1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com> 4 * 5 * Uses a block device as cache for other block devices; optimized for SSDs. 6 * All allocation is done in buckets, which should match the erase block size 7 * of the device. 8 * 9 * Buckets containing cached data are kept on a heap sorted by priority; 10 * bucket priority is increased on cache hit, and periodically all the buckets 11 * on the heap have their priority scaled down. This currently is just used as 12 * an LRU but in the future should allow for more intelligent heuristics. 13 * 14 * Buckets have an 8 bit counter; freeing is accomplished by incrementing the 15 * counter. Garbage collection is used to remove stale pointers. 16 * 17 * Indexing is done via a btree; nodes are not necessarily fully sorted, rather 18 * as keys are inserted we only sort the pages that have not yet been written. 19 * When garbage collection is run, we resort the entire node. 20 * 21 * All configuration is done via sysfs; see Documentation/admin-guide/bcache.rst. 22 */ 23 24 #include "bcache.h" 25 #include "btree.h" 26 #include "debug.h" 27 #include "extents.h" 28 29 #include <linux/slab.h> 30 #include <linux/bitops.h> 31 #include <linux/hash.h> 32 #include <linux/kthread.h> 33 #include <linux/prefetch.h> 34 #include <linux/random.h> 35 #include <linux/rcupdate.h> 36 #include <linux/sched/clock.h> 37 #include <linux/rculist.h> 38 #include <linux/delay.h> 39 #include <trace/events/bcache.h> 40 41 /* 42 * Todo: 43 * register_bcache: Return errors out to userspace correctly 44 * 45 * Writeback: don't undirty key until after a cache flush 46 * 47 * Create an iterator for key pointers 48 * 49 * On btree write error, mark bucket such that it won't be freed from the cache 50 * 51 * Journalling: 52 * Check for bad keys in replay 53 * Propagate barriers 54 * Refcount journal entries in journal_replay 55 * 56 * Garbage collection: 57 * Finish incremental gc 58 * Gc should free old UUIDs, data for invalid UUIDs 59 * 60 * Provide a way to list backing device UUIDs we have data cached for, and 61 * probably how long it's been since we've seen them, and a way to invalidate 62 * dirty data for devices that will never be attached again 63 * 64 * Keep 1 min/5 min/15 min statistics of how busy a block device has been, so 65 * that based on that and how much dirty data we have we can keep writeback 66 * from being starved 67 * 68 * Add a tracepoint or somesuch to watch for writeback starvation 69 * 70 * When btree depth > 1 and splitting an interior node, we have to make sure 71 * alloc_bucket() cannot fail. This should be true but is not completely 72 * obvious. 73 * 74 * Plugging? 75 * 76 * If data write is less than hard sector size of ssd, round up offset in open 77 * bucket to the next whole sector 78 * 79 * Superblock needs to be fleshed out for multiple cache devices 80 * 81 * Add a sysfs tunable for the number of writeback IOs in flight 82 * 83 * Add a sysfs tunable for the number of open data buckets 84 * 85 * IO tracking: Can we track when one process is doing io on behalf of another? 86 * IO tracking: Don't use just an average, weigh more recent stuff higher 87 * 88 * Test module load/unload 89 */ 90 91 #define MAX_NEED_GC 64 92 #define MAX_SAVE_PRIO 72 93 #define MAX_GC_TIMES 100 94 #define MIN_GC_NODES 100 95 #define GC_SLEEP_MS 100 96 97 #define PTR_DIRTY_BIT (((uint64_t) 1 << 36)) 98 99 #define PTR_HASH(c, k) \ 100 (((k)->ptr[0] >> c->bucket_bits) | PTR_GEN(k, 0)) 101 102 #define insert_lock(s, b) ((b)->level <= (s)->lock) 103 104 105 static inline struct bset *write_block(struct btree *b) 106 { 107 return ((void *) btree_bset_first(b)) + b->written * block_bytes(b->c->cache); 108 } 109 110 static void bch_btree_init_next(struct btree *b) 111 { 112 /* If not a leaf node, always sort */ 113 if (b->level && b->keys.nsets) 114 bch_btree_sort(&b->keys, &b->c->sort); 115 else 116 bch_btree_sort_lazy(&b->keys, &b->c->sort); 117 118 if (b->written < btree_blocks(b)) 119 bch_bset_init_next(&b->keys, write_block(b), 120 bset_magic(&b->c->cache->sb)); 121 122 } 123 124 /* Btree key manipulation */ 125 126 void bkey_put(struct cache_set *c, struct bkey *k) 127 { 128 unsigned int i; 129 130 for (i = 0; i < KEY_PTRS(k); i++) 131 if (ptr_available(c, k, i)) 132 atomic_dec_bug(&PTR_BUCKET(c, k, i)->pin); 133 } 134 135 /* Btree IO */ 136 137 static uint64_t btree_csum_set(struct btree *b, struct bset *i) 138 { 139 uint64_t crc = b->key.ptr[0]; 140 void *data = (void *) i + 8, *end = bset_bkey_last(i); 141 142 crc = bch_crc64_update(crc, data, end - data); 143 return crc ^ 0xffffffffffffffffULL; 144 } 145 146 void bch_btree_node_read_done(struct btree *b) 147 { 148 const char *err = "bad btree header"; 149 struct bset *i = btree_bset_first(b); 150 struct btree_iter *iter; 151 152 /* 153 * c->fill_iter can allocate an iterator with more memory space 154 * than static MAX_BSETS. 155 * See the comment arount cache_set->fill_iter. 156 */ 157 iter = mempool_alloc(&b->c->fill_iter, GFP_NOIO); 158 iter->size = b->c->cache->sb.bucket_size / b->c->cache->sb.block_size; 159 iter->used = 0; 160 161 #ifdef CONFIG_BCACHE_DEBUG 162 iter->b = &b->keys; 163 #endif 164 165 if (!i->seq) 166 goto err; 167 168 for (; 169 b->written < btree_blocks(b) && i->seq == b->keys.set[0].data->seq; 170 i = write_block(b)) { 171 err = "unsupported bset version"; 172 if (i->version > BCACHE_BSET_VERSION) 173 goto err; 174 175 err = "bad btree header"; 176 if (b->written + set_blocks(i, block_bytes(b->c->cache)) > 177 btree_blocks(b)) 178 goto err; 179 180 err = "bad magic"; 181 if (i->magic != bset_magic(&b->c->cache->sb)) 182 goto err; 183 184 err = "bad checksum"; 185 switch (i->version) { 186 case 0: 187 if (i->csum != csum_set(i)) 188 goto err; 189 break; 190 case BCACHE_BSET_VERSION: 191 if (i->csum != btree_csum_set(b, i)) 192 goto err; 193 break; 194 } 195 196 err = "empty set"; 197 if (i != b->keys.set[0].data && !i->keys) 198 goto err; 199 200 bch_btree_iter_push(iter, i->start, bset_bkey_last(i)); 201 202 b->written += set_blocks(i, block_bytes(b->c->cache)); 203 } 204 205 err = "corrupted btree"; 206 for (i = write_block(b); 207 bset_sector_offset(&b->keys, i) < KEY_SIZE(&b->key); 208 i = ((void *) i) + block_bytes(b->c->cache)) 209 if (i->seq == b->keys.set[0].data->seq) 210 goto err; 211 212 bch_btree_sort_and_fix_extents(&b->keys, iter, &b->c->sort); 213 214 i = b->keys.set[0].data; 215 err = "short btree key"; 216 if (b->keys.set[0].size && 217 bkey_cmp(&b->key, &b->keys.set[0].end) < 0) 218 goto err; 219 220 if (b->written < btree_blocks(b)) 221 bch_bset_init_next(&b->keys, write_block(b), 222 bset_magic(&b->c->cache->sb)); 223 out: 224 mempool_free(iter, &b->c->fill_iter); 225 return; 226 err: 227 set_btree_node_io_error(b); 228 bch_cache_set_error(b->c, "%s at bucket %zu, block %u, %u keys", 229 err, PTR_BUCKET_NR(b->c, &b->key, 0), 230 bset_block_offset(b, i), i->keys); 231 goto out; 232 } 233 234 static void btree_node_read_endio(struct bio *bio) 235 { 236 struct closure *cl = bio->bi_private; 237 238 closure_put(cl); 239 } 240 241 static void bch_btree_node_read(struct btree *b) 242 { 243 uint64_t start_time = local_clock(); 244 struct closure cl; 245 struct bio *bio; 246 247 trace_bcache_btree_read(b); 248 249 closure_init_stack(&cl); 250 251 bio = bch_bbio_alloc(b->c); 252 bio->bi_iter.bi_size = KEY_SIZE(&b->key) << 9; 253 bio->bi_end_io = btree_node_read_endio; 254 bio->bi_private = &cl; 255 bio->bi_opf = REQ_OP_READ | REQ_META; 256 257 bch_bio_map(bio, b->keys.set[0].data); 258 259 bch_submit_bbio(bio, b->c, &b->key, 0); 260 closure_sync(&cl); 261 262 if (bio->bi_status) 263 set_btree_node_io_error(b); 264 265 bch_bbio_free(bio, b->c); 266 267 if (btree_node_io_error(b)) 268 goto err; 269 270 bch_btree_node_read_done(b); 271 bch_time_stats_update(&b->c->btree_read_time, start_time); 272 273 return; 274 err: 275 bch_cache_set_error(b->c, "io error reading bucket %zu", 276 PTR_BUCKET_NR(b->c, &b->key, 0)); 277 } 278 279 static void btree_complete_write(struct btree *b, struct btree_write *w) 280 { 281 if (w->prio_blocked && 282 !atomic_sub_return(w->prio_blocked, &b->c->prio_blocked)) 283 wake_up_allocators(b->c); 284 285 if (w->journal) { 286 atomic_dec_bug(w->journal); 287 __closure_wake_up(&b->c->journal.wait); 288 } 289 290 w->prio_blocked = 0; 291 w->journal = NULL; 292 } 293 294 static void btree_node_write_unlock(struct closure *cl) 295 { 296 struct btree *b = container_of(cl, struct btree, io); 297 298 up(&b->io_mutex); 299 } 300 301 static void __btree_node_write_done(struct closure *cl) 302 { 303 struct btree *b = container_of(cl, struct btree, io); 304 struct btree_write *w = btree_prev_write(b); 305 306 bch_bbio_free(b->bio, b->c); 307 b->bio = NULL; 308 btree_complete_write(b, w); 309 310 if (btree_node_dirty(b)) 311 schedule_delayed_work(&b->work, 30 * HZ); 312 313 closure_return_with_destructor(cl, btree_node_write_unlock); 314 } 315 316 static void btree_node_write_done(struct closure *cl) 317 { 318 struct btree *b = container_of(cl, struct btree, io); 319 320 bio_free_pages(b->bio); 321 __btree_node_write_done(cl); 322 } 323 324 static void btree_node_write_endio(struct bio *bio) 325 { 326 struct closure *cl = bio->bi_private; 327 struct btree *b = container_of(cl, struct btree, io); 328 329 if (bio->bi_status) 330 set_btree_node_io_error(b); 331 332 bch_bbio_count_io_errors(b->c, bio, bio->bi_status, "writing btree"); 333 closure_put(cl); 334 } 335 336 static void do_btree_node_write(struct btree *b) 337 { 338 struct closure *cl = &b->io; 339 struct bset *i = btree_bset_last(b); 340 BKEY_PADDED(key) k; 341 342 i->version = BCACHE_BSET_VERSION; 343 i->csum = btree_csum_set(b, i); 344 345 BUG_ON(b->bio); 346 b->bio = bch_bbio_alloc(b->c); 347 348 b->bio->bi_end_io = btree_node_write_endio; 349 b->bio->bi_private = cl; 350 b->bio->bi_iter.bi_size = roundup(set_bytes(i), block_bytes(b->c->cache)); 351 b->bio->bi_opf = REQ_OP_WRITE | REQ_META | REQ_FUA; 352 bch_bio_map(b->bio, i); 353 354 /* 355 * If we're appending to a leaf node, we don't technically need FUA - 356 * this write just needs to be persisted before the next journal write, 357 * which will be marked FLUSH|FUA. 358 * 359 * Similarly if we're writing a new btree root - the pointer is going to 360 * be in the next journal entry. 