xref: /openbmc/linux/drivers/md/bcache/btree.c (revision 39b6f3aa)
1 /*
2  * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com>
3  *
4  * Uses a block device as cache for other block devices; optimized for SSDs.
5  * All allocation is done in buckets, which should match the erase block size
6  * of the device.
7  *
8  * Buckets containing cached data are kept on a heap sorted by priority;
9  * bucket priority is increased on cache hit, and periodically all the buckets
10  * on the heap have their priority scaled down. This currently is just used as
11  * an LRU but in the future should allow for more intelligent heuristics.
12  *
13  * Buckets have an 8 bit counter; freeing is accomplished by incrementing the
14  * counter. Garbage collection is used to remove stale pointers.
15  *
16  * Indexing is done via a btree; nodes are not necessarily fully sorted, rather
17  * as keys are inserted we only sort the pages that have not yet been written.
18  * When garbage collection is run, we resort the entire node.
19  *
20  * All configuration is done via sysfs; see Documentation/bcache.txt.
21  */
22 
23 #include "bcache.h"
24 #include "btree.h"
25 #include "debug.h"
26 #include "request.h"
27 
28 #include <linux/slab.h>
29 #include <linux/bitops.h>
30 #include <linux/hash.h>
31 #include <linux/prefetch.h>
32 #include <linux/random.h>
33 #include <linux/rcupdate.h>
34 #include <trace/events/bcache.h>
35 
36 /*
37  * Todo:
38  * register_bcache: Return errors out to userspace correctly
39  *
40  * Writeback: don't undirty key until after a cache flush
41  *
42  * Create an iterator for key pointers
43  *
44  * On btree write error, mark bucket such that it won't be freed from the cache
45  *
46  * Journalling:
47  *   Check for bad keys in replay
48  *   Propagate barriers
49  *   Refcount journal entries in journal_replay
50  *
51  * Garbage collection:
52  *   Finish incremental gc
53  *   Gc should free old UUIDs, data for invalid UUIDs
54  *
55  * Provide a way to list backing device UUIDs we have data cached for, and
56  * probably how long it's been since we've seen them, and a way to invalidate
57  * dirty data for devices that will never be attached again
58  *
59  * Keep 1 min/5 min/15 min statistics of how busy a block device has been, so
60  * that based on that and how much dirty data we have we can keep writeback
61  * from being starved
62  *
63  * Add a tracepoint or somesuch to watch for writeback starvation
64  *
65  * When btree depth > 1 and splitting an interior node, we have to make sure
66  * alloc_bucket() cannot fail. This should be true but is not completely
67  * obvious.
68  *
69  * Make sure all allocations get charged to the root cgroup
70  *
71  * Plugging?
72  *
73  * If data write is less than hard sector size of ssd, round up offset in open
74  * bucket to the next whole sector
75  *
76  * Also lookup by cgroup in get_open_bucket()
77  *
78  * Superblock needs to be fleshed out for multiple cache devices
79  *
80  * Add a sysfs tunable for the number of writeback IOs in flight
81  *
82  * Add a sysfs tunable for the number of open data buckets
83  *
84  * IO tracking: Can we track when one process is doing io on behalf of another?
85  * IO tracking: Don't use just an average, weigh more recent stuff higher
86  *
87  * Test module load/unload
88  */
89 
90 static const char * const op_types[] = {
91 	"insert", "replace"
92 };
93 
94 static const char *op_type(struct btree_op *op)
95 {
96 	return op_types[op->type];
97 }
98 
99 #define MAX_NEED_GC		64
100 #define MAX_SAVE_PRIO		72
101 
102 #define PTR_DIRTY_BIT		(((uint64_t) 1 << 36))
103 
104 #define PTR_HASH(c, k)							\
105 	(((k)->ptr[0] >> c->bucket_bits) | PTR_GEN(k, 0))
106 
107 struct workqueue_struct *bch_gc_wq;
108 static struct workqueue_struct *btree_io_wq;
109 
110 void bch_btree_op_init_stack(struct btree_op *op)
111 {
112 	memset(op, 0, sizeof(struct btree_op));
113 	closure_init_stack(&op->cl);
114 	op->lock = -1;
115 	bch_keylist_init(&op->keys);
116 }
117 
118 /* Btree key manipulation */
119 
120 static void bkey_put(struct cache_set *c, struct bkey *k, int level)
121 {
122 	if ((level && KEY_OFFSET(k)) || !level)
123 		__bkey_put(c, k);
124 }
125 
126 /* Btree IO */
127 
128 static uint64_t btree_csum_set(struct btree *b, struct bset *i)
129 {
130 	uint64_t crc = b->key.ptr[0];
131 	void *data = (void *) i + 8, *end = end(i);
132 
133 	crc = bch_crc64_update(crc, data, end - data);
134 	return crc ^ 0xffffffffffffffffULL;
135 }
136 
137 static void btree_bio_endio(struct bio *bio, int error)
138 {
139 	struct closure *cl = bio->bi_private;
140 	struct btree *b = container_of(cl, struct btree, io.cl);
141 
142 	if (error)
143 		set_btree_node_io_error(b);
144 
145 	bch_bbio_count_io_errors(b->c, bio, error, (bio->bi_rw & WRITE)
146 				 ? "writing btree" : "reading btree");
147 	closure_put(cl);
148 }
149 
150 static void btree_bio_init(struct btree *b)
151 {
152 	BUG_ON(b->bio);
153 	b->bio = bch_bbio_alloc(b->c);
154 
155 	b->bio->bi_end_io	= btree_bio_endio;
156 	b->bio->bi_private	= &b->io.cl;
157 }
158 
159 void bch_btree_read_done(struct closure *cl)
160 {
161 	struct btree *b = container_of(cl, struct btree, io.cl);
162 	struct bset *i = b->sets[0].data;
163 	struct btree_iter *iter = b->c->fill_iter;
164 	const char *err = "bad btree header";
165 	BUG_ON(b->nsets || b->written);
166 
167 	bch_bbio_free(b->bio, b->c);
168 	b->bio = NULL;
169 
170 	mutex_lock(&b->c->fill_lock);
171 	iter->used = 0;
172 
173 	if (btree_node_io_error(b) ||
174 	    !i->seq)
175 		goto err;
176 
177 	for (;
178 	     b->written < btree_blocks(b) && i->seq == b->sets[0].data->seq;
179 	     i = write_block(b)) {
180 		err = "unsupported bset version";
181 		if (i->version > BCACHE_BSET_VERSION)
182 			goto err;
183 
184 		err = "bad btree header";
185 		if (b->written + set_blocks(i, b->c) > btree_blocks(b))
186 			goto err;
187 
188 		err = "bad magic";
189 		if (i->magic != bset_magic(b->c))
190 			goto err;
191 
192 		err = "bad checksum";
193 		switch (i->version) {
194 		case 0:
195 			if (i->csum != csum_set(i))
196 				goto err;
197 			break;
198 		case BCACHE_BSET_VERSION:
199 			if (i->csum != btree_csum_set(b, i))
200 				goto err;
201 			break;
202 		}
203 
204 		err = "empty set";
205 		if (i != b->sets[0].data && !i->keys)
206 			goto err;
207 
208 		bch_btree_iter_push(iter, i->start, end(i));
209 
210 		b->written += set_blocks(i, b->c);
211 	}
212 
213 	err = "corrupted btree";
214 	for (i = write_block(b);
215 	     index(i, b) < btree_blocks(b);
216 	     i = ((void *) i) + block_bytes(b->c))
217 		if (i->seq == b->sets[0].data->seq)
218 			goto err;
219 
220 	bch_btree_sort_and_fix_extents(b, iter);
221 
222 	i = b->sets[0].data;
223 	err = "short btree key";
224 	if (b->sets[0].size &&
225 	    bkey_cmp(&b->key, &b->sets[0].end) < 0)
226 		goto err;
227 
228 	if (b->written < btree_blocks(b))
229 		bch_bset_init_next(b);
230 out:
231 
232 	mutex_unlock(&b->c->fill_lock);
233 
234 	spin_lock(&b->c->btree_read_time_lock);
235 	bch_time_stats_update(&b->c->btree_read_time, b->io_start_time);
236 	spin_unlock(&b->c->btree_read_time_lock);
237 
238 	smp_wmb(); /* read_done is our write lock */
239 	set_btree_node_read_done(b);
240 
241 	closure_return(cl);
242 err:
243 	set_btree_node_io_error(b);
244 	bch_cache_set_error(b->c, "%s at bucket %zu, block %zu, %u keys",
245 			    err, PTR_BUCKET_NR(b->c, &b->key, 0),
246 			    index(i, b), i->keys);
247 	goto out;
248 }
249 
250 void bch_btree_read(struct btree *b)
251 {
252 	BUG_ON(b->nsets || b->written);
253 
254 	if (!closure_trylock(&b->io.cl, &b->c->cl))
255 		BUG();
256 
257 	b->io_start_time = local_clock();
258 
259 	btree_bio_init(b);
260 	b->bio->bi_rw	= REQ_META|READ_SYNC;
261 	b->bio->bi_size	= KEY_SIZE(&b->key) << 9;
262 
263 	bch_bio_map(b->bio, b->sets[0].data);
264 
265 	pr_debug("%s", pbtree(b));
266 	trace_bcache_btree_read(b->bio);
267 	bch_submit_bbio(b->bio, b->c, &b->key, 0);
268 
269 	continue_at(&b->io.cl, bch_btree_read_done, system_wq);
270 }
271 
272 static void btree_complete_write(struct btree *b, struct btree_write *w)
273 {
274 	if (w->prio_blocked &&
275 	    !atomic_sub_return(w->prio_blocked, &b->c->prio_blocked))
276 		wake_up(&b->c->alloc_wait);
277 
278 	if (w->journal) {
279 		atomic_dec_bug(w->journal);
280 		__closure_wake_up(&b->c->journal.wait);
281 	}
282 
283 	if (w->owner)
284 		closure_put(w->owner);
285 
286 	w->prio_blocked	= 0;
287 	w->journal	= NULL;
