1 /* 2 * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com> 3 * 4 * Uses a block device as cache for other block devices; optimized for SSDs. 5 * All allocation is done in buckets, which should match the erase block size 6 * of the device. 7 * 8 * Buckets containing cached data are kept on a heap sorted by priority; 9 * bucket priority is increased on cache hit, and periodically all the buckets 10 * on the heap have their priority scaled down. This currently is just used as 11 * an LRU but in the future should allow for more intelligent heuristics. 12 * 13 * Buckets have an 8 bit counter; freeing is accomplished by incrementing the 14 * counter. Garbage collection is used to remove stale pointers. 15 * 16 * Indexing is done via a btree; nodes are not necessarily fully sorted, rather 17 * as keys are inserted we only sort the pages that have not yet been written. 18 * When garbage collection is run, we resort the entire node. 19 * 20 * All configuration is done via sysfs; see Documentation/bcache.txt. 21 */ 22 23 #include "bcache.h" 24 #include "btree.h" 25 #include "debug.h" 26 #include "extents.h" 27 28 #include <linux/slab.h> 29 #include <linux/bitops.h> 30 #include <linux/freezer.h> 31 #include <linux/hash.h> 32 #include <linux/kthread.h> 33 #include <linux/prefetch.h> 34 #include <linux/random.h> 35 #include <linux/rcupdate.h> 36 #include <trace/events/bcache.h> 37 38 /* 39 * Todo: 40 * register_bcache: Return errors out to userspace correctly 41 * 42 * Writeback: don't undirty key until after a cache flush 43 * 44 * Create an iterator for key pointers 45 * 46 * On btree write error, mark bucket such that it won't be freed from the cache 47 * 48 * Journalling: 49 * Check for bad keys in replay 50 * Propagate barriers 51 * Refcount journal entries in journal_replay 52 * 53 * Garbage collection: 54 * Finish incremental gc 55 * Gc should free old UUIDs, data for invalid UUIDs 56 * 57 * Provide a way to list backing device UUIDs we have data cached for, and 58 * probably how long it's been since we've seen them, and a way to invalidate 59 * dirty data for devices that will never be attached again 60 * 61 * Keep 1 min/5 min/15 min statistics of how busy a block device has been, so 62 * that based on that and how much dirty data we have we can keep writeback 63 * from being starved 64 * 65 * Add a tracepoint or somesuch to watch for writeback starvation 66 * 67 * When btree depth > 1 and splitting an interior node, we have to make sure 68 * alloc_bucket() cannot fail. This should be true but is not completely 69 * obvious. 70 * 71 * Make sure all allocations get charged to the root cgroup 72 * 73 * Plugging? 74 * 75 * If data write is less than hard sector size of ssd, round up offset in open 76 * bucket to the next whole sector 77 * 78 * Also lookup by cgroup in get_open_bucket() 79 * 80 * Superblock needs to be fleshed out for multiple cache devices 81 * 82 * Add a sysfs tunable for the number of writeback IOs in flight 83 * 84 * Add a sysfs tunable for the number of open data buckets 85 * 86 * IO tracking: Can we track when one process is doing io on behalf of another? 87 * IO tracking: Don't use just an average, weigh more recent stuff higher 88 * 89 * Test module load/unload 90 */ 91 92 #define MAX_NEED_GC 64 93 #define MAX_SAVE_PRIO 72 94 95 #define PTR_DIRTY_BIT (((uint64_t) 1 << 36)) 96 97 #define PTR_HASH(c, k) \ 98 (((k)->ptr[0] >> c->bucket_bits) | PTR_GEN(k, 0)) 99 100 static struct workqueue_struct *btree_io_wq; 101 102 #define insert_lock(s, b) ((b)->level <= (s)->lock) 103 104 /* 105 * These macros are for recursing down the btree - they handle the details of 106 * locking and looking up nodes in the cache for you. They're best treated as 107 * mere syntax when reading code that uses them. 108 * 109 * op->lock determines whether we take a read or a write lock at a given depth. 110 * If you've got a read lock and find that you need a write lock (i.e. you're 111 * going to have to split), set op->lock and return -EINTR; btree_root() will 112 * call you again and you'll have the correct lock. 113 */ 114 115 /** 116 * btree - recurse down the btree on a specified key 117 * @fn: function to call, which will be passed the child node 118 * @key: key to recurse on 119 * @b: parent btree node 120 * @op: pointer to struct btree_op 121 */ 122 #define btree(fn, key, b, op, ...) \ 123 ({ \ 124 int _r, l = (b)->level - 1; \ 125 bool _w = l <= (op)->lock; \ 126 struct btree *_child = bch_btree_node_get((b)->c, key, l, _w); \ 127 if (!IS_ERR(_child)) { \ 128 _child->parent = (b); \ 129 _r = bch_btree_ ## fn(_child, op, ##__VA_ARGS__); \ 130 rw_unlock(_w, _child); \ 131 } else \ 132 _r = PTR_ERR(_child); \ 133 _r; \ 134 }) 135 136 /** 137 * btree_root - call a function on the root of the btree 138 * @fn: function to call, which will be passed the child node 139 * @c: cache set 140 * @op: pointer to struct btree_op 141 */ 142 #define btree_root(fn, c, op, ...) \ 143 ({ \ 144 int _r = -EINTR; \ 145 do { \ 146 struct btree *_b = (c)->root; \ 147 bool _w = insert_lock(op, _b); \ 148 rw_lock(_w, _b, _b->level); \ 149 if (_b == (c)->root && \ 150 _w == insert_lock(op, _b)) { \ 151 _b->parent = NULL; \ 152 _r = bch_btree_ ## fn(_b, op, ##__VA_ARGS__); \ 153 } \ 154 rw_unlock(_w, _b); \ 155 if (_r == -EINTR) \ 156 schedule(); \ 157 bch_cannibalize_unlock(c); \ 158 if (_r == -ENOSPC) { \ 159 wait_event((c)->try_wait, \ 160 !