361 * 362 * But if we're writing a new btree node (that isn't a root) or 363 * appending to a non leaf btree node, we need either FUA or a flush 364 * when we write the parent with the new pointer. FUA is cheaper than a 365 * flush, and writes appending to leaf nodes aren't blocking anything so 366 * just make all btree node writes FUA to keep things sane. 367 */ 368 369 bkey_copy(&k.key, &b->key); 370 SET_PTR_OFFSET(&k.key, 0, PTR_OFFSET(&k.key, 0) + 371 bset_sector_offset(&b->keys, i)); 372 373 if (!bch_bio_alloc_pages(b->bio, __GFP_NOWARN|GFP_NOWAIT)) { 374 struct bio_vec *bv; 375 void *addr = (void *) ((unsigned long) i & ~(PAGE_SIZE - 1)); 376 struct bvec_iter_all iter_all; 377 378 bio_for_each_segment_all(bv, b->bio, iter_all) { 379 memcpy(page_address(bv->bv_page), addr, PAGE_SIZE); 380 addr += PAGE_SIZE; 381 } 382 383 bch_submit_bbio(b->bio, b->c, &k.key, 0); 384 385 continue_at(cl, btree_node_write_done, NULL); 386 } else { 387 /* 388 * No problem for multipage bvec since the bio is 389 * just allocated 390 */ 391 b->bio->bi_vcnt = 0; 392 bch_bio_map(b->bio, i); 393 394 bch_submit_bbio(b->bio, b->c, &k.key, 0); 395 396 closure_sync(cl); 397 continue_at_nobarrier(cl, __btree_node_write_done, NULL); 398 } 399 } 400 401 void __bch_btree_node_write(struct btree *b, struct closure *parent) 402 { 403 struct bset *i = btree_bset_last(b); 404 405 lockdep_assert_held(&b->write_lock); 406 407 trace_bcache_btree_write(b); 408 409 BUG_ON(current->bio_list); 410 BUG_ON(b->written >= btree_blocks(b)); 411 BUG_ON(b->written && !i->keys); 412 BUG_ON(btree_bset_first(b)->seq != i->seq); 413 bch_check_keys(&b->keys, "writing"); 414 415 cancel_delayed_work(&b->work); 416 417 /* If caller isn't waiting for write, parent refcount is cache set */ 418 down(&b->io_mutex); 419 closure_init(&b->io, parent ?: &b->c->cl); 420 421 clear_bit(BTREE_NODE_dirty, &b->flags); 422 change_bit(BTREE_NODE_write_idx, &b->flags); 423 424 do_btree_node_write(b); 425 426 atomic_long_add(set_blocks(i, block_bytes(b->c->cache)) * b->c->cache->sb.block_size, 427 &PTR_CACHE(b->c, &b->key, 0)->btree_sectors_written); 428 429 b->written += set_blocks(i, block_bytes(b->c->cache)); 430 } 431 432 void bch_btree_node_write(struct btree *b, struct closure *parent) 433 { 434 unsigned int nsets = b->keys.nsets; 435 436 lockdep_assert_held(&b->lock); 437 438 __bch_btree_node_write(b, parent); 439 440 /* 441 * do verify if there was more than one set initially (i.e. we did a 442 * sort) and we sorted down to a single set: 443 */ 444 if (nsets && !b->keys.nsets) 445 bch_btree_verify(b); 446 447 bch_btree_init_next(b); 448 } 449 450 static void bch_btree_node_write_sync(struct btree *b) 451 { 452 struct closure cl; 453 454 closure_init_stack(&cl); 455 456 mutex_lock(&b->write_lock); 457 bch_btree_node_write(b, &cl); 458 mutex_unlock(&b->write_lock); 459 460 closure_sync(&cl); 461 } 462 463 static void btree_node_write_work(struct work_struct *w) 464 { 465 struct btree *b = container_of(to_delayed_work(w), struct btree, work); 466 467 mutex_lock(&b->write_lock); 468 if (btree_node_dirty(b)) 469 __bch_btree_node_write(b, NULL); 470 mutex_unlock(&b->write_lock); 471 } 472 473 static void bch_btree_leaf_dirty(struct btree *b, atomic_t *journal_ref) 474 { 475 struct bset *i = btree_bset_last(b); 476 struct btree_write *w = btree_current_write(b); 477 478 lockdep_assert_held(&b->write_lock); 479 480 BUG_ON(!b->written); 481 BUG_ON(!i->keys); 482 483 if (!btree_node_dirty(b)) 484 schedule_delayed_work(&b->work, 30 * HZ); 485 486 set_btree_node_dirty(b); 487 488 /* 489 * w->journal is always the oldest journal pin of all bkeys 490 * in the leaf node, to make sure the oldest jset seq won't 491 * be increased before this btree node is flushed. 492 */ 493 if (journal_ref) { 494 if (w->journal && 495 journal_pin_cmp(b->c, w->journal, journal_ref)) { 496 atomic_dec_bug(w->journal); 497 w->journal = NULL; 498 } 499 500 if (!w->journal) { 501 w->journal = journal_ref; 502 atomic_inc(w->journal); 503 } 504 } 505 506 /* Force write if set is too big */ 507 if (set_bytes(i) > PAGE_SIZE - 48 && 508 !current->bio_list) 509 bch_btree_node_write(b, NULL); 510 } 511 512 /* 513 * Btree in memory cache - allocation/freeing 514 * mca -> memory cache 515 */ 516 517 #define mca_reserve(c) (((!IS_ERR_OR_NULL(c->root) && c->root->level) \ 518 ? c->root->level : 1) * 8 + 16) 519 #define mca_can_free(c) \ 520 max_t(int, 0, c->btree_cache_used - mca_reserve(c)) 521 522 static void mca_data_free(struct btree *b) 523 { 524 BUG_ON(b->io_mutex.count != 1); 525 526 bch_btree_keys_free(&b->keys); 527 528 b->c->btree_cache_used--; 529 list_move(&b->list, &b->c->btree_cache_freed); 530 } 531 532 static void mca_bucket_free(struct btree *b) 533 { 534 BUG_ON(btree_node_dirty(b)); 535 536 b->key.ptr[0] = 0; 537 hlist_del_init_rcu(&b->hash); 538 list_move(&b->list, &b->c->btree_cache_freeable); 539 } 540 541 static unsigned int btree_order(struct bkey *k) 542 { 543 return ilog2(KEY_SIZE(k) / PAGE_SECTORS ?: 1); 544 } 545 546 static void mca_data_alloc(struct btree *b, struct bkey *k, gfp_t gfp) 547 { 548 if (!bch_btree_keys_alloc(&b->keys, 549 max_t(unsigned int, 550 ilog2(b->c->btree_pages), 551 btree_order(k)), 552 gfp)) { 553 b->c->btree_cache_used++; 554 list_move(&b->list, &b->c->btree_cache); 555 } else { 556 list_move(&b->list, &b->c->btree_cache_freed); 557 } 558 } 559 560 static struct btree *mca_bucket_alloc(struct cache_set *c, 561 struct bkey *k, gfp_t gfp) 562 { 563 /* 564 * kzalloc() is necessary here for initialization, 565 * see code comments in bch_btree_keys_init(). 566 */ 567 struct btree *b = kzalloc(sizeof(struct btree), gfp); 568 569 if (!b) 570 return NULL; 571 572 init_rwsem(&b->lock); 573 lockdep_set_novalidate_class(&b->lock); 574 mutex_init(&b->write_lock); 575 lockdep_set_novalidate_class(&b->write_lock); 576 INIT_LIST_HEAD(&b->list); 577 INIT_DELAYED_WORK(&b->work, btree_node_write_work); 578 b->c = c; 579 sema_init(&b->io_mutex, 1); 580 581 mca_data_alloc(b, k, gfp); 582 return b; 583 } 584 585 static int mca_reap(struct btree *b, unsigned int min_order, bool flush) 586 { 587 struct closure cl; 588 589 closure_init_stack(&cl); 590 lockdep_assert_held(&b->c->bucket_lock); 591 592 if (!down_write_trylock(&b->lock)) 593 return -ENOMEM; 594 595 BUG_ON(btree_node_dirty(b) && !b->keys.set[0].data); 596 597 if (b->keys.page_order < min_order) 598 goto out_unlock; 599 600 if (!flush) { 601 if (btree_node_dirty(b)) 602 goto out_unlock; 603 604 if (down_trylock(&b->io_mutex)) 605 goto out_unlock; 606 up(&b->io_mutex); 607 } 608 609 retry: 610 /* 611 * BTREE_NODE_dirty might be cleared in btree_flush_btree() by 612 * __bch_btree_node_write(). To avoid an extra flush, acquire 613 * b->write_lock before checking BTREE_NODE_dirty bit. 614 */ 615 mutex_lock(&b->write_lock); 616 /* 617 * If this btree node is selected in btree_flush_write() by journal 618 * code, delay and retry until the node is flushed by journal code 619 * and BTREE_NODE_journal_flush bit cleared by btree_flush_write(). 