288 	w->owner	= NULL;
289 }
290 
291 static void __btree_write_done(struct closure *cl)
292 {
293 	struct btree *b = container_of(cl, struct btree, io.cl);
294 	struct btree_write *w = btree_prev_write(b);
295 
296 	bch_bbio_free(b->bio, b->c);
297 	b->bio = NULL;
298 	btree_complete_write(b, w);
299 
300 	if (btree_node_dirty(b))
301 		queue_delayed_work(btree_io_wq, &b->work,
302 				   msecs_to_jiffies(30000));
303 
304 	closure_return(cl);
305 }
306 
307 static void btree_write_done(struct closure *cl)
308 {
309 	struct btree *b = container_of(cl, struct btree, io.cl);
310 	struct bio_vec *bv;
311 	int n;
312 
313 	__bio_for_each_segment(bv, b->bio, n, 0)
314 		__free_page(bv->bv_page);
315 
316 	__btree_write_done(cl);
317 }
318 
319 static void do_btree_write(struct btree *b)
320 {
321 	struct closure *cl = &b->io.cl;
322 	struct bset *i = b->sets[b->nsets].data;
323 	BKEY_PADDED(key) k;
324 
325 	i->version	= BCACHE_BSET_VERSION;
326 	i->csum		= btree_csum_set(b, i);
327 
328 	btree_bio_init(b);
329 	b->bio->bi_rw	= REQ_META|WRITE_SYNC;
330 	b->bio->bi_size	= set_blocks(i, b->c) * block_bytes(b->c);
331 	bch_bio_map(b->bio, i);
332 
333 	bkey_copy(&k.key, &b->key);
334 	SET_PTR_OFFSET(&k.key, 0, PTR_OFFSET(&k.key, 0) + bset_offset(b, i));
335 
336 	if (!bch_bio_alloc_pages(b->bio, GFP_NOIO)) {
337 		int j;
338 		struct bio_vec *bv;
339 		void *base = (void *) ((unsigned long) i & ~(PAGE_SIZE - 1));
340 
341 		bio_for_each_segment(bv, b->bio, j)
342 			memcpy(page_address(bv->bv_page),
343 			       base + j * PAGE_SIZE, PAGE_SIZE);
344 
345 		trace_bcache_btree_write(b->bio);
346 		bch_submit_bbio(b->bio, b->c, &k.key, 0);
347 
348 		continue_at(cl, btree_write_done, NULL);
349 	} else {
350 		b->bio->bi_vcnt = 0;
351 		bch_bio_map(b->bio, i);
352 
353 		trace_bcache_btree_write(b->bio);
354 		bch_submit_bbio(b->bio, b->c, &k.key, 0);
355 
356 		closure_sync(cl);
357 		__btree_write_done(cl);
358 	}
359 }
360 
361 static void __btree_write(struct btree *b)
362 {
363 	struct bset *i = b->sets[b->nsets].data;
364 
365 	BUG_ON(current->bio_list);
366 
367 	closure_lock(&b->io, &b->c->cl);
368 	cancel_delayed_work(&b->work);
369 
370 	clear_bit(BTREE_NODE_dirty,	 &b->flags);
371 	change_bit(BTREE_NODE_write_idx, &b->flags);
372 
373 	bch_check_key_order(b, i);
374 	BUG_ON(b->written && !i->keys);
375 
376 	do_btree_write(b);
377 
378 	pr_debug("%s block %i keys %i", pbtree(b), b->written, i->keys);
379 
380 	b->written += set_blocks(i, b->c);
381 	atomic_long_add(set_blocks(i, b->c) * b->c->sb.block_size,
382 			&PTR_CACHE(b->c, &b->key, 0)->btree_sectors_written);
383 
384 	bch_btree_sort_lazy(b);
385 
386 	if (b->written < btree_blocks(b))
387 		bch_bset_init_next(b);
388 }
389 
390 static void btree_write_work(struct work_struct *w)
391 {
392 	struct btree *b = container_of(to_delayed_work(w), struct btree, work);
393 
394 	down_write(&b->lock);
395 
396 	if (btree_node_dirty(b))
397 		__btree_write(b);
398 	up_write(&b->lock);
399 }
400 
401 void bch_btree_write(struct btree *b, bool now, struct btree_op *op)
402 {
403 	struct bset *i = b->sets[b->nsets].data;
404 	struct btree_write *w = btree_current_write(b);
405 
406 	BUG_ON(b->written &&
407 	       (b->written >= btree_blocks(b) ||
408 		i->seq != b->sets[0].data->seq ||
409 		!i->keys));
410 
411 	if (!btree_node_dirty(b)) {
412 		set_btree_node_dirty(b);
413 		queue_delayed_work(btree_io_wq, &b->work,
414 				   msecs_to_jiffies(30000));
415 	}
416 
417 	w->prio_blocked += b->prio_blocked;
418 	b->prio_blocked = 0;
419 
420 	if (op && op->journal && !b->level) {
421 		if (w->journal &&
422 		    journal_pin_cmp(b->c, w, op)) {
423 			atomic_dec_bug(w->journal);
424 			w->journal = NULL;
425 		}
426 
427 		if (!w->journal) {
428 			w->journal = op->journal;
429 			atomic_inc(w->journal);
430 		}
431 	}
432 
433 	if (current->bio_list)
434 		return;
435 
436 	/* Force write if set is too big */
437 	if (now ||
438 	    b->level ||
439 	    set_bytes(i) > PAGE_SIZE - 48) {
440 		if (op && now) {
441 			/* Must wait on multiple writes */
442 			BUG_ON(w->owner);
443 			w->owner = &op->cl;
444 			closure_get(&op->cl);
445 		}
446 
447 		__btree_write(b);
448 	}
449 	BUG_ON(!b->written);
450 }
451 
452 /*
453  * Btree in memory cache - allocation/freeing
454  * mca -> memory cache
455  */
456 
457 static void mca_reinit(struct btree *b)
458 {
459 	unsigned i;
460 
461 	b->flags	= 0;
462 	b->written	= 0;
463 	b->nsets	= 0;
464 
465 	for (i = 0; i < MAX_BSETS; i++)
466 		b->sets[i].size = 0;
467 	/*
468 	 * Second loop starts at 1 because b->sets[0]->data is the memory we
469 	 * allocated
470 	 */
471 	for (i = 1; i < MAX_BSETS; i++)
472 		b->sets[i].data = NULL;
473 }
474 
475 #define mca_reserve(c)	(((c->root && c->root->level)		\
476 			  ? c->root->level : 1) * 8 + 16)
477 #define mca_can_free(c)						\
478 	max_t(int, 0, c->bucket_cache_used - mca_reserve(c))
479 
480 static void mca_data_free(struct btree *b)
481 {
482 	struct bset_tree *t = b->sets;
483 	BUG_ON(!closure_is_unlocked(&b->io.cl));
484 
485 	if (bset_prev_bytes(b) < PAGE_SIZE)
486 		kfree(t->prev);
487 	else
488 		free_pages((unsigned long) t->prev,
489 			   get_order(bset_prev_bytes(b)));
490 
491 	if (bset_tree_bytes(b) < PAGE_SIZE)
492 		kfree(t->tree);
493 	else
494 		free_pages((unsigned long) t->tree,
495 			   get_order(bset_tree_bytes(b)));
496 
497 	free_pages((unsigned long) t->data, b->page_order);
498 
499 	t->prev = NULL;
500 	t->tree = NULL;
501 	t->data = NULL;
502 	list_move(&b->list, &b->c->btree_cache_freed);
503 	b->c->bucket_cache_used--;
504 }
505 
506 static void mca_bucket_free(struct btree *b)
507 {
508 	BUG_ON(btree_node_dirty(b));
509 
510 	b->key.ptr[0] = 0;
511 	hlist_del_init_rcu(&b->hash);
512 	list_move(&b->list, &b->c->btree_cache_freeable);
513 }
514 
515 static unsigned btree_order(struct bkey *k)
516 {
517 	return ilog2(KEY_SIZE(k) / PAGE_SECTORS ?: 1);
518 }
519 
520 static void mca_data_alloc(struct btree *b, struct bkey *k, gfp_t gfp)
521 {
522 	struct bset_tree *t = b->sets;
523 	BUG_ON(t->data);
524 
525 	b->page_order = max_t(unsigned,
526 			      ilog2(b->c->btree_pages),
527 			      btree_order(k));
528 
529 	t->data = (void *) __get_free_pages(gfp, b->page_order);
530 	if (!t->data)
531 		goto err;
532 
533 	t->tree = bset_tree_bytes(b) < PAGE_SIZE
534 		? kmalloc(bset_tree_bytes(b), gfp)
535 		: (void *) __get_free_pages(gfp, get_order(bset_tree_bytes(b)));
536 	if (!t->tree)
537 		goto err;
538 
539 	t->prev = bset_prev_bytes(b) < PAGE_SIZE
540 		? kmalloc(bset_prev_bytes(b), gfp)
541 		: (void *) __get_free_pages(gfp, get_order(bset_prev_bytes(b)));
542 	if (!t->prev)
543 		goto err;
544 
545 	list_move(&b->list, &b->c->btree_cache);
546 	b->c->bucket_cache_used++;
547 	return;
548 err:
549 	mca_data_free(b);
550 }
551 
552 static struct btree *mca_bucket_alloc(struct cache_set *c,
553 				      struct bkey *k, gfp_t gfp)
554 {
555 	struct btree *b = kzalloc(sizeof(struct btree), gfp);
556 	if (!b)
557 		return NULL;
558 
559 	init_rwsem(&b->lock);
560 	lockdep_set_novalidate_class(&b->lock);
561 	INIT_LIST_HEAD(&b->list);
562 	INIT_DELAYED_WORK(&b->work, btree_write_work);
563 	b->c = c;
564 	closure_init_unlocked(&b->io);
565 
566 	mca_data_alloc(b, k, gfp);
567 	return b;
568 }
569 
570 static int mca_reap(struct btree *b, struct closure *cl, unsigned min_order)
571 {
572 	lockdep_assert_held(&b->c->bucket_lock);
573 
574 	if (!down_write_trylock(&b->lock))
575 		return -ENOMEM;
576 
577 	if (b->page_order < min_order) {
578 		rw_unlock(true, b);
579 		return -ENOMEM;
580 	}
581 
582 	BUG_ON(btree_node_dirty(b) && !b->sets[0].data);
583 
584 	if (cl && btree_node_dirty(b))
585 		bch_btree_write(b, true, NULL);
586 
587 	if (cl)
588 		closure_wait_event_async(&b->io.wait, cl,
589 			 atomic_read(&b->io.cl.remaining) == -1);
590 
591 	if (btree_node_dirty(b) ||
592 	    !closure_is_unlocked(&b->io.cl) ||
593 	    work_pending(&b->work.work)) {
594 		rw_unlock(true, b);
595 		return -EAGAIN;
596 	}
597 
598 	return 0;
599 }
600 
601 static int bch_mca_shrink(struct shrinker *shrink, struct shrink_control *sc)
602 {
603 	struct cache_set *c = container_of(shrink, struct cache_set, shrink);
604 	struct btree *b, *t;
605 	unsigned long i, nr = sc->nr_to_scan;
606 
607 	if (c->shrinker_disabled)
608 		return 0;
609 
610 	if (c->try_harder)
611 		return 0;
612 
613 	/*
614 	 * If nr == 0, we're supposed to return the number of items we have
615 	 * cached. Not allowed to return -1.