(c)->try_harder); \ 161 _r = -EINTR; \ 162 } \ 163 } while (_r == -EINTR); \ 164 \ 165 finish_wait(&(c)->bucket_wait, &(op)->wait); \ 166 _r; \ 167 }) 168 169 static inline struct bset *write_block(struct btree *b) 170 { 171 return ((void *) btree_bset_first(b)) + b->written * block_bytes(b->c); 172 } 173 174 /* Btree key manipulation */ 175 176 void bkey_put(struct cache_set *c, struct bkey *k) 177 { 178 unsigned i; 179 180 for (i = 0; i < KEY_PTRS(k); i++) 181 if (ptr_available(c, k, i)) 182 atomic_dec_bug(&PTR_BUCKET(c, k, i)->pin); 183 } 184 185 /* Btree IO */ 186 187 static uint64_t btree_csum_set(struct btree *b, struct bset *i) 188 { 189 uint64_t crc = b->key.ptr[0]; 190 void *data = (void *) i + 8, *end = bset_bkey_last(i); 191 192 crc = bch_crc64_update(crc, data, end - data); 193 return crc ^ 0xffffffffffffffffULL; 194 } 195 196 void bch_btree_node_read_done(struct btree *b) 197 { 198 const char *err = "bad btree header"; 199 struct bset *i = btree_bset_first(b); 200 struct btree_iter *iter; 201 202 iter = mempool_alloc(b->c->fill_iter, GFP_NOWAIT); 203 iter->size = b->c->sb.bucket_size / b->c->sb.block_size; 204 iter->used = 0; 205 206 #ifdef CONFIG_BCACHE_DEBUG 207 iter->b = &b->keys; 208 #endif 209 210 if (!i->seq) 211 goto err; 212 213 for (; 214 b->written < btree_blocks(b) && i->seq == b->keys.set[0].data->seq; 215 i = write_block(b)) { 216 err = "unsupported bset version"; 217 if (i->version > BCACHE_BSET_VERSION) 218 goto err; 219 220 err = "bad btree header"; 221 if (b->written + set_blocks(i, block_bytes(b->c)) > 222 btree_blocks(b)) 223 goto err; 224 225 err = "bad magic"; 226 if (i->magic != bset_magic(&b->c->sb)) 227 goto err; 228 229 err = "bad checksum"; 230 switch (i->version) { 231 case 0: 232 if (i->csum != csum_set(i)) 233 goto err; 234 break; 235 case BCACHE_BSET_VERSION: 236 if (i->csum != btree_csum_set(b, i)) 237 goto err; 238 break; 239 } 240 241 err = "empty set"; 242 if (i != b->keys.set[0].data && !i->keys) 243 goto err; 244 245 bch_btree_iter_push(iter, i->start, bset_bkey_last(i)); 246 247 b->written += set_blocks(i, block_bytes(b->c)); 248 } 249 250 err = "corrupted btree"; 251 for (i = write_block(b); 252 bset_sector_offset(&b->keys, i) < KEY_SIZE(&b->key); 253 i = ((void *) i) + block_bytes(b->c)) 254 if (i->seq == b->keys.set[0].data->seq) 255 goto err; 256 257 bch_btree_sort_and_fix_extents(&b->keys, iter, &b->c->sort); 258 259 i = b->keys.set[0].data; 260 err = "short btree key"; 261 if (b->keys.set[0].size && 262 bkey_cmp(&b->key, &b->keys.set[0].end) < 0) 263 goto err; 264 265 if (b->written < btree_blocks(b)) 266 bch_bset_init_next(&b->keys, write_block(b), 267 bset_magic(&b->c->sb)); 268 out: 269 mempool_free(iter, b->c->fill_iter); 270 return; 271 err: 272 set_btree_node_io_error(b); 273 bch_cache_set_error(b->c, "%s at bucket %zu, block %u, %u keys", 274 err, PTR_BUCKET_NR(b->c, &b->key, 0), 275 bset_block_offset(b, i), i->keys); 276 goto out; 277 } 278 279 static void btree_node_read_endio(struct bio *bio, int error) 280 { 281 struct closure *cl = bio->bi_private; 282 closure_put(cl); 283 } 284 285 static void bch_btree_node_read(struct btree *b) 286 { 287 uint64_t start_time = local_clock(); 288 struct closure cl; 289 struct bio *bio; 290 291 trace_bcache_btree_read(b); 292 293 closure_init_stack(&cl); 294 295 bio = bch_bbio_alloc(b->c); 296 bio->bi_rw = REQ_META|READ_SYNC; 297 bio->bi_iter.bi_size = KEY_SIZE(&b->key) << 9; 298 bio->bi_end_io = btree_node_read_endio; 299 bio->bi_private = &cl; 300 301 bch_bio_map(bio, b->keys.set[0].data); 302 303 bch_submit_bbio(bio, b->c, &b->key, 0); 304 closure_sync(&cl); 305 306 if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) 307 set_btree_node_io_error(b); 308 309 bch_bbio_free(bio, b->c); 310 311 if (btree_node_io_error(b)) 312 goto err; 313 314 bch_btree_node_read_done(b); 315 bch_time_stats_update(&b->c->btree_read_time, start_time); 316 317 return; 318 err: 319 bch_cache_set_error(b->c, "io error reading bucket %zu", 320 PTR_BUCKET_NR(b->c, &b->key, 0)); 321 } 322 323 static void btree_complete_write(struct btree *b, struct btree_write *w) 324 { 325 if (w->prio_blocked && 326 !atomic_sub_return(w->prio_blocked, &b->c->prio_blocked)) 327 wake_up_allocators(b->c); 328 329 if (w->journal) { 330 atomic_dec_bug(w->journal); 331 __closure_wake_up(&b->c->journal.wait); 332 } 333 334 w->prio_blocked = 0; 335 w->journal = NULL; 336 } 337 338 static void btree_node_write_unlock(struct closure *cl) 339 { 340 struct btree *b = container_of(cl, struct btree, io); 341 342 up(&b->io_mutex); 343 } 344 345 static void __btree_node_write_done(struct closure *cl) 346 { 347 struct btree *b = container_of(cl, struct btree, io); 348 struct btree_write *w = btree_prev_write(b); 349 350 bch_bbio_free(b->bio, b->c); 351 b->bio = NULL; 352 btree_complete_write(b, w); 353 354 if (btree_node_dirty(b)) 355 queue_delayed_work(btree_io_wq, &b->work, 356 msecs_to_jiffies(30000)); 357 358 closure_return_with_destructor(cl, btree_node_write_unlock); 359 } 360 361 static void btree_node_write_done(struct closure *cl) 362 { 363 struct btree *b = container_of(cl, struct btree, io); 364 struct bio_vec *bv; 365 int n; 366 367 bio_for_each_segment_all(bv, b->bio, n) 368 __free_page(bv->bv_page); 369 370 __btree_node_write_done(cl); 371 } 372 373 static void btree_node_write_endio(struct bio *bio, int error) 374 { 375 struct closure *cl = bio->bi_private; 376 struct btree *b = container_of(cl, struct btree, io); 377 378 