1 /* 2 * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com> 3 * 4 * Uses a block device as cache for other block devices; optimized for SSDs. 5 * All allocation is done in buckets, which should match the erase block size 6 * of the device. 7 * 8 * Buckets containing cached data are kept on a heap sorted by priority; 9 * bucket priority is increased on cache hit, and periodically all the buckets 10 * on the heap have their priority scaled down. This currently is just used as 11 * an LRU but in the future should allow for more intelligent heuristics. 12 * 13 * Buckets have an 8 bit counter; freeing is accomplished by incrementing the 14 * counter. Garbage collection is used to remove stale pointers. 15 * 16 * Indexing is done via a btree; nodes are not necessarily fully sorted, rather 17 * as keys are inserted we only sort the pages that have not yet been written. 18 * When garbage collection is run, we resort the entire node. 19 * 20 * All configuration is done via sysfs; see Documentation/bcache.txt. 21 */ 22 23 #include "bcache.h" 24 #include "btree.h" 25 #include "debug.h" 26 #include "request.h" 27 28 #include <linux/slab.h> 29 #include <linux/bitops.h> 30 #include <linux/hash.h> 31 #include <linux/prefetch.h> 32 #include <linux/random.h> 33 #include <linux/rcupdate.h> 34 #include <trace/events/bcache.h> 35 36 /* 37 * Todo: 38 * register_bcache: Return errors out to userspace correctly 39 * 40 * Writeback: don't undirty key until after a cache flush 41 * 42 * Create an iterator for key pointers 43 * 44 * On btree write error, mark bucket such that it won't be freed from the cache 45 * 46 * Journalling: 47 * Check for bad keys in replay 48 * Propagate barriers 49 * Refcount journal entries in journal_replay 50 * 51 * Garbage collection: 52 * Finish incremental gc 53 * Gc should free old UUIDs, data for invalid UUIDs 54 * 55 * Provide a way to list backing device UUIDs we have data cached for, and 56 * probably how long it's been since we've seen them, and a way to invalidate 57 * dirty data for devices that will never be attached again 58 * 59 * Keep 1 min/5 min/15 min statistics of how busy a block device has been, so 60 * that based on that and how much dirty data we have we can keep writeback 61 * from being starved 62 * 63 * Add a tracepoint or somesuch to watch for writeback starvation 64 * 65 * When btree depth > 1 and splitting an interior node, we have to make sure 66 * alloc_bucket() cannot fail. This should be true but is not completely 67 * obvious. 68 * 69 * Make sure all allocations get charged to the root cgroup 70 * 71 * Plugging? 72 * 73 * If data write is less than hard sector size of ssd, round up offset in open 74 * bucket to the next whole sector 75 * 76 * Also lookup by cgroup in get_open_bucket() 77 * 78 * Superblock needs to be fleshed out for multiple cache devices 79 * 80 * Add a sysfs tunable for the number of writeback IOs in flight 81 * 82 * Add a sysfs tunable for the number of open data buckets 83 * 84 * IO tracking: Can we track when one process is doing io on behalf of another? 85 * IO tracking: Don't use just an average, weigh more recent stuff higher 86 * 87 * Test module load/unload 88 */ 89 90 static const char * const op_types[] = { 91 "insert", "replace" 92 }; 93 94 static const char *op_type(struct btree_op *op) 95 { 96 return op_types[op->type]; 97 } 98 99 #define MAX_NEED_GC 64 100 #define MAX_SAVE_PRIO 72 101 102 #define PTR_DIRTY_BIT (((uint64_t) 1 << 36)) 103 104 #define PTR_HASH(c, k) \ 105 (((k)->ptr[0] >> c->bucket_bits) | PTR_GEN(k, 0)) 106 107 struct workqueue_struct *bch_gc_wq; 108 static struct workqueue_struct *btree_io_wq; 109 110 void bch_btree_op_init_stack(struct btree_op *op) 111 { 112 memset(op, 0, sizeof(struct btree_op)); 113 closure_init_stack(&op->cl); 114 op->lock = -1; 115 bch_keylist_init(&op->keys); 116 } 117 118 /* Btree key manipulation */ 119 120 static void bkey_put(struct cache_set *c, struct bkey *k, int level) 121 { 122 if ((level && KEY_OFFSET(k)) || !level) 123 __bkey_put(c, k); 124 } 125 126 /* Btree IO */ 127 128 static uint64_t btree_csum_set(struct btree *b, struct bset *i) 129 { 130 uint64_t crc = b->key.ptr[0]; 131 void *data = (void *) i + 8, *end = end(i); 132 133 crc = bch_crc64_update(crc, data, end - data); 134 return crc ^ 0xffffffffffffffffULL; 135 } 136 137 static void btree_bio_endio(struct bio *bio, int error) 138 { 139 struct closure *cl = bio->bi_private; 140 struct btree *b = container_of(cl, struct btree, io.cl); 141 142 if (error) 143 set_btree_node_io_error(b); 144 145 bch_bbio_count_io_errors(b->c, bio, error, (bio->bi_rw & WRITE) 146 ? "writing btree" : "reading btree"); 147 closure_put(cl); 148 } 149 150 static void btree_bio_init(struct btree *b) 151 { 152 BUG_ON(b->bio); 153 b->bio = bch_bbio_alloc(b->c); 154 155 b->bio->bi_end_io = btree_bio_endio; 156 b->bio->bi_private = &b->io.cl; 157 } 158 159 void bch_btree_read_done(struct closure *cl) 160 { 161 struct btree *b = container_of(cl, struct btree, io.cl); 162 struct bset *i = b->sets[0].data; 163 struct btree_iter *iter = b->c->fill_iter; 164 const char *err = "bad btree header"; 165 BUG_ON(b->nsets || b->written); 166 167 bch_bbio_free(b->bio, b->c); 168 b->bio = NULL; 169 170 mutex_lock(&b->c->fill_lock); 171 iter->used = 0; 172 173 if (btree_node_io_error(b) || 174 !i->seq) 175 goto err; 176 177 for (; 178 b->written < btree_blocks(b) && i->seq == b->sets[0].data->seq; 179 i = write_block(b)) { 180 err = "unsupported bset version"; 181 if (i->version > BCACHE_BSET_VERSION) 182 goto err; 183 184 err = "bad btree header"; 185 if (b->written + set_blocks(i, b->c) > btree_blocks(b)) 186 goto err; 187 188 err = "bad magic"; 189 if (i->magic != bset_magic(b->c)) 190 goto err; 191 192 err = "bad checksum"; 193 switch (i->version) { 194 case 0: 195 if (i->csum != csum_set(i)) 196 goto err; 197 break; 198 case BCACHE_BSET_VERSION: 199 if (i->csum != btree_csum_set(b, i)) 200 goto err; 201 break; 202 } 203 204 err = "empty set"; 205 if (i != b->sets[0].data && !i->keys) 206 goto err; 207 208 bch_btree_iter_push(iter, i->start, end(i)); 209 210 b->written += set_blocks(i, b->c); 211 } 212 213 err = "corrupted btree"; 214 for (i = write_block(b); 215 index(i, b) < btree_blocks(b); 216 i = ((void *) i) + block_bytes(b->c)) 217 if (i->seq == b->sets[0].data->seq) 218 goto err; 219 220 bch_btree_sort_and_fix_extents(b, iter); 221 222 i = b->sets[0].data; 223 err = "short btree key"; 224 if (b->sets[0].size && 225 bkey_cmp(&b->key, &b->sets[0].end) < 0) 226 goto err; 227 228 if (b->written < btree_blocks(b)) 229 bch_bset_init_next(b); 230 out: 231 232 mutex_unlock(&b->c->fill_lock); 233 234 spin_lock(&b->c->btree_read_time_lock); 235 bch_time_stats_update(&b->c->btree_read_time, b->io_start_time); 236 spin_unlock(&b->c->btree_read_time_lock); 237 238 smp_wmb(); /* read_done is our write lock */ 239 set_btree_node_read_done(b); 240 241 closure_return(cl); 242 err: 243 set_btree_node_io_error(b); 244 bch_cache_set_error(b->c, "%s at bucket %zu, block %zu, %u keys", 245 err, PTR_BUCKET_NR(b->c, &b->key, 0), 246 index(i, b), i->keys); 247 goto out; 248 } 249 250 void bch_btree_read(struct btree *b) 251 { 252 BUG_ON(b->nsets || b->written); 253 254 if (!closure_trylock(&b->io.cl, &b->c->cl)) 255 BUG(); 256 257 b->io_start_time = local_clock(); 258 259 btree_bio_init(b); 260 b->bio->bi_rw = REQ_META|READ_SYNC; 261 b->bio->bi_size = KEY_SIZE(&b->key) << 9; 262 263 bch_bio_map(b->bio, b->sets[0].data); 264 265 pr_debug("%s", pbtree(b)); 266 trace_bcache_btree_read(b->bio); 267 bch_submit_bbio(b->bio, b->c, &b->key, 0); 268 269 continue_at(&b->io.cl, bch_btree_read_done, system_wq); 270 } 271 272 static void btree_complete_write(struct btree *b, struct btree_write *w) 273 { 274 if (w->prio_blocked && 275 !atomic_sub_return(w->prio_blocked, &b->c->prio_blocked)) 276 wake_up(&b->c->alloc_wait); 277 278 if (w->journal) { 279 atomic_dec_bug(w->journal); 280 __closure_wake_up(&b->c->journal.wait); 281 } 282 283 if (w->owner) 284 closure_put(w->owner); 285 286 w->prio_blocked = 0; 287 w->journal = NULL; 288 w->owner = NULL; 289 } 290 291 static void __btree_write_done(struct closure *cl) 292 { 293 struct btree *b = container_of(cl, struct btree, io.cl); 294 struct btree_write *w = btree_prev_write(b); 295 296 bch_bbio_free(b->bio, b->c); 297 b->bio = NULL; 298 btree_complete_write(b, w); 299 300 if (btree_node_dirty(b)) 301 queue_delayed_work(btree_io_wq, &b->work, 302 msecs_to_jiffies(30000)); 303 304 closure_return(cl); 305 } 306 307 static void btree_write_done(struct closure *cl) 308 { 309 struct btree *b = container_of(cl, struct btree, io.cl); 310 struct bio_vec *bv; 311 int n; 312 313 __bio_for_each_segment(bv, b->bio, n, 0) 314 __free_page(bv->bv_page); 315 316 __btree_write_done(cl); 317 } 318 319 static void do_btree_write(struct btree *b) 320 { 321 struct closure *cl = &b->io.cl; 322 struct bset *i = b->sets[b->nsets].data; 323 BKEY_PADDED(key) k; 324 325 i->version = BCACHE_BSET_VERSION; 326 i->csum = btree_csum_set(b, i); 327 328 btree_bio_init(b); 329 b->bio->bi_rw = REQ_META|WRITE_SYNC; 330 b->bio->bi_size = set_blocks(i, b->c) * block_bytes(b->c); 331 bch_bio_map(b->bio, i); 332 333 bkey_copy(&k.key, &b->key); 334 SET_PTR_OFFSET(&k.key, 0, PTR_OFFSET(&k.key, 0) + bset_offset(b, i)); 335 336 if (!bch_bio_alloc_pages(b->bio, GFP_NOIO)) { 337 int j; 338 struct bio_vec *bv; 339 void *base = (void *) ((unsigned long) i & ~(PAGE_SIZE - 1)); 340 341 bio_for_each_segment(bv, b->bio, j) 342 memcpy(page_address(bv->bv_page), 343 base + j * PAGE_SIZE, PAGE_SIZE); 344 345 trace_bcache_btree_write(b->bio); 346 bch_submit_bbio(b->bio, b->c, &k.key, 0); 347 348 continue_at(cl, btree_write_done, NULL); 349 } else { 350 b->bio->bi_vcnt = 0; 351 bch_bio_map(b->bio, i); 352 353 trace_bcache_btree_write(b->bio); 354 bch_submit_bbio(b->bio, b->c, &k.key, 0); 355 356 closure_sync(cl); 357 __btree_write_done(cl); 358 } 359 } 360 361 static void __btree_write(struct btree *b) 362 { 363 struct bset *i = b->sets[b->nsets].data; 364 365 BUG_ON(current->bio_list); 366 367 closure_lock(&b->io, &b->c->cl); 368 cancel_delayed_work(&b->work); 369 370 clear_bit(BTREE_NODE_dirty, &b->flags); 371 change_bit(BTREE_NODE_write_idx, &b->flags); 372 373 bch_check_key_order(b, i); 374 BUG_ON(b->written && !i->keys); 375 376 do_btree_write(b); 377 378 pr_debug("%s block %i keys %i", pbtree(b), b->written, i->keys); 379 380 b->written += set_blocks(i, b->c); 381 atomic_long_add(set_blocks(i, b->c) * b->c->sb.block_size, 382 &PTR_CACHE(b->c, &b->key, 0)->btree_sectors_written); 383 384 bch_btree_sort_lazy(b); 385 386 if (b->written < btree_blocks(b)) 387 bch_bset_init_next(b); 388 } 389 390 static void btree_write_work(struct work_struct *w) 391 { 392 struct btree *b = container_of(to_delayed_work(w), struct btree, work); 393 394 down_write(&b->lock); 395 396 if (btree_node_dirty(b)) 397 __btree_write(b); 398 up_write(&b->lock); 399 } 400 401 void bch_btree_write(struct btree *b, bool now, struct btree_op *op) 402 { 403 struct bset *i = b->sets[b->nsets].data; 404 struct btree_write *w = btree_current_write(b); 405 406 BUG_ON(b->written && 407 (b->written >= btree_blocks(b) || 408 i->seq != b->sets[0].data->seq || 409 !i->keys)); 410 411 if (!btree_node_dirty(b)) { 412 set_btree_node_dirty(b); 413 queue_delayed_work(btree_io_wq, &b->work, 414 msecs_to_jiffies(30000)); 415 } 416 417 w->prio_blocked += b->prio_blocked; 418 b->prio_blocked = 0; 419 420 if (op && op->journal && !b->level) { 421 if (w->journal && 422 journal_pin_cmp(b->c, w, op)) { 423 atomic_dec_bug(w->journal); 424 w->journal = NULL; 425 } 426 427 if (!w->journal) { 428 w->journal = op->journal; 429 atomic_inc(w->journal); 430 } 431 } 432 433 if (current->bio_list) 434 return; 435 436 /* Force write if set is too big */ 437 if (now || 438 b->level || 439 set_bytes(i) > PAGE_SIZE - 48) { 440 if (op && now) { 441 /* Must wait on multiple writes */ 442 BUG_ON(w->owner); 443 w->owner = &op->cl; 444 closure_get(&op->cl); 445 } 446 447 __btree_write(b); 448 } 449 BUG_ON(!b->written); 450 } 451 452 /* 453 * Btree in memory cache - allocation/freeing 454 * mca -> memory cache 455 */ 456 457 static void mca_reinit(struct btree *b) 458 { 459 unsigned i; 460 461 b->flags = 0; 462 b->written = 0; 463 b->nsets = 0; 464 465 for (i = 0; i < MAX_BSETS; i++) 466 b->sets[i].size = 0; 467 /* 468 * Second loop starts at 1 because b->sets[0]->data is the memory we 469 * allocated 470 */ 471 for (i = 1; i < MAX_BSETS; i++) 472 b->sets[i].data = NULL; 473 } 474 475 #define mca_reserve(c) (((c->root && c->root->level) \ 476 ? c->root->level : 1) * 8 + 16) 477 #define mca_can_free(c) \ 478 max_t(int, 0, c->bucket_cache_used - mca_reserve(c)) 479 480 static void mca_data_free(struct btree *b) 481 { 482 struct bset_tree *t = b->sets; 483 BUG_ON(!closure_is_unlocked(&b->io.cl)); 484 485 if (bset_prev_bytes(b) < PAGE_SIZE) 486 kfree(t->prev); 487 else 488 free_pages((unsigned long) t->prev, 489 get_order(bset_prev_bytes(b))); 490 491 if (bset_tree_bytes(b) < PAGE_SIZE) 492 kfree(t->tree); 493 else 494 free_pages((unsigned long) t->tree, 495 get_order(bset_tree_bytes(b))); 496 497 free_pages((unsigned long) t->data, b->page_order); 498 499 t->prev = NULL; 500 t->tree = NULL; 501 t->data = NULL; 502 list_move(&b->list, &b->c->btree_cache_freed); 503 b->c->bucket_cache_used--; 504 } 505 506 static void mca_bucket_free(struct btree *b) 507 { 508 BUG_ON(btree_node_dirty(b)); 509 510 b->key.ptr[0] = 0; 511 hlist_del_init_rcu(&b->hash); 512 list_move(&b->list, &b->c->btree_cache_freeable); 513 } 514 515 static unsigned btree_order(struct bkey *k) 516 { 517 return ilog2(KEY_SIZE(k) / PAGE_SECTORS ?: 1); 518 } 519 520 static void mca_data_alloc(struct btree *b, struct bkey *k, gfp_t gfp) 521 { 522 struct bset_tree *t = b->sets; 523 BUG_ON(t->data); 524 525 b->page_order = max_t(unsigned, 526 ilog2(b->c->btree_pages), 527 btree_order(k)); 528 529 t->data = (void *) __get_free_pages(gfp, b->page_order); 530 if (!t->data) 531 goto err; 532 533 t->tree = bset_tree_bytes(b) < PAGE_SIZE 534 ? kmalloc(bset_tree_bytes(b), gfp) 535 : (void *) __get_free_pages(gfp, get_order(bset_tree_bytes(b))); 536 if (!t->tree) 537 goto err; 538 539 t->prev = bset_prev_bytes(b) < PAGE_SIZE 540 ? kmalloc(bset_prev_bytes(b), gfp) 541 : (void *) __get_free_pages(gfp, get_order(bset_prev_bytes(b))); 542 if (!t->prev) 543 goto err; 544 545 list_move(&b->list, &b->c->btree_cache); 546 b->c->bucket_cache_used++; 547 return; 548 err: 549 mca_data_free(b); 550 } 551 552 static struct btree *mca_bucket_alloc(struct cache_set *c, 553 struct bkey *k, gfp_t gfp) 554 { 555 struct btree *b = kzalloc(sizeof(struct btree), gfp); 556 if (!b) 557 return NULL; 558 559 init_rwsem(&b->lock); 560 lockdep_set_novalidate_class(&b->lock); 561 INIT_LIST_HEAD(&b->list); 562 INIT_DELAYED_WORK(&b->work, btree_write_work); 563 b->c = c; 564 closure_init_unlocked(&b->io); 565 566 mca_data_alloc(b, k, gfp); 567 return b; 568 } 569 570 static int mca_reap(struct btree *b, struct closure *cl, unsigned min_order) 571 { 572 lockdep_assert_held(&b->c->bucket_lock); 573 574 if (!down_write_trylock(&b->lock)) 575 return -ENOMEM; 576 577 if (b->page_order < min_order) { 578 rw_unlock(true, b); 579 return -ENOMEM; 580 } 581 582 BUG_ON(btree_node_dirty(b) && !b->sets[0].data); 583 584 if (cl && btree_node_dirty(b)) 585 bch_btree_write(b, true, NULL); 586 587 if (cl) 588 closure_wait_event_async(&b->io.wait, cl, 589 atomic_read(&b->io.cl.remaining) == -1); 590 591 if (btree_node_dirty(b) || 592 !closure_is_unlocked(&b->io.cl) || 593 work_pending(&b->work.work)) { 594 rw_unlock(true, b); 595 return -EAGAIN; 596 } 597 598 return 0; 599 } 600 601 static int bch_mca_shrink(struct shrinker *shrink, struct shrink_control *sc) 602 { 603 struct cache_set *c = container_of(shrink, struct cache_set, shrink); 604 struct btree *b, *t; 605 unsigned long i, nr = sc->nr_to_scan; 606 607 if (c->shrinker_disabled) 608 return 0; 609 610 if (c->try_harder) 611 return 0; 612 613 /* 614 * If nr == 0, we're supposed to return the number of items we have 615 * cached. Not allowed to return -1. 