEBUG 796 mutex_init(&c->verify_lock); 797 798 c->verify_ondisk = (void *) 799 __get_free_pages(GFP_KERNEL, ilog2(bucket_pages(c))); 800 801 c->verify_data = mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL); 802 803 if (c->verify_data && 804 c->verify_data->keys.set->data) 805 list_del_init(&c->verify_data->list); 806 else 807 c->verify_data = NULL; 808 #endif 809 810 c->shrink.count_objects = bch_mca_count; 811 c->shrink.scan_objects = bch_mca_scan; 812 c->shrink.seeks = 4; 813 c->shrink.batch = c->btree_pages * 2; 814 815 if (register_shrinker(&c->shrink)) 816 pr_warn("bcache: %s: could not register shrinker", 817 __func__); 818 819 return 0; 820 } 821 822 /* Btree in memory cache - hash table */ 823 824 static struct hlist_head *mca_hash(struct cache_set *c, struct bkey *k) 825 { 826 return &c->bucket_hash[hash_32(PTR_HASH(c, k), BUCKET_HASH_BITS)]; 827 } 828 829 static struct btree *mca_find(struct cache_set *c, struct bkey *k) 830 { 831 struct btree *b; 832 833 rcu_read_lock(); 834 hlist_for_each_entry_rcu(b, mca_hash(c, k), hash) 835 if (PTR_HASH(c, &b->key) == PTR_HASH(c, k)) 836 goto out; 837 b = NULL; 838 out: 839 rcu_read_unlock(); 840 return b; 841 } 842 843 static int mca_cannibalize_lock(struct cache_set *c, struct btree_op *op) 844 { 845 struct task_struct *old; 846 847 old = cmpxchg(&c->btree_cache_alloc_lock, NULL, current); 848 if (old && old != current) { 849 if (op) 850 prepare_to_wait(&c->btree_cache_wait, &op->wait, 851 TASK_UNINTERRUPTIBLE); 852 return -EINTR; 853 } 854 855 return 0; 856 } 857 858 static struct btree *mca_cannibalize(struct cache_set *c, struct btree_op *op, 859 struct bkey *k) 860 { 861 struct btree *b; 862 863 trace_bcache_btree_cache_cannibalize(c); 864 865 if (mca_cannibalize_lock(c, op)) 866 return ERR_PTR(-EINTR); 867 868 list_for_each_entry_reverse(b, &c->btree_cache, list) 869 if (!mca_reap(b, btree_order(k), false)) 870 return b; 871 872 list_for_each_entry_reverse(b, &c->btree_cache, list) 873 if (!mca_reap(b, btree_order(k), true)) 874 return b; 875 876 WARN(1, "btree cache cannibalize failed\n"); 877 return ERR_PTR(-ENOMEM); 878 } 879 880 /* 881 * We can only have one thread cannibalizing other cached btree nodes at a time, 882 * or we'll deadlock. We use an open coded mutex to ensure that, which a 883 * cannibalize_bucket() will take. This means every time we unlock the root of 884 * the btree, we need to release this lock if we have it held. 885 */ 886 static void bch_cannibalize_unlock(struct cache_set *c) 887 { 888 if (c->btree_cache_alloc_lock == current) { 889 c->btree_cache_alloc_lock = NULL; 890 wake_up(&c->btree_cache_wait); 891 } 892 } 893 894 static struct btree *mca_alloc(struct cache_set *c, struct btree_op *op, 895 struct bkey *k, int level) 896 { 897 struct btree *b; 898 899 BUG_ON(current->bio_list); 900 901 lockdep_assert_held(&c->bucket_lock); 902 903 if (mca_find(c, k)) 904 return NULL; 905 906 /* btree_free() doesn't free memory; it sticks the node on the end of 907 * the list. Check if there's any freed nodes there: 908 */ 909 list_for_each_entry(b, &c->btree_cache_freeable, list) 910 if (!mca_reap(b, btree_order(k), false)) 911 goto out; 912 913 /* We never free struct btree itself, just the memory that holds the on 914 * disk node. Check the freed list before allocating a new one: 915 */ 916 list_for_each_entry(b, &c->btree_cache_freed, list) 917 if (!mca_reap(b, 0, false)) { 918 mca_data_alloc(b, k, __GFP_NOWARN|GFP_NOIO); 919 if (!b->keys.set[0].data) 920 goto err; 921 else 922 goto out; 923 } 924 925 b = mca_bucket_alloc(c, k, __GFP_NOWARN|GFP_NOIO); 926 if (!b) 927 goto err; 928 929 BUG_ON(!down_write_trylock(&b->lock)); 930 if (!b->keys.set->data) 931 goto err; 932 out: 933 BUG_ON(b->io_mutex.count != 1); 934 935 bkey_copy(&b->key, k); 936 list_move(&b->list, &c->btree_cache); 937 hlist_del_init_rcu(&b->hash); 938 hlist_add_head_rcu(&b->hash, mca_hash(c, k)); 939 940 lock_set_subclass(&b->lock.dep_map, level + 1, _THIS_IP_); 941 b->parent = (void *) ~0UL; 942 b->flags = 0; 943 b->written = 0; 944 b->level = level; 945 946 if (!b->level) 947 bch_btree_keys_init(&b->keys, &bch_extent_keys_ops, 948 &b->c->expensive_debug_checks); 949 else 950 bch_btree_keys_init(&b->keys, &bch_btree_keys_ops, 951 &b->c->expensive_debug_checks); 952 953 return b; 954 err: 955 if (b) 956 rw_unlock(true, b); 957 958 b = mca_cannibalize(c, op, k); 959 if (!IS_ERR(b)) 960 goto out; 961 962 return b; 963 } 964 965 /* 966 * bch_btree_node_get - find a btree node in the cache and lock it, reading it 967 * in from disk if necessary. 968 * 969 * If IO is necessary and running under generic_make_request, returns -EAGAIN. 970 * 971 * The btree node will have either a read or a write lock held, depending on 972 * level and op->lock. 973 */ 974 struct btree *bch_btree_node_get(struct cache_set *c, struct btree_op *op, 975 struct bkey *k, int level, bool write, 976 struct btree *parent) 977 { 978 int i = 0; 979 struct btree *b; 980 981 BUG_ON(level < 0); 982 retry: 983 b = mca_find(c, k); 984 985 if (!b) { 986 if (current->bio_list) 987 return ERR_PTR(-EAGAIN); 988 989 mutex_lock(&c->bucket_lock); 990 b = mca_alloc(c, op, k, level); 991 mutex_unlock(&c->bucket_lock); 992 993 if (!b) 994 goto retry; 995 if (IS_ERR(b)) 996 return b; 997 998 bch_btree_node_read(b); 999 1000 if (!write) 1001 downgrade_write(&b->lock); 1002 } else { 1003 rw_lock(write, b, level); 1004 if (PTR_HASH(c, &b->key) != PTR_HASH(c, k)) { 1005 rw_unlock(write, b); 1006 goto retry; 1007 } 1008 BUG_ON(b->level != level); 