if (error) 379 set_btree_node_io_error(b); 380 381 bch_bbio_count_io_errors(b->c, bio, error, "writing btree"); 382 closure_put(cl); 383 } 384 385 static void do_btree_node_write(struct btree *b) 386 { 387 struct closure *cl = &b->io; 388 struct bset *i = btree_bset_last(b); 389 BKEY_PADDED(key) k; 390 391 i->version = BCACHE_BSET_VERSION; 392 i->csum = btree_csum_set(b, i); 393 394 BUG_ON(b->bio); 395 b->bio = bch_bbio_alloc(b->c); 396 397 b->bio->bi_end_io = btree_node_write_endio; 398 b->bio->bi_private = cl; 399 b->bio->bi_rw = REQ_META|WRITE_SYNC|REQ_FUA; 400 b->bio->bi_iter.bi_size = roundup(set_bytes(i), block_bytes(b->c)); 401 bch_bio_map(b->bio, i); 402 403 /* 404 * If we're appending to a leaf node, we don't technically need FUA - 405 * this write just needs to be persisted before the next journal write, 406 * which will be marked FLUSH|FUA. 407 * 408 * Similarly if we're writing a new btree root - the pointer is going to 409 * be in the next journal entry. 410 * 411 * But if we're writing a new btree node (that isn't a root) or 412 * appending to a non leaf btree node, we need either FUA or a flush 413 * when we write the parent with the new pointer. FUA is cheaper than a 414 * flush, and writes appending to leaf nodes aren't blocking anything so 415 * just make all btree node writes FUA to keep things sane. 416 */ 417 418 bkey_copy(&k.key, &b->key); 419 SET_PTR_OFFSET(&k.key, 0, PTR_OFFSET(&k.key, 0) + 420 bset_sector_offset(&b->keys, i)); 421 422 if (!bio_alloc_pages(b->bio, GFP_NOIO)) { 423 int j; 424 struct bio_vec *bv; 425 void *base = (void *) ((unsigned long) i & ~(PAGE_SIZE - 1)); 426 427 bio_for_each_segment_all(bv, b->bio, j) 428 memcpy(page_address(bv->bv_page), 429 base + j * PAGE_SIZE, PAGE_SIZE); 430 431 bch_submit_bbio(b->bio, b->c, &k.key, 0); 432 433 continue_at(cl, btree_node_write_done, NULL); 434 } else { 435 b->bio->bi_vcnt = 0; 436 bch_bio_map(b->bio, i); 437 438 bch_submit_bbio(b->bio, b->c, &k.key, 0); 439 440 closure_sync(cl); 441 continue_at_nobarrier(cl, __btree_node_write_done, NULL); 442 } 443 } 444 445 void bch_btree_node_write(struct btree *b, struct closure *parent) 446 { 447 struct bset *i = btree_bset_last(b); 448 449 trace_bcache_btree_write(b); 450 451 BUG_ON(current->bio_list); 452 BUG_ON(b->written >= btree_blocks(b)); 453 BUG_ON(b->written && !i->keys); 454 BUG_ON(btree_bset_first(b)->seq != i->seq); 455 bch_check_keys(&b->keys, "writing"); 456 457 cancel_delayed_work(&b->work); 458 459 /* If caller isn't waiting for write, parent refcount is cache set */ 460 down(&b->io_mutex); 461 closure_init(&b->io, parent ?: &b->c->cl); 462 463 clear_bit(BTREE_NODE_dirty, &b->flags); 464 change_bit(BTREE_NODE_write_idx, &b->flags); 465 466 do_btree_node_write(b); 467 468 atomic_long_add(set_blocks(i, block_bytes(b->c)) * b->c->sb.block_size, 469 &PTR_CACHE(b->c, &b->key, 0)->btree_sectors_written); 470 471 b->written += set_blocks(i, block_bytes(b->c)); 472 473 /* If not a leaf node, always sort */ 474 if (b->level && b->keys.nsets) 475 bch_btree_sort(&b->keys, &b->c->sort); 476 else 477 bch_btree_sort_lazy(&b->keys, &b->c->sort); 478 479 /* 480 * do verify if there was more than one set initially (i.e. we did a 481 * sort) and we sorted down to a single set: 482 */ 483 if (i != b->keys.set->data && !b->keys.nsets) 484 bch_btree_verify(b); 485 486 if (b->written < btree_blocks(b)) 487 bch_bset_init_next(&b->keys, write_block(b), 488 bset_magic(&b->c->sb)); 489 } 490 491 static void bch_btree_node_write_sync(struct btree *b) 492 { 493 struct closure cl; 494 495 closure_init_stack(&cl); 496 bch_btree_node_write(b, &cl); 497 closure_sync(&cl); 498 } 499 500 static void btree_node_write_work(struct work_struct *w) 501 { 502 struct btree *b = container_of(to_delayed_work(w), struct btree, work); 503 504 rw_lock(true, b, b->level); 505 506 if (btree_node_dirty(b)) 507 bch_btree_node_write(b, NULL); 508 rw_unlock(true, b); 509 } 510 511 static void bch_btree_leaf_dirty(struct btree *b, atomic_t *journal_ref) 512 { 513 struct bset *i = btree_bset_last(b); 514 struct btree_write *w = btree_current_write(b); 515 516 BUG_ON(!b->written); 517 BUG_ON(!i->keys); 518 519 if (!btree_node_dirty(b)) 520 queue_delayed_work(btree_io_wq, &b->work, 30 * HZ); 521 522 set_btree_node_dirty(b); 523 524 if (journal_ref) { 525 if (w->journal && 526 journal_pin_cmp(b->c, w->journal, journal_ref)) { 527 atomic_dec_bug(w->journal); 528 w->journal = NULL; 529 } 530 531 if (!w->journal) { 532 w->journal = journal_ref; 533 atomic_inc(w->journal); 534 } 535 } 536 537 /* Force write if set is too big */ 538 if (set_bytes(i) > PAGE_SIZE - 48 && 539 !current->bio_list) 540 bch_btree_node_write(b, NULL); 541 } 542 543 /* 544 * Btree in memory cache - allocation/freeing 545 * mca -> memory cache 546 */ 547 548 #define mca_reserve(c) (((c->root && c->root->level) \ 549 ? c->root->level : 1) * 8 + 16) 550 #define mca_can_free(c) \ 551 max_t(int, 0, c->bucket_cache_used - mca_reserve(c)) 552 553 static void mca_data_free(struct btree *b) 554 { 555 BUG_ON(b->io_mutex.count != 1); 556 557 bch_btree_keys_free(&b->keys); 558 559 b->c->bucket_cache_used--; 560 list_move(&b->list, &b->c->btree_cache_freed); 561 } 562 563 static void mca_bucket_free(struct btree *b) 564 { 565 BUG_ON(btree_node_dirty(b)); 566 567 b->key.ptr[0] = 0; 568 hlist_del_init_rcu(&b->hash); 569 list_move(&b->list, &b->c->btree_cache_freeable); 570 } 571 572 static unsigned btree_order(struct