620 */ 621 if (btree_node_journal_flush(b)) { 622 pr_debug("bnode %p is flushing by journal, retry\n", b); 623 mutex_unlock(&b->write_lock); 624 udelay(1); 625 goto retry; 626 } 627 628 if (btree_node_dirty(b)) 629 __bch_btree_node_write(b, &cl); 630 mutex_unlock(&b->write_lock); 631 632 closure_sync(&cl); 633 634 /* wait for any in flight btree write */ 635 down(&b->io_mutex); 636 up(&b->io_mutex); 637 638 return 0; 639 out_unlock: 640 rw_unlock(true, b); 641 return -ENOMEM; 642 } 643 644 static unsigned long bch_mca_scan(struct shrinker *shrink, 645 struct shrink_control *sc) 646 { 647 struct cache_set *c = container_of(shrink, struct cache_set, shrink); 648 struct btree *b, *t; 649 unsigned long i, nr = sc->nr_to_scan; 650 unsigned long freed = 0; 651 unsigned int btree_cache_used; 652 653 if (c->shrinker_disabled) 654 return SHRINK_STOP; 655 656 if (c->btree_cache_alloc_lock) 657 return SHRINK_STOP; 658 659 /* Return -1 if we can't do anything right now */ 660 if (sc->gfp_mask & __GFP_IO) 661 mutex_lock(&c->bucket_lock); 662 else if (!mutex_trylock(&c->bucket_lock)) 663 return -1; 664 665 /* 666 * It's _really_ critical that we don't free too many btree nodes - we 667 * have to always leave ourselves a reserve. The reserve is how we 668 * guarantee that allocating memory for a new btree node can always 669 * succeed, so that inserting keys into the btree can always succeed and 670 * IO can always make forward progress: 671 */ 672 nr /= c->btree_pages; 673 if (nr == 0) 674 nr = 1; 675 nr = min_t(unsigned long, nr, mca_can_free(c)); 676 677 i = 0; 678 btree_cache_used = c->btree_cache_used; 679 list_for_each_entry_safe_reverse(b, t, &c->btree_cache_freeable, list) { 680 if (nr <= 0) 681 goto out; 682 683 if (!mca_reap(b, 0, false)) { 684 mca_data_free(b); 685 rw_unlock(true, b); 686 freed++; 687 } 688 nr--; 689 i++; 690 } 691 692 list_for_each_entry_safe_reverse(b, t, &c->btree_cache, list) { 693 if (nr <= 0 || i >= btree_cache_used) 694 goto out; 695 696 if (!mca_reap(b, 0, false)) { 697 mca_bucket_free(b); 698 mca_data_free(b); 699 rw_unlock(true, b); 700 freed++; 701 } 702 703 nr--; 704 i++; 705 } 706 out: 707 mutex_unlock(&c->bucket_lock); 708 return freed * c->btree_pages; 709 } 710 711 static unsigned long bch_mca_count(struct shrinker *shrink, 712 struct shrink_control *sc) 713 { 714 struct cache_set *c = container_of(shrink, struct cache_set, shrink); 715 716 if (c->shrinker_disabled) 717 return 0; 718 719 if (c->btree_cache_alloc_lock) 720 return 0; 721 722 return mca_can_free(c) * c->btree_pages; 723 } 724 725 void bch_btree_cache_free(struct cache_set *c) 726 { 727 struct btree *b; 728 struct closure cl; 729 730 closure_init_stack(&cl); 731 732 if (c->shrink.list.next) 733 unregister_shrinker(&c->shrink); 734 735 mutex_lock(&c->bucket_lock); 736 737 #ifdef CONFIG_BCACHE_DEBUG 738 if (c->verify_data) 739 list_move(&c->verify_data->list, &c->btree_cache); 740 741 free_pages((unsigned long) c->verify_ondisk, ilog2(meta_bucket_pages(&c->cache->sb))); 742 #endif 743 744 list_splice(&c->btree_cache_freeable, 745 &c->btree_cache); 746 747 while (!list_empty(&c->btree_cache)) { 748 b = list_first_entry(&c->btree_cache, struct btree, list); 749 750 /* 751 * This function is called by cache_set_free(), no I/O 752 * request on cache now, it is unnecessary to acquire 753 * b->write_lock before clearing BTREE_NODE_dirty anymore. 754 */ 755 if (btree_node_dirty(b)) { 756 btree_complete_write(b, btree_current_write(b)); 757 clear_bit(BTREE_NODE_dirty, &b->flags); 758 } 759 mca_data_free(b); 760 } 761 762 while (!list_empty(&c->btree_cache_freed)) { 763 b = list_first_entry(&c->btree_cache_freed, 764 struct btree, list); 765 list_del(&b->list); 766 cancel_delayed_work_sync(&b->work); 767 kfree(b); 768 } 769 770 mutex_unlock(&c->bucket_lock); 771 } 772 773 int bch_btree_cache_alloc(struct cache_set *c) 774 { 775 unsigned int i; 776 777 for (i = 0; i < mca_reserve(c); i++) 778 if (!mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL)) 779 return -ENOMEM; 780 781 list_splice_init(&c->btree_cache, 782 &c->btree_cache_freeable); 783 784 #ifdef CONFIG_BCACHE_DEBUG 785 mutex_init(&c->verify_lock); 786 787 c->verify_ondisk = (void *) 788 __get_free_pages(GFP_KERNEL|__GFP_COMP, 789 ilog2(meta_bucket_pages(&c->cache->sb))); 790 if (!c->verify_ondisk) { 791 /* 792 * Don't worry about the mca_rereserve buckets 793 * allocated in previous for-loop, they will be 794 * handled properly in bch_cache_set_unregister(). 795 */ 796 return -ENOMEM; 797 } 798 799 c->verify_data = mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL); 800 801 if (c->verify_data && 802 c->verify_data->keys.set->data) 803 list_del_init(&c->verify_data->list); 804 else 805 c->verify_data = NULL; 806 #endif 807 808 c->shrink.count_objects = bch_mca_count; 809 c->shrink.scan_objects = bch_mca_scan; 810 c->shrink.seeks = 4; 811 c->shrink.batch = c->btree_pages * 2; 812 813 if (register_shrinker(&c->shrink)) 814 pr_warn("bcache: %s: could not register shrinker\n", 815 __func__); 816 817 return 0; 818 } 819 820 /* Btree in memory cache - hash table */ 821 822 static struct hlist_head *mca_hash(struct cache_set *c, struct bkey *k) 823 { 824 return &c->bucket_hash[hash_32(PTR_HASH(c, k), BUCKET_HASH_BITS)]; 825 } 826 827 static struct btree *mca_find(struct cache_set *c, struct bkey *k) 828 { 829 struct btree *b; 830 831 rcu_read_lock(); 832 hlist_for_each_entry_rcu(b, mca_hash(c, k), hash) 833 if (PTR_HASH(c, &b->key) == PTR_HASH(c, k)) 834 goto out; 835 b = NULL; 836 out: 837 rcu_read_unlock(); 838 return b; 839 } 840 841 static int mca_cannibalize_lock(struct cache_set *c, struct btree_op *op) 842 { 843 spin_lock(&c->btree_cannibalize_lock); 844 if (likely(c->btree_cache_alloc_lock == NULL)) { 845 c->btree_cache_alloc_lock = current; 846 } else if (c->btree_cache_alloc_lock != current) { 847 if (op) 848 prepare_to_wait(&c->btree_cache_wait, &op->wait, 849 TASK_UNINTERRUPTIBLE); 850 spin_unlock(&c->btree_cannibalize_lock); 851 return -EINTR; 852 } 853 spin_unlock(&c->btree_cannibalize_lock); 854 855 return 0; 856 } 857 858 static struct btree *mca_cannibalize(struct cache_set *c, struct btree_op *op, 859 struct bkey *k) 860 { 861 struct btree *b; 862 863 trace_bcache_btree_cache_cannibalize(c); 864 865 if (mca_cannibalize_lock(c, op)) 866 return ERR_PTR(-EINTR); 867 868 list_for_each_entry_reverse(b, &c->btree_cache, list) 869 if (!mca_reap(b, btree_order(k), false)) 870 return b; 871 872 list_for_each_entry_reverse(b, &c->btree_cache, list) 873 if (!mca_reap(b, btree_order(k), true)) 874 return b; 875 876 WARN(1, "btree cache cannibalize failed\n"); 877 return ERR_PTR(-ENOMEM); 878 } 879 880 /* 881 * We can only have one thread cannibalizing other cached btree nodes at a time, 882 * or we'll deadlock. We use an open coded mutex to ensure that, which a 883 * cannibalize_bucket() will take. This means every time we unlock the root of 884 * the btree, we need to release this lock if we have it held. 885 */ 886 static void bch_cannibalize_unlock(struct cache_set *c) 887 { 888 spin_lock(&c->btree_cannibalize_lock); 889 if (c->btree_cache_alloc_lock == current) { 890 c->btree_cache_alloc_lock = NULL; 891 wake_up(&c->btree_cache_wait); 892 } 893 spin_unlock(&c->btree_cannibalize_lock); 894 } 895 896 static struct btree *mca_alloc(struct cache_set *c, struct btree_op *op, 897 struct bkey *k, int level) 898 { 899 struct btree *b; 900 901 BUG_ON(current->bio_list); 902 903 lockdep_assert_held(&c->bucket_lock); 904 905 if (mca_find(c, k)) 906 return NULL; 907 908 /* btree_free() doesn't free memory; it sticks the node on the end of 909 * the list. Check if there's any freed nodes there: 910 */ 911 list_for_each_entry(b, &c->btree_cache_freeable, list) 912 if (!mca_reap(b, btree_order(k), false)) 913 goto out; 914 915 /* We never free struct btree itself, just the memory that holds the on 916 * disk node. Check the freed list before allocating a new one: 917 */ 918 list_for_each_entry(b, &c->btree_cache_freed, list) 919 if (!mca_reap(b, 0, false)) { 920 mca_data_alloc(b, k, __GFP_NOWARN|GFP_NOIO); 921 if (!b->keys.set[0].data) 922 goto err; 923 else 924 goto out; 925 } 926 927 b = mca_bucket_alloc(c, k, __GFP_NOWARN|GFP_NOIO); 928 if (!b) 929 goto err; 930 931 BUG_ON(!down_write_trylock(&b->lock)); 932 if (!b->keys.set->data) 933 goto err; 934 out: 935 BUG_ON(b->io_mutex.count != 1); 936 937 bkey_copy(&b->key, k); 938 list_move(&b->list, &c->btree_cache); 939 hlist_del_init_rcu(&b->hash); 940 hlist_add_head_rcu(&b->hash, mca_hash(c, k)); 941 942 lock_set_subclass(&b->lock.dep_map, level + 1, _THIS_IP_); 943 b->parent = (void *) ~0UL; 944 b->flags = 0; 945 b->written = 0; 946 b->level = level; 947 948 if (!b->level) 949 bch_btree_keys_init(&b->keys, &bch_extent_keys_ops, 950 &b->c->expensive_debug_checks); 951 else 952 bch_btree_keys_init(&b->keys, &bch_btree_keys_ops, 953 &b->c->expensive_debug_checks); 954 955 return b; 956 err: 957 if (b) 958 rw_unlock(true, b); 959 960 b = mca_cannibalize(c, op, k); 961 if (!IS_ERR(b)) 962 goto out; 963 964 return b; 965 } 966 967 /* 968 * bch_btree_node_get - find a btree node in the cache and lock it, reading it 969 * in from disk if necessary. 970 * 971 * If IO is necessary and running under submit_bio_noacct, returns -EAGAIN. 