616 	 */
617 	if (!nr)
618 		return mca_can_free(c) * c->btree_pages;
619 
620 	/* Return -1 if we can't do anything right now */
621 	if (sc->gfp_mask & __GFP_WAIT)
622 		mutex_lock(&c->bucket_lock);
623 	else if (!mutex_trylock(&c->bucket_lock))
624 		return -1;
625 
626 	nr /= c->btree_pages;
627 	nr = min_t(unsigned long, nr, mca_can_free(c));
628 
629 	i = 0;
630 	list_for_each_entry_safe(b, t, &c->btree_cache_freeable, list) {
631 		if (!nr)
632 			break;
633 
634 		if (++i > 3 &&
635 		    !mca_reap(b, NULL, 0)) {
636 			mca_data_free(b);
637 			rw_unlock(true, b);
638 			--nr;
639 		}
640 	}
641 
642 	/*
643 	 * Can happen right when we first start up, before we've read in any
644 	 * btree nodes
645 	 */
646 	if (list_empty(&c->btree_cache))
647 		goto out;
648 
649 	for (i = 0; nr && i < c->bucket_cache_used; i++) {
650 		b = list_first_entry(&c->btree_cache, struct btree, list);
651 		list_rotate_left(&c->btree_cache);
652 
653 		if (!b->accessed &&
654 		    !mca_reap(b, NULL, 0)) {
655 			mca_bucket_free(b);
656 			mca_data_free(b);
657 			rw_unlock(true, b);
658 			--nr;
659 		} else
660 			b->accessed = 0;
661 	}
662 out:
663 	nr = mca_can_free(c) * c->btree_pages;
664 	mutex_unlock(&c->bucket_lock);
665 	return nr;
666 }
667 
668 void bch_btree_cache_free(struct cache_set *c)
669 {
670 	struct btree *b;
671 	struct closure cl;
672 	closure_init_stack(&cl);
673 
674 	if (c->shrink.list.next)
675 		unregister_shrinker(&c->shrink);
676 
677 	mutex_lock(&c->bucket_lock);
678 
679 #ifdef CONFIG_BCACHE_DEBUG
680 	if (c->verify_data)
681 		list_move(&c->verify_data->list, &c->btree_cache);
682 #endif
683 
684 	list_splice(&c->btree_cache_freeable,
685 		    &c->btree_cache);
686 
687 	while (!list_empty(&c->btree_cache)) {
688 		b = list_first_entry(&c->btree_cache, struct btree, list);
689 
690 		if (btree_node_dirty(b))
691 			btree_complete_write(b, btree_current_write(b));
692 		clear_bit(BTREE_NODE_dirty, &b->flags);
693 
694 		mca_data_free(b);
695 	}
696 
697 	while (!list_empty(&c->btree_cache_freed)) {
698 		b = list_first_entry(&c->btree_cache_freed,
699 				     struct btree, list);
700 		list_del(&b->list);
701 		cancel_delayed_work_sync(&b->work);
702 		kfree(b);
703 	}
704 
705 	mutex_unlock(&c->bucket_lock);
706 }
707 
708 int bch_btree_cache_alloc(struct cache_set *c)
709 {
710 	unsigned i;
711 
712 	/* XXX: doesn't check for errors */
713 
714 	closure_init_unlocked(&c->gc);
715 
716 	for (i = 0; i < mca_reserve(c); i++)
717 		mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL);
718 
719 	list_splice_init(&c->btree_cache,
720 			 &c->btree_cache_freeable);
721 
722 #ifdef CONFIG_BCACHE_DEBUG
723 	mutex_init(&c->verify_lock);
724 
725 	c->verify_data = mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL);
726 
727 	if (c->verify_data &&
728 	    c->verify_data->sets[0].data)
729 		list_del_init(&c->verify_data->list);
730 	else
731 		c->verify_data = NULL;
732 #endif
733 
734 	c->shrink.shrink = bch_mca_shrink;
735 	c->shrink.seeks = 4;
736 	c->shrink.batch = c->btree_pages * 2;
737 	register_shrinker(&c->shrink);
738 
739 	return 0;
740 }
741 
742 /* Btree in memory cache - hash table */
743 
744 static struct hlist_head *mca_hash(struct cache_set *c, struct bkey *k)
745 {
746 	return &c->bucket_hash[hash_32(PTR_HASH(c, k), BUCKET_HASH_BITS)];
747 }
748 
749 static struct btree *mca_find(struct cache_set *c, struct bkey *k)
750 {
751 	struct btree *b;
752 
753 	rcu_read_lock();
754 	hlist_for_each_entry_rcu(b, mca_hash(c, k), hash)
755 		if (PTR_HASH(c, &b->key) == PTR_HASH(c, k))
756 			goto out;
757 	b = NULL;
758 out:
759 	rcu_read_unlock();
760 	return b;
761 }
762 
763 static struct btree *mca_cannibalize(struct cache_set *c, struct bkey *k,
764 				     int level, struct closure *cl)
765 {
766 	int ret = -ENOMEM;
767 	struct btree *i;
768 
769 	if (!cl)
770 		return ERR_PTR(-ENOMEM);
771 
772 	/*
773 	 * Trying to free up some memory - i.e. reuse some btree nodes - may
774 	 * require initiating IO to flush the dirty part of the node. If we're
775 	 * running under generic_make_request(), that IO will never finish and
776 	 * we would deadlock. Returning -EAGAIN causes the cache lookup code to
777 	 * punt to workqueue and retry.
778 	 */
779 	if (current->bio_list)
780 		return ERR_PTR(-EAGAIN);
781 
782 	if (c->try_harder && c->try_harder != cl) {
783 		closure_wait_event_async(&c->try_wait, cl, !c->try_harder);
784 		return ERR_PTR(-EAGAIN);
785 	}
786 
787 	/* XXX: tracepoint */
788 	c->try_harder = cl;
789 	c->try_harder_start = local_clock();
790 retry:
791 	list_for_each_entry_reverse(i, &c->btree_cache, list) {
792 		int r = mca_reap(i, cl, btree_order(k));
793 		if (!r)
794 			return i;
795 		if (r != -ENOMEM)
796 			ret = r;
797 	}
798 
799 	if (ret == -EAGAIN &&
800 	    closure_blocking(cl)) {
801 		mutex_unlock(&c->bucket_lock);
802 		closure_sync(cl);
803 		mutex_lock(&c->bucket_lock);
804 		goto retry;
805 	}
806 
807 	return ERR_PTR(ret);
808 }
809 
810 /*
811  * We can only have one thread cannibalizing other cached btree nodes at a time,
812  * or we'll deadlock. We use an open coded mutex to ensure that, which a
813  * cannibalize_bucket() will take. This means every time we unlock the root of
814  * the btree, we need to release this lock if we have it held.
815  */
816 void bch_cannibalize_unlock(struct cache_set *c, struct closure *cl)
817 {
818 	if (c->try_harder == cl) {
819 		bch_time_stats_update(&c->try_harder_time, c->try_harder_start);
820 		c->try_harder = NULL;
821 		__closure_wake_up(&c->try_wait);
822 	}
823 }
824 
825 static struct btree *mca_alloc(struct cache_set *c, struct bkey *k,
826 			       int level, struct closure *cl)
827 {
828 	struct btree *b;
829 
830 	lockdep_assert_held(&c->bucket_lock);
831 
832 	if (mca_find(c, k))
833 		return NULL;
834 
835 	/* btree_free() doesn't free memory; it sticks the node on the end of
836 	 * the list. Check if there's any freed nodes there:
837 	 */
838 	list_for_each_entry(b, &c->btree_cache_freeable, list)
839 		if (!mca_reap(b, NULL, btree_order(k)))
840 			goto out;
841 
842 	/* We never free struct btree itself, just the memory that holds the on
843 	 * disk node. Check the freed list before allocating a new one:
844 	 */
845 	list_for_each_entry(b, &c->btree_cache_freed, list)
846 		if (!mca_reap(b, NULL, 0)) {
847 			mca_data_alloc(b, k, __GFP_NOWARN|GFP_NOIO);
848 			if (!b->sets[0].data)
849 				goto err;
850 			else
851 				goto out;
852 		}
853 
854 	b = mca_bucket_alloc(c, k, __GFP_NOWARN|GFP_NOIO);
855 	if (!b)
856 		goto err;
857 
858 	BUG_ON(!down_write_trylock(&b->lock));
859 	if (!b->sets->data)
860 		goto err;
861 out:
862 	BUG_ON(!closure_is_unlocked(&b->io.cl));
863 
864 	bkey_copy(&b->key, k);
865 	list_move(&b->list, &c->btree_cache);
866 	hlist_del_init_rcu(&b->hash);
867 	hlist_add_head_rcu(&b->hash, mca_hash(c, k));
868 
869 	lock_set_subclass(&b->lock.dep_map, level + 1, _THIS_IP_);
870 	b->level	= level;
871 
872 	mca_reinit(b);
873 
874 	return b;
875 err:
876 	if (b)
877 		rw_unlock(true, b);
878 
879 	b = mca_cannibalize(c, k, level, cl);
880 	if (!IS_ERR(b))
881 		goto out;
882 
883 	return b;
884 }
885 
886 /**
887  * bch_btree_node_get - find a btree node in the cache and lock it, reading it
888  * in from disk if necessary.
889  *
890  * If IO is necessary, it uses the closure embedded in struct btree_op to wait;
891  * if that closure is in non blocking mode, will return -EAGAIN.
892  *
893  * The btree node will have either a read or a write lock held, depending on
894  * level and op->lock.