bkey *k) 573 { 574 return ilog2(KEY_SIZE(k) / PAGE_SECTORS ?: 1); 575 } 576 577 static void mca_data_alloc(struct btree *b, struct bkey *k, gfp_t gfp) 578 { 579 if (!bch_btree_keys_alloc(&b->keys, 580 max_t(unsigned, 581 ilog2(b->c->btree_pages), 582 btree_order(k)), 583 gfp)) { 584 b->c->bucket_cache_used++; 585 list_move(&b->list, &b->c->btree_cache); 586 } else { 587 list_move(&b->list, &b->c->btree_cache_freed); 588 } 589 } 590 591 static struct btree *mca_bucket_alloc(struct cache_set *c, 592 struct bkey *k, gfp_t gfp) 593 { 594 struct btree *b = kzalloc(sizeof(struct btree), gfp); 595 if (!b) 596 return NULL; 597 598 init_rwsem(&b->lock); 599 lockdep_set_novalidate_class(&b->lock); 600 INIT_LIST_HEAD(&b->list); 601 INIT_DELAYED_WORK(&b->work, btree_node_write_work); 602 b->c = c; 603 sema_init(&b->io_mutex, 1); 604 605 mca_data_alloc(b, k, gfp); 606 return b; 607 } 608 609 static int mca_reap(struct btree *b, unsigned min_order, bool flush) 610 { 611 struct closure cl; 612 613 closure_init_stack(&cl); 614 lockdep_assert_held(&b->c->bucket_lock); 615 616 if (!down_write_trylock(&b->lock)) 617 return -ENOMEM; 618 619 BUG_ON(btree_node_dirty(b) && !b->keys.set[0].data); 620 621 if (b->keys.page_order < min_order) 622 goto out_unlock; 623 624 if (!flush) { 625 if (btree_node_dirty(b)) 626 goto out_unlock; 627 628 if (down_trylock(&b->io_mutex)) 629 goto out_unlock; 630 up(&b->io_mutex); 631 } 632 633 if (btree_node_dirty(b)) 634 bch_btree_node_write_sync(b); 635 636 /* wait for any in flight btree write */ 637 down(&b->io_mutex); 638 up(&b->io_mutex); 639 640 return 0; 641 out_unlock: 642 rw_unlock(true, b); 643 return -ENOMEM; 644 } 645 646 static unsigned long bch_mca_scan(struct shrinker *shrink, 647 struct shrink_control *sc) 648 { 649 struct cache_set *c = container_of(shrink, struct cache_set, shrink); 650 struct btree *b, *t; 651 unsigned long i, nr = sc->nr_to_scan; 652 unsigned long freed = 0; 653 654 if (c->shrinker_disabled) 655 return SHRINK_STOP; 656 657 if (c->try_harder) 658 return SHRINK_STOP; 659 660 /* Return -1 if we can't do anything right now */ 661 if (sc->gfp_mask & __GFP_IO) 662 mutex_lock(&c->bucket_lock); 663 else if (!mutex_trylock(&c->bucket_lock)) 664 return -1; 665 666 /* 667 * It's _really_ critical that we don't free too many btree nodes - we 668 * have to always leave ourselves a reserve. The reserve is how we 669 * guarantee that allocating memory for a new btree node can always 670 * succeed, so that inserting keys into the btree can always succeed and 671 * IO can always make forward progress: 672 */ 673 nr /= c->btree_pages; 674 nr = min_t(unsigned long, nr, mca_can_free(c)); 675 676 i = 0; 677 list_for_each_entry_safe(b, t, &c->btree_cache_freeable, list) { 678 if (freed >= nr) 679 break; 680 681 if (++i > 3 && 682 !mca_reap(b, 0, false)) { 683 mca_data_free(b); 684 rw_unlock(true, b); 685 freed++; 686 } 687 } 688 689 for (i = 0; (nr--) && i < c->bucket_cache_used; i++) { 690 if (list_empty(&c->btree_cache)) 691 goto out; 692 693 b = list_first_entry(&c->btree_cache, struct btree, list); 694 list_rotate_left(&c->btree_cache); 695 696 if (!b->accessed && 697 !mca_reap(b, 0, false)) { 698 mca_bucket_free(b); 699 mca_data_free(b); 700 rw_unlock(true, b); 701 freed++; 702 } else 703 b->accessed = 0; 704 } 705 out: 706 mutex_unlock(&c->bucket_lock); 707 return freed; 708 } 709 710 static unsigned long bch_mca_count(struct shrinker *shrink, 711 struct shrink_control *sc) 712 { 713 struct cache_set *c = container_of(shrink, struct cache_set, shrink); 714 715 if (c->shrinker_disabled) 716 return 0; 717 718 if (c->try_harder) 719 return 0; 720 721 return mca_can_free(c) * c->btree_pages; 722 } 723 724 void bch_btree_cache_free(struct cache_set *c) 725 { 726 struct btree *b; 727 struct closure cl; 728 closure_init_stack(&cl); 729 730 if (c->shrink.list.next) 731 unregister_shrinker(&c->shrink); 732 733 mutex_lock(&c->bucket_lock); 734 735 #ifdef CONFIG_BCACHE_DEBUG 736 if (c->verify_data) 737 list_move(&c->verify_data->list, &c->btree_cache); 738 739 free_pages((unsigned long) c->verify_ondisk, ilog2(bucket_pages(c))); 740 #endif 741 742 list_splice(&c->btree_cache_freeable, 743 &c->btree_cache); 744 745 while (!list_empty(&c->btree_cache)) { 746 b = list_first_entry(&c->btree_cache, struct btree, list); 747 748 if (btree_node_dirty(b)) 749 btree_complete_write(b, btree_current_write(b)); 750 clear_bit(BTREE_NODE_dirty, &b->flags); 751 752 mca_data_free(b); 753 } 754 755 while (!list_empty(&c->btree_cache_freed)) { 756 b = list_first_entry(&c->btree_cache_freed, 757 struct btree, list); 758 list_del(&b->list); 759 cancel_delayed_work_sync(&b->work); 760 kfree(b); 761 } 762 763 mutex_unlock(&c->bucket_lock); 764 } 765 766 int bch_btree_cache_alloc(struct cache_set *c) 767 { 768 unsigned i; 769 770 for (i = 0; i < mca_reserve(c); i++) 771 if (!mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL)) 772 return -ENOMEM; 773 774 list_splice_init(&c->btree_cache, 775 &c->btree_cache_freeable); 776 777 #ifdef CONFIG_BCACHE_DEBUG 778 mutex_init(&c->verify_lock); 779 780 c->verify_ondisk = (void *) 781 __get_free_pages(GFP_KERNEL, ilog2(bucket_pages(c))); 782 783 c->verify_data = mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL); 784 785 if (c->verify_data && 786 c->verify_data->keys.set->data) 787 list_del_init(&c->verify_data->list); 788 else 789 c->verify_data = NULL; 790 #endif 791 792 c->shrink.count_objects = bch_mca_count; 793 c->shrink.scan_objects = bch_mca_scan; 794 c->shrink.seeks = 4; 795 c->shrink.batch = c->btree_pages * 2; 796 register_shrinker(&c->shrink); 797 798 return 0; 799 } 800 801 /* Btree in memory cache - hash table */ 802 803 static struct hlist_head *mca_hash(struct cache_set *c, struct bkey *k) 804 { 805 return &c->bucket_hash[hash_32(PTR_HASH(c, k), BUCKET_HASH_BITS)]; 806 } 807 808 static struct btree *mca_find(struct cache_set *c, struct bkey *k) 809 { 810 struct btree *b; 811 812 rcu_read_lock(); 813 hlist_for_each_entry_rcu(b, mca_hash(c, k), hash) 814 if (PTR_HASH(c, &b->key) == PTR_HASH(c, k)) 815 goto out; 816 b = NULL; 817 out: 818 rcu_read_unlock(); 819 return b; 820 } 821 822 static struct btree *mca_cannibalize(struct cache_set *c, struct bkey *k) 823 { 824 struct btree *b; 825 826 trace_bcache_btree_cache_cannibalize(c); 827 828 if (!c->try_harder) { 829 c->try_harder = current; 830 c->try_harder_start = local_clock(); 831 } else if (c->try_harder != current) 832 return ERR_PTR(-ENOSPC); 833 834 list_for_each_entry_reverse(b, &c->btree_cache, list) 835 if (!mca_reap(b, btree_order(k), false)) 836 return b; 837 838 list_for_each_entry_reverse(b, &c->btree_cache, list) 839 if (!mca_reap(b, btree_order(k), true)) 840 return b; 841 842 return ERR_PTR(-ENOMEM); 843 } 844 845 /* 846 * We can only have one thread cannibalizing other cached btree nodes at a time, 847 * or we'll deadlock. We use an open coded mutex to ensure that, which a 848 * cannibalize_bucket() will take. This means every time we unlock the root of 849 * the btree, we need to release this lock if we have it held. 850 */ 851 static void bch_cannibalize_unlock(struct cache_set *c) 852 { 853 if (c->try_harder == current) { 854 bch_time_stats_update(&c->try_harder_time, c->try_harder_start); 855 c->try_harder = NULL; 856 wake_up(&c->try_wait); 857 } 858 } 859 860 static struct btree *mca_alloc(struct cache_set *c, struct bkey *k, int level) 861 { 862 struct btree *b; 863 864 BUG_ON(current->bio_list); 865 866 lockdep_assert_held(&c->bucket_lock); 867 868 if (mca_find(c, k)) 869 return NULL; 870 871 /* btree_free() doesn't free memory; it sticks the node on the end of 872 * the list. Check if there's any freed nodes there: 873 */ 874 list_for_each_entry(b, &c->btree_cache_freeable, list) 875 if (!mca_reap(b, btree_order(k), false)) 876 goto out; 877 878 /* We never free struct btree itself, just the memory that holds the on 879 * disk node. Check the freed list before allocating a new one: 880 */ 881 list_for_each_entry(b, &c->btree_cache_freed, list) 882 if (!mca_reap(b, 0, false)) { 883 mca_data_alloc(b, k, __GFP_NOWARN|GFP_NOIO); 884 if (!b->keys.set[0].data) 885 goto err; 886 else 887 goto out; 888 } 889 890 b = mca_bucket_alloc(c, k, __GFP_NOWARN|GFP_NOIO); 891 if (!b) 892 goto err; 893 894 BUG_ON(!down_write_trylock(&b->lock)); 895 if (!b->keys.set->data) 896 goto err; 897 out: 898 BUG_ON(b->io_mutex.count != 1); 899 900 bkey_copy(&b->key, k); 901 list_move(&b->list, &c->btree_cache); 902 hlist_del_init_rcu(&b->hash); 903 hlist_add_head_rcu(&b->hash, mca_hash(c, k)); 904 905 lock_set_subclass(&b->lock.dep_map, level + 1, _THIS_IP_); 906 b->parent = (void *) ~0UL; 907 b->flags = 0; 908 b->written = 0; 909 b->level = level; 910 911 if (!b->level) 912 bch_btree_keys_init(&b->keys, &bch_extent_keys_ops, 913 &b->c->expensive_debug_checks); 914 else 915 bch_btree_keys_init(&b->keys, &bch_btree_keys_ops, 916 &b->c->expensive_debug_checks); 917 918 return b; 919 err: 920 if (b) 921 rw_unlock(true, b); 922 923 b = mca_cannibalize(c, k); 924 if (!IS_ERR(b)) 925 goto out; 926 927 return b; 928 } 929 930 /** 931 * bch_btree_node_get - find a btree node in the cache and lock it, reading it 932 * in from disk if necessary. 933 * 934 * If IO is necessary and running under generic_make_request, returns -EAGAIN. 935 * 936 * The btree node will have either a read or a write lock held, depending on 937 * level and op->lock. 938 */ 939 struct btree *bch_btree_node_get(struct cache_set *c, struct bkey *k, 940 int level, bool write) 941 { 942 int i = 0; 943 struct btree *b; 944 945 BUG_ON(level < 0); 946 retry: 947 b = mca_find(c, k); 948 949 if (!b) { 950 if (current->bio_list) 951 return ERR_PTR(-EAGAIN); 952 953 mutex_lock(&c->bucket_lock); 954 b = mca_alloc(c, k, level); 955 mutex_unlock(&c->bucket_lock); 956 957 if (!b) 958 goto retry; 959 if (IS_ERR(b)) 960 return b; 961 962 bch_btree_node_read(b); 963 964 if (!write) 965 downgrade_write(&b->lock); 966 } else { 967 rw_lock(write, b, level); 968 if (PTR_HASH(c, &b->key) != PTR_HASH(c, k)) { 969 rw_unlock(write, b); 970 goto retry; 971 } 972 BUG_ON(b->level != level); 973 } 974 975 b->accessed = 1; 976 977 for (; i <= b->keys.nsets && b->keys.set[i].size; i++) { 978 prefetch(b->keys.set[i].tree); 979 prefetch(b->keys.set[i].data); 980 } 981 982 for (; i <= b->keys.nsets; i++) 983 prefetch(b->keys.set[i].data); 984 985 if (btree_node_io_error(b)) { 986 rw_unlock(write, b); 987 return ERR_PTR(-EIO); 988 } 989 990 BUG_ON(!b->written); 991 992 return b; 993 } 994 995 static void btree_node_prefetch(struct cache_set *c, struct bkey *k, int level) 996 { 997 struct btree *b; 998 999 mutex_lock(&c->bucket_lock); 1000 b = mca_alloc(c, k, level); 1001 mutex_unlock(&c->bucket_lock); 1002 1003 if (!IS_ERR_OR_NULL(b)) { 1004 bch_btree_node_read(b); 1005 rw_unlock(true, b); 1006 } 1007 } 1008 1009 /* Btree alloc */ 1010 1011 static void