972 * 973 * The btree node will have either a read or a write lock held, depending on 974 * level and op->lock. 975 */ 976 struct btree *bch_btree_node_get(struct cache_set *c, struct btree_op *op, 977 struct bkey *k, int level, bool write, 978 struct btree *parent) 979 { 980 int i = 0; 981 struct btree *b; 982 983 BUG_ON(level < 0); 984 retry: 985 b = mca_find(c, k); 986 987 if (!b) { 988 if (current->bio_list) 989 return ERR_PTR(-EAGAIN); 990 991 mutex_lock(&c->bucket_lock); 992 b = mca_alloc(c, op, k, level); 993 mutex_unlock(&c->bucket_lock); 994 995 if (!b) 996 goto retry; 997 if (IS_ERR(b)) 998 return b; 999 1000 bch_btree_node_read(b); 1001 1002 if (!write) 1003 downgrade_write(&b->lock); 1004 } else { 1005 rw_lock(write, b, level); 1006 if (PTR_HASH(c, &b->key) != PTR_HASH(c, k)) { 1007 rw_unlock(write, b); 1008 goto retry; 1009 } 1010 BUG_ON(b->level != level); 1011 } 1012 1013 if (btree_node_io_error(b)) { 1014 rw_unlock(write, b); 1015 return ERR_PTR(-EIO); 1016 } 1017 1018 BUG_ON(!b->written); 1019 1020 b->parent = parent; 1021 1022 for (; i <= b->keys.nsets && b->keys.set[i].size; i++) { 1023 prefetch(b->keys.set[i].tree); 1024 prefetch(b->keys.set[i].data); 1025 } 1026 1027 for (; i <= b->keys.nsets; i++) 1028 prefetch(b->keys.set[i].data); 1029 1030 return b; 1031 } 1032 1033 static void btree_node_prefetch(struct btree *parent, struct bkey *k) 1034 { 1035 struct btree *b; 1036 1037 mutex_lock(&parent->c->bucket_lock); 1038 b = mca_alloc(parent->c, NULL, k, parent->level - 1); 1039 mutex_unlock(&parent->c->bucket_lock); 1040 1041 if (!IS_ERR_OR_NULL(b)) { 1042 b->parent = parent; 1043 bch_btree_node_read(b); 1044 rw_unlock(true, b); 1045 } 1046 } 1047 1048 /* Btree alloc */ 1049 1050 static void btree_node_free(struct btree *b) 1051 { 1052 trace_bcache_btree_node_free(b); 1053 1054 BUG_ON(b == b->c->root); 1055 1056 retry: 1057 mutex_lock(&b->write_lock); 1058 /* 1059 * If the btree node is selected and flushing in btree_flush_write(), 1060 * delay and retry until the BTREE_NODE_journal_flush bit cleared, 1061 * then it is safe to free the btree node here. Otherwise this btree 1062 * node will be in race condition. 1063 */ 1064 if (btree_node_journal_flush(b)) { 1065 mutex_unlock(&b->write_lock); 1066 pr_debug("bnode %p journal_flush set, retry\n", b); 1067 udelay(1); 1068 goto retry; 1069 } 1070 1071 if (btree_node_dirty(b)) { 1072 btree_complete_write(b, btree_current_write(b)); 1073 clear_bit(BTREE_NODE_dirty, &b->flags); 1074 } 1075 1076 mutex_unlock(&b->write_lock); 1077 1078 cancel_delayed_work(&b->work); 1079 1080 mutex_lock(&b->c->bucket_lock); 1081 bch_bucket_free(b->c, &b->key); 1082 mca_bucket_free(b); 1083 mutex_unlock(&b->c->bucket_lock); 1084 } 1085 1086 struct btree *__bch_btree_node_alloc(struct cache_set *c, struct btree_op *op, 1087 int level, bool wait, 1088 struct btree *parent) 1089 { 1090 BKEY_PADDED(key) k; 1091 struct btree *b = ERR_PTR(-EAGAIN); 1092 1093 mutex_lock(&c->bucket_lock); 1094 retry: 1095 if (__bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, wait)) 1096 goto err; 1097 1098 bkey_put(c, &k.key); 1099 SET_KEY_SIZE(&k.key, c->btree_pages * PAGE_SECTORS); 1100 1101 b = mca_alloc(c, op, &k.key, level); 1102 if (IS_ERR(b)) 1103 goto err_free; 1104 1105 if (!b) { 1106 cache_bug(c, 1107 "Tried to allocate bucket that was in btree cache"); 1108 goto retry; 1109 } 1110 1111 b->parent = parent; 1112 bch_bset_init_next(&b->keys, b->keys.set->data, bset_magic(&b->c->cache->sb)); 1113 1114 mutex_unlock(&c->bucket_lock); 1115 1116 trace_bcache_btree_node_alloc(b); 1117 return b; 1118 err_free: 1119 bch_bucket_free(c, &k.key); 1120 err: 1121 mutex_unlock(&c->bucket_lock); 1122 1123 trace_bcache_btree_node_alloc_fail(c); 1124 return b; 1125 } 1126 1127 static struct btree *bch_btree_node_alloc(struct cache_set *c, 1128 struct btree_op *op, int level, 1129 struct btree *parent) 1130 { 1131 return __bch_btree_node_alloc(c, op, level, op != NULL, parent); 1132 } 1133 1134 static struct btree *btree_node_alloc_replacement(struct btree *b, 1135 struct btree_op *op) 1136 { 1137 struct btree *n = bch_btree_node_alloc(b->c, op, b->level, b->parent); 1138 1139 if (!IS_ERR_OR_NULL(n)) { 1140 mutex_lock(&n->write_lock); 1141 bch_btree_sort_into(&b->keys, &n->keys, &b->c->sort); 1142 bkey_copy_key(&n->key, &b->key); 1143 mutex_unlock(&n->write_lock); 1144 } 1145 1146 return n; 1147 } 1148 1149 static void make_btree_freeing_key(struct btree *b, struct bkey *k) 1150 { 1151 unsigned int i; 1152 1153 mutex_lock(&b->c->bucket_lock); 1154 1155 atomic_inc(&b->c->prio_blocked); 1156 1157 bkey_copy(k, &b->key); 1158 bkey_copy_key(k, &ZERO_KEY); 1159 1160 for (i = 0; i < KEY_PTRS(k); i++) 1161 SET_PTR_GEN(k, i, 1162 bch_inc_gen(PTR_CACHE(b->c, &b->key, i), 1163 PTR_BUCKET(b->c, &b->key, i))); 1164 1165 mutex_unlock(&b->c->bucket_lock); 1166 } 1167 1168 static int btree_check_reserve(struct btree *b, struct btree_op *op) 1169 { 1170 struct cache_set *c = b->c; 1171 struct cache *ca = c->cache; 1172 unsigned int reserve = (c->root->level - b->level) * 2 + 1; 1173 1174 mutex_lock(&c->bucket_lock); 1175 1176 if (fifo_used(&ca->free[RESERVE_BTREE]) < reserve) { 1177 if (op) 1178 prepare_to_wait(&c->btree_cache_wait, &op->wait, 1179 TASK_UNINTERRUPTIBLE); 1180 mutex_unlock(&c->bucket_lock); 1181 return -EINTR; 1182 } 1183 1184 mutex_unlock(&c->bucket_lock); 1185 1186 return mca_cannibalize_lock(b->c, op); 1187 } 1188 1189 /* Garbage collection */ 1190 1191 static uint8_t __bch_btree_mark_key(struct cache_set *c, int level, 1192 struct bkey *k) 1193 { 1194 uint8_t stale = 0; 1195 unsigned int i; 1196 struct bucket *g; 1197 1198 /* 1199 * ptr_invalid() can't return true for the keys that mark btree nodes as 1200 * freed, but since ptr_bad() returns true we'll never actually use them 1201 * for anything and thus we don't want mark their pointers here 1202 */ 1203 if (!bkey_cmp(k, &ZERO_KEY)) 1204 return stale; 1205 1206 for (i = 0; i < KEY_PTRS(k); i++) { 1207 if (!ptr_available(c, k, i)) 1208 continue; 1209 1210 g = PTR_BUCKET(c, k, i); 1211 1212 if (gen_after(g->last_gc, PTR_GEN(k, i))) 1213 g->last_gc = PTR_GEN(k, i); 1214 1215 if (ptr_stale(c, k, i)) { 1216 stale = max(stale, ptr_stale(c, k, i)); 1217 continue; 1218 } 1219 1220 cache_bug_on(GC_MARK(g) && 1221 (GC_MARK(g) == GC_MARK_METADATA) != (level != 0), 1222 c, "inconsistent ptrs: mark = %llu, level = %i", 1223 GC_MARK(g), level); 1224 1225 if (level) 1226 SET_GC_MARK(g, GC_MARK_METADATA); 1227 else if (KEY_DIRTY(k)) 1228 SET_GC_MARK(g, GC_MARK_DIRTY); 1229 else if (!GC_MARK(g)) 1230 SET_GC_MARK(g, GC_MARK_RECLAIMABLE); 1231 1232 /* guard against overflow */ 1233 SET_GC_SECTORS_USED(g, min_t(unsigned int, 1234 GC_SECTORS_USED(g) + KEY_SIZE(k), 1235 MAX_GC_SECTORS_USED)); 1236 1237 BUG_ON(!GC_SECTORS_USED(g)); 1238 } 1239 1240 return stale; 1241 } 1242 1243 #define btree_mark_key(b, k) __bch_btree_mark_key(b->c, b->level, k) 1244 1245 void bch_initial_mark_key(struct cache_set *c, int level, struct bkey *k) 1246 { 1247 unsigned int i; 1248 1249 for (i = 0; i < KEY_PTRS(k); i++) 1250 if (ptr_available(c, k, i) && 1251 !ptr_stale(c, k, i)) { 1252 struct bucket *b = PTR_BUCKET(c, k, i); 1253 1254 b->gen = PTR_GEN(k, i); 1255 1256 if (level && bkey_cmp(k, &ZERO_KEY)) 1257 b->prio = BTREE_PRIO; 1258 else if (!level && b->prio == BTREE_PRIO) 1259 b->prio = INITIAL_PRIO; 1260 } 1261 1262 __bch_btree_mark_key(c, level, k); 1263 } 1264 1265 void bch_update_bucket_in_use(struct cache_set *c, struct gc_stat *stats) 1266 { 1267 stats->in_use = (c->nbuckets - c->avail_nbuckets) * 100 / c->nbuckets; 1268 } 1269 1270 static bool btree_gc_mark_node(struct btree *b, struct gc_stat *gc) 1271 { 1272 uint8_t stale = 0; 1273 unsigned int keys = 0, good_keys = 0; 1274 struct bkey *k; 1275 struct btree_iter iter; 1276 struct bset_tree *t; 1277 1278 gc->nodes++; 1279 1280 for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid) { 1281 stale = max(stale, btree_mark_key(b, k)); 1282 keys++; 1283 1284 if (bch_ptr_bad(&b->keys, k)) 1285 continue; 1286 1287 gc->key_bytes += bkey_u64s(k); 1288 gc->nkeys++; 1289 good_keys++; 1290 1291 gc->data += KEY_SIZE(k); 1292 } 1293 1294 for (t = b->keys.set; t <= &b->keys.set[b->keys.nsets]; t++) 1295 btree_bug_on(t->size && 1296 bset_written(&b->keys, t) && 1297 bkey_cmp(&b->key, &t->end) < 0, 1298 b, "found short btree key in gc"); 1299 1300 if (b->c->gc_always_rewrite) 1301 return true; 1302 1303 if (stale > 10) 1304 return true; 1305 1306 if ((keys - good_keys) * 2 > keys) 1307 return true; 1308 1309 return false; 1310 } 1311 1312 #define GC_MERGE_NODES 4U 1313 1314 struct gc_merge_info { 1315 struct btree *b; 1316 unsigned int keys; 1317 }; 1318 1319 static int bch_btree_insert_node(struct btree *b, struct btree_op *op, 1320 struct keylist *insert_keys, 1321 atomic_t *journal_ref, 1322 struct bkey *replace_key); 1323 1324 static int btree_gc_coalesce(struct btree *b, struct btree_op *op, 1325 struct gc_stat *gc, struct gc_merge_info *r) 1326 { 1327 unsigned int i, nodes = 0, keys = 0, blocks; 1328 struct btree *new_nodes[GC_MERGE_NODES]; 1329 struct keylist keylist; 1330 struct closure cl; 1331 struct bkey *k; 1332 1333 bch_keylist_init(&keylist); 1334 1335 if (btree_check_reserve(b, NULL)) 1336 return 0; 1337 1338 memset(new_nodes, 0, sizeof(new_nodes)); 1339 closure_init_stack(&cl); 1340 1341 while (nodes < GC_MERGE_NODES && !IS_ERR_OR_NULL(r[nodes].b)) 1342 keys += r[nodes++].keys; 1343 1344 blocks = btree_default_blocks(b->c) * 2 / 3; 1345 1346 if (nodes < 2 || 1347 __set_blocks(b->keys.set[0].data, keys, 1348 block_bytes(b->c->cache)) > blocks * (nodes - 1)) 1349 