1009 } 1010 1011 b->parent = parent; 1012 b->accessed = 1; 1013 1014 for (; i <= b->keys.nsets && b->keys.set[i].size; i++) { 1015 prefetch(b->keys.set[i].tree); 1016 prefetch(b->keys.set[i].data); 1017 } 1018 1019 for (; i <= b->keys.nsets; i++) 1020 prefetch(b->keys.set[i].data); 1021 1022 if (btree_node_io_error(b)) { 1023 rw_unlock(write, b); 1024 return ERR_PTR(-EIO); 1025 } 1026 1027 BUG_ON(!b->written); 1028 1029 return b; 1030 } 1031 1032 static void btree_node_prefetch(struct btree *parent, struct bkey *k) 1033 { 1034 struct btree *b; 1035 1036 mutex_lock(&parent->c->bucket_lock); 1037 b = mca_alloc(parent->c, NULL, k, parent->level - 1); 1038 mutex_unlock(&parent->c->bucket_lock); 1039 1040 if (!IS_ERR_OR_NULL(b)) { 1041 b->parent = parent; 1042 bch_btree_node_read(b); 1043 rw_unlock(true, b); 1044 } 1045 } 1046 1047 /* Btree alloc */ 1048 1049 static void btree_node_free(struct btree *b) 1050 { 1051 trace_bcache_btree_node_free(b); 1052 1053 BUG_ON(b == b->c->root); 1054 1055 mutex_lock(&b->write_lock); 1056 1057 if (btree_node_dirty(b)) 1058 btree_complete_write(b, btree_current_write(b)); 1059 clear_bit(BTREE_NODE_dirty, &b->flags); 1060 1061 mutex_unlock(&b->write_lock); 1062 1063 cancel_delayed_work(&b->work); 1064 1065 mutex_lock(&b->c->bucket_lock); 1066 bch_bucket_free(b->c, &b->key); 1067 mca_bucket_free(b); 1068 mutex_unlock(&b->c->bucket_lock); 1069 } 1070 1071 struct btree *__bch_btree_node_alloc(struct cache_set *c, struct btree_op *op, 1072 int level, bool wait, 1073 struct btree *parent) 1074 { 1075 BKEY_PADDED(key) k; 1076 struct btree *b = ERR_PTR(-EAGAIN); 1077 1078 mutex_lock(&c->bucket_lock); 1079 retry: 1080 if (__bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, 1, wait)) 1081 goto err; 1082 1083 bkey_put(c, &k.key); 1084 SET_KEY_SIZE(&k.key, c->btree_pages * PAGE_SECTORS); 1085 1086 b = mca_alloc(c, op, &k.key, level); 1087 if (IS_ERR(b)) 1088 goto err_free; 1089 1090 if (!b) { 1091 cache_bug(c, 1092 "Tried to allocate bucket that was in btree cache"); 1093 goto retry; 1094 } 1095 1096 b->accessed = 1; 1097 b->parent = parent; 1098 bch_bset_init_next(&b->keys, b->keys.set->data, bset_magic(&b->c->sb)); 1099 1100 mutex_unlock(&c->bucket_lock); 1101 1102 trace_bcache_btree_node_alloc(b); 1103 return b; 1104 err_free: 1105 bch_bucket_free(c, &k.key); 1106 err: 1107 mutex_unlock(&c->bucket_lock); 1108 1109 trace_bcache_btree_node_alloc_fail(c); 1110 return b; 1111 } 1112 1113 static struct btree *bch_btree_node_alloc(struct cache_set *c, 1114 struct btree_op *op, int level, 1115 struct btree *parent) 1116 { 1117 return __bch_btree_node_alloc(c, op, level, op != NULL, parent); 1118 } 1119 1120 static struct btree *btree_node_alloc_replacement(struct btree *b, 1121 struct btree_op *op) 1122 { 1123 struct btree *n = bch_btree_node_alloc(b->c, op, b->level, b->parent); 1124 if (!IS_ERR_OR_NULL(n)) { 1125 mutex_lock(&n->write_lock); 1126 bch_btree_sort_into(&b->keys, &n->keys, &b->c->sort); 1127 bkey_copy_key(&n->key, &b->key); 1128 mutex_unlock(&n->write_lock); 1129 } 1130 1131 return n; 1132 } 1133 1134 static void make_btree_freeing_key(struct btree *b, struct bkey *k) 1135 { 1136 unsigned i; 1137 1138 mutex_lock(&b->c->bucket_lock); 1139 1140 atomic_inc(&b->c->prio_blocked); 1141 1142 bkey_copy(k, &b->key); 1143 bkey_copy_key(k, &ZERO_KEY); 1144 1145 for (i = 0; i < KEY_PTRS(k); i++) 1146 SET_PTR_GEN(k, i, 1147 bch_inc_gen(PTR_CACHE(b->c, &b->key, i), 1148 PTR_BUCKET(b->c, &b->key, i))); 1149 1150 mutex_unlock(&b->c->bucket_lock); 1151 } 1152 1153 static int btree_check_reserve(struct btree *b, struct btree_op *op) 1154 { 1155 struct cache_set *c = b->c; 1156 struct cache *ca; 1157 unsigned i, reserve = (c->root->level - b->level) * 2 + 1; 1158 1159 mutex_lock(&c->bucket_lock); 1160 1161 for_each_cache(ca, c, i) 1162 if (fifo_used(&ca->free[RESERVE_BTREE]) < reserve) { 1163 if (op) 1164 prepare_to_wait(&c->btree_cache_wait, &op->wait, 1165 TASK_UNINTERRUPTIBLE); 1166 mutex_unlock(&c->bucket_lock); 1167 return -EINTR; 1168 } 1169 1170 mutex_unlock(&c->bucket_lock); 1171 1172 return mca_cannibalize_lock(b->c, op); 1173 } 1174 1175 /* Garbage collection */ 1176 1177 static uint8_t __bch_btree_mark_key(struct cache_set *c, int level, 1178 struct bkey *k) 1179 { 1180 uint8_t stale = 0; 1181 unsigned i; 1182 struct bucket *g; 1183 1184 /* 1185 * ptr_invalid() can't return true for the keys that mark btree nodes as 1186 * freed, but since ptr_bad() returns true we'll never actually use them 1187 * for anything and thus we don't want mark their pointers here 1188 */ 1189 if (!bkey_cmp(k, &ZERO_KEY)) 1190 return stale; 1191 1192 for (i = 0; i < KEY_PTRS(k); i++) { 1193 if (!ptr_available(c, k, i)) 1194 continue; 1195 1196 g = PTR_BUCKET(c, k, i); 1197 1198 if (gen_after(g->last_gc, PTR_GEN(k, i))) 1199 g->last_gc = PTR_GEN(k, i); 1200 1201 if (ptr_stale(c, k, i)) { 1202 stale = max(stale, ptr_stale(c, k, i)); 1203 continue; 1204 } 1205 1206 cache_bug_on(GC_MARK(g) && 1207 (GC_MARK(g) == GC_MARK_METADATA) != (level != 0), 1208 c, "inconsistent ptrs: mark = %llu, level = %i", 1209 GC_MARK(g), level); 1210 1211 if (level) 1212 SET_GC_MARK(g, GC_MARK_METADATA); 1213 else if (KEY_DIRTY(k)) 1214 SET_GC_MARK(g, GC_MARK_DIRTY); 1215 else if (!GC_MARK(g)) 1216 SET_GC_MARK(g, GC_MARK_RECLAIMABLE); 1217 1218 /* guard against overflow */ 1219 SET_GC_SECTORS_USED(g, min_t(unsigned, 1220 GC_SECTORS_USED(g) + KEY_SIZE(k), 1221 MAX_GC_SECTORS_USED)); 1222 1223 BUG_ON(!GC_SECTORS_USED(g)); 1224 } 1225 1226 return stale; 1227 } 1228 1229 #define btree_mark_key(b, k) __bch_btree_mark_key(b->c, b->level, k) 1230 1231 void bch_initial_mark_key(struct cache_set *c, int level, struct bkey *k) 1232 { 1233 unsigned i; 1234 1235 for (i = 0; i < KEY_PTRS(k); i++) 1236 if (ptr_available(c, k, i) && 1237 !ptr_stale(c, k, i)) { 1238 struct bucket *b = PTR_BUCKET(c, k, i); 1239 1240 b->gen = PTR_GEN(k, i); 1241 1242 if (level && bkey_cmp(k, &ZERO_KEY)) 1243 b->prio = BTREE_PRIO; 1244 else if (!level && b->prio == BTREE_PRIO) 1245 b->prio = INITIAL_PRIO; 1246 } 1247 1248 __bch_btree_mark_key(c, level, k); 1249 } 1250 1251 void bch_update_bucket_in_use(struct cache_set *c, struct gc_stat *stats) 1252 { 1253 stats->in_use = (c->nbuckets - c->avail_nbuckets) * 100 / c->nbuckets; 1254 } 1255 1256 static bool btree_gc_mark_node(struct btree *b, struct gc_stat *gc) 1257 { 1258 uint8_t stale = 0; 1259 unsigned keys = 0, good_keys = 0; 1260 struct bkey *k; 1261 struct btree_iter iter; 1262 struct bset_tree *t; 1263 1264 gc->nodes++; 1265 1266 for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid) { 1267 stale = max(stale, btree_mark_key(b, k)); 1268 keys++; 1269 1270 if (bch_ptr_bad(&b->keys, k)) 1271 continue; 1272 1273 gc->key_bytes += bkey_u64s(k); 1274 gc->nkeys++; 1275 good_keys++; 1276 1277 gc->data += KEY_SIZE(k); 1278 } 1279 1280 for (t = b->keys.set; t <= &b->keys.set[b->keys.nsets]; t++) 1281 btree_bug_on(t->size && 1282 bset_written(&b->keys, t) && 1283 bkey_cmp(&b->key, &t->end) < 0, 1284 b, "found short btree key in gc"); 1285 1286 if (b->c->gc_always_rewrite) 1287 return true; 1288 1289 if (stale > 10) 1290 return true; 1291 1292 if ((keys - good_keys) * 2 > keys) 1293 return true; 1294 1295 return false; 1296 } 1297 1298 #define GC_MERGE_NODES 4U 1299 1300 struct gc_merge_info { 1301 struct btree *b; 1302 unsigned keys; 1303 }; 1304 1305 static int bch_btree_insert_node(struct btree *, struct btree_op *, 1306 struct keylist *, atomic_t *, struct bkey *); 1307 1308 static int btree_gc_coalesce(struct btree *b, struct btree_op *op, 1309 struct gc_stat *gc, struct gc_merge_info *r) 1310 { 1311 unsigned i, nodes = 0, keys = 0, blocks; 1312 struct btree *new_nodes[GC_MERGE_NODES]; 1313 struct keylist keylist; 1314 struct closure cl; 1315 struct bkey *k; 1316 1317 bch_keylist_init(&keylist); 1318 1319 if (btree_check_reserve(b, NULL)) 1320 return 0; 1321 1322 memset(new_nodes, 0, sizeof(new_nodes)); 1323 closure_init_stack(&cl); 1324 1325 while (nodes < GC_MERGE_NODES && !IS_ERR_OR_NULL(r[nodes].b)) 1326 keys += r[nodes++].keys; 1327 1328 blocks = btree_default_blocks(b->c) * 2 / 3; 1329 1330 if (nodes < 2 || 1331 __set_blocks(b->keys.set[0].data, keys, 1332 block_bytes(b->c)) > blocks * (nodes - 1)) 1333 return 0; 1334 1335 for (i = 0; i < nodes; i++) { 1336 new_nodes[i] = btree_node_alloc_replacement(r[i].b, NULL); 1337 if (IS_ERR_OR_NULL(new_nodes[i])) 1338 goto out_nocoalesce; 1339 } 1340 1341 /* 1342 * We have to check the reserve here, after we've allocated our new 1343 * nodes, to make sure the insert below will succeed - we also check 1344 * before as an optimization to potentially avoid a bunch of expensive 1345 * allocs/sorts 1346 */ 1347 if (btree_check_reserve(b, NULL)) 1348 goto out_nocoalesce; 1349 1350 for (i = 0; i < nodes; i++) 1351 mutex_lock(&new_nodes[i]->write_lock); 1352 1353 for (i = nodes - 1; i > 0; --i) { 1354 struct bset *n1 = btree_bset_first(new_nodes[i]); 1355 struct bset *n2 = btree_bset_first(new_nodes[i - 1]); 1356 struct bkey *k, *last = NULL; 1357 1358 keys = 0; 1359 1360 if (i > 1) { 1361 for (k = n2->start; 1362 k < bset_bkey_last(n2); 1363 k = bkey_next(k)) { 1364 if (__set_blocks(n1, n1->keys + keys + 1365 bkey_u64s(k), 1366 block_bytes(b->c)) > blocks) 1367 break; 1368 1369 last = k; 1370 keys += bkey_u64s(k); 1371 } 1372 } else { 1373 /* 1374 * Last node we're not getting rid of - we're getting 1375 * rid of the node at r[0]. Have to try and fit all of 1376 * the remaining keys into this node; we can't ensure 1377 * they will always fit due to rounding and variable 1378 * length keys (shouldn't be possible in practice, 1379 * though) 1380 */ 1381 if (__set_blocks(n1, n1->keys + n2->keys, 1382 block_bytes(b->c)) > 1383 btree_blocks(new_nodes[i])) 1384 goto out_nocoalesce; 1385 1386 keys = n2->keys; 1387 /* Take the key of the node we're getting rid of */ 1388 last = &r->b->key; 1389 } 1390 1391 BUG_ON(__set_blocks(n1, n1->keys + keys, block_bytes(b->c)) > 1392 btree_blocks(new_nodes[i])); 1393 1394 if (last) 1395 bkey_copy_key(&new_nodes[i]->key, last); 1396 1397 memcpy(bset_bkey_last(n1), 1398 n2->start, 1399 (void *) bset_bkey_idx(n2, keys) - (void *) n2->start); 1400 1401 n1->keys += keys; 1402 r[i].keys = n1->keys; 1403 1404 memmove(n2->start, 1405 bset_bkey_idx(n2, keys), 1406 (void *) bset_bkey_last(n2) - 1407 (void *) bset_bkey_idx(n2, keys)); 1408 1409 n2->keys -= keys; 1410 1411 if (__bch_keylist_realloc(&keylist, 1412 bkey_u64s(&new_nodes[i]->key))) 1413 goto out_nocoalesce; 1414 1415 bch_btree_node_write(new_nodes[i], &cl); 1416 bch_keylist_add(&keylist, &new_nodes[i]->key); 1417 } 1418 1419 for (i = 0; i < nodes; i++) 1420 mutex_unlock(&new_nodes[i]->write_lock); 1421 1422 closure_sync(&cl); 1423 1424 /* We emptied out this node */ 1425 BUG_ON(btree_bset_first(new_nodes[0])->keys); 1426 btree_node_free(new_nodes[0]); 1427 rw_unlock(true, new_nodes[0]); 1428 new_nodes[0] = NULL; 1429 1430 for (i = 0; i < nodes; i++) { 1431 if (__bch_keylist_realloc(&keylist, bkey_u64s(&r[i].b->key))) 1432 goto out_nocoalesce; 1433 1434 