btree_node_free(struct btree *b) 1012 { 1013 unsigned i; 1014 1015 trace_bcache_btree_node_free(b); 1016 1017 BUG_ON(b == b->c->root); 1018 1019 if (btree_node_dirty(b)) 1020 btree_complete_write(b, btree_current_write(b)); 1021 clear_bit(BTREE_NODE_dirty, &b->flags); 1022 1023 cancel_delayed_work(&b->work); 1024 1025 mutex_lock(&b->c->bucket_lock); 1026 1027 for (i = 0; i < KEY_PTRS(&b->key); i++) { 1028 BUG_ON(atomic_read(&PTR_BUCKET(b->c, &b->key, i)->pin)); 1029 1030 bch_inc_gen(PTR_CACHE(b->c, &b->key, i), 1031 PTR_BUCKET(b->c, &b->key, i)); 1032 } 1033 1034 bch_bucket_free(b->c, &b->key); 1035 mca_bucket_free(b); 1036 mutex_unlock(&b->c->bucket_lock); 1037 } 1038 1039 struct btree *bch_btree_node_alloc(struct cache_set *c, int level, bool wait) 1040 { 1041 BKEY_PADDED(key) k; 1042 struct btree *b = ERR_PTR(-EAGAIN); 1043 1044 mutex_lock(&c->bucket_lock); 1045 retry: 1046 if (__bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, 1, wait)) 1047 goto err; 1048 1049 bkey_put(c, &k.key); 1050 SET_KEY_SIZE(&k.key, c->btree_pages * PAGE_SECTORS); 1051 1052 b = mca_alloc(c, &k.key, level); 1053 if (IS_ERR(b)) 1054 goto err_free; 1055 1056 if (!b) { 1057 cache_bug(c, 1058 "Tried to allocate bucket that was in btree cache"); 1059 goto retry; 1060 } 1061 1062 b->accessed = 1; 1063 bch_bset_init_next(&b->keys, b->keys.set->data, bset_magic(&b->c->sb)); 1064 1065 mutex_unlock(&c->bucket_lock); 1066 1067 trace_bcache_btree_node_alloc(b); 1068 return b; 1069 err_free: 1070 bch_bucket_free(c, &k.key); 1071 err: 1072 mutex_unlock(&c->bucket_lock); 1073 1074 trace_bcache_btree_node_alloc_fail(b); 1075 return b; 1076 } 1077 1078 static struct btree *btree_node_alloc_replacement(struct btree *b, bool wait) 1079 { 1080 struct btree *n = bch_btree_node_alloc(b->c, b->level, wait); 1081 if (!IS_ERR_OR_NULL(n)) { 1082 bch_btree_sort_into(&b->keys, &n->keys, &b->c->sort); 1083 bkey_copy_key(&n->key, &b->key); 1084 } 1085 1086 return n; 1087 } 1088 1089 static void make_btree_freeing_key(struct btree *b, struct bkey *k) 1090 { 1091 unsigned i; 1092 1093 bkey_copy(k, &b->key); 1094 bkey_copy_key(k, &ZERO_KEY); 1095 1096 for (i = 0; i < KEY_PTRS(k); i++) { 1097 uint8_t g = PTR_BUCKET(b->c, k, i)->gen + 1; 1098 1099 SET_PTR_GEN(k, i, g); 1100 } 1101 1102 atomic_inc(&b->c->prio_blocked); 1103 } 1104 1105 static int btree_check_reserve(struct btree *b, struct btree_op *op) 1106 { 1107 struct cache_set *c = b->c; 1108 struct cache *ca; 1109 unsigned i, reserve = c->root->level * 2 + 1; 1110 int ret = 0; 1111 1112 mutex_lock(&c->bucket_lock); 1113 1114 for_each_cache(ca, c, i) 1115 if (fifo_used(&ca->free[RESERVE_BTREE]) < reserve) { 1116 if (op) 1117 prepare_to_wait(&c->bucket_wait, &op->wait, 1118 TASK_UNINTERRUPTIBLE); 1119 ret = -EINTR; 1120 break; 1121 } 1122 1123 mutex_unlock(&c->bucket_lock); 1124 return ret; 1125 } 1126 1127 /* Garbage collection */ 1128 1129 uint8_t __bch_btree_mark_key(struct cache_set *c, int level, struct bkey *k) 1130 { 1131 uint8_t stale = 0; 1132 unsigned i; 1133 struct bucket *g; 1134 1135 /* 1136 * ptr_invalid() can't return true for the keys that mark btree nodes as 1137 * freed, but since ptr_bad() returns true we'll never actually use them 1138 * for anything and thus we don't want mark their pointers here 1139 */ 1140 if (!bkey_cmp(k, &ZERO_KEY)) 1141 return stale; 1142 1143 for (i = 0; i < KEY_PTRS(k); i++) { 1144 if (!ptr_available(c, k, i)) 1145 continue; 1146 1147 g = PTR_BUCKET(c, k, i); 1148 1149 if (gen_after(g->gc_gen, PTR_GEN(k, i))) 1150 g->gc_gen = PTR_GEN(k, i); 1151 1152 if (ptr_stale(c, k, i)) { 1153 stale = max(stale, ptr_stale(c, k, i)); 1154 continue; 1155 } 1156 1157 cache_bug_on(GC_MARK(g) && 1158 (GC_MARK(g) == GC_MARK_METADATA) != (level != 0), 1159 c, "inconsistent ptrs: mark = %llu, level = %i", 1160 GC_MARK(g), level); 1161 1162 if (level) 1163 SET_GC_MARK(g, GC_MARK_METADATA); 1164 else if (KEY_DIRTY(k)) 1165 SET_GC_MARK(g, GC_MARK_DIRTY); 1166 1167 /* guard against overflow */ 1168 SET_GC_SECTORS_USED(g, min_t(unsigned, 1169 GC_SECTORS_USED(g) + KEY_SIZE(k), 1170 (1 << 14) - 1)); 1171 1172 BUG_ON(!GC_SECTORS_USED(g)); 1173 } 1174 1175 return stale; 1176 } 1177 1178 #define btree_mark_key(b, k) __bch_btree_mark_key(b->c, b->level, k) 1179 1180 static bool btree_gc_mark_node(struct btree *b, struct gc_stat *gc) 1181 { 1182 uint8_t stale = 0; 1183 unsigned keys = 0, good_keys = 0; 1184 struct bkey *k; 1185 struct btree_iter iter; 1186 struct bset_tree *t; 1187 1188 gc->nodes++; 1189 1190 for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid) { 1191 stale = max(stale, btree_mark_key(b, k)); 1192 keys++; 1193 1194 if (bch_ptr_bad(&b->keys, k)) 1195 continue; 1196 1197 gc->key_bytes += bkey_u64s(k); 1198 gc->nkeys++; 1199 good_keys++; 1200 1201 gc->data += KEY_SIZE(k); 1202 } 1203 1204 for (t = b->keys.set; t <= &b->keys.set[b->keys.nsets]; t++) 1205 btree_bug_on(t->size && 1206 bset_written(&b->keys, t) && 1207 bkey_cmp(&b->key, &t->end) < 0, 1208 b, "found short btree key in gc"); 1209 1210 if (b->c->gc_always_rewrite) 1211 return true; 1212 1213 if (stale > 10) 1214 return true; 1215 1216 if ((keys - good_keys) * 2 > keys) 1217 return true; 1218 1219 return false; 1220 } 1221 1222 #define GC_MERGE_NODES 4U 1223 1224 struct gc_merge_info { 1225 struct btree *b; 1226 unsigned keys; 1227 }; 1228 1229 static int bch_btree_insert_node(struct btree *, struct btree_op *, 1230 struct keylist *, atomic_t *, struct bkey *); 1231 