616 */ 617 if (!nr) 618 return mca_can_free(c) * c->btree_pages; 619 620 /* Return -1 if we can't do anything right now */ 621 if (sc->gfp_mask & __GFP_WAIT) 622 mutex_lock(&c->bucket_lock); 623 else if (!mutex_trylock(&c->bucket_lock)) 624 return -1; 625 626 nr /= c->btree_pages; 627 nr = min_t(unsigned long, nr, mca_can_free(c)); 628 629 i = 0; 630 list_for_each_entry_safe(b, t, &c->btree_cache_freeable, list) { 631 if (!nr) 632 break; 633 634 if (++i > 3 && 635 !mca_reap(b, NULL, 0)) { 636 mca_data_free(b); 637 rw_unlock(true, b); 638 --nr; 639 } 640 } 641 642 /* 643 * Can happen right when we first start up, before we've read in any 644 * btree nodes 645 */ 646 if (list_empty(&c->btree_cache)) 647 goto out; 648 649 for (i = 0; nr && i < c->bucket_cache_used; i++) { 650 b = list_first_entry(&c->btree_cache, struct btree, list); 651 list_rotate_left(&c->btree_cache); 652 653 if (!b->accessed && 654 !mca_reap(b, NULL, 0)) { 655 mca_bucket_free(b); 656 mca_data_free(b); 657 rw_unlock(true, b); 658 --nr; 659 } else 660 b->accessed = 0; 661 } 662 out: 663 nr = mca_can_free(c) * c->btree_pages; 664 mutex_unlock(&c->bucket_lock); 665 return nr; 666 } 667 668 void bch_btree_cache_free(struct cache_set *c) 669 { 670 struct btree *b; 671 struct closure cl; 672 closure_init_stack(&cl); 673 674 if (c->shrink.list.next) 675 unregister_shrinker(&c->shrink); 676 677 mutex_lock(&c->bucket_lock); 678 679 #ifdef CONFIG_BCACHE_DEBUG 680 if (c->verify_data) 681 list_move(&c->verify_data->list, &c->btree_cache); 682 #endif 683 684 list_splice(&c->btree_cache_freeable, 685 &c->btree_cache); 686 687 while (!list_empty(&c->btree_cache)) { 688 b = list_first_entry(&c->btree_cache, struct btree, list); 689 690 if (btree_node_dirty(b)) 691 btree_complete_write(b, btree_current_write(b)); 692 clear_bit(BTREE_NODE_dirty, &b->flags); 693 694 mca_data_free(b); 695 } 696 697 while (!list_empty(&c->btree_cache_freed)) { 698 b = list_first_entry(&c->btree_cache_freed, 699 struct btree, list); 700 list_del(&b->list); 701 cancel_delayed_work_sync(&b->work); 702 kfree(b); 703 } 704 705 mutex_unlock(&c->bucket_lock); 706 } 707 708 int bch_btree_cache_alloc(struct cache_set *c) 709 { 710 unsigned i; 711 712 /* XXX: doesn't check for errors */ 713 714 closure_init_unlocked(&c->gc); 715 716 for (i = 0; i < mca_reserve(c); i++) 717 mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL); 718 719 list_splice_init(&c->btree_cache, 720 &c->btree_cache_freeable); 721 722 #ifdef CONFIG_BCACHE_DEBUG 723 mutex_init(&c->verify_lock); 724 725 c->verify_data = mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL); 726 727 if (c->verify_data && 728 c->verify_data->sets[0].data) 729 list_del_init(&c->verify_data->list); 730 else 731 c->verify_data = NULL; 732 #endif 733 734 c->shrink.shrink = bch_mca_shrink; 735 c->shrink.seeks = 4; 736 c->shrink.batch = c->btree_pages * 2; 737 register_shrinker(&c->shrink); 738 739 return 0; 740 } 741 742 /* Btree in memory cache - hash table */ 743 744 static struct hlist_head *mca_hash(struct cache_set *c, struct bkey *k) 745 { 746 return &c->bucket_hash[hash_32(PTR_HASH(c, k), BUCKET_HASH_BITS)]; 747 } 748 749 static struct btree *mca_find(struct cache_set *c, struct bkey *k) 750 { 751 struct btree *b; 752 753 rcu_read_lock(); 754 hlist_for_each_entry_rcu(b, mca_hash(c, k), hash) 755 if (PTR_HASH(c, &b->key) == PTR_HASH(c, k)) 756 goto out; 757 b = NULL; 758 out: 759 rcu_read_unlock(); 760 return b; 761 } 762 763 static struct btree *mca_cannibalize(struct cache_set *c, struct bkey *k, 764 int level, struct closure *cl) 765 { 766 int ret = -ENOMEM; 767 struct btree *i; 768 769 if (!cl) 770 return ERR_PTR(-ENOMEM); 771 772 /* 773 * Trying to free up some memory - i.e. reuse some btree nodes - may 774 * require initiating IO to flush the dirty part of the node. If we're 775 * running under generic_make_request(), that IO will never finish and 776 * we would deadlock. Returning -EAGAIN causes the cache lookup code to 777 * punt to workqueue and retry. 778 */ 779 if (current->bio_list) 780 return ERR_PTR(-EAGAIN); 781 782 if (c->try_harder && c->try_harder != cl) { 783 closure_wait_event_async(&c->try_wait, cl, !c->try_harder); 784 return ERR_PTR(-EAGAIN); 785 } 786 787 /* XXX: tracepoint */ 788 c->try_harder = cl; 789 c->try_harder_start = local_clock(); 790 retry: 791 list_for_each_entry_reverse(i, &c->btree_cache, list) { 792 int r = mca_reap(i, cl, btree_order(k)); 793 if (!r) 794 return i; 795 if (r != -ENOMEM) 796 ret = r; 797 } 798 799 if (ret == -EAGAIN && 800 closure_blocking(cl)) { 801 mutex_unlock(&c->bucket_lock); 802 closure_sync(cl); 803 mutex_lock(&c->bucket_lock); 804 goto retry; 805 } 806 807 return ERR_PTR(ret); 808 } 809 810 /* 811 * We can only have one thread cannibalizing other cached btree nodes at a time, 812 * or we'll deadlock. We use an open coded mutex to ensure that, which a 813 * cannibalize_bucket() will take. This means every time we unlock the root of 814 * the btree, we need to release this lock if we have it held. 815 */ 816 void bch_cannibalize_unlock(struct cache_set *c, struct closure *cl) 817 { 818 if (c->try_harder == cl) { 819 bch_time_stats_update(&c->try_harder_time, c->try_harder_start); 820 c->try_harder = NULL; 821 __closure_wake_up(&c->try_wait); 822 } 823 } 824 825 static struct btree *mca_alloc(struct cache_set *c, struct bkey *k, 826 int level, struct closure *cl) 827 { 828 struct btree *b; 829 830 lockdep_assert_held(&c->bucket_lock); 831 832 if (mca_find(c, k)) 833 return NULL; 834 835 /* btree_free() doesn't free memory; it sticks the node on the end of 836 * the list. Check if there's any freed nodes there: 837 */ 838 list_for_each_entry(b, &c->btree_cache_freeable, list) 839 if (!mca_reap(b, NULL, btree_order(k))) 840 goto out; 841 842 /* We never free struct btree itself, just the memory that holds the on 843 * disk node. Check the freed list before allocating a new one: 844 */ 845 list_for_each_entry(b, &c->btree_cache_freed, list) 846 if (!mca_reap(b, NULL, 0)) { 847 mca_data_alloc(b, k, __GFP_NOWARN|GFP_NOIO); 848 if (!b->sets[0].data) 849 goto err; 850 else 851 goto out; 852 } 853 854 b = mca_bucket_alloc(c, k, __GFP_NOWARN|GFP_NOIO); 855 if (!b) 856 goto err; 857 858 BUG_ON(!down_write_trylock(&b->lock)); 859 if (!b->sets->data) 860 goto err; 861 out: 862 BUG_ON(!closure_is_unlocked(&b->io.cl)); 863 864 bkey_copy(&b->key, k); 865 list_move(&b->list, &c->btree_cache); 866 hlist_del_init_rcu(&b->hash); 867 hlist_add_head_rcu(&b->hash, mca_hash(c, k)); 868 869 lock_set_subclass(&b->lock.dep_map, level + 1, _THIS_IP_); 870 b->level = level; 871 872 mca_reinit(b); 873 874 return b; 875 err: 876 if (b) 877 rw_unlock(true, b); 878 879 b = mca_cannibalize(c, k, level, cl); 880 if (!IS_ERR(b)) 881 goto out; 882 883 return b; 884 } 885 886 /** 887 * bch_btree_node_get - find a btree node in the cache and lock it, reading it 888 * in from disk if necessary. 889 * 890 * If IO is necessary, it uses the closure embedded in struct btree_op to wait; 891 * if that closure is in non blocking mode, will return -EAGAIN. 