make_btree_freeing_key(r[i].b, keylist.top); 1435 bch_keylist_push(&keylist); 1436 } 1437 1438 bch_btree_insert_node(b, op, &keylist, NULL, NULL); 1439 BUG_ON(!bch_keylist_empty(&keylist)); 1440 1441 for (i = 0; i < nodes; i++) { 1442 btree_node_free(r[i].b); 1443 rw_unlock(true, r[i].b); 1444 1445 r[i].b = new_nodes[i]; 1446 } 1447 1448 memmove(r, r + 1, sizeof(r[0]) * (nodes - 1)); 1449 r[nodes - 1].b = ERR_PTR(-EINTR); 1450 1451 trace_bcache_btree_gc_coalesce(nodes); 1452 gc->nodes--; 1453 1454 bch_keylist_free(&keylist); 1455 1456 /* Invalidated our iterator */ 1457 return -EINTR; 1458 1459 out_nocoalesce: 1460 closure_sync(&cl); 1461 bch_keylist_free(&keylist); 1462 1463 while ((k = bch_keylist_pop(&keylist))) 1464 if (!bkey_cmp(k, &ZERO_KEY)) 1465 atomic_dec(&b->c->prio_blocked); 1466 1467 for (i = 0; i < nodes; i++) 1468 if (!IS_ERR_OR_NULL(new_nodes[i])) { 1469 btree_node_free(new_nodes[i]); 1470 rw_unlock(true, new_nodes[i]); 1471 } 1472 return 0; 1473 } 1474 1475 static int btree_gc_rewrite_node(struct btree *b, struct btree_op *op, 1476 struct btree *replace) 1477 { 1478 struct keylist keys; 1479 struct btree *n; 1480 1481 if (btree_check_reserve(b, NULL)) 1482 return 0; 1483 1484 n = btree_node_alloc_replacement(replace, NULL); 1485 1486 /* recheck reserve after allocating replacement node */ 1487 if (btree_check_reserve(b, NULL)) { 1488 btree_node_free(n); 1489 rw_unlock(true, n); 1490 return 0; 1491 } 1492 1493 bch_btree_node_write_sync(n); 1494 1495 bch_keylist_init(&keys); 1496 bch_keylist_add(&keys, &n->key); 1497 1498 make_btree_freeing_key(replace, keys.top); 1499 bch_keylist_push(&keys); 1500 1501 bch_btree_insert_node(b, op, &keys, NULL, NULL); 1502 BUG_ON(!bch_keylist_empty(&keys)); 1503 1504 btree_node_free(replace); 1505 rw_unlock(true, n); 1506 1507 /* Invalidated our iterator */ 1508 return -EINTR; 1509 } 1510 1511 static unsigned btree_gc_count_keys(struct btree *b) 1512 { 1513 struct bkey *k; 1514 struct btree_iter iter; 1515 unsigned ret = 0; 1516 1517 for_each_key_filter(&b->keys, k, &iter, bch_ptr_bad) 1518 ret += bkey_u64s(k); 1519 1520 return ret; 1521 } 1522 1523 static int btree_gc_recurse(struct btree *b, struct btree_op *op, 1524 struct closure *writes, struct gc_stat *gc) 1525 { 1526 int ret = 0; 1527 bool should_rewrite; 1528 struct bkey *k; 1529 struct btree_iter iter; 1530 struct gc_merge_info r[GC_MERGE_NODES]; 1531 struct gc_merge_info *i, *last = r + ARRAY_SIZE(r) - 1; 1532 1533 bch_btree_iter_init(&b->keys, &iter, &b->c->gc_done); 1534 1535 for (i = r; i < r + ARRAY_SIZE(r); i++) 1536 i->b = ERR_PTR(-EINTR); 1537 1538 while (1) { 1539 k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad); 1540 if (k) { 1541 r->b = bch_btree_node_get(b->c, op, k, b->level - 1, 1542 true, b); 1543 if (IS_ERR(r->b)) { 1544 ret = PTR_ERR(r->b); 1545 break; 1546 } 1547 1548 r->keys = btree_gc_count_keys(r->b); 1549 1550 ret = btree_gc_coalesce(b, op, gc, r); 1551 if (ret) 1552 break; 1553 } 1554 1555 if (!last->b) 1556 break; 1557 1558 if (!IS_ERR(last->b)) { 1559 should_rewrite = btree_gc_mark_node(last->b, gc); 1560 if (should_rewrite) { 1561 ret = btree_gc_rewrite_node(b, op, last->b); 1562 if (ret) 1563 break; 1564 } 1565 1566 if (last->b->level) { 1567 ret = btree_gc_recurse(last->b, op, writes, gc); 1568 if (ret) 1569 break; 1570 } 1571 1572 bkey_copy_key(&b->c->gc_done, &last->b->key); 1573 1574 /* 1575 * Must flush leaf nodes before gc ends, since replace 1576 * operations aren't journalled 1577 */ 1578 mutex_lock(&last->b->write_lock); 1579 if (btree_node_dirty(last->b)) 1580 bch_btree_node_write(last->b, writes); 1581 mutex_unlock(&last->b->write_lock); 1582 rw_unlock(true, last->b); 1583 } 1584 1585 memmove(r + 1, r, sizeof(r[0]) * (GC_MERGE_NODES - 1)); 1586 r->b = NULL; 1587 1588 if (need_resched()) { 1589 ret = -EAGAIN; 1590 break; 1591 } 1592 } 1593 1594 for (i = r; i < r + ARRAY_SIZE(r); i++) 1595 if (!IS_ERR_OR_NULL(i->b)) { 1596 mutex_lock(&i->b->write_lock); 1597 if (btree_node_dirty(i->b)) 1598 bch_btree_node_write(i->b, writes); 1599 mutex_unlock(&i->b->write_lock); 1600 rw_unlock(true, i->b); 1601 } 1602 1603 return ret; 1604 } 1605 1606 static int bch_btree_gc_root(struct btree *b, struct btree_op *op, 1607 struct closure *writes, struct gc_stat *gc) 1608 { 1609 struct btree *n = NULL; 1610 int ret = 0; 1611 bool should_rewrite; 1612 1613 should_rewrite = btree_gc_mark_node(b, gc); 1614 if (should_rewrite) { 1615 n = btree_node_alloc_replacement(b, NULL); 1616 1617 if (!IS_ERR_OR_NULL(n)) { 1618 bch_btree_node_write_sync(n); 1619 1620 bch_btree_set_root(n); 1621 btree_node_free(b); 1622 rw_unlock(true, n); 1623 1624 return -EINTR; 1625 } 1626 } 1627 1628 __bch_btree_mark_key(b->c, b->level + 1, &b->key); 1629 1630 if (b->level) { 1631 ret = btree_gc_recurse(b, op, writes, gc); 1632 if (ret) 1633 return ret; 1634 } 1635 1636 bkey_copy_key(&b->c->gc_done, &b->key); 1637 1638 return ret; 1639 } 1640 1641 static void btree_gc_start(struct cache_set *c) 1642 { 1643 struct cache *ca; 1644 struct bucket *b; 1645 unsigned i; 1646 1647 if (!c->gc_mark_valid) 1648 return; 1649 1650 mutex_lock(&c->bucket_lock); 1651 1652 c->gc_mark_valid = 0; 1653 c->gc_done = ZERO_KEY; 1654 1655 for_each_cache(ca, c, i) 1656 for_each_bucket(b, ca) { 1657 b->last_gc = b->gen; 1658 if (!atomic_read(&b->pin)) { 1659 SET_GC_MARK(b, 0); 1660 SET_GC_SECTORS_USED(b, 0); 1661 } 1662 } 1663 1664 mutex_unlock(&c->bucket_lock); 1665 } 1666 1667 static void bch_btree_gc_finish(struct cache_set *c) 1668 { 1669 struct bucket *b; 1670 struct