return 0; 1350 1351 for (i = 0; i < nodes; i++) { 1352 new_nodes[i] = btree_node_alloc_replacement(r[i].b, NULL); 1353 if (IS_ERR_OR_NULL(new_nodes[i])) 1354 goto out_nocoalesce; 1355 } 1356 1357 /* 1358 * We have to check the reserve here, after we've allocated our new 1359 * nodes, to make sure the insert below will succeed - we also check 1360 * before as an optimization to potentially avoid a bunch of expensive 1361 * allocs/sorts 1362 */ 1363 if (btree_check_reserve(b, NULL)) 1364 goto out_nocoalesce; 1365 1366 for (i = 0; i < nodes; i++) 1367 mutex_lock(&new_nodes[i]->write_lock); 1368 1369 for (i = nodes - 1; i > 0; --i) { 1370 struct bset *n1 = btree_bset_first(new_nodes[i]); 1371 struct bset *n2 = btree_bset_first(new_nodes[i - 1]); 1372 struct bkey *k, *last = NULL; 1373 1374 keys = 0; 1375 1376 if (i > 1) { 1377 for (k = n2->start; 1378 k < bset_bkey_last(n2); 1379 k = bkey_next(k)) { 1380 if (__set_blocks(n1, n1->keys + keys + 1381 bkey_u64s(k), 1382 block_bytes(b->c->cache)) > blocks) 1383 break; 1384 1385 last = k; 1386 keys += bkey_u64s(k); 1387 } 1388 } else { 1389 /* 1390 * Last node we're not getting rid of - we're getting 1391 * rid of the node at r[0]. Have to try and fit all of 1392 * the remaining keys into this node; we can't ensure 1393 * they will always fit due to rounding and variable 1394 * length keys (shouldn't be possible in practice, 1395 * though) 1396 */ 1397 if (__set_blocks(n1, n1->keys + n2->keys, 1398 block_bytes(b->c->cache)) > 1399 btree_blocks(new_nodes[i])) 1400 goto out_unlock_nocoalesce; 1401 1402 keys = n2->keys; 1403 /* Take the key of the node we're getting rid of */ 1404 last = &r->b->key; 1405 } 1406 1407 BUG_ON(__set_blocks(n1, n1->keys + keys, block_bytes(b->c->cache)) > 1408 btree_blocks(new_nodes[i])); 1409 1410 if (last) 1411 bkey_copy_key(&new_nodes[i]->key, last); 1412 1413 memcpy(bset_bkey_last(n1), 1414 n2->start, 1415 (void *) bset_bkey_idx(n2, keys) - (void *) n2->start); 1416 1417 n1->keys += keys; 1418 r[i].keys = n1->keys; 1419 1420 memmove(n2->start, 1421 bset_bkey_idx(n2, keys), 1422 (void *) bset_bkey_last(n2) - 1423 (void *) bset_bkey_idx(n2, keys)); 1424 1425 n2->keys -= keys; 1426 1427 if (__bch_keylist_realloc(&keylist, 1428 bkey_u64s(&new_nodes[i]->key))) 1429 goto out_unlock_nocoalesce; 1430 1431 bch_btree_node_write(new_nodes[i], &cl); 1432 bch_keylist_add(&keylist, &new_nodes[i]->key); 1433 } 1434 1435 for (i = 0; i < nodes; i++) 1436 mutex_unlock(&new_nodes[i]->write_lock); 1437 1438 closure_sync(&cl); 1439 1440 /* We emptied out this node */ 1441 BUG_ON(btree_bset_first(new_nodes[0])->keys); 1442 btree_node_free(new_nodes[0]); 1443 rw_unlock(true, new_nodes[0]); 1444 new_nodes[0] = NULL; 1445 1446 for (i = 0; i < nodes; i++) { 1447 if (__bch_keylist_realloc(&keylist, bkey_u64s(&r[i].b->key))) 1448 goto out_nocoalesce; 1449 1450 make_btree_freeing_key(r[i].b, keylist.top); 1451 bch_keylist_push(&keylist); 1452 } 1453 1454 bch_btree_insert_node(b, op, &keylist, NULL, NULL); 1455 BUG_ON(!bch_keylist_empty(&keylist)); 1456 1457 for (i = 0; i < nodes; i++) { 1458 btree_node_free(r[i].b); 1459 rw_unlock(true, r[i].b); 1460 1461 r[i].b = new_nodes[i]; 1462 } 1463 1464 memmove(r, r + 1, sizeof(r[0]) * (nodes - 1)); 1465 r[nodes - 1].b = ERR_PTR(-EINTR); 1466 1467 trace_bcache_btree_gc_coalesce(nodes); 1468 gc->nodes--; 1469 1470 bch_keylist_free(&keylist); 1471 1472 /* Invalidated our iterator */ 1473 return -EINTR; 1474 1475 out_unlock_nocoalesce: 1476 for (i = 0; i < nodes; i++) 1477 mutex_unlock(&new_nodes[i]->write_lock); 1478 1479 out_nocoalesce: 1480 closure_sync(&cl); 1481 1482 while ((k = bch_keylist_pop(&keylist))) 1483 if (!bkey_cmp(k, &ZERO_KEY)) 1484 atomic_dec(&b->c->prio_blocked); 1485 bch_keylist_free(&keylist); 1486 1487 for (i = 0; i < nodes; i++) 1488 if (!IS_ERR_OR_NULL(new_nodes[i])) { 1489 btree_node_free(new_nodes[i]); 1490 rw_unlock(true, new_nodes[i]); 1491 } 1492 return 0; 1493 } 1494 1495 static int btree_gc_rewrite_node(struct btree *b, struct btree_op *op, 1496 struct btree *replace) 1497 { 1498 struct keylist keys; 1499 struct btree *n; 1500 1501 if (btree_check_reserve(b, NULL)) 1502 return 0; 1503 1504 n = btree_node_alloc_replacement(replace, NULL); 1505 1506 /* recheck reserve after allocating replacement node */ 1507 if (btree_check_reserve(b, NULL)) { 1508 btree_node_free(n); 1509 rw_unlock(true, n); 1510 return 0; 1511 } 1512 1513 bch_btree_node_write_sync(n); 1514 1515 bch_keylist_init(&keys); 1516 bch_keylist_add(&keys, &n->key); 1517 1518 make_btree_freeing_key(replace, keys.top); 1519 bch_keylist_push(&keys); 1520 1521 bch_btree_insert_node(b, op, &keys, NULL, NULL); 1522 BUG_ON(!bch_keylist_empty(&keys)); 1523 1524 btree_node_free(replace); 1525 rw_unlock(true, n); 1526 1527 /* Invalidated our iterator */ 1528 return -EINTR; 1529 } 1530 1531 static unsigned int btree_gc_count_keys(struct btree *b) 1532 { 1533 struct bkey *k; 1534 struct btree_iter iter; 1535 unsigned int ret = 0; 1536 1537 for_each_key_filter(&b->keys, k, &iter, bch_ptr_bad) 1538 ret += bkey_u64s(k); 1539 1540 return ret; 1541 } 1542 1543 static size_t btree_gc_min_nodes(struct cache_set *c) 1544 { 1545 size_t min_nodes; 1546 1547 /* 1548 * Since incremental GC would stop 100ms when front 1549 * side I/O comes, so when there are many btree nodes, 1550 * if GC only processes constant (100) nodes each time, 1551 * GC would last a long time, and the front side I/Os 1552 * would run out of the buckets (since no new bucket 1553 * can be allocated during GC), and be blocked again. 1554 * So GC should not process constant nodes, but varied 1555 * nodes according to the number of btree nodes, which 1556 * realized by dividing GC into constant(100) times, 1557 * so when there are many btree nodes, GC can process 1558 * more nodes each time, otherwise, GC will process less 1559 * nodes each time (but no less than MIN_GC_NODES) 1560 */ 1561 min_nodes = c->gc_stats.nodes / MAX_GC_TIMES; 1562 if (min_nodes < MIN_GC_NODES) 1563 min_nodes = MIN_GC_NODES; 1564 1565 return min_nodes; 1566 } 1567 1568 1569 static int btree_gc_recurse(struct btree *b, struct btree_op *op, 1570 struct closure *writes, struct gc_stat *gc) 1571 { 1572 int ret = 0; 1573 bool should_rewrite; 1574 struct bkey *k; 1575 struct btree_iter iter; 1576 struct gc_merge_info r[GC_MERGE_NODES]; 1577 struct gc_merge_info *i, *last = r + ARRAY_SIZE(r) - 1; 1578 1579 bch_btree_iter_init(&b->keys, &iter, &b->c->gc_done); 1580 1581 for (i = r; i < r + ARRAY_SIZE(r); i++) 1582 i->b = ERR_PTR(-EINTR); 1583 1584 while (1) { 1585 k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad); 1586 if (k) { 1587 r->b = bch_btree_node_get(b->c, op, k, b->level - 1, 1588 true, b); 1589 if (IS_ERR(r->b)) { 1590 ret = PTR_ERR(r->b); 1591 break; 1592 } 1593 1594 r->keys = btree_gc_count_keys(r->b); 1595 1596 ret = btree_gc_coalesce(b, op, gc, r); 1597 if (ret) 1598 break; 1599 } 1600 1601 if (!last->b) 1602 break; 1603 1604 if (!IS_ERR(last->b)) { 1605 should_rewrite = btree_gc_mark_node(last->b, gc); 1606 if (should_rewrite) { 1607 ret = btree_gc_rewrite_node(b, op, last->b); 1608 if (ret) 1609 break; 1610 } 1611 1612 if (last->b->level) { 1613 ret = btree_gc_recurse(last->b, op, writes, gc); 1614 if (ret) 1615 break; 1616 } 1617 1618 bkey_copy_key(&b->c->gc_done, &last->b->key); 1619 1620 /* 1621 * Must flush leaf nodes before gc ends, since replace 1622 * operations aren't journalled 1623 */ 1624 mutex_lock(&last->b->write_lock); 1625 if (btree_node_dirty(last->b)) 1626 bch_btree_node_write(last->b, writes); 1627 mutex_unlock(&last->b->write_lock); 1628 rw_unlock(true, last->b); 1629 } 1630 1631 memmove(r + 1, r, sizeof(r[0]) * (GC_MERGE_NODES - 1)); 1632 r->b = NULL; 1633 1634 if (atomic_read(&b->c->search_inflight) && 1635 gc->nodes >= gc->nodes_pre + btree_gc_min_nodes(b->c)) { 1636 gc->nodes_pre = gc->nodes; 1637 ret = -EAGAIN; 1638 break; 1639 } 1640 1641 if (need_resched()) { 1642 ret = -EAGAIN; 1643 break; 1644 } 1645 } 1646 1647 for (i = r; i < r + ARRAY_SIZE(r); i++) 1648 if (!IS_ERR_OR_NULL(i->b)) { 1649 mutex_lock(&i->b->write_lock); 1650 if (btree_node_dirty(i->b)) 1651 bch_btree_node_write(i->b, writes); 1652 mutex_unlock(&i->b->write_lock); 1653 rw_unlock(true, i->b); 1654 } 1655 1656 return ret; 1657 } 1658 1659 static int bch_btree_gc_root(struct btree *b, struct btree_op *op, 1660 struct closure *writes, struct gc_stat *gc) 1661 { 1662 struct btree *n = NULL; 1663 int ret = 0; 1664 bool should_rewrite; 1665 1666 should_rewrite = btree_gc_mark_node(b, gc); 1667 if (should_rewrite) { 1668 n = btree_node_alloc_replacement(b, NULL); 1669 1670 if (!IS_ERR_OR_NULL(n)) { 1671 bch_btree_node_write_sync(n); 1672 1673 bch_btree_set_root(n); 1674 btree_node_free(b); 1675 rw_unlock(true, n); 1676 1677 return -EINTR; 1678 } 1679 } 1680 1681 __bch_btree_mark_key(b->c, b->level + 1, &b->key); 1682 1683 if (b->level) { 1684 ret = btree_gc_recurse(b, op, writes, gc); 1685 if (ret) 1686 return ret; 1687 } 1688 1689 bkey_copy_key(&b->c->gc_done, &b->key); 1690 1691 return ret; 1692 } 1693 1694 