892 * 893 * The btree node will have either a read or a write lock held, depending on 894 * level and op->lock. 895 */ 896 struct btree *bch_btree_node_get(struct cache_set *c, struct bkey *k, 897 int level, struct btree_op *op) 898 { 899 int i = 0; 900 bool write = level <= op->lock; 901 struct btree *b; 902 903 BUG_ON(level < 0); 904 retry: 905 b = mca_find(c, k); 906 907 if (!b) { 908 mutex_lock(&c->bucket_lock); 909 b = mca_alloc(c, k, level, &op->cl); 910 mutex_unlock(&c->bucket_lock); 911 912 if (!b) 913 goto retry; 914 if (IS_ERR(b)) 915 return b; 916 917 bch_btree_read(b); 918 919 if (!write) 920 downgrade_write(&b->lock); 921 } else { 922 rw_lock(write, b, level); 923 if (PTR_HASH(c, &b->key) != PTR_HASH(c, k)) { 924 rw_unlock(write, b); 925 goto retry; 926 } 927 BUG_ON(b->level != level); 928 } 929 930 b->accessed = 1; 931 932 for (; i <= b->nsets && b->sets[i].size; i++) { 933 prefetch(b->sets[i].tree); 934 prefetch(b->sets[i].data); 935 } 936 937 for (; i <= b->nsets; i++) 938 prefetch(b->sets[i].data); 939 940 if (!closure_wait_event(&b->io.wait, &op->cl, 941 btree_node_read_done(b))) { 942 rw_unlock(write, b); 943 b = ERR_PTR(-EAGAIN); 944 } else if (btree_node_io_error(b)) { 945 rw_unlock(write, b); 946 b = ERR_PTR(-EIO); 947 } else 948 BUG_ON(!b->written); 949 950 return b; 951 } 952 953 static void btree_node_prefetch(struct cache_set *c, struct bkey *k, int level) 954 { 955 struct btree *b; 956 957 mutex_lock(&c->bucket_lock); 958 b = mca_alloc(c, k, level, NULL); 959 mutex_unlock(&c->bucket_lock); 960 961 if (!IS_ERR_OR_NULL(b)) { 962 bch_btree_read(b); 963 rw_unlock(true, b); 964 } 965 } 966 967 /* Btree alloc */ 968 969 static void btree_node_free(struct btree *b, struct btree_op *op) 970 { 971 unsigned i; 972 973 /* 974 * The BUG_ON() in btree_node_get() implies that we must have a write 975 * lock on parent to free or even invalidate a node 976 */ 977 BUG_ON(op->lock <= b->level); 978 BUG_ON(b == b->c->root); 979 pr_debug("bucket %s", pbtree(b)); 980 981 if (btree_node_dirty(b)) 982 btree_complete_write(b, btree_current_write(b)); 983 clear_bit(BTREE_NODE_dirty, &b->flags); 984 985 if (b->prio_blocked && 986 !atomic_sub_return(b->prio_blocked, &b->c->prio_blocked)) 987 wake_up(&b->c->alloc_wait); 988 989 b->prio_blocked = 0; 990 991 cancel_delayed_work(&b->work); 992 993 mutex_lock(&b->c->bucket_lock); 994 995 for (i = 0; i < KEY_PTRS(&b->key); i++) { 996 BUG_ON(atomic_read(&PTR_BUCKET(b->c, &b->key, i)->pin)); 997 998 bch_inc_gen(PTR_CACHE(b->c, &b->key, i), 999 PTR_BUCKET(b->c, &b->key, i)); 1000 } 1001 1002 bch_bucket_free(b->c, &b->key); 1003 mca_bucket_free(b); 1004 mutex_unlock(&b->c->bucket_lock); 1005 } 1006 1007 struct btree *bch_btree_node_alloc(struct cache_set *c, int level, 1008 struct closure *cl) 1009 { 1010 BKEY_PADDED(key) k; 1011 struct btree *b = ERR_PTR(-EAGAIN); 1012 1013 mutex_lock(&c->bucket_lock); 1014 retry: 1015 if (__bch_bucket_alloc_set(c, WATERMARK_METADATA, &k.key, 1, cl)) 1016 goto err; 1017 1018 SET_KEY_SIZE(&k.key, c->btree_pages * PAGE_SECTORS); 1019 1020 b = mca_alloc(c, &k.key, level, cl); 1021 if (IS_ERR(b)) 1022 goto err_free; 1023 1024 if (!b) { 1025 cache_bug(c, 1026 "Tried to allocate bucket that was in btree cache"); 1027 __bkey_put(c, &k.key); 1028 goto retry; 1029 } 1030 1031 set_btree_node_read_done(b); 1032 b->accessed = 1; 1033 bch_bset_init_next(b); 1034 1035 mutex_unlock(&c->bucket_lock); 1036 return b; 1037 err_free: 1038 bch_bucket_free(c, &k.key); 1039 __bkey_put(c, &k.key); 1040 err: 1041 mutex_unlock(&c->bucket_lock); 1042 return b; 1043 } 1044 1045 static struct btree *btree_node_alloc_replacement(struct btree *b, 1046 struct closure *cl) 1047 { 1048 struct btree *n = bch_btree_node_alloc(b->c, b->level, cl); 1049 if (!IS_ERR_OR_NULL(n)) 1050 bch_btree_sort_into(b, n); 1051 1052 return n; 1053 } 1054 1055 /* Garbage collection */ 1056 1057 uint8_t __bch_btree_mark_key(struct cache_set *c, int level, struct bkey *k) 1058 { 1059 uint8_t stale = 0; 1060 unsigned i; 1061 struct bucket *g; 1062 1063 /* 1064 * ptr_invalid() can't return true for the keys that mark btree nodes as 1065 * freed, but since ptr_bad() returns true we'll never actually use them 1066 * for anything and thus we don't want mark their pointers here 1067 */ 1068 if (!bkey_cmp(k, &ZERO_KEY)) 1069 return stale; 1070 1071 for (i = 0; i < KEY_PTRS(k); i++) { 1072 if (!ptr_available(c, k, i)) 1073 continue; 1074 1075 g = PTR_BUCKET(c, k, i); 1076 1077 if (gen_after(g->gc_gen, PTR_GEN(k, i))) 1078 g->gc_gen = PTR_GEN(k, i); 1079 1080 if (ptr_stale(c, k, i)) { 1081 stale = max(stale, ptr_stale(c, k, i)); 1082 continue; 1083 } 1084 1085 cache_bug_on(GC_MARK(g) && 1086 (GC_MARK(g) == GC_MARK_METADATA) != (level != 0), 1087 c, "inconsistent ptrs: mark = %llu, level = %i", 1088 GC_MARK(g), level); 1089 1090 if (level) 1091 SET_GC_MARK(g, GC_MARK_METADATA); 1092 else if (KEY_DIRTY(k)) 1093 SET_GC_MARK(g, GC_MARK_DIRTY); 1094 1095 /* guard against overflow */ 1096 SET_GC_SECTORS_USED(g, min_t(unsigned, 1097 GC_SECTORS_USED(g) + KEY_SIZE(k), 1098 (1 << 14) - 1)); 1099 1100 BUG_ON(!GC_SECTORS_USED(g)); 1101 } 1102 1103 return stale; 1104 } 1105 1106 #define btree_mark_key(b, k) __bch_btree_mark_key(b->c, b->level, k) 1107 1108 static int btree_gc_mark_node(struct btree *b, unsigned *keys, 1109 struct gc_stat *gc) 1110 { 1111 uint8_t stale = 0; 1112 unsigned last_dev = -1; 1113 struct bcache_device *d = NULL; 1114 struct bkey *k; 1115 struct btree_iter iter; 1116 struct bset_tree *t; 1117 1118 gc->nodes++; 1119 1120 for_each_key_filter(b, k, &iter, bch_ptr_invalid) { 1121 if (last_dev != KEY_INODE(k)) { 1122 last_dev = KEY_INODE(k); 1123 1124 d = KEY_INODE(k) < b->c->nr_uuids 1125 ? b->c->devices[last_dev] 1126 : NULL; 1127 } 1128 1129 stale = max(stale, btree_mark_key(b, k)); 1130 1131 if (bch_ptr_bad(b, k)) 1132 continue; 1133 1134 *keys += bkey_u64s(k); 1135 1136 gc->key_bytes += bkey_u64s(k); 1137 gc->nkeys++; 1138 1139 gc->data += KEY_SIZE(k); 1140 if (KEY_DIRTY(k)) { 1141 gc->dirty += KEY_SIZE(k); 1142 if (d) 1143 d->sectors_dirty_gc += KEY_SIZE(k); 1144 } 1145 } 1146 1147 for (t = b->sets; t <= &b->sets[b->nsets]; t++) 1148 btree_bug_on(t->size && 1149 bset_written(b, t) && 1150 bkey_cmp(&b->key, &t->end) < 0, 1151 b, "found short btree key in gc"); 1152 1153 return stale; 1154 } 1155 1156 static struct btree *btree_gc_alloc(struct btree *b, struct bkey *k, 1157 struct btree_op *op) 1158 { 1159 /* 1160 * We block priorities from being written for the duration of garbage 1161 * collection, so we can't sleep in btree_alloc() -> 1162 * bch_bucket_alloc_set(), or we'd risk deadlock - so we don't pass it 1163 * our closure. 1164 */ 1165 struct btree *n = btree_node_alloc_replacement(b, NULL); 1166 1167 if (!IS_ERR_OR_NULL(n)) { 1168 swap(b, n); 1169 1170 memcpy(k->ptr, b->key.ptr, 1171 sizeof(uint64_t) * KEY_PTRS(&b->key)); 1172 1173 __bkey_put(b->c, &b->key); 1174 atomic_inc(&b->c->prio_blocked); 1175 b->prio_blocked++; 1176 1177 btree_node_free(n, op); 1178 up_write(&n->lock); 1179 } 1180 1181 return b; 1182 } 1183 1184 /* 1185 * Leaving this at 2 until we've got incremental garbage collection done; it 1186 * could be higher (and has been tested with 4) except that garbage collection 1187 * could take much longer, adversely affecting latency. 1188 */ 1189 #define GC_MERGE_NODES 2U 1190 1191 struct gc_merge_info { 1192 struct btree *b; 1193 struct bkey *k; 1194 unsigned keys; 1195 }; 1196 1197 static void btree_gc_coalesce(struct btree *b, struct btree_op *op, 1198 struct gc_stat *gc, struct gc_merge_info *r) 1199 { 1200 unsigned nodes = 0, keys = 0, blocks; 1201 int i; 1202 1203 while (nodes < GC_MERGE_NODES && r[nodes].b) 1204 keys += r[nodes++].keys; 1205 1206 blocks = btree_default_blocks(b->c) * 2 / 3; 1207 1208 if (nodes < 2 || 1209 __set_blocks(b->sets[0].data, keys, b->c) > blocks * (nodes - 1)) 1210 return; 1211 1212 for (i = nodes - 1; i >= 0; --i) { 1213 if (r[i].b->written) 1214 r[i].b = btree_gc_alloc(r[i].b, r[i].k, op); 1215 1216 if (r[i].b->written) 1217 return; 1218 } 1219 1220 for (i = nodes - 1; i > 0; --i) { 1221 struct bset *n1 = r[i].b->sets->data; 1222 struct bset *n2 = r[i - 1].b->sets->data; 1223 struct bkey *k, *last = NULL; 1224 1225 keys = 0; 1226 1227 if (i == 1) { 1228 /* 1229 * Last node we're not getting rid of - we're getting 1230 * rid of the node at r[0]. Have to try and fit all of 1231 * the remaining keys into this node; we can't ensure 1232 * they will always fit due to rounding and variable 1233 * length keys (shouldn't be possible in practice, 1234 * though) 1235 */ 1236 if (__set_blocks(n1, n1->keys + r->keys, 1237 b->c) > btree_blocks(r[i].b)) 1238 return; 1239 1240 keys = n2->keys; 1241 last = &r->b->key; 1242 } else 1243 for (k = n2->start; 1244 k < end(n2); 1245 k = bkey_next(k)) { 1246 if (__set_blocks(n1, n1->keys + keys + 1247 bkey_u64s(k), b->c) > blocks) 1248 break; 1249 1250 last = k; 1251 keys += bkey_u64s(k); 1252 } 1253 1254 BUG_ON(__set_blocks(n1, n1->keys + keys, 1255 b->c) > btree_blocks(r[i].b)); 1256 1257 if (last) { 1258 bkey_copy_key(&r[i].b->key, last); 1259 bkey_copy_key(r[i].k, last); 1260 } 1261 1262 memcpy(end(n1), 1263 n2->start, 1264 (void *) node(n2, keys) - (void *) n2->start); 1265 1266 n1->keys += keys; 1267 1268 memmove(n2->start, 1269 node(n2, keys), 1270 (void *) end(n2) - (void *) node(n2, keys)); 1271 1272 n2->keys -= keys; 1273 1274 r[i].keys = n1->keys; 1275 r[i - 1].keys = n2->keys; 1276 } 1277 1278 btree_node_free(r->b, op); 1279 up_write(&r->b->lock); 1280 1281 pr_debug("coalesced %u nodes", nodes); 1282 1283 gc->nodes--; 1284 nodes--; 1285 1286 memmove(&r[0], &r[1], sizeof(struct gc_merge_info) * nodes); 1287 memset(&r[nodes], 0, sizeof(struct gc_merge_info)); 1288 } 1289 1290 static int btree_gc_recurse(struct btree *b, struct btree_op *op, 1291 struct closure *writes, struct gc_stat *gc) 1292 { 1293 void write(struct btree *r) 1294 { 1295 if (!r->written) 1296 bch_btree_write(r, true, op); 1297 else if (btree_node_dirty(r)) { 1298 BUG_ON(btree_current_write(r)->owner); 1299 btree_current_write(r)->owner = writes; 1300 closure_get(writes); 1301 1302 bch_btree_write(r, true, NULL); 1303 } 1304 1305 up_write(&r->lock); 1306 } 1307 1308 int ret = 0, stale; 1309 unsigned i; 1310 struct gc_merge_info r[GC_MERGE_NODES]; 1311 1312 memset(r, 0, sizeof(r)); 1313 1314 while ((r->k = bch_next_recurse_key(b, &b->c->gc_done))) { 1315 r->b = bch_btree_node_get(b->c, r->k, b->level - 1, op); 1316 1317 if (IS_ERR(r->b)) { 1318 ret = PTR_ERR(r->b); 1319 break; 1320 } 1321 1322 r->keys = 0; 1323 stale = btree_gc_mark_node(r->b, &r->keys, gc); 1324 1325 if (!b->written && 1326 (r->b->level || stale > 10 || 1327 b->c->gc_always_rewrite)) 1328 r->b = btree_gc_alloc(r->b, r->k, op); 1329 1330 if (r->b->level) 1331 ret = btree_gc_recurse(r->b, op, writes, gc); 1332 1333 if (ret) { 1334 write(r->b); 1335 break; 1336 } 1337 1338 bkey_copy_key(&b->c->gc_done, r->k); 1339 1340 if (!b->written) 1341 btree_gc_coalesce(b, op, gc, r); 1342 1343 if (r[GC_MERGE_NODES - 1].b) 1344 write(r[GC_MERGE_NODES - 1].b); 1345 1346 memmove(&r[1], &r[0], 1347 sizeof(struct gc_merge_info) * (GC_MERGE_NODES - 1)); 1348 1349 /* When we've got incremental GC working, we'll want to do 1350 * if (should_resched()) 1351 * return -EAGAIN; 1352 */ 1353 cond_resched(); 1354 #if 0 1355 if (need_resched()) { 1356 ret = -EAGAIN; 1357 break; 1358 } 1359 #endif 1360 } 1361 1362 for (i = 1; i < GC_MERGE_NODES && r[i].b; i++) 1363 write(r[i].b); 1364 1365 /* Might have freed some children, must remove their keys */ 1366 if (!b->written) 1367 bch_btree_sort(b); 1368 1369 return ret; 1370 } 1371 1372 static int bch_btree_gc_root(struct btree *b, struct btree_op *op, 1373 struct closure *writes, struct gc_stat *gc) 1374 { 1375 struct btree *n = NULL; 1376 unsigned keys = 0; 1377 int ret = 0, stale = btree_gc_mark_node(b, &keys, gc); 1378 1379 if (b->level || stale > 10) 1380 n = btree_node_alloc_replacement(b, NULL); 1381 1382 if (!IS_ERR_OR_NULL(n)) 1383 swap(b, n); 1384 1385 if (b->level) 1386 ret = btree_gc_recurse(b, op, writes, gc); 1387 1388 if (!b->written || btree_node_dirty(b)) { 1389 atomic_inc(&b->c->prio_blocked); 1390 b->prio_blocked++; 1391 bch_btree_write(b, true, n ? op : NULL); 1392 } 1393 1394 if (!IS_ERR_OR_NULL(n)) { 1395 closure_sync(&op->cl); 1396 bch_btree_set_root(b); 1397 btree_node_free(n, op); 1398 rw_unlock(true, b); 1399 } 1400 1401 return ret; 1402 } 1403 1404 static void btree_gc_start(struct cache_set *c) 1405 { 1406 struct cache *ca; 1407 struct bucket *b; 1408 struct bcache_device **d; 1409 unsigned i; 1410 1411 if (!c->gc_mark_valid) 1412 return; 1413 1414 mutex_lock(&c->bucket_lock); 1415 1416 c->gc_mark_valid = 0; 1417 c->gc_done = ZERO_KEY; 1418 1419 for_each_cache(ca, c, i) 1420 for_each_bucket(b, ca) { 1421 b->gc_gen = b->gen; 1422 if (!atomic_read(&b->pin)) 1423 SET_GC_MARK(b, GC_MARK_RECLAIMABLE); 1424 } 1425 1426 for (d = c->devices; 1427 d < c->devices + c->nr_uuids; 1428 d++) 1429 if (*d) 1430 (*d)->sectors_dirty_gc = 0; 1431 1432 mutex_unlock(&c->bucket_lock); 1433 } 1434 1435 size_t bch_btree_gc_finish(struct cache_set *c) 1436 { 1437 size_t available = 0; 1438 struct bucket *b; 1439 struct cache *ca; 1440 struct bcache_device **d; 1441 unsigned i; 1442 1443 mutex_lock(&c->bucket_lock); 1444 1445 set_gc_sectors(c); 1446 c->gc_mark_valid = 1; 1447 c->need_gc = 0; 1448 1449 if (c->root) 1450 for (i = 0; i < KEY_PTRS(&c->root->key); i++) 1451 SET_GC_MARK(PTR_BUCKET(c, &c->root->key, i), 1452 GC_MARK_METADATA); 1453 1454 for (i = 0; i < KEY_PTRS(&c->uuid_bucket); i++) 1455 SET_GC_MARK(PTR_BUCKET(c, &c->uuid_bucket, i), 1456 GC_MARK_METADATA); 1457 1458 for_each_cache(ca, c, i) { 1459 uint64_t *i; 1460 1461 ca->invalidate_needs_gc = 0; 1462 1463 for (i = ca->sb.d; i < ca->sb.d + ca->sb.keys; i++) 1464 SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA); 1465 1466 for (i = ca->prio_buckets; 1467 i < ca->prio_buckets + prio_buckets(ca) * 2; i++) 1468 SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA); 1469 1470 for_each_bucket(b, ca) { 1471 b->last_gc = b->gc_gen; 1472 c->need_gc = max(c->need_gc, bucket_gc_gen(b)); 1473 1474 if (!atomic_read(&b->pin) && 1475 GC_MARK(b) == GC_MARK_RECLAIMABLE) { 1476 available++; 1477 if (!GC_SECTORS_USED(b)) 1478 bch_bucket_add_unused(ca, b); 1479 } 1480 } 1481 } 1482 1483 for (d = c->devices; 1484 d < c->devices + c->nr_uuids; 1485 d++) 1486 if (*d) { 1487 unsigned long last = 1488 atomic_long_read(&((*d)->sectors_dirty)); 1489 long difference = (*d)->sectors_dirty_gc - last; 1490 1491 pr_debug("sectors dirty off by %li", difference); 1492 1493 (*d)->sectors_dirty_last += difference; 1494 1495 atomic_long_set(&((*d)->sectors_dirty), 1496 (*d)->sectors_dirty_gc); 1497 } 1498 1499 mutex_unlock(&c->bucket_lock); 1500 return available; 1501 } 1502 1503 static void bch_btree_gc(struct closure *cl) 1504 { 1505 struct cache_set *c = container_of(cl, struct cache_set, gc.cl); 1506 int ret; 1507 unsigned long available; 1508 struct gc_stat stats; 1509 struct closure writes; 1510 struct btree_op op; 1511 1512 uint64_t start_time = local_clock(); 1513 trace_bcache_gc_start(c->sb.set_uuid); 1514 blktrace_msg_all(c, "Starting gc"); 1515 1516 memset(&stats, 0, sizeof(struct gc_stat)); 1517 closure_init_stack(&writes); 1518 bch_btree_op_init_stack(&op); 1519 op.lock = SHRT_MAX; 1520 1521 btree_gc_start(c); 1522 1523 ret = btree_root(gc_root, c, &op, &writes, &stats); 1524 closure_sync(&op.cl); 1525 closure_sync(&writes); 1526 1527 if (ret) { 1528 blktrace_msg_all(c, "Stopped gc"); 1529 pr_warn("gc failed!"); 1530 1531 continue_at(cl, bch_btree_gc, bch_gc_wq); 1532 } 1533 1534 /* Possibly wait for new UUIDs or whatever to hit disk */ 1535 bch_journal_meta(c, &op.cl); 1536 closure_sync(&op.cl); 1537 1538 available = bch_btree_gc_finish(c); 1539 1540 bch_time_stats_update(&c->btree_gc_time, start_time); 1541 1542 stats.key_bytes *= sizeof(uint64_t); 1543 stats.dirty <<= 9; 1544 stats.data <<= 9; 1545 stats.in_use = (c->nbuckets - available) * 100 / c->nbuckets; 1546 memcpy(&c->gc_stats, &stats, sizeof(struct gc_stat)); 1547 blktrace_msg_all(c, "Finished gc"); 1548 1549 trace_bcache_gc_end(c->sb.set_uuid); 1550 wake_up(&c->alloc_wait); 1551 1552 continue_at(cl, bch_moving_gc, bch_gc_wq); 1553 } 1554 1555 void bch_queue_gc(struct cache_set *c) 1556 { 1557 closure_trylock_call(&c->gc.cl, bch_btree_gc, bch_gc_wq, &c->cl); 1558 } 1559 1560 /* Initial partial gc */ 1561 1562 static int bch_btree_check_recurse(struct btree *b, struct btree_op *op, 1563 unsigned long **seen) 1564 { 1565 int ret; 1566 unsigned i; 1567 struct bkey *k; 1568 struct bucket *g; 1569 struct btree_iter iter; 1570 1571 for_each_key_filter(b, k, &iter, bch_ptr_invalid) { 1572 for (i = 0; i < KEY_PTRS(k); i++) { 1573 if (!ptr_available(b->c, k, i)) 1574 continue; 1575 1576 g = PTR_BUCKET(b->c, k, i); 1577 1578 if (!