1232 static int btree_gc_coalesce(struct btree *b, struct btree_op *op, 1233 struct keylist *keylist, struct gc_stat *gc, 1234 struct gc_merge_info *r) 1235 { 1236 unsigned i, nodes = 0, keys = 0, blocks; 1237 struct btree *new_nodes[GC_MERGE_NODES]; 1238 struct closure cl; 1239 struct bkey *k; 1240 1241 memset(new_nodes, 0, sizeof(new_nodes)); 1242 closure_init_stack(&cl); 1243 1244 while (nodes < GC_MERGE_NODES && !IS_ERR_OR_NULL(r[nodes].b)) 1245 keys += r[nodes++].keys; 1246 1247 blocks = btree_default_blocks(b->c) * 2 / 3; 1248 1249 if (nodes < 2 || 1250 __set_blocks(b->keys.set[0].data, keys, 1251 block_bytes(b->c)) > blocks * (nodes - 1)) 1252 return 0; 1253 1254 for (i = 0; i < nodes; i++) { 1255 new_nodes[i] = btree_node_alloc_replacement(r[i].b, false); 1256 if (IS_ERR_OR_NULL(new_nodes[i])) 1257 goto out_nocoalesce; 1258 } 1259 1260 for (i = nodes - 1; i > 0; --i) { 1261 struct bset *n1 = btree_bset_first(new_nodes[i]); 1262 struct bset *n2 = btree_bset_first(new_nodes[i - 1]); 1263 struct bkey *k, *last = NULL; 1264 1265 keys = 0; 1266 1267 if (i > 1) { 1268 for (k = n2->start; 1269 k < bset_bkey_last(n2); 1270 k = bkey_next(k)) { 1271 if (__set_blocks(n1, n1->keys + keys + 1272 bkey_u64s(k), 1273 block_bytes(b->c)) > blocks) 1274 break; 1275 1276 last = k; 1277 keys += bkey_u64s(k); 1278 } 1279 } else { 1280 /* 1281 * Last node we're not getting rid of - we're getting 1282 * rid of the node at r[0]. Have to try and fit all of 1283 * the remaining keys into this node; we can't ensure 1284 * they will always fit due to rounding and variable 1285 * length keys (shouldn't be possible in practice, 1286 * though) 1287 */ 1288 if (__set_blocks(n1, n1->keys + n2->keys, 1289 block_bytes(b->c)) > 1290 btree_blocks(new_nodes[i])) 1291 goto out_nocoalesce; 1292 1293 keys = n2->keys; 1294 /* Take the key of the node we're getting rid of */ 1295 last = &r->b->key; 1296 } 1297 1298 BUG_ON(__set_blocks(n1, n1->keys + keys, block_bytes(b->c)) > 1299 btree_blocks(new_nodes[i])); 1300 1301 if (last) 1302 bkey_copy_key(&new_nodes[i]->key, last); 1303 1304 memcpy(bset_bkey_last(n1), 1305 n2->start, 1306 (void *) bset_bkey_idx(n2, keys) - (void *) n2->start); 1307 1308 n1->keys += keys; 1309 r[i].keys = n1->keys; 1310 1311 memmove(n2->start, 1312 bset_bkey_idx(n2, keys), 1313 (void *) bset_bkey_last(n2) - 1314 (void *) bset_bkey_idx(n2, keys)); 1315 1316 n2->keys -= keys; 1317 1318 if (__bch_keylist_realloc(keylist, 1319 bkey_u64s(&new_nodes[i]->key))) 1320 goto out_nocoalesce; 1321 1322 bch_btree_node_write(new_nodes[i], &cl); 1323 bch_keylist_add(keylist, &new_nodes[i]->key); 1324 } 1325 1326 for (i = 0; i < nodes; i++) { 1327 if (__bch_keylist_realloc(keylist, bkey_u64s(&r[i].b->key))) 1328 goto out_nocoalesce; 1329 1330 make_btree_freeing_key(r[i].b, keylist->top); 1331 bch_keylist_push(keylist); 1332 } 1333 1334 /* We emptied out this node */ 1335 BUG_ON(btree_bset_first(new_nodes[0])->keys); 1336 btree_node_free(new_nodes[0]); 1337 rw_unlock(true, new_nodes[0]); 1338 1339 closure_sync(&cl); 1340 1341 for (i = 0; i < nodes; i++) { 1342 btree_node_free(r[i].b); 1343 rw_unlock(true, r[i].b); 1344 1345 r[i].b = new_nodes[i]; 1346 } 1347 1348 bch_btree_insert_node(b, op, keylist, NULL, NULL); 1349 BUG_ON(!bch_keylist_empty(keylist)); 1350 1351 memmove(r, r + 1, sizeof(r[0]) * (nodes - 1)); 1352 r[nodes - 1].b = ERR_PTR(-EINTR); 1353 1354 trace_bcache_btree_gc_coalesce(nodes); 1355 gc->nodes--; 1356 1357 /* Invalidated our iterator */ 1358 return -EINTR; 1359 1360 out_nocoalesce: 1361 closure_sync(&cl); 1362 1363 while ((k = bch_keylist_pop(keylist))) 1364 if (!bkey_cmp(k, &ZERO_KEY)) 1365 atomic_dec(&b->c->prio_blocked); 1366 1367 for (i = 0; i < nodes; i++) 1368 if (!IS_ERR_OR_NULL(new_nodes[i])) { 1369 btree_node_free(new_nodes[i]); 1370 rw_unlock(true, new_nodes[i]); 1371 } 1372 return 0; 1373 } 1374 1375 static unsigned btree_gc_count_keys(struct btree *b) 1376 { 1377 struct bkey *k; 1378 struct btree_iter iter; 1379 unsigned ret = 0; 1380 1381 for_each_key_filter(&b->keys, k, &iter, bch_ptr_bad) 1382 ret += bkey_u64s(k); 1383 1384 return ret; 1385 } 1386 1387 static int btree_gc_recurse(struct btree *b, struct btree_op *op, 1388 struct closure *writes, struct gc_stat *gc) 1389 { 1390 unsigned i; 1391 int ret = 0; 1392 bool should_rewrite; 1393 struct btree *n; 1394 struct bkey *k; 1395 struct keylist keys; 1396 struct btree_iter iter; 1397 struct gc_merge_info r[GC_MERGE_NODES]; 1398 struct gc_merge_info *last = r + GC_MERGE_NODES - 1; 1399 1400 bch_keylist_init(&keys); 1401 bch_btree_iter_init(&b->keys, &iter, &b->c->gc_done); 1402 1403 for (i = 0; i < GC_MERGE_NODES; i++) 1404 r[i].b = ERR_PTR(-EINTR); 1405 1406 while (1) { 1407 k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad); 1408 if (k) { 1409 r->b = bch_btree_node_get(b->c, k, b->level - 1, true); 1410 if (IS_ERR(r->b)) { 1411 ret = PTR_ERR(r->b); 1412 break; 1413 } 1414 1415 r->keys = btree_gc_count_keys(r->b); 1416 1417 ret = btree_gc_coalesce(b, op, &keys, gc, r); 1418 if (ret) 1419 break; 1420 } 1421 1422 if (!last->b) 1423 break; 1424 1425 if (!IS_ERR(last->b)) { 1426 should_rewrite = btree_gc_mark_node(last->b, gc); 1427 if (should_rewrite && 1428 !btree_check_reserve(b, NULL)) { 1429 n = btree_node_alloc_replacement(last->b, 1430 false); 1431 1432 if (!IS_ERR_OR_NULL(n)) { 1433 bch_btree_node_write_sync(n); 1434 bch_keylist_add(&keys, &n->key); 1435 1436 make_btree_freeing_key(last->b, 