895  */
896 struct btree *bch_btree_node_get(struct cache_set *c, struct bkey *k,
897 				 int level, struct btree_op *op)
898 {
899 	int i = 0;
900 	bool write = level <= op->lock;
901 	struct btree *b;
902 
903 	BUG_ON(level < 0);
904 retry:
905 	b = mca_find(c, k);
906 
907 	if (!b) {
908 		mutex_lock(&c->bucket_lock);
909 		b = mca_alloc(c, k, level, &op->cl);
910 		mutex_unlock(&c->bucket_lock);
911 
912 		if (!b)
913 			goto retry;
914 		if (IS_ERR(b))
915 			return b;
916 
917 		bch_btree_read(b);
918 
919 		if (!write)
920 			downgrade_write(&b->lock);
921 	} else {
922 		rw_lock(write, b, level);
923 		if (PTR_HASH(c, &b->key) != PTR_HASH(c, k)) {
924 			rw_unlock(write, b);
925 			goto retry;
926 		}
927 		BUG_ON(b->level != level);
928 	}
929 
930 	b->accessed = 1;
931 
932 	for (; i <= b->nsets && b->sets[i].size; i++) {
933 		prefetch(b->sets[i].tree);
934 		prefetch(b->sets[i].data);
935 	}
936 
937 	for (; i <= b->nsets; i++)
938 		prefetch(b->sets[i].data);
939 
940 	if (!closure_wait_event(&b->io.wait, &op->cl,
941 				btree_node_read_done(b))) {
942 		rw_unlock(write, b);
943 		b = ERR_PTR(-EAGAIN);
944 	} else if (btree_node_io_error(b)) {
945 		rw_unlock(write, b);
946 		b = ERR_PTR(-EIO);
947 	} else
948 		BUG_ON(!b->written);
949 
950 	return b;
951 }
952 
953 static void btree_node_prefetch(struct cache_set *c, struct bkey *k, int level)
954 {
955 	struct btree *b;
956 
957 	mutex_lock(&c->bucket_lock);
958 	b = mca_alloc(c, k, level, NULL);
959 	mutex_unlock(&c->bucket_lock);
960 
961 	if (!IS_ERR_OR_NULL(b)) {
962 		bch_btree_read(b);
963 		rw_unlock(true, b);
964 	}
965 }
966 
967 /* Btree alloc */
968 
969 static void btree_node_free(struct btree *b, struct btree_op *op)
970 {
971 	unsigned i;
972 
973 	/*
974 	 * The BUG_ON() in btree_node_get() implies that we must have a write
975 	 * lock on parent to free or even invalidate a node
976 	 */
977 	BUG_ON(op->lock <= b->level);
978 	BUG_ON(b == b->c->root);
979 	pr_debug("bucket %s", pbtree(b));
980 
981 	if (btree_node_dirty(b))
982 		btree_complete_write(b, btree_current_write(b));
983 	clear_bit(BTREE_NODE_dirty, &b->flags);
984 
985 	if (b->prio_blocked &&
986 	    !atomic_sub_return(b->prio_blocked, &b->c->prio_blocked))
987 		wake_up(&b->c->alloc_wait);
988 
989 	b->prio_blocked = 0;
990 
991 	cancel_delayed_work(&b->work);
992 
993 	mutex_lock(&b->c->bucket_lock);
994 
995 	for (i = 0; i < KEY_PTRS(&b->key); i++) {
996 		BUG_ON(atomic_read(&PTR_BUCKET(b->c, &b->key, i)->pin));
997 
998 		bch_inc_gen(PTR_CACHE(b->c, &b->key, i),
999 			    PTR_BUCKET(b->c, &b->key, i));
1000 	}
1001 
1002 	bch_bucket_free(b->c, &b->key);
1003 	mca_bucket_free(b);
1004 	mutex_unlock(&b->c->bucket_lock);
1005 }
1006 
1007 struct btree *bch_btree_node_alloc(struct cache_set *c, int level,
1008 				   struct closure *cl)
1009 {
1010 	BKEY_PADDED(key) k;
1011 	struct btree *b = ERR_PTR(-EAGAIN);
1012 
1013 	mutex_lock(&c->bucket_lock);
1014 retry:
1015 	if (__bch_bucket_alloc_set(c, WATERMARK_METADATA, &k.key, 1, cl))
1016 		goto err;
1017 
1018 	SET_KEY_SIZE(&k.key, c->btree_pages * PAGE_SECTORS);
1019 
1020 	b = mca_alloc(c, &k.key, level, cl);
1021 	if (IS_ERR(b))
1022 		goto err_free;
1023 
1024 	if (!b) {
1025 		cache_bug(c,
1026 			"Tried to allocate bucket that was in btree cache");
1027 		__bkey_put(c, &k.key);
1028 		goto retry;
1029 	}
1030 
1031 	set_btree_node_read_done(b);
1032 	b->accessed = 1;
1033 	bch_bset_init_next(b);
1034 
1035 	mutex_unlock(&c->bucket_lock);
1036 	return b;
1037 err_free:
1038 	bch_bucket_free(c, &k.key);
1039 	__bkey_put(c, &k.key);
1040 err:
1041 	mutex_unlock(&c->bucket_lock);
1042 	return b;
1043 }
1044 
1045 static struct btree *btree_node_alloc_replacement(struct btree *b,
1046 						  struct closure *cl)
1047 {
1048 	struct btree *n = bch_btree_node_alloc(b->c, b->level, cl);
1049 	if (!IS_ERR_OR_NULL(n))
1050 		bch_btree_sort_into(b, n);
1051 
1052 	return n;
1053 }
1054 
1055 /* Garbage collection */
1056 
1057 uint8_t __bch_btree_mark_key(struct cache_set *c, int level, struct bkey *k)
1058 {
1059 	uint8_t stale = 0;
1060 	unsigned i;
1061 	struct bucket *g;
1062 
1063 	/*
1064 	 * ptr_invalid() can't return true for the keys that mark btree nodes as
1065 	 * freed, but since ptr_bad() returns true we'll never actually use them
1066 	 * for anything and thus we don't want mark their pointers here
1067 	 */
1068 	if (!bkey_cmp(k, &ZERO_KEY))
1069 		return stale;
1070 
1071 	for (i = 0; i < KEY_PTRS(k); i++) {
1072 		if (!ptr_available(c, k, i))
1073 			continue;
1074 
1075 		g = PTR_BUCKET(c, k, i);
1076 
1077 		if (gen_after(g->gc_gen, PTR_GEN(k, i)))
1078 			g->gc_gen = PTR_GEN(k, i);
1079 
1080 		if (ptr_stale(c, k, i)) {
1081 			stale = max(stale, ptr_stale(c, k, i));
1082 			continue;
1083 		}
1084 
1085 		cache_bug_on(GC_MARK(g) &&
1086 			     (GC_MARK(g) == GC_MARK_METADATA) != (level != 0),
1087 			     c, "inconsistent ptrs: mark = %llu, level = %i",
1088 			     GC_MARK(g), level);
1089 
1090 		if (level)
1091 			SET_GC_MARK(g, GC_MARK_METADATA);
1092 		else if (KEY_DIRTY(k))
1093 			SET_GC_MARK(g, GC_MARK_DIRTY);
1094 
1095 		/* guard against overflow */
1096 		SET_GC_SECTORS_USED(g, min_t(unsigned,
1097 					     GC_SECTORS_USED(g) + KEY_SIZE(k),
1098 					     (1 << 14) - 1));
1099 
1100 		BUG_ON(!GC_SECTORS_USED(g));
1101 	}
1102 
1103 	return stale;
1104 }
1105 
1106 #define btree_mark_key(b, k)	__bch_btree_mark_key(b->c, b->level, k)
1107 
1108 static int btree_gc_mark_node(struct btree *b, unsigned *keys,
1109 			      struct gc_stat *gc)
1110 {
1111 	uint8_t stale = 0;
1112 	unsigned last_dev = -1;
1113 	struct bcache_device *d = NULL;
1114 	struct bkey *k;
1115 	struct btree_iter iter;
1116 	struct bset_tree *t;
1117 
1118 	gc->nodes++;
1119 
1120 	for_each_key_filter(b, k, &iter, bch_ptr_invalid) {
1121 		if (last_dev != KEY_INODE(k)) {
1122 			last_dev = KEY_INODE(k);
1123 
1124 			d = KEY_INODE(k) < b->c->nr_uuids
1125 				? b->c->devices[last_dev]
1126 				: NULL;
1127 		}
1128 
1129 		stale = max(stale, btree_mark_key(b, k));
1130 
1131 		if (bch_ptr_bad(b, k))
1132 			continue;
1133 
1134 		*keys += bkey_u64s(k);
1135 
1136 		gc->key_bytes += bkey_u64s(k);
1137 		gc->nkeys++;
1138 
1139 		gc->data += KEY_SIZE(k);
1140 		if (KEY_DIRTY(k)) {
1141 			gc->dirty += KEY_SIZE(k);
1142 			if (d)
1143 				d->sectors_dirty_gc += KEY_SIZE(k);
1144 		}
1145 	}
1146 
1147 	for (t = b->sets; t <= &b->sets[b->nsets]; t++)
1148 		btree_bug_on(t->size &&
1149 			     bset_written(b, t) &&
1150 			     bkey_cmp(&b->key, &t->end) < 0,
1151 			     b, "found short btree key in gc");
1152 
1153 	return stale;
1154 }
1155 
1156 static struct btree *btree_gc_alloc(struct btree *b, struct bkey *k,
1157 				    struct btree_op *op)
1158 {
1159 	/*
1160 	 * We block priorities from being written for the duration of garbage
1161 	 * collection, so we can't sleep in btree_alloc() ->
1162 	 * bch_bucket_alloc_set(), or we'd risk deadlock - so we don't pass it
1163 	 * our closure.
1164 	 */
1165 	struct btree *n = btree_node_alloc_replacement(b, NULL);
1166 
1167 	if (!IS_ERR_OR_NULL(n)) {
1168 		swap(b, n);
1169 
1170 		memcpy(k->ptr, b->key.ptr,
1171 		       sizeof(uint64_t) * KEY_PTRS(&b->key));
1172 
1173 		__bkey_put(b->c, &b->key);
1174 		atomic_inc(&b->c->prio_blocked);
1175 		b->prio_blocked++;
1176 
1177 		btree_node_free(n, op);
1178 		up_write(&n->lock);
1179 	}
1180 
1181 	return b;
1182 }
1183 
1184 /*
1185  * Leaving this at 2 until we've got incremental garbage collection done; it
1186  * could be higher (and has been tested with 4) except that garbage collection
1187  * could take much longer, adversely affecting latency.
1188  */
1189 #define GC_MERGE_NODES	2U
1190 
1191 struct gc_merge_info {
1192 	struct btree	*b;
1193 	struct bkey	*k;
1194 	unsigned	keys;
1195 };
1196 
1197 static void btree_gc_coalesce(struct btree *b, struct btree_op *op,
1198 			      struct gc_stat *gc, struct gc_merge_info *r)
1199 {
1200 	unsigned nodes = 0, keys = 0, blocks;
1201 	int i;
1202 
1203 	while (nodes < GC_MERGE_NODES && r[nodes].b)
1204 		keys += r[nodes++].keys;
1205 
1206 	blocks = btree_default_blocks(b->c) * 2 / 3;
1207 
1208 	if (nodes < 2 ||
1209 	    __set_blocks(b->sets[0].data, keys, b->c) > blocks * (nodes - 1))
1210 		return;
1211 
1212 	for (i = nodes - 1; i >= 0; --i) {
1213 		if (r[i].b->written)
1214 			r[i].b = btree_gc_alloc(r[i].b, r[i].k, op);
1215 
1216 		if (r[i].b->written)
1217 			return;
1218 	}
1219 
1220 	for (i = nodes - 1; i > 0; --i) {
1221 		struct bset *n1 = r[i].b->sets->data;
1222 		struct bset *n2 = r[i - 1].b->sets->data;
1223 		struct bkey *k, *last = NULL;
1224 
1225 		keys = 0;
1226 
1227 		if (i == 1) {
1228 			/*
1229 			 * Last node we're not getting rid of - we're getting
1230 			 * rid of the node at r[0]. Have to try and fit all of
1231 			 * the remaining keys into this node; we can't ensure
1232 			 * they will always fit due to rounding and variable
1233 			 * length keys (shouldn't be possible in practice,
1234 			 * though)
1235 			 */
1236 			if (__set_blocks(n1, n1->keys + r->keys,
1237 					 b->c) > btree_blocks(r[i].b))
1238 				return;
1239 
1240 			keys = n2->keys;
1241 			last = &r->b->key;
1242 		} else
1243 			for (k = n2->start;
1244 			     k < end(n2);
1245 			     k = bkey_next(k)) {
1246 				if (__set_blocks(n1, n1->keys + keys +
1247 						 bkey_u64s(k), b->c) > blocks)
1248 					break;
1249 
1250 				last = k;
1251 				keys += bkey_u64s(k);
1252 			}
1253 
1254 		BUG_ON(__set_blocks(n1, n1->keys + keys,
1255 				    b->c) > btree_blocks(r[i].b));
1256 
1257 		if (last) {
1258 			bkey_copy_key(&r[i].b->key, last);
1259 			bkey_copy_key(r[i].k, last);
1260 		}
1261 
1262 		memcpy(end(n1),
1263 		       n2->start,
1264 		       (void *) node(n2, keys) - (void *) n2->start);
1265 
1266 		n1->keys += keys;
1267 
1268 		memmove(n2->start,
1269 			node(n2, keys),
1270 			(void *) end(n2) - (void *) node(n2, keys));
1271 
1272 		n2->keys -= keys;
1273 
1274 		r[i].keys	= n1->keys;
1275 		r[i - 1].keys	= n2->keys;
1276 	}
1277 
1278 	btree_node_free(r->b, op);
1279 	up_write(&r->b->lock);
1280 
1281 	pr_debug("coalesced %u nodes", nodes);
1282 
1283 	gc->nodes--;
1284 	nodes--;
1285 
1286 	memmove(&r[0], &r[1], sizeof(struct gc_merge_info) * nodes);
1287 	memset(&r[nodes], 0, sizeof(struct gc_merge_info));
1288 }
1289 
1290 static int btree_gc_recurse(struct btree *b, struct btree_op *op,