__test_and_set_bit(PTR_BUCKET_NR(b->c, k, i), 1579 seen[PTR_DEV(k, i)]) || 1580 !ptr_stale(b->c, k, i)) { 1581 g->gen = PTR_GEN(k, i); 1582 1583 if (b->level) 1584 g->prio = BTREE_PRIO; 1585 else if (g->prio == BTREE_PRIO) 1586 g->prio = INITIAL_PRIO; 1587 } 1588 } 1589 1590 btree_mark_key(b, k); 1591 } 1592 1593 if (b->level) { 1594 k = bch_next_recurse_key(b, &ZERO_KEY); 1595 1596 while (k) { 1597 struct bkey *p = bch_next_recurse_key(b, k); 1598 if (p) 1599 btree_node_prefetch(b->c, p, b->level - 1); 1600 1601 ret = btree(check_recurse, k, b, op, seen); 1602 if (ret) 1603 return ret; 1604 1605 k = p; 1606 } 1607 } 1608 1609 return 0; 1610 } 1611 1612 int bch_btree_check(struct cache_set *c, struct btree_op *op) 1613 { 1614 int ret = -ENOMEM; 1615 unsigned i; 1616 unsigned long *seen[MAX_CACHES_PER_SET]; 1617 1618 memset(seen, 0, sizeof(seen)); 1619 1620 for (i = 0; c->cache[i]; i++) { 1621 size_t n = DIV_ROUND_UP(c->cache[i]->sb.nbuckets, 8); 1622 seen[i] = kmalloc(n, GFP_KERNEL); 1623 if (!seen[i]) 1624 goto err; 1625 1626 /* Disables the seen array until prio_read() uses it too */ 1627 memset(seen[i], 0xFF, n); 1628 } 1629 1630 ret = btree_root(check_recurse, c, op, seen); 1631 err: 1632 for (i = 0; i < MAX_CACHES_PER_SET; i++) 1633 kfree(seen[i]); 1634 return ret; 1635 } 1636 1637 /* Btree insertion */ 1638 1639 static void shift_keys(struct btree *b, struct bkey *where, struct bkey *insert) 1640 { 1641 struct bset *i = b->sets[b->nsets].data; 1642 1643 memmove((uint64_t *) where + bkey_u64s(insert), 1644 where, 1645 (void *) end(i) - (void *) where); 1646 1647 i->keys += bkey_u64s(insert); 1648 bkey_copy(where, insert); 1649 bch_bset_fix_lookup_table(b, where); 1650 } 1651 1652 static bool fix_overlapping_extents(struct btree *b, 1653 struct bkey *insert, 1654 struct btree_iter *iter, 1655 struct btree_op *op) 1656 { 1657 void subtract_dirty(struct bkey *k, int sectors) 1658 { 1659 struct bcache_device *d = b->c->devices[KEY_INODE(k)]; 1660 1661 if (KEY_DIRTY(k) && d) 1662 atomic_long_sub(sectors, &d->sectors_dirty); 1663 } 1664 1665 unsigned old_size, sectors_found = 0; 1666 1667 while (1) { 1668 struct bkey *k = bch_btree_iter_next(iter); 1669 if (!k || 1670 bkey_cmp(&START_KEY(k), insert) >= 0) 1671 break; 1672 1673 if (bkey_cmp(k, &START_KEY(insert)) <= 0) 1674 continue; 1675 1676 old_size = KEY_SIZE(k); 1677 1678 /* 1679 * We might overlap with 0 size extents; we can't skip these 1680 * because if they're in the set we're inserting to we have to 1681 * adjust them so they don't overlap with the key we're 1682 * inserting. But we don't want to check them for BTREE_REPLACE 1683 * operations. 1684 */ 1685 1686 if (op->type == BTREE_REPLACE && 1687 KEY_SIZE(k)) { 1688 /* 1689 * k might have been split since we inserted/found the 1690 * key we're replacing 1691 */ 1692 unsigned i; 1693 uint64_t offset = KEY_START(k) - 1694 KEY_START(&op->replace); 1695 1696 /* But it must be a subset of the replace key */ 1697 if (KEY_START(k) < KEY_START(&op->replace) || 1698 KEY_OFFSET(k) > KEY_OFFSET(&op->replace)) 1699 goto check_failed; 1700 1701 /* We didn't find a key that we were supposed to */ 1702 if (KEY_START(k) > KEY_START(insert) + sectors_found) 1703 goto check_failed; 1704 1705 if (KEY_PTRS(&op->replace) != KEY_PTRS(k)) 1706 goto check_failed; 1707 1708 /* skip past gen */ 1709 offset <<= 8; 1710 1711 BUG_ON(!KEY_PTRS(&op->replace)); 1712 1713 for (i = 0; i < KEY_PTRS(&op->replace); i++) 1714 if (k->ptr[i] != op->replace.ptr[i] + offset) 1715 goto check_failed; 1716 1717 sectors_found = KEY_OFFSET(k) - KEY_START(insert); 1718 } 1719 1720 if (bkey_cmp(insert, k) < 0 && 1721 bkey_cmp(&START_KEY(insert), &START_KEY(k)) > 0) { 1722 /* 1723 * We overlapped in the middle of an existing key: that 1724 * means we have to split the old key. But we have to do 1725 * slightly different things depending on whether the 1726 * old key has been written out yet. 1727 */ 1728 1729 struct bkey *top; 1730 1731 subtract_dirty(k, KEY_SIZE(insert)); 1732 1733 if (bkey_written(b, k)) { 1734 /* 1735 * We insert a new key to cover the top of the 1736 * old key, and the old key is modified in place 1737 * to represent the bottom split. 1738 * 1739 * It's completely arbitrary whether the new key 1740 * is the top or the bottom, but it has to match 1741 * up with what btree_sort_fixup() does - it 1742 * doesn't check for this kind of overlap, it 1743 * depends on us inserting a new key for the top 1744 * here. 1745 */ 1746 top = bch_bset_search(b, &b->sets[b->nsets], 1747 insert); 1748 shift_keys(b, top, k); 1749 } else { 1750 BKEY_PADDED(key) temp; 1751 bkey_copy(&temp.key, k); 1752 shift_keys(b, k, &temp.key); 1753 top = bkey_next(k); 1754 } 1755 1756 bch_cut_front(insert, top); 1757 bch_cut_back(&START_KEY(insert), k); 1758 bch_bset_fix_invalidated_key(b, k); 1759 return false; 1760 } 1761 1762 if (bkey_cmp(insert, k) < 0) { 1763 bch_cut_front(insert, k); 1764 } else { 1765 if (bkey_written(b, k) && 1766 bkey_cmp(&START_KEY(insert), &START_KEY(k)) <= 0) { 1767 /* 1768 * Completely overwrote, so we don't have to 1769 * invalidate the binary search tree 1770 */ 1771 bch_cut_front(k, k); 1772 } else { 1773 __bch_cut_back(&START_KEY(insert), k); 1774 bch_bset_fix_invalidated_key(b, k); 1775 } 1776 } 1777 1778 subtract_dirty(k, old_size - KEY_SIZE(k)); 1779 } 1780 1781 check_failed: 1782 if (op->type == BTREE_REPLACE) { 1783 if (!sectors_found) { 1784 op->insert_collision = true; 1785 return true; 1786 } else if (sectors_found < KEY_SIZE(insert)) { 1787 SET_KEY_OFFSET(insert, KEY_OFFSET(insert) - 1788 (KEY_SIZE(insert) - sectors_found)); 1789 SET_KEY_SIZE(insert, sectors_found); 1790 } 1791 } 1792 1793 return false; 1794 } 1795 1796 static bool btree_insert_key(struct btree *b, struct btree_op *op, 1797 struct bkey *k) 1798 { 1799 struct bset *i = b->sets[b->nsets].data; 1800 struct bkey *m, *prev; 1801 const char *status = "insert"; 1802 1803 BUG_ON(bkey_cmp(k, &b->key) > 0); 1804 BUG_ON(b->level && !KEY_PTRS(k)); 1805 BUG_ON(!b->level && !KEY_OFFSET(k)); 1806 1807 if (!b->level) { 1808 struct btree_iter iter; 1809 struct bkey search = KEY(KEY_INODE(k), KEY_START(k), 0); 1810 1811 /* 1812 * bset_search() returns the first key that is strictly greater 1813 * than the search key - but for back merging, we want to find 1814 * the first key that is greater than or equal to KEY_START(k) - 1815 * unless KEY_START(k) is 0. 1816 */ 1817 if (KEY_OFFSET(&search)) 1818 SET_KEY_OFFSET(&search, KEY_OFFSET(&search) - 1); 1819 1820 prev = NULL; 1821 m = bch_btree_iter_init(b, &iter, &search); 1822 1823 if (fix_overlapping_extents(b, k, &iter, op)) 1824 return false; 1825 1826 while (m != end(i) && 1827 bkey_cmp(k, &START_KEY(m)) > 0) 1828 prev = m, m = bkey_next(m); 1829 1830 if (key_merging_disabled(b->c)) 1831 goto insert; 1832 1833 /* prev is in the tree, if we merge we're done */ 1834 status = "back merging"; 1835 if (prev && 1836 bch_bkey_try_merge(b, prev, k)) 1837 goto merged; 1838 1839 status = "overwrote front"; 1840 if (m != end(i) && 1841 KEY_PTRS(m) == KEY_PTRS(k) && !KEY_SIZE(m)) 1842 goto copy; 1843 1844 status = "front merge"; 1845 if (m != end(i) && 1846 bch_bkey_try_merge(b, k, m)) 1847 goto copy; 1848 } else 1849 m = bch_bset_search(b, &b->sets[b->nsets], k); 1850 1851 insert: shift_keys(b, m, k); 1852 copy: bkey_copy(m, k); 1853 merged: 1854 bch_check_keys(b, "%s for %s at %s: %s", status, 1855 op_type(op), pbtree(b), pkey(k)); 1856 bch_check_key_order_msg(b, i, "%s for %s at %s: %s", status, 1857 op_type(op), pbtree(b), pkey(k)); 1858 1859 if (b->level && !KEY_OFFSET(k)) 1860 b->prio_blocked++; 1861 1862 pr_debug("%s for %s at %s: %s", status, 1863 op_type(op), pbtree(b), pkey(k)); 1864 1865 return true; 1866 } 1867 1868 bool bch_btree_insert_keys(struct btree *b, struct btree_op *op) 1869 { 1870 bool ret = false; 