static void btree_gc_start(struct cache_set *c) 1695 { 1696 struct cache *ca; 1697 struct bucket *b; 1698 1699 if (!c->gc_mark_valid) 1700 return; 1701 1702 mutex_lock(&c->bucket_lock); 1703 1704 c->gc_mark_valid = 0; 1705 c->gc_done = ZERO_KEY; 1706 1707 ca = c->cache; 1708 for_each_bucket(b, ca) { 1709 b->last_gc = b->gen; 1710 if (!atomic_read(&b->pin)) { 1711 SET_GC_MARK(b, 0); 1712 SET_GC_SECTORS_USED(b, 0); 1713 } 1714 } 1715 1716 mutex_unlock(&c->bucket_lock); 1717 } 1718 1719 static void bch_btree_gc_finish(struct cache_set *c) 1720 { 1721 struct bucket *b; 1722 struct cache *ca; 1723 unsigned int i, j; 1724 uint64_t *k; 1725 1726 mutex_lock(&c->bucket_lock); 1727 1728 set_gc_sectors(c); 1729 c->gc_mark_valid = 1; 1730 c->need_gc = 0; 1731 1732 for (i = 0; i < KEY_PTRS(&c->uuid_bucket); i++) 1733 SET_GC_MARK(PTR_BUCKET(c, &c->uuid_bucket, i), 1734 GC_MARK_METADATA); 1735 1736 /* don't reclaim buckets to which writeback keys point */ 1737 rcu_read_lock(); 1738 for (i = 0; i < c->devices_max_used; i++) { 1739 struct bcache_device *d = c->devices[i]; 1740 struct cached_dev *dc; 1741 struct keybuf_key *w, *n; 1742 1743 if (!d || UUID_FLASH_ONLY(&c->uuids[i])) 1744 continue; 1745 dc = container_of(d, struct cached_dev, disk); 1746 1747 spin_lock(&dc->writeback_keys.lock); 1748 rbtree_postorder_for_each_entry_safe(w, n, 1749 &dc->writeback_keys.keys, node) 1750 for (j = 0; j < KEY_PTRS(&w->key); j++) 1751 SET_GC_MARK(PTR_BUCKET(c, &w->key, j), 1752 GC_MARK_DIRTY); 1753 spin_unlock(&dc->writeback_keys.lock); 1754 } 1755 rcu_read_unlock(); 1756 1757 c->avail_nbuckets = 0; 1758 1759 ca = c->cache; 1760 ca->invalidate_needs_gc = 0; 1761 1762 for (k = ca->sb.d; k < ca->sb.d + ca->sb.keys; k++) 1763 SET_GC_MARK(ca->buckets + *k, GC_MARK_METADATA); 1764 1765 for (k = ca->prio_buckets; 1766 k < ca->prio_buckets + prio_buckets(ca) * 2; k++) 1767 SET_GC_MARK(ca->buckets + *k, GC_MARK_METADATA); 1768 1769 for_each_bucket(b, ca) { 1770 c->need_gc = max(c->need_gc, bucket_gc_gen(b)); 1771 1772 if (atomic_read(&b->pin)) 1773 continue; 1774 1775 BUG_ON(!GC_MARK(b) && GC_SECTORS_USED(b)); 1776 1777 if (!GC_MARK(b) || GC_MARK(b) == GC_MARK_RECLAIMABLE) 1778 c->avail_nbuckets++; 1779 } 1780 1781 mutex_unlock(&c->bucket_lock); 1782 } 1783 1784 static void bch_btree_gc(struct cache_set *c) 1785 { 1786 int ret; 1787 struct gc_stat stats; 1788 struct closure writes; 1789 struct btree_op op; 1790 uint64_t start_time = local_clock(); 1791 1792 trace_bcache_gc_start(c); 1793 1794 memset(&stats, 0, sizeof(struct gc_stat)); 1795 closure_init_stack(&writes); 1796 bch_btree_op_init(&op, SHRT_MAX); 1797 1798 btree_gc_start(c); 1799 1800 /* if CACHE_SET_IO_DISABLE set, gc thread should stop too */ 1801 do { 1802 ret = bcache_btree_root(gc_root, c, &op, &writes, &stats); 1803 closure_sync(&writes); 1804 cond_resched(); 1805 1806 if (ret == -EAGAIN) 1807 schedule_timeout_interruptible(msecs_to_jiffies 1808 (GC_SLEEP_MS)); 1809 else if (ret) 1810 pr_warn("gc failed!\n"); 1811 } while (ret && !test_bit(CACHE_SET_IO_DISABLE, &c->flags)); 1812 1813 bch_btree_gc_finish(c); 1814 wake_up_allocators(c); 1815 1816 bch_time_stats_update(&c->btree_gc_time, start_time); 1817 1818 stats.key_bytes *= sizeof(uint64_t); 1819 stats.data <<= 9; 1820 bch_update_bucket_in_use(c, &stats); 1821 memcpy(&c->gc_stats, &stats, sizeof(struct gc_stat)); 1822 1823 trace_bcache_gc_end(c); 1824 1825 bch_moving_gc(c); 1826 } 1827 1828 static bool gc_should_run(struct cache_set *c) 1829 { 1830 struct cache *ca = c->cache; 1831 1832 if (ca->invalidate_needs_gc) 1833 return true; 1834 1835 if (atomic_read(&c->sectors_to_gc) < 0) 1836 return true; 1837 1838 return false; 1839 } 1840 1841 static int bch_gc_thread(void *arg) 1842 { 1843 struct cache_set *c = arg; 1844 1845 while (1) { 1846 wait_event_interruptible(c->gc_wait, 1847 kthread_should_stop() || 1848 test_bit(CACHE_SET_IO_DISABLE, &c->flags) || 1849 gc_should_run(c)); 1850 1851 if (kthread_should_stop() || 1852 test_bit(CACHE_SET_IO_DISABLE, &c->flags)) 1853 break; 1854 1855 set_gc_sectors(c); 1856 bch_btree_gc(c); 1857 } 1858 1859 wait_for_kthread_stop(); 1860 return 0; 1861 } 1862 1863 int bch_gc_thread_start(struct cache_set *c) 1864 { 1865 c->gc_thread = kthread_run(bch_gc_thread, c, "bcache_gc"); 1866 return PTR_ERR_OR_ZERO(c->gc_thread); 1867 } 1868 1869 /* Initial partial gc */ 1870 1871 static int bch_btree_check_recurse(struct btree *b, struct btree_op *op) 1872 { 1873 int ret = 0; 1874 struct bkey *k, *p = NULL; 1875 struct btree_iter iter; 1876 1877 for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid) 1878 bch_initial_mark_key(b->c, b->level, k); 1879 1880 bch_initial_mark_key(b->c, b->level + 1, &b->key); 1881 1882 if (b->level) { 1883 bch_btree_iter_init(&b->keys, &iter, NULL); 1884 1885 do { 1886 k = bch_btree_iter_next_filter(&iter, &b->keys, 1887 bch_ptr_bad); 1888 if (k) { 1889 btree_node_prefetch(b, k); 1890 /* 1891 * initiallize c->gc_stats.nodes 1892 * for incremental GC 1893 */ 1894 b->c->gc_stats.nodes++; 1895 } 1896 1897 if (p) 1898 ret = bcache_btree(check_recurse, p, b, op); 1899 1900 p = k; 1901 } while (p && !ret); 1902 } 1903 1904 return ret; 1905 } 1906 1907 1908 static int bch_btree_check_thread(void *arg) 1909 { 1910 int ret; 1911 struct btree_check_info *info = arg; 1912 struct btree_check_state *check_state = info->state; 1913 struct cache_set *c = check_state->c; 1914 struct btree_iter iter; 1915 struct bkey *k, *p; 1916 int cur_idx, prev_idx, skip_nr; 1917 1918 k = p = NULL; 1919 cur_idx = prev_idx = 0; 1920 ret = 0; 1921 1922 /* root node keys are checked before thread created */ 1923 bch_btree_iter_init(&c->root->keys, &iter, NULL); 1924 k = bch_btree_iter_next_filter(&iter, &c->root->keys, bch_ptr_bad); 1925 BUG_ON(!k); 1926 1927 p = k; 1928 while (k) { 1929 /* 1930 * Fetch a root node key index, skip the keys which 1931 * should be fetched by other threads, then check the 1932 * sub-tree indexed by the fetched key. 1933 */ 1934 spin_lock(&check_state->idx_lock); 1935 cur_idx = check_state->key_idx; 1936 check_state->key_idx++; 1937 spin_unlock(&check_state->idx_lock); 1938 1939 skip_nr = cur_idx - prev_idx; 1940 1941 while (skip_nr) { 1942 k = bch_btree_iter_next_filter(&iter, 1943 &c->root->keys, 1944 bch_ptr_bad); 1945 if (k) 1946 p = k; 1947 else { 1948 /* 1949 * No more keys to check in root node, 1950 * current checking threads are enough, 1951 * stop creating more. 1952 */ 1953 atomic_set(&check_state->enough, 1); 1954 /* Update check_state->enough earlier */ 1955 smp_mb__after_atomic(); 1956 goto out; 1957 } 1958 skip_nr--; 1959 cond_resched(); 1960 } 1961 1962 if (p) { 1963 struct btree_op op; 1964 1965 btree_node_prefetch(c->root, p); 1966 c->gc_stats.nodes++; 1967 bch_btree_op_init(&op, 0); 1968 ret = bcache_btree(check_recurse, p, c->root, &op); 1969 if (ret) 1970 goto out; 1971 } 1972 p = NULL; 1973 prev_idx = cur_idx; 1974 cond_resched(); 1975 } 1976 1977 out: 1978 info->result = ret; 1979 /* update check_state->started among all CPUs */ 1980 smp_mb__before_atomic(); 1981 if (atomic_dec_and_test(&check_state->started)) 1982 wake_up(&check_state->wait); 1983 1984 return ret; 1985 } 1986 1987 1988 1989 static int bch_btree_chkthread_nr(void) 1990 { 1991 int n = num_online_cpus()/2; 1992 1993 if (n == 0) 1994 n = 1; 1995 else if (n > BCH_BTR_CHKTHREAD_MAX) 1996 n = BCH_BTR_CHKTHREAD_MAX; 1997 1998 return n; 1999 } 2000 2001 int bch_btree_check(struct cache_set *c) 2002 { 2003 int ret = 0; 2004 int i; 2005 struct bkey *k = NULL; 2006 struct btree_iter iter; 2007 struct btree_check_state *check_state; 2008 char name[32]; 2009 2010 /* check and mark root node keys */ 2011 for_each_key_filter(&c->root->keys, k, &iter, bch_ptr_invalid) 2012 bch_initial_mark_key(c, c->root->level, k); 2013 2014 bch_initial_mark_key(c, c->root->level + 1, &c->root->key); 2015 2016 if (c->root->level == 0) 2017 return 0; 2018 2019 check_state = kzalloc(sizeof(struct btree_check_state), GFP_KERNEL); 2020 if (!check_state) 2021 return -ENOMEM; 2022 2023 check_state->c = c; 2024 check_state->total_threads = bch_btree_chkthread_nr(); 2025 check_state->key_idx = 0; 2026 spin_lock_init(&check_state->idx_lock); 2027 atomic_set(&check_state->started, 0); 2028 atomic_set(&check_state->enough, 0); 2029 init_waitqueue_head(&check_state->wait); 2030 2031 /* 2032 * Run multiple threads to check btree nodes in parallel, 2033 * if check_state->enough is non-zero, it means current 2034 * running check threads are enough, unncessary to create 2035 * more. 2036 */ 2037 for (i = 0; i < check_state->total_threads; i++) { 2038 /* fetch latest check_state->enough earlier */ 2039 smp_mb__before_atomic(); 2040 if (atomic_read(&check_state->enough)) 2041 break; 2042 2043 check_state->infos[i].result = 0; 2044 check_state->infos[i].state = check_state; 2045 snprintf(name, sizeof(name), "bch_btrchk[%u]", i); 2046 atomic_inc(&check_state->started); 2047 2048 check_state->infos[i].thread = 2049 kthread_run(bch_btree_check_thread, 2050 &check_state->infos[i], 2051 name); 2052 if (IS_ERR(check_state->infos[i].thread)) { 2053 pr_err("fails to run thread bch_btrchk[%d]\n", i); 2054 for (--i; i >= 0; i--) 2055 kthread_stop(check_state->infos[i].thread); 2056 ret = -ENOMEM; 2057 goto out; 2058 } 2059 } 2060 2061 wait_event_interruptible(check_state->wait, 2062 atomic_read(&check_state->started) == 0 || 2063 test_bit(CACHE_SET_IO_DISABLE, &c->flags)); 2064 2065 for (i = 0; i < check_state->total_threads; i++) { 2066 if (check_state->infos[i].result) { 2067 ret = check_state->infos[i].result; 2068 goto out; 2069 } 2070 } 2071 2072 out: 2073 kfree(check_state); 2074 return ret; 2075 } 2076 2077 void bch_initial_gc_finish(struct cache_set *c) 2078 { 2079 struct cache *ca = c->cache; 2080 struct bucket *b; 2081 2082 bch_btree_gc_finish(c); 2083 2084 mutex_lock(&c->bucket_lock); 2085 2086 /* 2087 * We need to put some unused buckets directly on the prio freelist in 2088 * order to get the allocator thread started - it needs freed buckets in 2089 * order to rewrite the prios and gens, and it needs to rewrite prios 2090 * and gens in order to free buckets. 