cache *ca; 1671 unsigned i; 1672 1673 mutex_lock(&c->bucket_lock); 1674 1675 set_gc_sectors(c); 1676 c->gc_mark_valid = 1; 1677 c->need_gc = 0; 1678 1679 for (i = 0; i < KEY_PTRS(&c->uuid_bucket); i++) 1680 SET_GC_MARK(PTR_BUCKET(c, &c->uuid_bucket, i), 1681 GC_MARK_METADATA); 1682 1683 /* don't reclaim buckets to which writeback keys point */ 1684 rcu_read_lock(); 1685 for (i = 0; i < c->devices_max_used; i++) { 1686 struct bcache_device *d = c->devices[i]; 1687 struct cached_dev *dc; 1688 struct keybuf_key *w, *n; 1689 unsigned j; 1690 1691 if (!d || UUID_FLASH_ONLY(&c->uuids[i])) 1692 continue; 1693 dc = container_of(d, struct cached_dev, disk); 1694 1695 spin_lock(&dc->writeback_keys.lock); 1696 rbtree_postorder_for_each_entry_safe(w, n, 1697 &dc->writeback_keys.keys, node) 1698 for (j = 0; j < KEY_PTRS(&w->key); j++) 1699 SET_GC_MARK(PTR_BUCKET(c, &w->key, j), 1700 GC_MARK_DIRTY); 1701 spin_unlock(&dc->writeback_keys.lock); 1702 } 1703 rcu_read_unlock(); 1704 1705 c->avail_nbuckets = 0; 1706 for_each_cache(ca, c, i) { 1707 uint64_t *i; 1708 1709 ca->invalidate_needs_gc = 0; 1710 1711 for (i = ca->sb.d; i < ca->sb.d + ca->sb.keys; i++) 1712 SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA); 1713 1714 for (i = ca->prio_buckets; 1715 i < ca->prio_buckets + prio_buckets(ca) * 2; i++) 1716 SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA); 1717 1718 for_each_bucket(b, ca) { 1719 c->need_gc = max(c->need_gc, bucket_gc_gen(b)); 1720 1721 if (atomic_read(&b->pin)) 1722 continue; 1723 1724 BUG_ON(!GC_MARK(b) && GC_SECTORS_USED(b)); 1725 1726 if (!GC_MARK(b) || GC_MARK(b) == GC_MARK_RECLAIMABLE) 1727 c->avail_nbuckets++; 1728 } 1729 } 1730 1731 mutex_unlock(&c->bucket_lock); 1732 } 1733 1734 static void bch_btree_gc(struct cache_set *c) 1735 { 1736 int ret; 1737 struct gc_stat stats; 1738 struct closure writes; 1739 struct btree_op op; 1740 uint64_t start_time = local_clock(); 1741 1742 trace_bcache_gc_start(c); 1743 1744 memset(&stats, 0, sizeof(struct gc_stat)); 1745 closure_init_stack(&writes); 1746 bch_btree_op_init(&op, SHRT_MAX); 1747 1748 btree_gc_start(c); 1749 1750 /* if CACHE_SET_IO_DISABLE set, gc thread should stop too */ 1751 do { 1752 ret = btree_root(gc_root, c, &op, &writes, &stats); 1753 closure_sync(&writes); 1754 cond_resched(); 1755 1756 if (ret && ret != -EAGAIN) 1757 pr_warn("gc failed!"); 1758 } while (ret && !test_bit(CACHE_SET_IO_DISABLE, &c->flags)); 1759 1760 bch_btree_gc_finish(c); 1761 wake_up_allocators(c); 1762 1763 bch_time_stats_update(&c->btree_gc_time, start_time); 1764 1765 stats.key_bytes *= sizeof(uint64_t); 1766 stats.data <<= 9; 1767 bch_update_bucket_in_use(c, &stats); 1768 memcpy(&c->gc_stats, &stats, sizeof(struct gc_stat)); 1769 1770 trace_bcache_gc_end(c); 1771 1772 bch_moving_gc(c); 1773 } 1774 1775 static bool gc_should_run(struct cache_set *c) 1776 { 1777 struct cache *ca; 1778 unsigned i; 1779 1780 for_each_cache(ca, c, i) 1781 if (ca->invalidate_needs_gc) 1782 return true; 1783 1784 if (atomic_read(&c->sectors_to_gc) < 0) 1785 return true; 1786 1787 return false; 1788 } 1789 1790 static int bch_gc_thread(void *arg) 1791 { 1792 struct cache_set *c = arg; 1793 1794 while (1) { 1795 wait_event_interruptible(c->gc_wait, 1796 kthread_should_stop() || 1797 test_bit(CACHE_SET_IO_DISABLE, &c->flags) || 1798 gc_should_run(c)); 1799 1800 if (kthread_should_stop() || 1801 test_bit(CACHE_SET_IO_DISABLE, &c->flags)) 1802 break; 1803 1804 set_gc_sectors(c); 1805 bch_btree_gc(c); 1806 } 1807 1808 wait_for_kthread_stop(); 1809 return 0; 1810 } 1811 1812 int bch_gc_thread_start(struct cache_set *c) 1813 { 1814 c->gc_thread = kthread_run(bch_gc_thread, c, "bcache_gc"); 1815 return PTR_ERR_OR_ZERO(c->gc_thread); 1816 } 1817 1818 /* Initial partial gc */ 1819 1820 static int bch_btree_check_recurse(struct btree *b, struct btree_op *op) 1821 { 1822 int ret = 0; 1823 struct bkey *k, *p = NULL; 1824 struct btree_iter iter; 1825 1826 for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid) 1827 bch_initial_mark_key(b->c, b->level, k); 1828 1829 bch_initial_mark_key(b->c, b->level + 1, &b->key); 1830 1831 if (b->level) { 1832 bch_btree_iter_init(&b->keys, &iter, NULL); 1833 1834 do { 1835 k = bch_btree_iter_next_filter(&iter, &b->keys, 1836 bch_ptr_bad); 1837 if (k) 1838 btree_node_prefetch(b, k); 1839 1840 if (p) 1841 ret = btree(check_recurse, p, b, op); 1842 1843 p = k; 1844 } while (p && !ret); 1845 } 1846 1847 return ret; 1848 } 1849 1850 int bch_btree_check(struct cache_set *c) 1851 { 1852 struct btree_op op; 1853 1854 bch_btree_op_init(&op, SHRT_MAX); 1855 1856 return btree_root(check_recurse, c, &op); 1857 } 1858 1859 void bch_initial_gc_finish(struct cache_set *c) 1860 { 1861 struct cache *ca; 1862 struct bucket *b; 1863 unsigned i; 1864 1865 bch_btree_gc_finish(c); 1866 1867 mutex_lock(&c->bucket_lock); 1868 1869 /* 1870 * We need to put some unused buckets directly on the prio freelist in 1871 * order to get the allocator thread started - it needs freed buckets in 1872 * order to rewrite the prios and gens, and it needs to rewrite prios 1873 * and gens in order to free buckets. 