1871 struct bkey *k; 1872 unsigned oldsize = bch_count_data(b); 1873 1874 while ((k = bch_keylist_pop(&op->keys))) { 1875 bkey_put(b->c, k, b->level); 1876 ret |= btree_insert_key(b, op, k); 1877 } 1878 1879 BUG_ON(bch_count_data(b) < oldsize); 1880 return ret; 1881 } 1882 1883 bool bch_btree_insert_check_key(struct btree *b, struct btree_op *op, 1884 struct bio *bio) 1885 { 1886 bool ret = false; 1887 uint64_t btree_ptr = b->key.ptr[0]; 1888 unsigned long seq = b->seq; 1889 BKEY_PADDED(k) tmp; 1890 1891 rw_unlock(false, b); 1892 rw_lock(true, b, b->level); 1893 1894 if (b->key.ptr[0] != btree_ptr || 1895 b->seq != seq + 1 || 1896 should_split(b)) 1897 goto out; 1898 1899 op->replace = KEY(op->inode, bio_end(bio), bio_sectors(bio)); 1900 1901 SET_KEY_PTRS(&op->replace, 1); 1902 get_random_bytes(&op->replace.ptr[0], sizeof(uint64_t)); 1903 1904 SET_PTR_DEV(&op->replace, 0, PTR_CHECK_DEV); 1905 1906 bkey_copy(&tmp.k, &op->replace); 1907 1908 BUG_ON(op->type != BTREE_INSERT); 1909 BUG_ON(!btree_insert_key(b, op, &tmp.k)); 1910 bch_btree_write(b, false, NULL); 1911 ret = true; 1912 out: 1913 downgrade_write(&b->lock); 1914 return ret; 1915 } 1916 1917 static int btree_split(struct btree *b, struct btree_op *op) 1918 { 1919 bool split, root = b == b->c->root; 1920 struct btree *n1, *n2 = NULL, *n3 = NULL; 1921 uint64_t start_time = local_clock(); 1922 1923 if (b->level) 1924 set_closure_blocking(&op->cl); 1925 1926 n1 = btree_node_alloc_replacement(b, &op->cl); 1927 if (IS_ERR(n1)) 1928 goto err; 1929 1930 split = set_blocks(n1->sets[0].data, n1->c) > (btree_blocks(b) * 4) / 5; 1931 1932 pr_debug("%ssplitting at %s keys %i", split ? "" : "not ", 1933 pbtree(b), n1->sets[0].data->keys); 1934 1935 if (split) { 1936 unsigned keys = 0; 1937 1938 n2 = bch_btree_node_alloc(b->c, b->level, &op->cl); 1939 if (IS_ERR(n2)) 1940 goto err_free1; 1941 1942 if (root) { 1943 n3 = bch_btree_node_alloc(b->c, b->level + 1, &op->cl); 1944 if (IS_ERR(n3)) 1945 goto err_free2; 1946 } 1947 1948 bch_btree_insert_keys(n1, op); 1949 1950 /* Has to be a linear search because we don't have an auxiliary 1951 * search tree yet 1952 */ 1953 1954 while (keys < (n1->sets[0].data->keys * 3) / 5) 1955 keys += bkey_u64s(node(n1->sets[0].data, keys)); 1956 1957 bkey_copy_key(&n1->key, node(n1->sets[0].data, keys)); 1958 keys += bkey_u64s(node(n1->sets[0].data, keys)); 1959 1960 n2->sets[0].data->keys = n1->sets[0].data->keys - keys; 1961 n1->sets[0].data->keys = keys; 1962 1963 memcpy(n2->sets[0].data->start, 1964 end(n1->sets[0].data), 1965 n2->sets[0].data->keys * sizeof(uint64_t)); 1966 1967 bkey_copy_key(&n2->key, &b->key); 1968 1969 bch_keylist_add(&op->keys, &n2->key); 1970 bch_btree_write(n2, true, op); 1971 rw_unlock(true, n2); 1972 } else 1973 bch_btree_insert_keys(n1, op); 1974 1975 bch_keylist_add(&op->keys, &n1->key); 1976 bch_btree_write(n1, true, op); 1977 1978 if (n3) { 1979 bkey_copy_key(&n3->key, &MAX_KEY); 1980 bch_btree_insert_keys(n3, op); 1981 bch_btree_write(n3, true, op); 1982 1983 closure_sync(&op->cl); 1984 bch_btree_set_root(n3); 1985 rw_unlock(true, n3); 1986 } else if (root) { 1987 op->keys.top = op->keys.bottom; 1988 closure_sync(&op->cl); 1989 bch_btree_set_root(n1); 1990 } else { 1991 unsigned i; 1992 1993 bkey_copy(op->keys.top, &b->key); 1994 bkey_copy_key(op->keys.top, &ZERO_KEY); 1995 1996 for (i = 0; i < KEY_PTRS(&b->key); i++) { 1997 uint8_t g = PTR_BUCKET(b->c, &b->key, i)->gen + 1; 1998 1999 SET_PTR_GEN(op->keys.top, i, g); 2000 } 2001 2002 bch_keylist_push(&op->keys); 2003 closure_sync(&op->cl); 2004 atomic_inc(&b->c->prio_blocked); 2005 } 2006 2007 rw_unlock(true, n1); 2008 btree_node_free(b, op); 2009 2010 bch_time_stats_update(&b->c->btree_split_time, start_time); 2011 2012 return 0; 2013 err_free2: 2014 __bkey_put(n2->c, &n2->key); 2015 btree_node_free(n2, op); 2016 rw_unlock(true, n2); 2017 err_free1: 2018 __bkey_put(n1->c, &n1->key); 2019 btree_node_free(n1, op); 2020 rw_unlock(true, n1); 2021 err: 2022 if (n3 == ERR_PTR(-EAGAIN) || 2023 n2 == ERR_PTR(-EAGAIN) || 2024 n1 == ERR_PTR(-EAGAIN)) 2025 return -EAGAIN; 2026 2027 pr_warn("couldn't split"); 2028 return -ENOMEM; 2029 } 2030 2031 static int bch_btree_insert_recurse(struct btree *b, struct btree_op *op, 2032 struct keylist *stack_keys) 2033 { 2034 if (b->level) { 2035 int ret; 2036 struct bkey *insert = op->keys.bottom; 2037 struct bkey *k = bch_next_recurse_key(b, &START_KEY(insert)); 2038 2039 if (!k) { 2040 btree_bug(b, "no key to recurse on at level %i/%i", 2041 b->level, b->c->root->level); 2042 2043 op->keys.top = op->keys.bottom; 2044 return -EIO; 2045 } 2046 2047 if (bkey_cmp(insert, k) > 0) { 2048 unsigned i; 2049 2050 if (op->type == BTREE_REPLACE) { 2051 __bkey_put(b->c, insert); 2052 op->keys.top = op->keys.bottom; 2053 op->insert_collision = true; 2054 return 0; 2055 } 2056 2057 for (i = 0; i < KEY_PTRS(insert); i++) 2058 atomic_inc(&PTR_BUCKET(b->c, insert, i)->pin); 2059 2060 bkey_copy(stack_keys->top, insert); 2061 2062 bch_cut_back(k, insert); 2063 bch_cut_front(k, stack_keys->top); 2064 2065 bch_keylist_push(stack_keys); 2066 } 2067 2068 ret = btree(insert_recurse, k, b, op, stack_keys); 2069 if (ret) 2070 return ret; 2071 } 2072 2073 if (!bch_keylist_empty(&op->keys)) { 2074 if (should_split(b)) { 2075 if (op->lock <= b->c->root->level) { 2076 BUG_ON(b->level); 2077 op->lock = b->c->root->level + 1; 2078 return -EINTR; 2079 } 2080 return btree_split(b, op); 2081 } 2082 2083 BUG_ON(write_block(b) != b->sets[b->nsets].data); 2084 2085 if (bch_btree_insert_keys(b, op)) 2086 bch_btree_write(b, false, op); 2087 } 2088 2089 return 0; 2090 } 2091 2092 int bch_btree_insert(struct btree_op *op, struct cache_set *c) 2093 { 2094 int ret = 0; 2095 struct keylist stack_keys; 2096 2097 /* 2098 * Don't want to block with the btree locked unless we have to, 2099 * otherwise we get deadlocks with try_harder and between split/gc 2100 */ 2101 clear_closure_blocking(&op->cl); 2102 2103 BUG_ON(bch_keylist_empty(&op->keys)); 2104 bch_keylist_copy(&stack_keys, &op->keys); 2105 bch_keylist_init(&op->keys); 2106 2107 while (!bch_keylist_empty(&stack_keys) || 2108 !bch_keylist_empty(&op->keys)) { 2109 if (bch_keylist_empty(&op->keys)) { 2110 bch_keylist_add(&op->keys, 2111 bch_keylist_pop(&stack_keys)); 2112 op->lock = 0; 2113 } 2114 2115 ret = btree_root(insert_recurse, c, op, &stack_keys); 2116 2117 if (ret == -EAGAIN) { 2118 ret = 0; 2119 closure_sync(&op->cl); 2120 } else if (ret) { 2121 struct bkey *k; 2122 2123 pr_err("error %i trying to insert key for %s", 2124 ret, op_type(op)); 2125 2126 while ((k = bch_keylist_pop(&stack_keys) ?: 2127 bch_keylist_pop(&op->keys))) 2128 bkey_put(c, k, 0); 2129 } 2130 } 2131 2132 bch_keylist_free(&stack_keys); 2133 2134 if (op->journal) 2135 atomic_dec_bug(op->journal); 2136 op->journal = NULL; 2137 return ret; 2138 } 2139 2140 void bch_btree_set_root(struct btree *b) 2141 { 2142 unsigned i; 2143 2144 BUG_ON(!b->written); 2145 2146 for (i = 0; i < KEY_PTRS(&b->key); i++) 2147 BUG_ON(PTR_BUCKET(b->c, &b->key, i)->prio != BTREE_PRIO); 2148 2149 mutex_lock(&b->c->bucket_lock); 2150 list_del_init(&b->list); 2151 mutex_unlock(&b->c->bucket_lock); 2152 2153 b->c->root = b; 2154 __bkey_put(b->c, &b->key); 2155 2156 bch_journal_meta(b->c, NULL); 2157 pr_debug("%s for %pf", pbtree(b), __builtin_return_address(0)); 2158 } 2159 2160 /* Cache lookup */ 2161 2162 static int submit_partial_cache_miss(struct btree *b, struct btree_op *op, 2163 struct bkey *k) 2164 { 2165 struct search *s = container_of(op, struct search, op); 2166 struct bio *bio = &s->bio.bio; 2167 int ret = 0; 2168 2169 while (!ret && 2170 !op->lookup_done) { 2171 unsigned sectors = INT_MAX; 2172 2173 if (KEY_INODE(k) == op->inode) { 2174 if (KEY_START(k) <= bio->bi_sector) 2175 break; 2176 2177 sectors = min_t(uint64_t, sectors, 2178 KEY_START(k) - bio->bi_sector); 2179 } 2180 2181 ret = s->d->cache_miss(b, s, bio, sectors); 2182 } 2183 2184 return ret; 2185 } 2186 2187 /* 2188 * Read from a single