2091 * 2092 * This is only safe for buckets that have no live data in them, which 2093 * there should always be some of. 2094 */ 2095 for_each_bucket(b, ca) { 2096 if (fifo_full(&ca->free[RESERVE_PRIO]) && 2097 fifo_full(&ca->free[RESERVE_BTREE])) 2098 break; 2099 2100 if (bch_can_invalidate_bucket(ca, b) && 2101 !GC_MARK(b)) { 2102 __bch_invalidate_one_bucket(ca, b); 2103 if (!fifo_push(&ca->free[RESERVE_PRIO], 2104 b - ca->buckets)) 2105 fifo_push(&ca->free[RESERVE_BTREE], 2106 b - ca->buckets); 2107 } 2108 } 2109 2110 mutex_unlock(&c->bucket_lock); 2111 } 2112 2113 /* Btree insertion */ 2114 2115 static bool btree_insert_key(struct btree *b, struct bkey *k, 2116 struct bkey *replace_key) 2117 { 2118 unsigned int status; 2119 2120 BUG_ON(bkey_cmp(k, &b->key) > 0); 2121 2122 status = bch_btree_insert_key(&b->keys, k, replace_key); 2123 if (status != BTREE_INSERT_STATUS_NO_INSERT) { 2124 bch_check_keys(&b->keys, "%u for %s", status, 2125 replace_key ? "replace" : "insert"); 2126 2127 trace_bcache_btree_insert_key(b, k, replace_key != NULL, 2128 status); 2129 return true; 2130 } else 2131 return false; 2132 } 2133 2134 static size_t insert_u64s_remaining(struct btree *b) 2135 { 2136 long ret = bch_btree_keys_u64s_remaining(&b->keys); 2137 2138 /* 2139 * Might land in the middle of an existing extent and have to split it 2140 */ 2141 if (b->keys.ops->is_extents) 2142 ret -= KEY_MAX_U64S; 2143 2144 return max(ret, 0L); 2145 } 2146 2147 static bool bch_btree_insert_keys(struct btree *b, struct btree_op *op, 2148 struct keylist *insert_keys, 2149 struct bkey *replace_key) 2150 { 2151 bool ret = false; 2152 int oldsize = bch_count_data(&b->keys); 2153 2154 while (!bch_keylist_empty(insert_keys)) { 2155 struct bkey *k = insert_keys->keys; 2156 2157 if (bkey_u64s(k) > insert_u64s_remaining(b)) 2158 break; 2159 2160 if (bkey_cmp(k, &b->key) <= 0) { 2161 if (!b->level) 2162 bkey_put(b->c, k); 2163 2164 ret |= btree_insert_key(b, k, replace_key); 2165 bch_keylist_pop_front(insert_keys); 2166 } else if (bkey_cmp(&START_KEY(k), &b->key) < 0) { 2167 BKEY_PADDED(key) temp; 2168 bkey_copy(&temp.key, insert_keys->keys); 2169 2170 bch_cut_back(&b->key, &temp.key); 2171 bch_cut_front(&b->key, insert_keys->keys); 2172 2173 ret |= btree_insert_key(b, &temp.key, replace_key); 2174 break; 2175 } else { 2176 break; 2177 } 2178 } 2179 2180 if (!ret) 2181 op->insert_collision = true; 2182 2183 BUG_ON(!bch_keylist_empty(insert_keys) && b->level); 2184 2185 BUG_ON(bch_count_data(&b->keys) < oldsize); 2186 return ret; 2187 } 2188 2189 static int btree_split(struct btree *b, struct btree_op *op, 2190 struct keylist *insert_keys, 2191 struct bkey *replace_key) 2192 { 2193 bool split; 2194 struct btree *n1, *n2 = NULL, *n3 = NULL; 2195 uint64_t start_time = local_clock(); 2196 struct closure cl; 2197 struct keylist parent_keys; 2198 2199 closure_init_stack(&cl); 2200 bch_keylist_init(&parent_keys); 2201 2202 if (btree_check_reserve(b, op)) { 2203 if (!b->level) 2204 return -EINTR; 2205 else 2206 WARN(1, "insufficient reserve for split\n"); 2207 } 2208 2209 n1 = btree_node_alloc_replacement(b, op); 2210 if (IS_ERR(n1)) 2211 goto err; 2212 2213 split = set_blocks(btree_bset_first(n1), 2214 block_bytes(n1->c->cache)) > (btree_blocks(b) * 4) / 5; 2215 2216 if (split) { 2217 unsigned int keys = 0; 2218 2219 trace_bcache_btree_node_split(b, btree_bset_first(n1)->keys); 2220 2221 n2 = bch_btree_node_alloc(b->c, op, b->level, b->parent); 2222 if (IS_ERR(n2)) 2223 goto err_free1; 2224 2225 if (!b->parent) { 2226 n3 = bch_btree_node_alloc(b->c, op, b->level + 1, NULL); 2227 if (IS_ERR(n3)) 2228 goto err_free2; 2229 } 2230 2231 mutex_lock(&n1->write_lock); 2232 mutex_lock(&n2->write_lock); 2233 2234 bch_btree_insert_keys(n1, op, insert_keys, replace_key); 2235 2236 /* 2237 * Has to be a linear search because we don't have an auxiliary 2238 * search tree yet 2239 */ 2240 2241 while (keys < (btree_bset_first(n1)->keys * 3) / 5) 2242 keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1), 2243 keys)); 2244 2245 bkey_copy_key(&n1->key, 2246 bset_bkey_idx(btree_bset_first(n1), keys)); 2247 keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1), keys)); 2248 2249 btree_bset_first(n2)->keys = btree_bset_first(n1)->keys - keys; 2250 btree_bset_first(n1)->keys = keys; 2251 2252 memcpy(btree_bset_first(n2)->start, 2253 bset_bkey_last(btree_bset_first(n1)), 2254 btree_bset_first(n2)->keys * sizeof(uint64_t)); 2255 2256 bkey_copy_key(&n2->key, &b->key); 2257 2258 bch_keylist_add(&parent_keys, &n2->key); 2259 bch_btree_node_write(n2, &cl); 2260 mutex_unlock(&n2->write_lock); 2261 rw_unlock(true, n2); 2262 } else { 2263 trace_bcache_btree_node_compact(b, btree_bset_first(n1)->keys); 2264 2265 mutex_lock(&n1->write_lock); 2266 bch_btree_insert_keys(n1, op, insert_keys, replace_key); 2267 } 2268 2269 bch_keylist_add(&parent_keys, &n1->key); 2270 bch_btree_node_write(n1, &cl); 2271 mutex_unlock(&n1->write_lock); 2272 2273 if (n3) { 2274 /* Depth increases, make a new root */ 2275 mutex_lock(&n3->write_lock); 2276 bkey_copy_key(&n3->key, &MAX_KEY); 2277 bch_btree_insert_keys(n3, op, &parent_keys, NULL); 2278 bch_btree_node_write(n3, &cl); 2279 mutex_unlock(&n3->write_lock); 2280 2281 closure_sync(&cl); 2282 bch_btree_set_root(n3); 2283 rw_unlock(true, n3); 2284 } else if (!b->parent) { 2285 /* Root filled up but didn't need to be split */ 2286 closure_sync(&cl); 2287 bch_btree_set_root(n1); 2288 } else { 2289 /* Split a non root node */ 2290 closure_sync(&cl); 2291 make_btree_freeing_key(b, parent_keys.top); 2292 bch_keylist_push(&parent_keys); 2293 2294 bch_btree_insert_node(b->parent, op, &parent_keys, NULL, NULL); 2295 BUG_ON(!bch_keylist_empty(&parent_keys)); 2296 } 2297 2298 btree_node_free(b); 2299 rw_unlock(true, n1); 2300 2301 bch_time_stats_update(&b->c->btree_split_time, start_time); 2302 2303 return 0; 2304 err_free2: 2305 bkey_put(b->c, &n2->key); 2306 btree_node_free(n2); 2307 rw_unlock(true, n2); 2308 err_free1: 2309 bkey_put(b->c, &n1->key); 2310 btree_node_free(n1); 2311 rw_unlock(true, n1); 2312 err: 2313 WARN(1, "bcache: btree split failed (level %u)", b->level); 2314 2315 if (n3 == ERR_PTR(-EAGAIN) || 2316 n2 == ERR_PTR(-EAGAIN) || 2317 n1 == ERR_PTR(-EAGAIN)) 2318 return -EAGAIN; 2319 2320 return -ENOMEM; 2321 } 2322 2323 static int bch_btree_insert_node(struct btree *b, struct btree_op *op, 2324 struct keylist *insert_keys, 2325 atomic_t *journal_ref, 2326 struct bkey *replace_key) 2327 { 2328 struct closure cl; 2329 2330 BUG_ON(b->level && replace_key); 2331 2332 closure_init_stack(&cl); 2333 2334 mutex_lock(&b->write_lock); 2335 2336 if (write_block(b) != btree_bset_last(b) && 2337 b->keys.last_set_unwritten) 2338 bch_btree_init_next(b); /* just wrote a set */ 2339 2340 if (bch_keylist_nkeys(insert_keys) > insert_u64s_remaining(b)) { 2341 mutex_unlock(&b->write_lock); 2342 goto split; 2343 } 2344 2345 BUG_ON(write_block(b) != btree_bset_last(b)); 2346 2347 if (bch_btree_insert_keys(b, op, insert_keys, replace_key)) { 2348 if (!b->level) 2349 bch_btree_leaf_dirty(b, journal_ref); 2350 else 2351 bch_btree_node_write(b, &cl); 2352 } 2353 2354 mutex_unlock(&b->write_lock); 2355 2356 /* wait for btree node write if necessary, after unlock */ 2357 closure_sync(&cl); 2358 2359 return 0; 2360 split: 2361 if (current->bio_list) { 2362 op->lock = b->c->root->level + 1; 2363 return -EAGAIN; 2364 } else if (op->lock <= b->c->root->level) { 2365 op->lock = b->c->root->level + 1; 2366 return -EINTR; 2367 } else { 2368 /* Invalidated all iterators */ 2369 int ret = btree_split(b, op, insert_keys, replace_key); 2370 2371 if (bch_keylist_empty(insert_keys)) 2372 return 0; 2373 else if (!ret) 2374 return -EINTR; 2375 return ret; 2376 } 2377 } 2378 2379 int bch_btree_insert_check_key(struct btree *b, struct btree_op *op, 2380 struct bkey *check_key) 2381 { 2382 int ret = -EINTR; 2383 uint64_t btree_ptr = b->key.ptr[0]; 2384 unsigned long seq = b->seq; 2385 struct keylist insert; 2386 bool upgrade = op->lock == -1; 