1874 * 1875 * This is only safe for buckets that have no live data in them, which 1876 * there should always be some of. 1877 */ 1878 for_each_cache(ca, c, i) { 1879 for_each_bucket(b, ca) { 1880 if (fifo_full(&ca->free[RESERVE_PRIO]) && 1881 fifo_full(&ca->free[RESERVE_BTREE])) 1882 break; 1883 1884 if (bch_can_invalidate_bucket(ca, b) && 1885 !GC_MARK(b)) { 1886 __bch_invalidate_one_bucket(ca, b); 1887 if (!fifo_push(&ca->free[RESERVE_PRIO], 1888 b - ca->buckets)) 1889 fifo_push(&ca->free[RESERVE_BTREE], 1890 b - ca->buckets); 1891 } 1892 } 1893 } 1894 1895 mutex_unlock(&c->bucket_lock); 1896 } 1897 1898 /* Btree insertion */ 1899 1900 static bool btree_insert_key(struct btree *b, struct bkey *k, 1901 struct bkey *replace_key) 1902 { 1903 unsigned status; 1904 1905 BUG_ON(bkey_cmp(k, &b->key) > 0); 1906 1907 status = bch_btree_insert_key(&b->keys, k, replace_key); 1908 if (status != BTREE_INSERT_STATUS_NO_INSERT) { 1909 bch_check_keys(&b->keys, "%u for %s", status, 1910 replace_key ? "replace" : "insert"); 1911 1912 trace_bcache_btree_insert_key(b, k, replace_key != NULL, 1913 status); 1914 return true; 1915 } else 1916 return false; 1917 } 1918 1919 static size_t insert_u64s_remaining(struct btree *b) 1920 { 1921 long ret = bch_btree_keys_u64s_remaining(&b->keys); 1922 1923 /* 1924 * Might land in the middle of an existing extent and have to split it 1925 */ 1926 if (b->keys.ops->is_extents) 1927 ret -= KEY_MAX_U64S; 1928 1929 return max(ret, 0L); 1930 } 1931 1932 static bool bch_btree_insert_keys(struct btree *b, struct btree_op *op, 1933 struct keylist *insert_keys, 1934 struct bkey *replace_key) 1935 { 1936 bool ret = false; 1937 int oldsize = bch_count_data(&b->keys); 1938 1939 while (!bch_keylist_empty(insert_keys)) { 1940 struct bkey *k = insert_keys->keys; 1941 1942 if (bkey_u64s(k) > insert_u64s_remaining(b)) 1943 break; 1944 1945 if (bkey_cmp(k, &b->key) <= 0) { 1946 if (!b->level) 1947 bkey_put(b->c, k); 1948 1949 ret |= btree_insert_key(b, k, replace_key); 1950 bch_keylist_pop_front(insert_keys); 1951 } else if (bkey_cmp(&START_KEY(k), &b->key) < 0) { 1952 BKEY_PADDED(key) temp; 1953 bkey_copy(&temp.key, insert_keys->keys); 1954 1955 bch_cut_back(&b->key, &temp.key); 1956 bch_cut_front(&b->key, insert_keys->keys); 1957 1958 ret |= btree_insert_key(b, &temp.key, replace_key); 1959 break; 1960 } else { 1961 break; 1962 } 1963 } 1964 1965 if (!ret) 1966 op->insert_collision = true; 1967 1968 BUG_ON(!bch_keylist_empty(insert_keys) && b->level); 1969 1970 BUG_ON(bch_count_data(&b->keys) < oldsize); 1971 return ret; 1972 } 1973 1974 static int btree_split(struct btree *b, struct btree_op *op, 1975 struct keylist *insert_keys, 1976 struct bkey *replace_key) 1977 { 1978 bool split; 1979 struct btree *n1, *n2 = NULL, *n3 = NULL; 1980 uint64_t start_time = local_clock(); 1981 struct closure cl; 1982 struct keylist parent_keys; 1983 1984 closure_init_stack(&cl); 1985 bch_keylist_init(&parent_keys); 1986 1987 if (btree_check_reserve(b, op)) { 1988 if (!b->level) 1989 return -EINTR; 1990 else 1991 WARN(1, "insufficient reserve for split\n"); 1992 } 1993 1994 n1 = btree_node_alloc_replacement(b, op); 1995 if (IS_ERR(n1)) 1996 goto err; 1997 1998 split = set_blocks(btree_bset_first(n1), 1999 block_bytes(n1->c)) > (btree_blocks(b) * 4) / 5; 2000 2001 if (split) { 2002 unsigned keys = 0; 2003 2004 trace_bcache_btree_node_split(b, btree_bset_first(n1)->keys); 2005 2006 n2 = bch_btree_node_alloc(b->c, op, b->level, b->parent); 2007 if (IS_ERR(n2)) 2008 goto err_free1; 2009 2010 if (!b->parent) { 2011 n3 = bch_btree_node_alloc(b->c, op, b->level + 1, NULL); 2012 if (IS_ERR(n3)) 2013 goto err_free2; 2014 } 2015 2016 mutex_lock(&n1->write_lock); 2017 mutex_lock(&n2->write_lock); 2018 2019 bch_btree_insert_keys(n1, op, insert_keys, replace_key); 2020 2021 /* 2022 * Has to be a linear search because we don't have an auxiliary 2023 * search tree yet 2024 */ 2025 2026 while (keys < (btree_bset_first(n1)->keys * 3) / 5) 2027 keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1), 2028 keys)); 2029 2030 bkey_copy_key(&n1->key, 2031 bset_bkey_idx(btree_bset_first(n1), keys)); 2032 keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1), keys)); 2033 2034 btree_bset_first(n2)->keys = btree_bset_first(n1)->keys - keys; 2035 btree_bset_first(n1)->keys = keys; 2036 2037 memcpy(btree_bset_first(n2)->start, 2038 bset_bkey_last(btree_bset_first(n1)), 2039 btree_bset_first(n2)->keys * sizeof(uint64_t)); 2040 2041 bkey_copy_key(&n2->key, &b->key); 2042 2043 bch_keylist_add(&parent_keys, &n2->key); 2044 bch_btree_node_write(n2, &cl); 2045 mutex_unlock(&n2->write_lock); 2046 rw_unlock(true, n2); 2047 } else { 2048 trace_bcache_btree_node_compact(b, btree_bset_first(n1)->keys); 2049 2050 mutex_lock(&n1->write_lock); 2051 bch_btree_insert_keys(n1, op, insert_keys, replace_key); 2052 } 2053 2054 bch_keylist_add(&parent_keys, &n1->key); 2055 bch_btree_node_write(n1, &cl); 2056 mutex_unlock(&n1->write_lock); 2057 2058 if (n3) { 2059 /* Depth increases, make a new root */ 2060 mutex_lock(&n3->write_lock); 2061 bkey_copy_key(&n3->key, &MAX_KEY); 2062 bch_btree_insert_keys(n3, op, &parent_keys, NULL); 2063 bch_btree_node_write(n3, &cl); 2064 mutex_unlock(&n3->write_lock); 2065 2066 closure_sync(&cl); 2067 bch_btree_set_root(n3); 2068 rw_unlock(true, n3); 2069 } else if (!b->parent) { 2070 /* Root filled up but didn't need to be split */ 2071 closure_sync(&cl); 2072 bch_btree_set_root(n1); 2073 } else { 2074 /* Split a non root node */ 2075 closure_sync(&cl); 2076 make_btree_freeing_key(b, parent_keys.top); 2077 bch_keylist_push(&parent_keys); 2078 2079 bch_btree_insert_node(b->parent, op, &parent_keys, NULL, NULL); 2080 BUG_ON(!bch_keylist_empty(&parent_keys)); 2081 } 2082 2083 btree_node_free(b); 2084 rw_unlock(true, n1); 2085 2086 bch_time_stats_update(&b->c->btree_split_time, start_time); 2087 2088 return 0; 2089 err_free2: 2090 bkey_put(b->c, &n2->key); 2091 btree_node_free(n2); 2092 