1291 			    struct closure *writes, struct gc_stat *gc)
1292 {
1293 	void write(struct btree *r)
1294 	{
1295 		if (!r->written)
1296 			bch_btree_write(r, true, op);
1297 		else if (btree_node_dirty(r)) {
1298 			BUG_ON(btree_current_write(r)->owner);
1299 			btree_current_write(r)->owner = writes;
1300 			closure_get(writes);
1301 
1302 			bch_btree_write(r, true, NULL);
1303 		}
1304 
1305 		up_write(&r->lock);
1306 	}
1307 
1308 	int ret = 0, stale;
1309 	unsigned i;
1310 	struct gc_merge_info r[GC_MERGE_NODES];
1311 
1312 	memset(r, 0, sizeof(r));
1313 
1314 	while ((r->k = bch_next_recurse_key(b, &b->c->gc_done))) {
1315 		r->b = bch_btree_node_get(b->c, r->k, b->level - 1, op);
1316 
1317 		if (IS_ERR(r->b)) {
1318 			ret = PTR_ERR(r->b);
1319 			break;
1320 		}
1321 
1322 		r->keys	= 0;
1323 		stale = btree_gc_mark_node(r->b, &r->keys, gc);
1324 
1325 		if (!b->written &&
1326 		    (r->b->level || stale > 10 ||
1327 		     b->c->gc_always_rewrite))
1328 			r->b = btree_gc_alloc(r->b, r->k, op);
1329 
1330 		if (r->b->level)
1331 			ret = btree_gc_recurse(r->b, op, writes, gc);
1332 
1333 		if (ret) {
1334 			write(r->b);
1335 			break;
1336 		}
1337 
1338 		bkey_copy_key(&b->c->gc_done, r->k);
1339 
1340 		if (!b->written)
1341 			btree_gc_coalesce(b, op, gc, r);
1342 
1343 		if (r[GC_MERGE_NODES - 1].b)
1344 			write(r[GC_MERGE_NODES - 1].b);
1345 
1346 		memmove(&r[1], &r[0],
1347 			sizeof(struct gc_merge_info) * (GC_MERGE_NODES - 1));
1348 
1349 		/* When we've got incremental GC working, we'll want to do
1350 		 * if (should_resched())
1351 		 *	return -EAGAIN;
1352 		 */
1353 		cond_resched();
1354 #if 0
1355 		if (need_resched()) {
1356 			ret = -EAGAIN;
1357 			break;
1358 		}
1359 #endif
1360 	}
1361 
1362 	for (i = 1; i < GC_MERGE_NODES && r[i].b; i++)
1363 		write(r[i].b);
1364 
1365 	/* Might have freed some children, must remove their keys */
1366 	if (!b->written)
1367 		bch_btree_sort(b);
1368 
1369 	return ret;
1370 }
1371 
1372 static int bch_btree_gc_root(struct btree *b, struct btree_op *op,
1373 			     struct closure *writes, struct gc_stat *gc)
1374 {
1375 	struct btree *n = NULL;
1376 	unsigned keys = 0;
1377 	int ret = 0, stale = btree_gc_mark_node(b, &keys, gc);
1378 
1379 	if (b->level || stale > 10)
1380 		n = btree_node_alloc_replacement(b, NULL);
1381 
1382 	if (!IS_ERR_OR_NULL(n))
1383 		swap(b, n);
1384 
1385 	if (b->level)
1386 		ret = btree_gc_recurse(b, op, writes, gc);
1387 
1388 	if (!b->written || btree_node_dirty(b)) {
1389 		atomic_inc(&b->c->prio_blocked);
1390 		b->prio_blocked++;
1391 		bch_btree_write(b, true, n ? op : NULL);
1392 	}
1393 
1394 	if (!IS_ERR_OR_NULL(n)) {
1395 		closure_sync(&op->cl);
1396 		bch_btree_set_root(b);
1397 		btree_node_free(n, op);
1398 		rw_unlock(true, b);
1399 	}
1400 
1401 	return ret;
1402 }
1403 
1404 static void btree_gc_start(struct cache_set *c)
1405 {
1406 	struct cache *ca;
1407 	struct bucket *b;
1408 	struct bcache_device **d;
1409 	unsigned i;
1410 
1411 	if (!c->gc_mark_valid)
1412 		return;
1413 
1414 	mutex_lock(&c->bucket_lock);
1415 
1416 	c->gc_mark_valid = 0;
1417 	c->gc_done = ZERO_KEY;
1418 
1419 	for_each_cache(ca, c, i)
1420 		for_each_bucket(b, ca) {
1421 			b->gc_gen = b->gen;
1422 			if (!atomic_read(&b->pin))
1423 				SET_GC_MARK(b, GC_MARK_RECLAIMABLE);
1424 		}
1425 
1426 	for (d = c->devices;
1427 	     d < c->devices + c->nr_uuids;
1428 	     d++)
1429 		if (*d)
1430 			(*d)->sectors_dirty_gc = 0;
1431 
1432 	mutex_unlock(&c->bucket_lock);
1433 }
1434 
1435 size_t bch_btree_gc_finish(struct cache_set *c)
1436 {
1437 	size_t available = 0;
1438 	struct bucket *b;
1439 	struct cache *ca;
1440 	struct bcache_device **d;
1441 	unsigned i;
1442 
1443 	mutex_lock(&c->bucket_lock);
1444 
1445 	set_gc_sectors(c);
1446 	c->gc_mark_valid = 1;
1447 	c->need_gc	= 0;
1448 
1449 	if (c->root)
1450 		for (i = 0; i < KEY_PTRS(&c->root->key); i++)
1451 			SET_GC_MARK(PTR_BUCKET(c, &c->root->key, i),
1452 				    GC_MARK_METADATA);
1453 
1454 	for (i = 0; i < KEY_PTRS(&c->uuid_bucket); i++)
1455 		SET_GC_MARK(PTR_BUCKET(c, &c->uuid_bucket, i),
1456 			    GC_MARK_METADATA);
1457 
1458 	for_each_cache(ca, c, i) {
1459 		uint64_t *i;
1460 
1461 		ca->invalidate_needs_gc = 0;
1462 
1463 		for (i = ca->sb.d; i < ca->sb.d + ca->sb.keys; i++)
1464 			SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA);
1465 
1466 		for (i = ca->prio_buckets;
1467 		     i < ca->prio_buckets + prio_buckets(ca) * 2; i++)
1468 			SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA);
1469 
1470 		for_each_bucket(b, ca) {
1471 			b->last_gc	= b->gc_gen;
1472 			c->need_gc	= max(c->need_gc, bucket_gc_gen(b));
1473 
1474 			if (!atomic_read(&b->pin) &&
1475 			    GC_MARK(b) == GC_MARK_RECLAIMABLE) {
1476 				available++;
1477 				if (!GC_SECTORS_USED(b))
1478 					bch_bucket_add_unused(ca, b);
1479 			}
1480 		}
1481 	}
1482 
1483 	for (d = c->devices;
1484 	     d < c->devices + c->nr_uuids;
1485 	     d++)
1486 		if (*d) {
1487 			unsigned long last =
1488 				atomic_long_read(&((*d)->sectors_dirty));
1489 			long difference = (*d)->sectors_dirty_gc - last;
1490 
1491 			pr_debug("sectors dirty off by %li", difference);
1492 
1493 			(*d)->sectors_dirty_last += difference;
1494 
1495 			atomic_long_set(&((*d)->sectors_dirty),
1496 					(*d)->sectors_dirty_gc);
1497 		}
1498 
1499 	mutex_unlock(&c->bucket_lock);
1500 	return available;
1501 }
1502 
1503 static void bch_btree_gc(struct closure *cl)
1504 {
1505 	struct cache_set *c = container_of(cl, struct cache_set, gc.cl);
1506 	int ret;
1507 	unsigned long available;
1508 	struct gc_stat stats;
1509 	struct closure writes;
1510 	struct btree_op op;
1511 
1512 	uint64_t start_time = local_clock();
1513 	trace_bcache_gc_start(c->sb.set_uuid);
1514 	blktrace_msg_all(c, "Starting gc");
1515 
1516 	memset(&stats, 0, sizeof(struct gc_stat));
1517 	closure_init_stack(&writes);
1518 	bch_btree_op_init_stack(&op);
1519 	op.lock = SHRT_MAX;
1520 
1521 	btree_gc_start(c);
1522 
1523 	ret = btree_root(gc_root, c, &op, &writes, &stats);
1524 	closure_sync(&op.cl);
1525 	closure_sync(&writes);
1526 
1527 	if (ret) {
1528 		blktrace_msg_all(c, "Stopped gc");
1529 		pr_warn("gc failed!");
1530 
1531 		continue_at(cl, bch_btree_gc, bch_gc_wq);
1532 	}
1533 
1534 	/* Possibly wait for new UUIDs or whatever to hit disk */
1535 	bch_journal_meta(c, &op.cl);
1536 	closure_sync(&op.cl);
1537 
1538 	available = bch_btree_gc_finish(c);
1539 
1540 	bch_time_stats_update(&c->btree_gc_time, start_time);
1541 
1542 	stats.key_bytes *= sizeof(uint64_t);
1543 	stats.dirty	<<= 9;
1544 	stats.data	<<= 9;
1545 	stats.in_use	= (c->nbuckets - available) * 100 / c->nbuckets;
1546 	memcpy(&c->gc_stats, &stats, sizeof(struct gc_stat));
1547 	blktrace_msg_all(c, "Finished gc");
1548 
1549 	trace_bcache_gc_end(c->sb.set_uuid);
1550 	wake_up(&c->alloc_wait);
1551 
1552 	continue_at(cl, bch_moving_gc, bch_gc_wq);
1553 }
1554 
1555 void bch_queue_gc(struct cache_set *c)
1556 {
1557 	closure_trylock_call(&c->gc.cl, bch_btree_gc, bch_gc_wq, &c->cl);
1558 }
1559 
1560 /* Initial partial gc */
1561 
1562 static int bch_btree_check_recurse(struct btree *b, struct btree_op *op,
1563 				   unsigned long **seen)
1564 {
1565 	int ret;
1566 	unsigned i;
1567 	struct bkey *k;
1568 	struct bucket *g;
1569 	struct btree_iter iter;
1570 
1571 	for_each_key_filter(b, k, &iter, bch_ptr_invalid) {
1572 		for (i = 0; i < KEY_PTRS(k); i++) {
1573 			if (!ptr_available(b->c, k, i))
1574 				continue;
1575 
1576 			g = PTR_BUCKET(b->c, k, i);
1577 
1578 			if (!__test_and_set_bit(PTR_BUCKET_NR(b->c, k, i),
1579 						seen[PTR_DEV(k, i)]) ||
1580 			    !ptr_stale(b->c, k, i)) {
1581 				g->gen = PTR_GEN(k, i);
1582 
1583 				if (b->level)
1584 					g->prio = BTREE_PRIO;
1585 				else if (g->prio == BTREE_PRIO)
1586 					g->prio = INITIAL_PRIO;
1587 			}
1588 		}
1589 
1590 		btree_mark_key(b, k);
1591 	}
1592 
1593 	if (b->level) {
1594 		k = bch_next_recurse_key(b, &ZERO_KEY);
1595 
1596 		while (k) {
1597 			struct bkey *p = bch_next_recurse_key(b, k);
1598 			if (p)
1599 				btree_node_prefetch(b->c, p, b->level - 1);
1600 
1601 			ret = btree(check_recurse, k, b, op, seen);
1602 			if (ret)
1603 				return ret;
1604 
1605 			k = p;
1606 		}
1607 	}
1608 
1609 	return 0;
1610 }
1611 
1612 int bch_btree_check(struct cache_set *c, struct btree_op *op)
1613 {
1614 	int ret = -ENOMEM;
1615 	unsigned i;
1616 	unsigned long *seen[MAX_CACHES_PER_SET];
1617 
1618 	memset(seen, 0, sizeof(seen));
1619 
1620 	for (i = 0; c->cache[i]; i++) {
1621 		size_t n = DIV_ROUND_UP(c->cache[i]->sb.nbuckets, 8);
1622 		seen[i] = kmalloc(n, GFP_KERNEL);
1623 		if (!seen[i])
1624 			goto err;
1625 
1626 		/* Disables the seen array until prio_read() uses it too */
1627 		memset(seen[i], 0xFF, n);
1628 	}
1629 
1630 	ret = btree_root(check_recurse, c, op, seen);
1631 err:
1632 	for (i = 0; i < MAX_CACHES_PER_SET; i++)
1633 		kfree(seen[i]);
1634 	return ret;
1635 }
1636 
1637 /* Btree insertion */
1638 
1639 static void shift_keys(struct btree *b, struct bkey *where, struct bkey *insert)
1640 {
1641 	struct bset *i = b->sets[b->nsets].data;
1642 
1643 	memmove((uint64_t *) where + bkey_u64s(insert),
1644 		where,
1645 		(void *) end(i) - (void *) where);
1646 
1647 	i->keys += bkey_u64s(insert);
1648 	bkey_copy(where, insert);
1649 	bch_bset_fix_lookup_table(b, where);
1650 }
1651 
1652 static bool fix_overlapping_extents(struct btree *b,
1653 				    struct bkey *insert,
1654 				    struct btree_iter *iter,
1655 				    struct btree_op *op)
1656 {
1657 	void subtract_dirty(struct bkey *k, int sectors)
1658 	{
1659 		struct bcache_device *d = b->c->devices[KEY_INODE(k)];
1660 
1661 		if (KEY_DIRTY(k) && d)
1662 			atomic_long_sub(sectors, &d->sectors_dirty);
1663 	}
1664 
1665 	unsigned old_size, sectors_found = 0;
1666 
1667 	while (1) {
1668 		struct bkey *k = bch_btree_iter_next(iter);
1669 		if (!k ||
1670 		    bkey_cmp(&START_KEY(k), insert) >= 0)
1671 			break;
1672 
1673 		if (bkey_cmp(k, &START_KEY(insert)) <= 0)
1674 			continue;
1675 
1676 		old_size = KEY_SIZE(k);
1677 
1678 		/*
1679 		 * We might overlap with 0 size extents; we can't skip these
1680 		 * because if they're in the set we're inserting to we have to
1681 		 * adjust them so they don't overlap with the key we're
1682 		 * inserting. But we don't want to check them for BTREE_REPLACE
1683 		 * operations.