2387 2388 bch_keylist_init(&insert); 2389 2390 if (upgrade) { 2391 rw_unlock(false, b); 2392 rw_lock(true, b, b->level); 2393 2394 if (b->key.ptr[0] != btree_ptr || 2395 b->seq != seq + 1) { 2396 op->lock = b->level; 2397 goto out; 2398 } 2399 } 2400 2401 SET_KEY_PTRS(check_key, 1); 2402 get_random_bytes(&check_key->ptr[0], sizeof(uint64_t)); 2403 2404 SET_PTR_DEV(check_key, 0, PTR_CHECK_DEV); 2405 2406 bch_keylist_add(&insert, check_key); 2407 2408 ret = bch_btree_insert_node(b, op, &insert, NULL, NULL); 2409 2410 BUG_ON(!ret && !bch_keylist_empty(&insert)); 2411 out: 2412 if (upgrade) 2413 downgrade_write(&b->lock); 2414 return ret; 2415 } 2416 2417 struct btree_insert_op { 2418 struct btree_op op; 2419 struct keylist *keys; 2420 atomic_t *journal_ref; 2421 struct bkey *replace_key; 2422 }; 2423 2424 static int btree_insert_fn(struct btree_op *b_op, struct btree *b) 2425 { 2426 struct btree_insert_op *op = container_of(b_op, 2427 struct btree_insert_op, op); 2428 2429 int ret = bch_btree_insert_node(b, &op->op, op->keys, 2430 op->journal_ref, op->replace_key); 2431 if (ret && !bch_keylist_empty(op->keys)) 2432 return ret; 2433 else 2434 return MAP_DONE; 2435 } 2436 2437 int bch_btree_insert(struct cache_set *c, struct keylist *keys, 2438 atomic_t *journal_ref, struct bkey *replace_key) 2439 { 2440 struct btree_insert_op op; 2441 int ret = 0; 2442 2443 BUG_ON(current->bio_list); 2444 BUG_ON(bch_keylist_empty(keys)); 2445 2446 bch_btree_op_init(&op.op, 0); 2447 op.keys = keys; 2448 op.journal_ref = journal_ref; 2449 op.replace_key = replace_key; 2450 2451 while (!ret && !bch_keylist_empty(keys)) { 2452 op.op.lock = 0; 2453 ret = bch_btree_map_leaf_nodes(&op.op, c, 2454 &START_KEY(keys->keys), 2455 btree_insert_fn); 2456 } 2457 2458 if (ret) { 2459 struct bkey *k; 2460 2461 pr_err("error %i\n", ret); 2462 2463 while ((k = bch_keylist_pop(keys))) 2464 bkey_put(c, k); 2465 } else if (op.op.insert_collision) 2466 ret = -ESRCH; 2467 2468 return ret; 2469 } 2470 2471 void bch_btree_set_root(struct btree *b) 2472 { 2473 unsigned int i; 2474 struct closure cl; 2475 2476 closure_init_stack(&cl); 2477 2478 trace_bcache_btree_set_root(b); 2479 2480 BUG_ON(!b->written); 2481 2482 for (i = 0; i < KEY_PTRS(&b->key); i++) 2483 BUG_ON(PTR_BUCKET(b->c, &b->key, i)->prio != BTREE_PRIO); 2484 2485 mutex_lock(&b->c->bucket_lock); 2486 list_del_init(&b->list); 2487 mutex_unlock(&b->c->bucket_lock); 2488 2489 b->c->root = b; 2490 2491 bch_journal_meta(b->c, &cl); 2492 closure_sync(&cl); 2493 } 2494 2495 /* Map across nodes or keys */ 2496 2497 static int bch_btree_map_nodes_recurse(struct btree *b, struct btree_op *op, 2498 struct bkey *from, 2499 btree_map_nodes_fn *fn, int flags) 2500 { 2501 int ret = MAP_CONTINUE; 2502 2503 if (b->level) { 2504 struct bkey *k; 2505 struct btree_iter iter; 2506 2507 bch_btree_iter_init(&b->keys, &iter, from); 2508 2509 while ((k = bch_btree_iter_next_filter(&iter, &b->keys, 2510 bch_ptr_bad))) { 2511 ret = bcache_btree(map_nodes_recurse, k, b, 2512 op, from, fn, flags); 2513 from = NULL; 2514 2515 if (ret != MAP_CONTINUE) 2516 return ret; 2517 } 2518 } 2519 2520 if (!b->level || flags == MAP_ALL_NODES) 2521 ret = fn(op, b); 2522 2523 return ret; 2524 } 2525 2526 int __bch_btree_map_nodes(struct btree_op *op, struct cache_set *c, 2527 struct bkey *from, btree_map_nodes_fn *fn, int flags) 2528 { 2529 return bcache_btree_root(map_nodes_recurse, c, op, from, fn, flags); 2530 } 2531 2532 int bch_btree_map_keys_recurse(struct btree *b, struct btree_op *op, 2533 struct bkey *from, btree_map_keys_fn *fn, 2534 int flags) 2535 { 2536 int ret = MAP_CONTINUE; 2537 struct bkey *k; 2538 struct btree_iter iter; 2539 2540 bch_btree_iter_init(&b->keys, &iter, from); 2541 2542 while ((k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad))) { 2543 ret = !b->level 2544 ? fn(op, b, k) 2545 : bcache_btree(map_keys_recurse, k, 2546 b, op, from, fn, flags); 2547 from = NULL; 2548 2549 if (ret != MAP_CONTINUE) 2550 return ret; 2551 } 2552 2553 if (!b->level && (flags & MAP_END_KEY)) 2554 ret = fn(op, b, &KEY(KEY_INODE(&b->key), 2555 KEY_OFFSET(&b->key), 0)); 2556 2557 return ret; 2558 } 2559 2560 int bch_btree_map_keys(struct btree_op *op, struct cache_set *c, 2561 struct bkey *from, btree_map_keys_fn *fn, int flags) 2562 { 2563 return bcache_btree_root(map_keys_recurse, c, op, from, fn, flags); 2564 } 2565 2566 /* Keybuf code */ 2567 2568 static inline int keybuf_cmp(struct keybuf_key *l, struct keybuf_key *r) 2569 { 2570 /* Overlapping keys compare equal */ 2571 if (bkey_cmp(&l->key, &START_KEY(&r->key)) <= 0) 2572 return -1; 2573 if (bkey_cmp(&START_KEY(&l->key), &r->key) >= 0) 2574 return 1; 2575 return 0; 2576 } 2577 2578 static inline int keybuf_nonoverlapping_cmp(struct keybuf_key *l, 2579 struct keybuf_key *r) 2580 { 2581 return clamp_t(int64_t, bkey_cmp(&l->key, &r->key), -1, 1); 2582 } 2583 2584 struct refill { 2585 struct btree_op op; 2586 unsigned int nr_found; 2587 struct keybuf *buf; 2588 struct bkey *end; 2589 keybuf_pred_fn *pred; 2590 }; 2591 2592 static int refill_keybuf_fn(struct btree_op *op, struct btree *b, 2593 struct bkey *k) 2594 { 2595 struct refill *refill = container_of(op, struct refill, op); 2596 struct keybuf *buf = refill->buf; 2597 int ret = MAP_CONTINUE; 2598 2599 if (bkey_cmp(k, refill->end) > 0) { 2600 ret = MAP_DONE; 2601 goto out; 2602 } 2603 2604 if (!KEY_SIZE(k)) /* end key */ 2605 goto out; 2606 2607 if (refill->pred(buf, k)) { 2608 struct keybuf_key *w; 2609 2610 spin_lock(&buf->lock); 2611 2612 w = array_alloc(&buf->freelist); 2613 if (!w) { 2614 spin_unlock(&buf->lock); 2615 return MAP_DONE; 2616 } 2617 2618 w->private = NULL; 2619 bkey_copy(&w->key, k); 2620 2621 if (RB_INSERT(&buf->keys, w, node, keybuf_cmp)) 2622 array_free(&buf->freelist, w); 2623 else 2624 refill->nr_found++; 2625 2626 if (array_freelist_empty(&buf->freelist)) 2627 ret = MAP_DONE; 2628 2629 spin_unlock(&buf->lock); 2630 } 2631 out: 2632 buf->last_scanned = *k; 2633 return ret; 2634 } 2635 2636 void bch_refill_keybuf(struct cache_set *c, struct keybuf *buf, 2637 struct bkey *end, keybuf_pred_fn *pred) 2638 { 2639 struct bkey start = buf->last_scanned; 2640 struct refill refill; 2641 2642 cond_resched(); 2643 2644 bch_btree_op_init(&refill.op, -1); 2645 refill.nr_found = 0; 2646 refill.buf = buf; 2647 refill.end = end; 2648 refill.pred = pred; 2649 2650 bch_btree_map_keys(&refill.op, c, &buf->last_scanned, 2651 refill_keybuf_fn, MAP_END_KEY); 2652 2653 trace_bcache_keyscan(refill.nr_found, 2654 KEY_INODE(&start), KEY_OFFSET(&start), 2655 KEY_INODE(&buf->last_scanned), 2656 KEY_OFFSET(&buf->last_scanned)); 2657 2658 spin_lock(&buf->lock); 2659 2660 if (!RB_EMPTY_ROOT(&buf->keys)) { 2661 struct keybuf_key *w; 2662 2663 w = RB_FIRST(&buf->keys, struct keybuf_key, node); 2664 buf->start = START_KEY(&w->key); 2665 2666 w = RB_LAST(&buf->keys, struct keybuf_key, node); 2667 buf->end = w->key; 2668 } else { 2669 buf->start = MAX_KEY; 2670 buf->end = MAX_KEY; 2671 } 2672 2673 spin_unlock(&buf->lock); 2674 } 2675 2676 static void __bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w) 2677 { 2678 rb_erase(&w->node, &buf->keys); 2679 array_free(&buf->freelist, w); 2680 } 2681 2682 void bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w) 2683 { 2684 spin_lock(&buf->lock); 2685 __bch_keybuf_del(buf, w); 2686 spin_unlock(&buf->lock); 2687 } 2688 2689 bool bch_keybuf_check_overlapping(struct keybuf *buf, struct bkey *start, 2690 struct bkey *end) 2691 { 2692 bool ret = false; 2693 struct keybuf_key *p, *w, s; 2694 2695 s.key = *start; 2696 2697 if (bkey_cmp(end, &buf->start) <= 0 || 2698 bkey_cmp(start, &buf->end) >= 0) 2699 return false; 2700 2701 spin_lock(&buf->lock); 2702 w = RB_GREATER(&buf->keys, s, node, keybuf_nonoverlapping_cmp); 2703 2704 while (w && bkey_cmp(&START_KEY(&w->key), end) < 0) { 2705 p = w; 2706 w = RB_NEXT(w, node); 2707 2708 if (p->private) 2709 ret = true; 2710 else 2711 __bch_keybuf_del(buf, p); 2712 } 2713 2714 spin_unlock(&buf->lock); 2715 return ret; 2716 } 2717 2718 struct keybuf_key *bch_keybuf_next(struct keybuf *buf) 2719 { 2720 struct keybuf_key *w; 2721 2722 spin_lock(&buf->lock); 2723 2724 w = RB_FIRST(&buf->keys, struct keybuf_key, node); 2725 2726 while (w && w->private) 2727 w = RB_NEXT(w, node); 2728 2729 if (w) 2730 w->private = ERR_PTR(-EINTR); 2731 2732 spin_unlock(&buf->lock); 2733 return w; 2734 } 2735 2736 struct keybuf_key *bch_keybuf_next_rescan(struct cache_set *c, 2737 struct keybuf *buf, 2738 struct bkey *end, 2739 keybuf_pred_fn *pred) 2740 { 2741 struct keybuf_key *ret; 2742 2743 while (1) { 2744 ret = bch_keybuf_next(buf); 2745 if (ret) 2746 break; 2747 2748 if (bkey_cmp(&buf->last_scanned, end) >= 0) { 2749 pr_debug("scan finished\n"); 2750 break; 2751 } 2752 2753 bch_refill_keybuf(c, buf, end, pred); 2754 } 2755 2756 return ret; 2757 } 2758 2759 void bch_keybuf_init(struct keybuf *buf) 2760 { 2761 buf->last_scanned = MAX_KEY; 2762 buf->keys = RB_ROOT; 2763 2764 spin_lock_init(&buf->lock); 2765 array_allocator_init(&buf->freelist); 2766 } 2767