rw_unlock(true, n2); 2093 err_free1: 2094 bkey_put(b->c, &n1->key); 2095 btree_node_free(n1); 2096 rw_unlock(true, n1); 2097 err: 2098 WARN(1, "bcache: btree split failed (level %u)", b->level); 2099 2100 if (n3 == ERR_PTR(-EAGAIN) || 2101 n2 == ERR_PTR(-EAGAIN) || 2102 n1 == ERR_PTR(-EAGAIN)) 2103 return -EAGAIN; 2104 2105 return -ENOMEM; 2106 } 2107 2108 static int bch_btree_insert_node(struct btree *b, struct btree_op *op, 2109 struct keylist *insert_keys, 2110 atomic_t *journal_ref, 2111 struct bkey *replace_key) 2112 { 2113 struct closure cl; 2114 2115 BUG_ON(b->level && replace_key); 2116 2117 closure_init_stack(&cl); 2118 2119 mutex_lock(&b->write_lock); 2120 2121 if (write_block(b) != btree_bset_last(b) && 2122 b->keys.last_set_unwritten) 2123 bch_btree_init_next(b); /* just wrote a set */ 2124 2125 if (bch_keylist_nkeys(insert_keys) > insert_u64s_remaining(b)) { 2126 mutex_unlock(&b->write_lock); 2127 goto split; 2128 } 2129 2130 BUG_ON(write_block(b) != btree_bset_last(b)); 2131 2132 if (bch_btree_insert_keys(b, op, insert_keys, replace_key)) { 2133 if (!b->level) 2134 bch_btree_leaf_dirty(b, journal_ref); 2135 else 2136 bch_btree_node_write(b, &cl); 2137 } 2138 2139 mutex_unlock(&b->write_lock); 2140 2141 /* wait for btree node write if necessary, after unlock */ 2142 closure_sync(&cl); 2143 2144 return 0; 2145 split: 2146 if (current->bio_list) { 2147 op->lock = b->c->root->level + 1; 2148 return -EAGAIN; 2149 } else if (op->lock <= b->c->root->level) { 2150 op->lock = b->c->root->level + 1; 2151 return -EINTR; 2152 } else { 2153 /* Invalidated all iterators */ 2154 int ret = btree_split(b, op, insert_keys, replace_key); 2155 2156 if (bch_keylist_empty(insert_keys)) 2157 return 0; 2158 else if (!ret) 2159 return -EINTR; 2160 return ret; 2161 } 2162 } 2163 2164 int bch_btree_insert_check_key(struct btree *b, struct btree_op *op, 2165 struct bkey *check_key) 2166 { 2167 int ret = -EINTR; 2168 uint64_t btree_ptr = b->key.ptr[0]; 2169 unsigned long seq = b->seq; 2170 struct keylist insert; 2171 bool upgrade = op->lock == -1; 2172 2173 bch_keylist_init(&insert); 2174 2175 if (upgrade) { 2176 rw_unlock(false, b); 2177 rw_lock(true, b, b->level); 2178 2179 if (b->key.ptr[0] != btree_ptr || 2180 b->seq != seq + 1) { 2181 op->lock = b->level; 2182 goto out; 2183 } 2184 } 2185 2186 SET_KEY_PTRS(check_key, 1); 2187 get_random_bytes(&check_key->ptr[0], sizeof(uint64_t)); 2188 2189 SET_PTR_DEV(check_key, 0, PTR_CHECK_DEV); 2190 2191 bch_keylist_add(&insert, check_key); 2192 2193 ret = bch_btree_insert_node(b, op, &insert, NULL, NULL); 2194 2195 BUG_ON(!ret && !bch_keylist_empty(&insert)); 2196 out: 2197 if (upgrade) 2198 downgrade_write(&b->lock); 2199 return ret; 2200 } 2201 2202 struct btree_insert_op { 2203 struct btree_op op; 2204 struct keylist *keys; 2205 atomic_t *journal_ref; 2206 struct bkey *replace_key; 2207 }; 2208 2209 static int btree_insert_fn(struct btree_op *b_op, struct btree *b) 2210 { 2211 struct btree_insert_op *op = container_of(b_op, 2212 struct btree_insert_op, op); 2213 2214 int ret = bch_btree_insert_node(b, &op->op, op->keys, 2215 op->journal_ref, op->replace_key); 2216 if (ret && !bch_keylist_empty(op->keys)) 2217 return ret; 2218 else 2219 return MAP_DONE; 2220 } 2221 2222 int bch_btree_insert(struct cache_set *c, struct keylist *keys, 2223 atomic_t *journal_ref, struct bkey *replace_key) 2224 { 2225 struct btree_insert_op op; 2226 int ret = 0; 2227 2228 BUG_ON(current->bio_list); 2229 BUG_ON(bch_keylist_empty(keys)); 2230 2231 bch_btree_op_init(&op.op, 0); 2232 op.keys = keys; 2233 op.journal_ref = journal_ref; 2234 op.replace_key = replace_key; 2235 2236 while (!ret && !bch_keylist_empty(keys)) { 2237 op.op.lock = 0; 2238 ret = bch_btree_map_leaf_nodes(&op.op, c, 2239 &START_KEY(keys->keys), 2240 btree_insert_fn); 2241 } 2242 2243 if (ret) { 2244 struct bkey *k; 2245 2246 pr_err("error %i", ret); 2247 2248 while ((k = bch_keylist_pop(keys))) 2249 bkey_put(c, k); 2250 } else if (op.op.insert_collision) 2251 ret = -ESRCH; 2252 2253 return ret; 2254 } 2255 2256 void bch_btree_set_root(struct btree *b) 2257 { 2258 unsigned i; 2259 struct closure cl; 2260 2261 closure_init_stack(&cl); 2262 2263 trace_bcache_btree_set_root(b); 2264 2265 BUG_ON(!b->written); 2266 2267 for (i = 0; i < KEY_PTRS(&b->key); i++) 2268 BUG_ON(PTR_BUCKET(b->c, &b->key, i)->prio != BTREE_PRIO); 2269 2270 mutex_lock(&b->c->bucket_lock); 2271 list_del_init(&b->list); 2272 mutex_unlock(&b->c->bucket_lock); 2273 2274 b->c->root = b; 2275 2276 bch_journal_meta(b->c, &cl); 2277 closure_sync(&cl); 2278 } 2279 2280 /* Map across nodes or keys */ 2281 2282 static int bch_btree_map_nodes_recurse(struct btree *b, struct btree_op *op, 2283 struct bkey *from, 2284 btree_map_nodes_fn *fn, int flags) 2285 { 2286 int ret = MAP_CONTINUE; 2287 2288 if (b->level) { 2289 struct bkey *k; 2290 struct btree_iter iter; 2291 2292 bch_btree_iter_init(&b->keys, &iter, from); 2293 2294 while ((k = bch_btree_iter_next_filter(&iter, &b->keys, 2295 bch_ptr_bad))) { 2296 ret = btree(map_nodes_recurse, k, b, 2297 op, from, fn, flags); 2298 from = NULL; 2299 2300 if (ret != MAP_CONTINUE) 2301 return ret; 2302 } 2303 } 2304 2305 if (!b->level || flags == MAP_ALL_NODES) 2306 ret = fn(op, b); 2307 2308 return ret; 2309 } 2310 2311 int __bch_btree_map_nodes(struct btree_op *op, struct cache_set *c, 2312 struct bkey *from, btree_map_nodes_fn *fn, int flags) 2313 { 2314 return btree_root(map_nodes_recurse, c, op, from, fn, flags); 2315 } 2316 2317 static int bch_btree_map_keys_recurse(struct