1684 		 */
1685 
1686 		if (op->type == BTREE_REPLACE &&
1687 		    KEY_SIZE(k)) {
1688 			/*
1689 			 * k might have been split since we inserted/found the
1690 			 * key we're replacing
1691 			 */
1692 			unsigned i;
1693 			uint64_t offset = KEY_START(k) -
1694 				KEY_START(&op->replace);
1695 
1696 			/* But it must be a subset of the replace key */
1697 			if (KEY_START(k) < KEY_START(&op->replace) ||
1698 			    KEY_OFFSET(k) > KEY_OFFSET(&op->replace))
1699 				goto check_failed;
1700 
1701 			/* We didn't find a key that we were supposed to */
1702 			if (KEY_START(k) > KEY_START(insert) + sectors_found)
1703 				goto check_failed;
1704 
1705 			if (KEY_PTRS(&op->replace) != KEY_PTRS(k))
1706 				goto check_failed;
1707 
1708 			/* skip past gen */
1709 			offset <<= 8;
1710 
1711 			BUG_ON(!KEY_PTRS(&op->replace));
1712 
1713 			for (i = 0; i < KEY_PTRS(&op->replace); i++)
1714 				if (k->ptr[i] != op->replace.ptr[i] + offset)
1715 					goto check_failed;
1716 
1717 			sectors_found = KEY_OFFSET(k) - KEY_START(insert);
1718 		}
1719 
1720 		if (bkey_cmp(insert, k) < 0 &&
1721 		    bkey_cmp(&START_KEY(insert), &START_KEY(k)) > 0) {
1722 			/*
1723 			 * We overlapped in the middle of an existing key: that
1724 			 * means we have to split the old key. But we have to do
1725 			 * slightly different things depending on whether the
1726 			 * old key has been written out yet.
1727 			 */
1728 
1729 			struct bkey *top;
1730 
1731 			subtract_dirty(k, KEY_SIZE(insert));
1732 
1733 			if (bkey_written(b, k)) {
1734 				/*
1735 				 * We insert a new key to cover the top of the
1736 				 * old key, and the old key is modified in place
1737 				 * to represent the bottom split.
1738 				 *
1739 				 * It's completely arbitrary whether the new key
1740 				 * is the top or the bottom, but it has to match
1741 				 * up with what btree_sort_fixup() does - it
1742 				 * doesn't check for this kind of overlap, it
1743 				 * depends on us inserting a new key for the top
1744 				 * here.
1745 				 */
1746 				top = bch_bset_search(b, &b->sets[b->nsets],
1747 						      insert);
1748 				shift_keys(b, top, k);
1749 			} else {
1750 				BKEY_PADDED(key) temp;
1751 				bkey_copy(&temp.key, k);
1752 				shift_keys(b, k, &temp.key);
1753 				top = bkey_next(k);
1754 			}
1755 
1756 			bch_cut_front(insert, top);
1757 			bch_cut_back(&START_KEY(insert), k);
1758 			bch_bset_fix_invalidated_key(b, k);
1759 			return false;
1760 		}
1761 
1762 		if (bkey_cmp(insert, k) < 0) {
1763 			bch_cut_front(insert, k);
1764 		} else {
1765 			if (bkey_written(b, k) &&
1766 			    bkey_cmp(&START_KEY(insert), &START_KEY(k)) <= 0) {
1767 				/*
1768 				 * Completely overwrote, so we don't have to
1769 				 * invalidate the binary search tree
1770 				 */
1771 				bch_cut_front(k, k);
1772 			} else {
1773 				__bch_cut_back(&START_KEY(insert), k);
1774 				bch_bset_fix_invalidated_key(b, k);
1775 			}
1776 		}
1777 
1778 		subtract_dirty(k, old_size - KEY_SIZE(k));
1779 	}
1780 
1781 check_failed:
1782 	if (op->type == BTREE_REPLACE) {
1783 		if (!sectors_found) {
1784 			op->insert_collision = true;
1785 			return true;
1786 		} else if (sectors_found < KEY_SIZE(insert)) {
1787 			SET_KEY_OFFSET(insert, KEY_OFFSET(insert) -
1788 				       (KEY_SIZE(insert) - sectors_found));
1789 			SET_KEY_SIZE(insert, sectors_found);
1790 		}
1791 	}
1792 
1793 	return false;
1794 }
1795 
1796 static bool btree_insert_key(struct btree *b, struct btree_op *op,
1797 			     struct bkey *k)
1798 {
1799 	struct bset *i = b->sets[b->nsets].data;
1800 	struct bkey *m, *prev;
1801 	const char *status = "insert";
1802 
1803 	BUG_ON(bkey_cmp(k, &b->key) > 0);
1804 	BUG_ON(b->level && !KEY_PTRS(k));
1805 	BUG_ON(!b->level && !KEY_OFFSET(k));
1806 
1807 	if (!b->level) {
1808 		struct btree_iter iter;
1809 		struct bkey search = KEY(KEY_INODE(k), KEY_START(k), 0);
1810 
1811 		/*
1812 		 * bset_search() returns the first key that is strictly greater
1813 		 * than the search key - but for back merging, we want to find
1814 		 * the first key that is greater than or equal to KEY_START(k) -
1815 		 * unless KEY_START(k) is 0.