key, handling the initial cache miss if the key starts in 2189 * the middle of the bio 2190 */ 2191 static int submit_partial_cache_hit(struct btree *b, struct btree_op *op, 2192 struct bkey *k) 2193 { 2194 struct search *s = container_of(op, struct search, op); 2195 struct bio *bio = &s->bio.bio; 2196 unsigned ptr; 2197 struct bio *n; 2198 2199 int ret = submit_partial_cache_miss(b, op, k); 2200 if (ret || op->lookup_done) 2201 return ret; 2202 2203 /* XXX: figure out best pointer - for multiple cache devices */ 2204 ptr = 0; 2205 2206 PTR_BUCKET(b->c, k, ptr)->prio = INITIAL_PRIO; 2207 2208 while (!op->lookup_done && 2209 KEY_INODE(k) == op->inode && 2210 bio->bi_sector < KEY_OFFSET(k)) { 2211 struct bkey *bio_key; 2212 sector_t sector = PTR_OFFSET(k, ptr) + 2213 (bio->bi_sector - KEY_START(k)); 2214 unsigned sectors = min_t(uint64_t, INT_MAX, 2215 KEY_OFFSET(k) - bio->bi_sector); 2216 2217 n = bch_bio_split(bio, sectors, GFP_NOIO, s->d->bio_split); 2218 if (!n) 2219 return -EAGAIN; 2220 2221 if (n == bio) 2222 op->lookup_done = true; 2223 2224 bio_key = &container_of(n, struct bbio, bio)->key; 2225 2226 /* 2227 * The bucket we're reading from might be reused while our bio 2228 * is in flight, and we could then end up reading the wrong 2229 * data. 2230 * 2231 * We guard against this by checking (in cache_read_endio()) if 2232 * the pointer is stale again; if so, we treat it as an error 2233 * and reread from the backing device (but we don't pass that 2234 * error up anywhere). 2235 */ 2236 2237 bch_bkey_copy_single_ptr(bio_key, k, ptr); 2238 SET_PTR_OFFSET(bio_key, 0, sector); 2239 2240 n->bi_end_io = bch_cache_read_endio; 2241 n->bi_private = &s->cl; 2242 2243 trace_bcache_cache_hit(n); 2244 __bch_submit_bbio(n, b->c); 2245 } 2246 2247 return 0; 2248 } 2249 2250 int bch_btree_search_recurse(struct btree *b, struct btree_op *op) 2251 { 2252 struct search *s = container_of(op, struct search, op); 2253 struct bio *bio = &s->bio.bio; 2254 2255 int ret = 0; 2256 struct bkey *k; 2257 struct btree_iter iter; 2258 bch_btree_iter_init(b, &iter, &KEY(op->inode, bio->bi_sector, 0)); 2259 2260 pr_debug("at %s searching for %u:%llu", pbtree(b), op->inode, 2261 (uint64_t) bio->bi_sector); 2262 2263 do { 2264 k = bch_btree_iter_next_filter(&iter, b, bch_ptr_bad); 2265 if (!k) { 2266 /* 2267 * b->key would be exactly what we want, except that 2268 * pointers to btree nodes have nonzero size - we 2269 * wouldn't go far enough 2270 */ 2271 2272 ret = submit_partial_cache_miss(b, op, 2273 &KEY(KEY_INODE(&b->key), 2274 KEY_OFFSET(&b->key), 0)); 2275 break; 2276 } 2277 2278 ret = b->level 2279 ? btree(search_recurse, k, b, op) 2280 : submit_partial_cache_hit(b, op, k); 2281 } while (!ret && 2282 !op->lookup_done); 2283 2284 return ret; 2285 } 2286 2287 /* Keybuf code */ 2288 2289 static inline int keybuf_cmp(struct keybuf_key *l, struct keybuf_key *r) 2290 { 2291 /* Overlapping keys compare equal */ 2292 if (bkey_cmp(&l->key, &START_KEY(&r->key)) <= 0) 2293 return -1; 2294 if (bkey_cmp(&START_KEY(&l->key), &r->key) >= 0) 2295 return 1; 2296 return 0; 2297 } 2298 2299 static inline int keybuf_nonoverlapping_cmp(struct keybuf_key *l, 2300 struct keybuf_key *r) 2301 { 2302 return clamp_t(int64_t, bkey_cmp(&l->key, &r->key), -1, 1); 2303 } 2304 2305 static int bch_btree_refill_keybuf(struct btree *b, struct btree_op *op, 2306 struct keybuf *buf, struct bkey *end) 2307 { 2308 struct btree_iter iter; 2309 bch_btree_iter_init(b, &iter, &buf->last_scanned); 2310 2311 while (!array_freelist_empty(&buf->freelist)) { 2312 struct bkey *k = bch_btree_iter_next_filter(&iter, b, 2313 bch_ptr_bad); 2314 2315 if (!b->level) { 2316 if (!k) { 2317 buf->last_scanned = b->key; 2318 break; 2319 } 2320 2321 buf->last_scanned = *k; 2322 if (bkey_cmp(&buf->last_scanned, end) >= 0) 2323 break; 2324 2325 if (buf->key_predicate(buf, k)) { 2326 struct keybuf_key *w; 2327 2328 pr_debug("%s", pkey(k)); 2329 2330 spin_lock(&buf->lock); 2331 2332 w = array_alloc(&buf->freelist); 2333 2334 w->private = NULL; 2335 bkey_copy(&w->key, k); 2336 2337 if (RB_INSERT(&buf->keys, w, node, keybuf_cmp)) 2338 array_free(&buf->freelist, w); 2339 2340 spin_unlock(&buf->lock); 2341 } 2342 } else { 2343 if (!k) 2344 break; 2345 2346 btree(refill_keybuf, k, b, op, buf, end); 2347 /* 2348 * Might get an error here, but can't really do anything 2349 * and it'll get logged elsewhere. Just read what we 2350 * can. 2351 */ 2352 2353 if (bkey_cmp(&buf->last_scanned, end) >= 0) 2354 break; 2355 2356 cond_resched(); 2357 } 2358 } 2359 2360 return 0; 2361 } 2362 2363 void bch_refill_keybuf(struct cache_set *c, struct keybuf *buf, 2364 struct bkey *end) 2365 { 2366 struct bkey start = buf->last_scanned; 2367 struct btree_op op; 2368 bch_btree_op_init_stack(&op); 2369 2370 cond_resched(); 2371 2372 btree_root(refill_keybuf, c, &op, buf, end); 2373 closure_sync(&op.cl); 2374 2375 pr_debug("found %s keys from %llu:%llu to %llu:%llu", 2376 RB_EMPTY_ROOT(&buf->keys) ? "no" : 2377 array_freelist_empty(&buf->freelist) ? "some" : "a few", 2378 KEY_INODE(&start), KEY_OFFSET(&start), 2379 KEY_INODE(&buf->last_scanned), KEY_OFFSET(&buf->last_scanned)); 2380 2381 spin_lock(&buf->lock); 2382 2383 if (!RB_EMPTY_ROOT(&buf->keys)) { 2384 struct keybuf_key *w; 2385 w = RB_FIRST(&buf->keys, struct keybuf_key, node); 2386 buf->start = START_KEY(&w->key); 2387 2388 w = RB_LAST(&buf->keys, struct keybuf_key, node); 2389 buf->end = w->key; 2390 } else { 2391 buf->start = MAX_KEY; 2392 buf->end = MAX_KEY; 2393 } 2394 2395 spin_unlock(&buf->lock); 2396 } 2397 2398 static void __bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w) 2399 { 2400 rb_erase(&w->node, &buf->keys); 2401 array_free(&buf->freelist, w); 2402 } 2403 2404 void bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w) 2405 { 2406 spin_lock(&buf->lock); 2407 __bch_keybuf_del(buf, w); 2408 spin_unlock(&buf->lock); 2409 } 2410 2411 bool bch_keybuf_check_overlapping(struct keybuf *buf, struct bkey *start, 2412 struct bkey *end) 2413 { 2414 bool ret = false; 2415 struct keybuf_key *p, *w, s; 2416 s.key = *start; 2417 2418 if (bkey_cmp(end, &buf->start) <= 0 || 2419 bkey_cmp(start, &buf->end) >= 0) 2420 return false; 2421 2422 spin_lock(&buf->lock); 2423 w = RB_GREATER(&buf->keys, s, node, keybuf_nonoverlapping_cmp); 2424 2425 while (w && bkey_cmp(&START_KEY(&w->key), end) < 0) { 2426 p = w; 2427 w = RB_NEXT(w, node); 2428 2429 if (p->private) 2430 ret = true; 2431 else 2432 __bch_keybuf_del(buf, p); 2433 } 2434 2435 spin_unlock(&buf->lock); 2436 return ret; 2437 } 2438 2439 struct keybuf_key *bch_keybuf_next(struct keybuf *buf) 2440 { 2441 struct keybuf_key *w; 2442 spin_lock(&buf->lock); 2443 2444 w = RB_FIRST(&buf->keys, struct keybuf_key, node); 2445 2446 while (w && w->private) 2447 w = RB_NEXT(w, node); 2448 2449 if (w) 2450 w->private = ERR_PTR(-EINTR); 2451 2452 spin_unlock(&buf->lock); 2453 return w; 2454 } 2455 2456 struct keybuf_key *bch_keybuf_next_rescan(struct cache_set *c, 2457 struct keybuf *buf, 2458 struct bkey *end) 2459 { 2460 struct keybuf_key *ret; 2461 2462 while (1) { 2463 ret = bch_keybuf_next(buf); 2464 if (ret) 2465 break; 2466 2467 if (bkey_cmp(&buf->last_scanned, end) >= 0) { 2468 pr_debug("scan finished"); 2469 break; 2470 } 2471 2472 bch_refill_keybuf(c, buf, end); 2473 } 2474 2475 return ret; 2476 } 2477 2478 void bch_keybuf_init(struct keybuf *buf, keybuf_pred_fn *fn) 2479 { 2480 buf->key_predicate = fn; 2481 buf->last_scanned = MAX_KEY; 2482 buf->keys = RB_ROOT; 2483 2484 spin_lock_init(&buf->lock); 2485 array_allocator_init(&buf->freelist); 2486 } 2487 2488 void bch_btree_exit(void) 2489 { 2490 if (btree_io_wq) 2491 destroy_workqueue(btree_io_wq); 2492 if (bch_gc_wq) 2493 destroy_workqueue(bch_gc_wq); 2494 } 2495 2496 int __init bch_btree_init(void) 2497 { 2498 if (!(bch_gc_wq = create_singlethread_workqueue("bch_btree_gc")) || 2499 !(btree_io_wq = create_singlethread_workqueue("bch_btree_io"))) 2500 return -ENOMEM; 2501 2502 return 0; 2503 } 2504