btree *b, struct btree_op *op, 2318 struct bkey *from, btree_map_keys_fn *fn, 2319 int flags) 2320 { 2321 int ret = MAP_CONTINUE; 2322 struct bkey *k; 2323 struct btree_iter iter; 2324 2325 bch_btree_iter_init(&b->keys, &iter, from); 2326 2327 while ((k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad))) { 2328 ret = !b->level 2329 ? fn(op, b, k) 2330 : btree(map_keys_recurse, k, b, op, from, fn, flags); 2331 from = NULL; 2332 2333 if (ret != MAP_CONTINUE) 2334 return ret; 2335 } 2336 2337 if (!b->level && (flags & MAP_END_KEY)) 2338 ret = fn(op, b, &KEY(KEY_INODE(&b->key), 2339 KEY_OFFSET(&b->key), 0)); 2340 2341 return ret; 2342 } 2343 2344 int bch_btree_map_keys(struct btree_op *op, struct cache_set *c, 2345 struct bkey *from, btree_map_keys_fn *fn, int flags) 2346 { 2347 return btree_root(map_keys_recurse, c, op, from, fn, flags); 2348 } 2349 2350 /* Keybuf code */ 2351 2352 static inline int keybuf_cmp(struct keybuf_key *l, struct keybuf_key *r) 2353 { 2354 /* Overlapping keys compare equal */ 2355 if (bkey_cmp(&l->key, &START_KEY(&r->key)) <= 0) 2356 return -1; 2357 if (bkey_cmp(&START_KEY(&l->key), &r->key) >= 0) 2358 return 1; 2359 return 0; 2360 } 2361 2362 static inline int keybuf_nonoverlapping_cmp(struct keybuf_key *l, 2363 struct keybuf_key *r) 2364 { 2365 return clamp_t(int64_t, bkey_cmp(&l->key, &r->key), -1, 1); 2366 } 2367 2368 struct refill { 2369 struct btree_op op; 2370 unsigned nr_found; 2371 struct keybuf *buf; 2372 struct bkey *end; 2373 keybuf_pred_fn *pred; 2374 }; 2375 2376 static int refill_keybuf_fn(struct btree_op *op, struct btree *b, 2377 struct bkey *k) 2378 { 2379 struct refill *refill = container_of(op, struct refill, op); 2380 struct keybuf *buf = refill->buf; 2381 int ret = MAP_CONTINUE; 2382 2383 if (bkey_cmp(k, refill->end) >= 0) { 2384 ret = MAP_DONE; 2385 goto out; 2386 } 2387 2388 if (!KEY_SIZE(k)) /* end key */ 2389 goto out; 2390 2391 if (refill->pred(buf, k)) { 2392 struct keybuf_key *w; 2393 2394 spin_lock(&buf->lock); 2395 2396 w = array_alloc(&buf->freelist); 2397 if (!w) { 2398 spin_unlock(&buf->lock); 2399 return MAP_DONE; 2400 } 2401 2402 w->private = NULL; 2403 bkey_copy(&w->key, k); 2404 2405 if (RB_INSERT(&buf->keys, w, node, keybuf_cmp)) 2406 array_free(&buf->freelist, w); 2407 else 2408 refill->nr_found++; 2409 2410 if (array_freelist_empty(&buf->freelist)) 2411 ret = MAP_DONE; 2412 2413 spin_unlock(&buf->lock); 2414 } 2415 out: 2416 buf->last_scanned = *k; 2417 return ret; 2418 } 2419 2420 void bch_refill_keybuf(struct cache_set *c, struct keybuf *buf, 2421 struct bkey *end, keybuf_pred_fn *pred) 2422 { 2423 struct bkey start = buf->last_scanned; 2424 struct refill refill; 2425 2426 cond_resched(); 2427 2428 bch_btree_op_init(&refill.op, -1); 2429 refill.nr_found = 0; 2430 refill.buf = buf; 2431 refill.end = end; 2432 refill.pred = pred; 2433 2434 bch_btree_map_keys(&refill.op, c, &buf->last_scanned, 2435 refill_keybuf_fn, MAP_END_KEY); 2436 2437 trace_bcache_keyscan(refill.nr_found, 2438 KEY_INODE(&start), KEY_OFFSET(&start), 2439 KEY_INODE(&buf->last_scanned), 2440 KEY_OFFSET(&buf->last_scanned)); 2441 2442 spin_lock(&buf->lock); 2443 2444 if (!RB_EMPTY_ROOT(&buf->keys)) { 2445 struct keybuf_key *w; 2446 w = RB_FIRST(&buf->keys, struct keybuf_key, node); 2447 buf->start = START_KEY(&w->key); 2448 2449 w = RB_LAST(&buf->keys, struct keybuf_key, node); 2450 buf->end = w->key; 2451 } else { 2452 buf->start = MAX_KEY; 2453 buf->end = MAX_KEY; 2454 } 2455 2456 spin_unlock(&buf->lock); 2457 } 2458 2459 static void __bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w) 2460 { 2461 rb_erase(&w->node, &buf->keys); 2462 array_free(&buf->freelist, w); 2463 } 2464 2465 void bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w) 2466 { 2467 spin_lock(&buf->lock); 2468 __bch_keybuf_del(buf, w); 2469 spin_unlock(&buf->lock); 2470 } 2471 2472 bool bch_keybuf_check_overlapping(struct keybuf *buf, struct bkey *start, 2473 struct bkey *end) 2474 { 2475 bool ret = false; 2476 struct keybuf_key *p, *w, s; 2477 s.key = *start; 2478 2479 if (bkey_cmp(end, &buf->start) <= 0 || 2480 bkey_cmp(start, &buf->end) >= 0) 2481 return false; 2482 2483 spin_lock(&buf->lock); 2484 w = RB_GREATER(&buf->keys, s, node, keybuf_nonoverlapping_cmp); 2485 2486 while (w && bkey_cmp(&START_KEY(&w->key), end) < 0) { 2487 p = w; 2488 w = RB_NEXT(w, node); 2489 2490 if (p->private) 2491 ret = true; 2492 else 2493 __bch_keybuf_del(buf, p); 2494 } 2495 2496 spin_unlock(&buf->lock); 2497 return ret; 2498 } 2499 2500 struct keybuf_key *bch_keybuf_next(struct keybuf *buf) 2501 { 2502 struct keybuf_key *w; 2503 spin_lock(&buf->lock); 2504 2505 w = RB_FIRST(&buf->keys, struct keybuf_key, node); 2506 2507 while (w && w->private) 2508 w = RB_NEXT(w, node); 2509 2510 if (w) 2511 w->private = ERR_PTR(-EINTR); 2512 2513 spin_unlock(&buf->lock); 2514 return w; 2515 } 2516 2517 struct keybuf_key *bch_keybuf_next_rescan(struct cache_set *c, 2518 struct keybuf *buf, 2519 struct bkey *end, 2520 keybuf_pred_fn *pred) 2521 { 2522 struct keybuf_key *ret; 2523 2524 while (1) { 2525 ret = bch_keybuf_next(buf); 2526 if (ret) 2527 break; 2528 2529 if (bkey_cmp(&buf->last_scanned, end) >= 0) { 2530 pr_debug("scan finished"); 2531 break; 2532 } 2533 2534 bch_refill_keybuf(c, buf, end, pred); 2535 } 2536 2537 return ret; 2538 } 2539 2540 void bch_keybuf_init(struct keybuf *buf) 2541 { 2542 buf->last_scanned = MAX_KEY; 2543 buf->keys = RB_ROOT; 2544 2545 spin_lock_init(&buf->lock); 2546 array_allocator_init(&buf->freelist); 2547 } 2548