1816 		 */
1817 		if (KEY_OFFSET(&search))
1818 			SET_KEY_OFFSET(&search, KEY_OFFSET(&search) - 1);
1819 
1820 		prev = NULL;
1821 		m = bch_btree_iter_init(b, &iter, &search);
1822 
1823 		if (fix_overlapping_extents(b, k, &iter, op))
1824 			return false;
1825 
1826 		while (m != end(i) &&
1827 		       bkey_cmp(k, &START_KEY(m)) > 0)
1828 			prev = m, m = bkey_next(m);
1829 
1830 		if (key_merging_disabled(b->c))
1831 			goto insert;
1832 
1833 		/* prev is in the tree, if we merge we're done */
1834 		status = "back merging";
1835 		if (prev &&
1836 		    bch_bkey_try_merge(b, prev, k))
1837 			goto merged;
1838 
1839 		status = "overwrote front";
1840 		if (m != end(i) &&
1841 		    KEY_PTRS(m) == KEY_PTRS(k) && !KEY_SIZE(m))
1842 			goto copy;
1843 
1844 		status = "front merge";
1845 		if (m != end(i) &&
1846 		    bch_bkey_try_merge(b, k, m))
1847 			goto copy;
1848 	} else
1849 		m = bch_bset_search(b, &b->sets[b->nsets], k);
1850 
1851 insert:	shift_keys(b, m, k);
1852 copy:	bkey_copy(m, k);
1853 merged:
1854 	bch_check_keys(b, "%s for %s at %s: %s", status,
1855 		       op_type(op), pbtree(b), pkey(k));
1856 	bch_check_key_order_msg(b, i, "%s for %s at %s: %s", status,
1857 				op_type(op), pbtree(b), pkey(k));
1858 
1859 	if (b->level && !KEY_OFFSET(k))
1860 		b->prio_blocked++;
1861 
1862 	pr_debug("%s for %s at %s: %s", status,
1863 		 op_type(op), pbtree(b), pkey(k));
1864 
1865 	return true;
1866 }
1867 
1868 bool bch_btree_insert_keys(struct btree *b, struct btree_op *op)
1869 {
1870 	bool ret = false;
1871 	struct bkey *k;
1872 	unsigned oldsize = bch_count_data(b);
1873 
1874 	while ((k = bch_keylist_pop(&op->keys))) {
1875 		bkey_put(b->c, k, b->level);
1876 		ret |= btree_insert_key(b, op, k);
1877 	}
1878 
1879 	BUG_ON(bch_count_data(b) < oldsize);
1880 	return ret;
1881 }
1882 
1883 bool bch_btree_insert_check_key(struct btree *b, struct btree_op *op,
1884 				   struct bio *bio)
1885 {
1886 	bool ret = false;
1887 	uint64_t btree_ptr = b->key.ptr[0];
1888 	unsigned long seq = b->seq;
1889 	BKEY_PADDED(k) tmp;
1890 
1891 	rw_unlock(false, b);
1892 	rw_lock(true, b, b->level);
1893 
1894 	if (b->key.ptr[0] != btree_ptr ||
1895 	    b->seq != seq + 1 ||
1896 	    should_split(b))
1897 		goto out;
1898 
1899 	op->replace = KEY(op->inode, bio_end(bio), bio_sectors(bio));
1900 
1901 	SET_KEY_PTRS(&op->replace, 1);
1902 	get_random_bytes(&op->replace.ptr[0], sizeof(uint64_t));
1903 
1904 	SET_PTR_DEV(&op->replace, 0, PTR_CHECK_DEV);
1905 
1906 	bkey_copy(&tmp.k, &op->replace);
1907 
1908 	BUG_ON(op->type != BTREE_INSERT);
1909 	BUG_ON(!btree_insert_key(b, op, &tmp.k));
1910 	bch_btree_write(b, false, NULL);
1911 	ret = true;
1912 out:
1913 	downgrade_write(&b->lock);
1914 	return ret;
1915 }
1916 
1917 static int btree_split(struct btree *b, struct btree_op *op)
1918 {
1919 	bool split, root = b == b->c->root;
1920 	struct btree *n1, *n2 = NULL, *n3 = NULL;
1921 	uint64_t start_time = local_clock();
1922 
1923 	if (b->level)
1924 		set_closure_blocking(&op->cl);
1925 
1926 	n1 = btree_node_alloc_replacement(b, &op->cl);
1927 	if (IS_ERR(n1))
1928 		goto err;
1929 
1930 	split = set_blocks(n1->sets[0].data, n1->c) > (btree_blocks(b) * 4) / 5;
1931 
1932 	pr_debug("%ssplitting at %s keys %i", split ? "" : "not ",
1933 		 pbtree(b), n1->sets[0].data->keys);
1934 
1935 	if (split) {
1936 		unsigned keys = 0;
1937 
1938 		n2 = bch_btree_node_alloc(b->c, b->level, &op->cl);
1939 		if (IS_ERR(n2))
1940 			goto err_free1;
1941 
1942 		if (root) {
1943 			n3 = bch_btree_node_alloc(b->c, b->level + 1, &op->cl);
1944 			if (IS_ERR(n3))
1945 				goto err_free2;
1946 		}
1947 
1948 		bch_btree_insert_keys(n1, op);
1949 
1950 		/* Has to be a linear search because we don't have an auxiliary
1951 		 * search tree yet
1952 		 */
1953 
1954 		while (keys < (n1->sets[0].data->keys * 3) / 5)
1955 			keys += bkey_u64s(node(n1->sets[0].data, keys));
1956 
1957 		bkey_copy_key(&n1->key, node(n1->sets[0].data, keys));
1958 		keys += bkey_u64s(node(n1->sets[0].data, keys));
1959 
1960 		n2->sets[0].data->keys = n1->sets[0].data->keys - keys;
1961 		n1->sets[0].data->keys = keys;
1962 
1963 		memcpy(n2->sets[0].data->start,
1964 		       end(n1->sets[0].data),
1965 		       n2->sets[0].data->keys * sizeof(uint64_t));
1966 
1967 		bkey_copy_key(&n2->key, &b->key);
1968 
1969 		bch_keylist_add(&op->keys, &n2->key);
1970 		bch_btree_write(n2, true, op);
1971 		rw_unlock(true, n2);
1972 	} else
1973 		bch_btree_insert_keys(n1, op);
1974 
1975 	bch_keylist_add(&op->keys, &n1->key);
1976 	bch_btree_write(n1, true, op);
1977 
1978 	if (n3) {
1979 		bkey_copy_key(&n3->key, &MAX_KEY);
1980 		bch_btree_insert_keys(n3, op);
1981 		bch_btree_write(n3, true, op);
1982 
1983 		closure_sync(&op->cl);
1984 		bch_btree_set_root(n3);
1985 		rw_unlock(true, n3);
1986 	} else if (root) {
1987 		op->keys.top = op->keys.bottom;
1988 		closure_sync(&op->cl);
1989 		bch_btree_set_root(n1);
1990 	} else {
1991 		unsigned i;
1992 
1993 		bkey_copy(op->keys.top, &b->key);
1994 		bkey_copy_key(op->keys.top, &ZERO_KEY);
1995 
1996 		for (i = 0; i < KEY_PTRS(&b->key); i++) {
1997 			uint8_t g = PTR_BUCKET(b->c, &b->key, i)->gen + 1;
1998 
1999 			SET_PTR_GEN(op->keys.top, i, g);
2000 		}
2001 
2002 		bch_keylist_push(&op->keys);
2003 		closure_sync(&op->cl);
2004 		atomic_inc(&b->c->prio_blocked);
2005 	}
2006 
2007 	rw_unlock(true, n1);
2008 	btree_node_free(b, op);
2009 
2010 	bch_time_stats_update(&b->c->btree_split_time, start_time);
2011 
2012 	return 0;
2013 err_free2:
2014 	__bkey_put(n2->c, &n2->key);
2015 	btree_node_free(n2, op);
2016 	rw_unlock(true, n2);
2017 err_free1:
2018 	__bkey_put(n1->c, &n1->key);
2019 	btree_node_free(n1, op);
2020 	rw_unlock(true, n1);
2021 err:
2022 	if (n3 == ERR_PTR(-EAGAIN) ||
2023 	    n2 == ERR_PTR(-EAGAIN) ||
2024 	    n1 == ERR_PTR(-EAGAIN))
2025 		return -EAGAIN;
2026 
2027 	pr_warn("couldn't split");
2028 	return -ENOMEM;
2029 }
2030 
2031 static int bch_btree_insert_recurse(struct btree *b, struct btree_op *op,
2032 				    struct keylist *stack_keys)
2033 {
2034 	if (b->level) {
2035 		int ret;
2036 		struct bkey *insert = op->keys.bottom;
2037 		struct bkey *k = bch_next_recurse_key(b, &START_KEY(insert));
2038 
2039 		if (!k) {
2040 			btree_bug(b, "no key to recurse on at level %i/%i",
2041 				  b->level, b->c->root->level);
2042 
2043 			op->keys.top = op->keys.bottom;
2044 			return -EIO;
2045 		}
2046 
2047 		if (bkey_cmp(insert, k) > 0) {
2048 			unsigned i;
2049 
2050 			if (op->type == BTREE_REPLACE) {
2051 				__bkey_put(b->c, insert);
2052 				op->keys.top = op->keys.bottom;
2053 				op->insert_collision = true;
2054 				return 0;
2055 			}
2056 
2057 			for (i = 0; i < KEY_PTRS(insert); i++)
2058 				atomic_inc(&PTR_BUCKET(b->c, insert, i)->pin);
2059 
2060 			bkey_copy(stack_keys->top, insert);
2061 
2062 			bch_cut_back(k, insert);
2063 			bch_cut_front(k, stack_keys->top);
2064 
2065 			bch_keylist_push(stack_keys);
2066 		}
2067 
2068 		ret = btree(insert_recurse, k, b, op, stack_keys);
2069 		if (ret)
2070 			return ret;
2071 	}
2072 
2073 	if (!bch_keylist_empty(&op->keys)) {
2074 		if (should_split(b)) {
2075 			if (op->lock <= b->c->root->level) {
2076 				BUG_ON(b->level);
2077 				op->lock = b->c->root->level + 1;
2078 				return -EINTR;
2079 			}
2080 			return btree_split(b, op);
2081 		}
2082 
2083 		BUG_ON(write_block(b) != b->sets[b->nsets].data);
2084 
2085 		if (bch_btree_insert_keys(b, op))
2086 			bch_btree_write(b, false, op);
2087 	}
2088 
2089 	return 0;
2090 }
2091 
2092 int bch_btree_insert(struct btree_op *op, struct cache_set *c)
2093 {
2094 	int ret = 0;
2095 	struct keylist stack_keys;
2096 
2097 	/*
2098 	 * Don't want to block with the btree locked unless we have to,
2099 	 * otherwise we get deadlocks with try_harder and between split/gc
2100 	 */
2101 	clear_closure_blocking(&op->cl);
2102 
2103 	BUG_ON(bch_keylist_empty(&op->keys));
2104 	bch_keylist_copy(&stack_keys, &op->keys);
2105 	bch_keylist_init(&op->keys);
2106 
2107 	while (!bch_keylist_empty(&stack_keys) ||
2108 	       !bch_keylist_empty(&op->keys)) {
2109 		if (bch_keylist_empty(&op->keys)) {
2110 			bch_keylist_add(&op->keys,
2111 					bch_keylist_pop(&stack_keys));
2112 			op->lock = 0;
2113 		}
2114 
2115 		ret = btree_root(insert_recurse, c, op, &stack_keys);
2116 
2117 		if (ret == -EAGAIN) {
2118 			ret = 0;
2119 			closure_sync(&op->cl);
2120 		} else if (ret) {
2121 			struct bkey *k;
2122 
2123 			pr_err("error %i trying to insert key for %s",
2124 			       ret, op_type(op));
2125 
2126 			while ((k = bch_keylist_pop(&stack_keys) ?:
2127 				    bch_keylist_pop(&op->keys)))
2128 				bkey_put(c, k, 0);
2129 		}
2130 	}
2131 
2132 	bch_keylist_free(&stack_keys);
2133 
2134 	if (op->journal)
2135 		atomic_dec_bug(op->journal);
2136 	op->journal = NULL;
2137 	return ret;
2138 }
2139 
2140 void bch_btree_set_root(struct btree *b)
2141 {
2142 	unsigned i;
2143 
2144 	BUG_ON(!b->written);
2145 
2146 	for (i = 0; i < KEY_PTRS(&b->key); i++)
2147 		BUG_ON(PTR_BUCKET(b->c, &b->key, i)->prio != BTREE_PRIO);
2148 
2149 	mutex_lock(&b->c->bucket_lock);
2150 	list_del_init(&b->list);
2151 	mutex_unlock(&b->c->bucket_lock);
2152 
2153 	b->c->root = b;
2154 	__bkey_put(b->c, &b->key);
2155 
2156 	bch_journal_meta(b->c, NULL);
2157 	pr_debug("%s for %pf", pbtree(b), __builtin_return_address(0));
2158 }
2159 
2160 /* Cache lookup */
2161 
2162 static int submit_partial_cache_miss(struct btree *b, struct btree_op *op,
2163 				     struct bkey *k)
2164 {
2165 	struct search *s = container_of(op, struct search, op);
2166 	struct bio *bio = &s->bio.bio;
2167 	int ret = 0;
2168 
2169 	while (!ret &&
2170 	       !op->lookup_done) {
2171 		unsigned sectors = INT_MAX;
2172 
2173 		if (KEY_INODE(k) == op->inode) {
2174 			if (KEY_START(k) <= bio->bi_sector)
2175 				break;
2176 
2177 			sectors = min_t(uint64_t, sectors,
2178 					KEY_START(k) - bio->bi_sector);
2179 		}
2180 
2181 		ret = s->d->cache_miss(b, s, bio, sectors);
2182 	}
2183 
2184 	return ret;
2185 }
2186 
2187 /*
2188  * Read from a single key, handling the initial cache miss if the key starts in
2189  * the middle of the bio
2190  */
2191 static int submit_partial_cache_hit(struct btree *b, struct btree_op *op,
2192 				    struct bkey *k)
2193 {
2194 	struct search *s = container_of(op, struct search, op);
2195 	struct bio *bio = &s->bio.bio;
2196 	unsigned ptr;
2197 	struct bio *n;
2198 
2199 	int ret = submit_partial_cache_miss(b, op, k);
2200 	if (ret || op->lookup_done)
2201 		return ret;
2202 
2203 	/* XXX: figure out best pointer - for multiple cache devices */
2204 	ptr = 0;
2205 
2206 	PTR_BUCKET(b->c, k, ptr)->prio = INITIAL_PRIO;
2207 
2208 	while (!op->lookup_done &&
2209 	       KEY_INODE(k) == op->inode &&
2210 	       bio->bi_sector < KEY_OFFSET(k)) {
2211 		struct bkey *bio_key;
2212 		sector_t sector = PTR_OFFSET(k, ptr) +
2213 			(bio->bi_sector - KEY_START(k));
2214 		unsigned sectors = min_t(uint64_t, INT_MAX,
2215 					 KEY_OFFSET(k) - bio->bi_sector);
2216 
2217 		n = bch_bio_split(bio, sectors, GFP_NOIO, s->d->bio_split);
2218 		if (!n)
2219 			return -EAGAIN;
2220 
2221 		if (n == bio)
2222 			op->lookup_done = true;
2223 
2224 		bio_key = &container_of(n, struct bbio, bio)->key;
2225 
2226 		/*
2227 		 * The bucket we're reading from might be reused while our bio
2228 		 * is in flight, and we could then end up reading the wrong
2229 		 * data.
2230 		 *
2231 		 * We guard against this by checking (in cache_read_endio()) if
2232 		 * the pointer is stale again; if so, we treat it as an error
2233 		 * and reread from the backing device (but we don't pass that
2234 		 * error up anywhere).
2235 		 */
2236 
2237 		bch_bkey_copy_single_ptr(bio_key, k, ptr);
2238 		SET_PTR_OFFSET(bio_key, 0, sector);
2239 
2240 		n->bi_end_io	= bch_cache_read_endio;
2241 		n->bi_private	= &s->cl;
2242 
2243 		trace_bcache_cache_hit(n);
2244 		__bch_submit_bbio(n, b->c);
2245 	}
2246 
2247 	return 0;
2248 }
2249 
2250 int bch_btree_search_recurse(struct btree *b, struct btree_op *op)
2251 {
2252 	struct search *s = container_of(op, struct search, op);
2253 	struct bio *bio = &s->bio.bio;
2254 
2255 	int ret = 0;
2256 	struct bkey *k;
2257 	struct btree_iter iter;
2258 	bch_btree_iter_init(b, &iter, &KEY(op->inode, bio->bi_sector, 0));
2259 
2260 	pr_debug("at %s searching for %u:%llu", pbtree(b), op->inode,
2261 		 (uint64_t) bio->bi_sector);
2262 
2263 	do {
2264 		k = bch_btree_iter_next_filter(&iter, b, bch_ptr_bad);
2265 		if (!k) {
2266 			/*
2267 			 * b->key would be exactly what we want, except that
2268 			 * pointers to btree nodes have nonzero size - we
2269 			 * wouldn't go far enough
2270 			 */
2271 
2272 			ret = submit_partial_cache_miss(b, op,
2273 					&KEY(KEY_INODE(&b->key),
2274 					     KEY_OFFSET(&b->key), 0));
2275 			break;
2276 		}
2277 
2278 		ret = b->level
2279 			? btree(search_recurse, k, b, op)
2280 			: submit_partial_cache_hit(b, op, k);
2281 	} while (!ret &&
2282 		 !op->lookup_done);
2283 
2284 	return ret;
2285 }
2286 
2287 /* Keybuf code */
2288 
2289 static inline int keybuf_cmp(struct keybuf_key *l, struct keybuf_key *r)
2290 {
2291 	/* Overlapping keys compare equal */
2292 	if (bkey_cmp(&l->key, &START_KEY(&r->key)) <= 0)
2293 		return -1;
2294 	if (bkey_cmp(&START_KEY(&l->key), &r->key) >= 0)
2295 		return 1;
2296 	return 0;
2297 }
2298 
2299 static inline int keybuf_nonoverlapping_cmp(struct keybuf_key *l,
2300 					    struct keybuf_key *r)
2301 {
2302 	return clamp_t(int64_t, bkey_cmp(&l->key, &r->key), -1, 1);
2303 }
2304 
2305 static int bch_btree_refill_keybuf(struct btree *b, struct btree_op *op,
2306 				   struct keybuf *buf, struct bkey *end)
2307 {
2308 	struct btree_iter iter;
2309 	bch_btree_iter_init(b, &iter, &buf->last_scanned);
2310 
2311 	while (!array_freelist_empty(&buf->freelist)) {
2312 		struct bkey *k = bch_btree_iter_next_filter(&iter, b,
2313 							    bch_ptr_bad);
2314 
2315 		if (!b->level) {
2316 			if (!k) {
2317 				buf->last_scanned = b->key;
2318 				break;
2319 			}
2320 
2321 			buf->last_scanned = *k;
2322 			if (bkey_cmp(&buf->last_scanned, end) >= 0)
2323 				break;
2324 
2325 			if (buf->key_predicate(buf, k)) {
2326 				struct keybuf_key *w;
2327 
2328 				pr_debug("%s", pkey(k));
2329 
2330 				spin_lock(&buf->lock);
2331 
2332 				w = array_alloc(&buf->freelist);
2333 
2334 				w->private = NULL;
2335 				bkey_copy(&w->key, k);
2336 
2337 				if (RB_INSERT(&buf->keys, w, node, keybuf_cmp))
2338 					array_free(&buf->freelist, w);
2339 
2340 				spin_unlock(&buf->lock);
2341 			}
2342 		} else {
2343 			if (!k)
2344 				break;
2345 
2346 			btree(refill_keybuf, k, b, op, buf, end);
2347 			/*
2348 			 * Might get an error here, but can't really do anything
2349 			 * and it'll get logged elsewhere. Just read what we
2350 			 * can.
2351 			 */
2352 
2353 			if (bkey_cmp(&buf->last_scanned, end) >= 0)
2354 				break;
2355 
2356 			cond_resched();
2357 		}
2358 	}
2359 
2360 	return 0;
2361 }
2362 
2363 void bch_refill_keybuf(struct cache_set *c, struct keybuf *buf,
2364 			  struct bkey *end)
2365 {
2366 	struct bkey start = buf->last_scanned;
2367 	struct btree_op op;
2368 	bch_btree_op_init_stack(&op);
2369 
2370 	cond_resched();
2371 
2372 	btree_root(refill_keybuf, c, &op, buf, end);
2373 	closure_sync(&op.cl);
2374 
2375 	pr_debug("found %s keys from %llu:%llu to %llu:%llu",
2376 		 RB_EMPTY_ROOT(&buf->keys) ? "no" :
2377 		 array_freelist_empty(&buf->freelist) ? "some" : "a few",
2378 		 KEY_INODE(&start), KEY_OFFSET(&start),
2379 		 KEY_INODE(&buf->last_scanned), KEY_OFFSET(&buf->last_scanned));
2380 
2381 	spin_lock(&buf->lock);
2382 
2383 	if (!RB_EMPTY_ROOT(&buf->keys)) {
2384 		struct keybuf_key *w;
2385 		w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2386 		buf->start	= START_KEY(&w->key);
2387 
2388 		w = RB_LAST(&buf->keys, struct keybuf_key, node);
2389 		buf->end	= w->key;
2390 	} else {
2391 		buf->start	= MAX_KEY;
2392 		buf->end	= MAX_KEY;
2393 	}
2394 
2395 	spin_unlock(&buf->lock);
2396 }
2397 
2398 static void __bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2399 {
2400 	rb_erase(&w->node, &buf->keys);
2401 	array_free(&buf->freelist, w);
2402 }
2403 
2404 void bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2405 {
2406 	spin_lock(&buf->lock);
2407 	__bch_keybuf_del(buf, w);
2408 	spin_unlock(&buf->lock);
2409 }
2410 
2411 bool bch_keybuf_check_overlapping(struct keybuf *buf, struct bkey *start,
2412 				  struct bkey *end)
2413 {
2414 	bool ret = false;
2415 	struct keybuf_key *p, *w, s;
2416 	s.key = *start;
2417 
2418 	if (bkey_cmp(end, &buf->start) <= 0 ||
2419 	    bkey_cmp(start, &buf->end) >= 0)
2420 		return false;
2421 
2422 	spin_lock(&buf->lock);
2423 	w = RB_GREATER(&buf->keys, s, node, keybuf_nonoverlapping_cmp);
2424 
2425 	while (w && bkey_cmp(&START_KEY(&w->key), end) < 0) {
2426 		p = w;
2427 		w = RB_NEXT(w, node);
2428 
2429 		if (p->private)
2430 			ret = true;
2431 		else
2432 			__bch_keybuf_del(buf, p);
2433 	}
2434 
2435 	spin_unlock(&buf->lock);
2436 	return ret;
2437 }
2438 
2439 struct keybuf_key *bch_keybuf_next(struct keybuf *buf)
2440 {
2441 	struct keybuf_key *w;
2442 	spin_lock(&buf->lock);
2443 
2444 	w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2445 
2446 	while (w && w->private)
2447 		w = RB_NEXT(w, node);
2448 
2449 	if (w)
2450 		w->private = ERR_PTR(-EINTR);
2451 
2452 	spin_unlock(&buf->lock);
2453 	return w;
2454 }
2455 
2456 struct keybuf_key *bch_keybuf_next_rescan(struct cache_set *c,
2457 					     struct keybuf *buf,
2458 					     struct bkey *end)
2459 {
2460 	struct keybuf_key *ret;
2461 
2462 	while (1) {
2463 		ret = bch_keybuf_next(buf);
2464 		if (ret)
2465 			break;
2466 
2467 		if (bkey_cmp(&buf->last_scanned, end) >= 0) {
2468 			pr_debug("scan finished");
2469 			break;
2470 		}
2471 
2472 		bch_refill_keybuf(c, buf, end);
2473 	}
2474 
2475 	return ret;
2476 }
2477 
2478 void bch_keybuf_init(struct keybuf *buf, keybuf_pred_fn *fn)
2479 {
2480 	buf->key_predicate	= fn;
2481 	buf->last_scanned	= MAX_KEY;
2482 	buf->keys		= RB_ROOT;
2483 
2484 	spin_lock_init(&buf->lock);
2485 	array_allocator_init(&buf->freelist);
2486 }
2487 
2488 void bch_btree_exit(void)
2489 {
2490 	if (btree_io_wq)
2491 		destroy_workqueue(btree_io_wq);
2492 	if (bch_gc_wq)
2493 		destroy_workqueue(bch_gc_wq);
2494 }
2495 
2496 int __init bch_btree_init(void)
2497 {
2498 	if (!(bch_gc_wq = create_singlethread_workqueue("bch_btree_gc")) ||
2499 	    !(btree_io_wq = create_singlethread_workqueue("bch_btree_io")))
2500 		return -ENOMEM;
2501 
2502 	return 0;
2503 }
2504