1437 keys.top); 1438 bch_keylist_push(&keys); 1439 1440 btree_node_free(last->b); 1441 1442 bch_btree_insert_node(b, op, &keys, 1443 NULL, NULL); 1444 BUG_ON(!bch_keylist_empty(&keys)); 1445 1446 rw_unlock(true, last->b); 1447 last->b = n; 1448 1449 /* Invalidated our iterator */ 1450 ret = -EINTR; 1451 break; 1452 } 1453 } 1454 1455 if (last->b->level) { 1456 ret = btree_gc_recurse(last->b, op, writes, gc); 1457 if (ret) 1458 break; 1459 } 1460 1461 bkey_copy_key(&b->c->gc_done, &last->b->key); 1462 1463 /* 1464 * Must flush leaf nodes before gc ends, since replace 1465 * operations aren't journalled 1466 */ 1467 if (btree_node_dirty(last->b)) 1468 bch_btree_node_write(last->b, writes); 1469 rw_unlock(true, last->b); 1470 } 1471 1472 memmove(r + 1, r, sizeof(r[0]) * (GC_MERGE_NODES - 1)); 1473 r->b = NULL; 1474 1475 if (need_resched()) { 1476 ret = -EAGAIN; 1477 break; 1478 } 1479 } 1480 1481 for (i = 0; i < GC_MERGE_NODES; i++) 1482 if (!IS_ERR_OR_NULL(r[i].b)) { 1483 if (btree_node_dirty(r[i].b)) 1484 bch_btree_node_write(r[i].b, writes); 1485 rw_unlock(true, r[i].b); 1486 } 1487 1488 bch_keylist_free(&keys); 1489 1490 return ret; 1491 } 1492 1493 static int bch_btree_gc_root(struct btree *b, struct btree_op *op, 1494 struct closure *writes, struct gc_stat *gc) 1495 { 1496 struct btree *n = NULL; 1497 int ret = 0; 1498 bool should_rewrite; 1499 1500 should_rewrite = btree_gc_mark_node(b, gc); 1501 if (should_rewrite) { 1502 n = btree_node_alloc_replacement(b, false); 1503 1504 if (!IS_ERR_OR_NULL(n)) { 1505 bch_btree_node_write_sync(n); 1506 bch_btree_set_root(n); 1507 btree_node_free(b); 1508 rw_unlock(true, n); 1509 1510 return -EINTR; 1511 } 1512 } 1513 1514 if (b->level) { 1515 ret = btree_gc_recurse(b, op, writes, gc); 1516 if (ret) 1517 return ret; 1518 } 1519 1520 bkey_copy_key(&b->c->gc_done, &b->key); 1521 1522 return ret; 1523 } 1524 1525 static void btree_gc_start(struct cache_set *c) 1526 { 1527 struct cache *ca; 1528 struct bucket *b; 1529 unsigned i; 1530 1531 if (!c->gc_mark_valid) 1532 return; 1533 1534 mutex_lock(&c->bucket_lock); 1535 1536 c->gc_mark_valid = 0; 1537 c->gc_done = ZERO_KEY; 1538 1539 for_each_cache(ca, c, i) 1540 for_each_bucket(b, ca) { 1541 b->gc_gen = b->gen; 1542 if (!atomic_read(&b->pin)) { 1543 SET_GC_MARK(b, GC_MARK_RECLAIMABLE); 1544 SET_GC_SECTORS_USED(b, 0); 1545 } 1546 } 1547 1548 mutex_unlock(&c->bucket_lock); 1549 } 1550 1551 size_t bch_btree_gc_finish(struct cache_set *c) 1552 { 1553 size_t available = 0; 1554 struct bucket *b; 1555 struct cache *ca; 1556 unsigned i; 1557 1558 mutex_lock(&c->bucket_lock); 1559 1560 set_gc_sectors(c); 1561 c->gc_mark_valid = 1; 1562 c->need_gc = 0; 1563 1564 if (c->root) 1565 for (i = 0; i < KEY_PTRS(&c->root->key); i++) 1566 SET_GC_MARK(PTR_BUCKET(c, &c->root->key, i), 1567 GC_MARK_METADATA); 1568 1569 for (i = 0; i < KEY_PTRS(&c->uuid_bucket); i++) 1570 SET_GC_MARK(PTR_BUCKET(c, &c->uuid_bucket, i), 1571 GC_MARK_METADATA); 1572 1573 /* don't reclaim buckets to which writeback keys point */ 1574 rcu_read_lock(); 1575 for (i = 0; i < c->nr_uuids; i++) { 1576 struct bcache_device *d = c->devices[i]; 1577 struct cached_dev *dc; 1578 struct keybuf_key *w, *n; 1579 unsigned j; 1580 1581 if (!d || UUID_FLASH_ONLY(&c->uuids[i])) 1582 continue; 1583 dc = container_of(d, struct cached_dev, disk); 1584 1585 spin_lock(&dc->writeback_keys.lock); 1586 rbtree_postorder_for_each_entry_safe(w, n, 1587 &dc->writeback_keys.keys, node) 1588 for (j = 0; j < KEY_PTRS(&w->key); j++) 1589 SET_GC_MARK(PTR_BUCKET(c, &w->key, j), 1590 GC_MARK_DIRTY); 1591 spin_unlock(&dc->writeback_keys.lock); 1592 } 1593 rcu_read_unlock(); 1594 1595 for_each_cache(ca, c, i) { 1596 uint64_t *i; 1597 1598 ca->invalidate_needs_gc = 0; 1599 1600 for (i = ca->sb.d; i < ca->sb.d + ca->sb.keys; i++) 1601 SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA); 1602 1603 for (i = ca->prio_buckets; 1604 i < ca->prio_buckets + prio_buckets(ca) * 2; i++) 1605 SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA); 1606 1607 for_each_bucket(b, ca) { 1608 b->last_gc = b->gc_gen; 1609 c->need_gc = max(c->need_gc, bucket_gc_gen(b)); 1610 1611 if (!atomic_read(&b->pin) && 1612 GC_MARK(b) == GC_MARK_RECLAIMABLE) { 1613 available++; 1614 if (!GC_SECTORS_USED(b)) 1615 bch_bucket_add_unused(ca, b); 1616 } 1617 } 1618 } 1619 1620 mutex_unlock(&c->bucket_lock); 1621 return available; 1622 } 1623 1624 static void bch_btree_gc(struct cache_set *c) 1625 { 1626 int ret; 1627 unsigned long available; 1628 struct gc_stat stats; 1629 struct closure writes; 1630 struct btree_op op; 1631 uint64_t start_time = local_clock(); 1632 1633 trace_bcache_gc_start(c); 1634 1635 memset(&stats, 0, sizeof(struct gc_stat)); 1636 closure_init_stack(&writes); 1637 bch_btree_op_init(&op, SHRT_MAX); 1638 1639 btree_gc_start(c); 1640 1641 do { 1642 ret = btree_root(gc_root, c, &op, &writes, &stats); 1643 closure_sync(&writes); 1644 1645 if (ret && ret != -EAGAIN) 1646 pr_warn("gc failed!"); 1647 } while (ret); 1648 1649 available = bch_btree_gc_finish(c); 1650 wake_up_allocators(c); 1651 1652 bch_time_stats_update(&c->btree_gc_time, start_time); 1653 1654 stats.key_bytes *= sizeof(uint64_t); 1655 stats.data <<= 9; 1656 stats.in_use = (c->nbuckets - available) * 100 / c->nbuckets; 1657 memcpy(&c->gc_stats, &stats, sizeof(struct gc_stat)); 1658 1659 trace_bcache_gc_end(c); 1660 1661 bch_moving_gc(c); 1662 } 1663 1664 static int bch_gc_thread(void *arg) 1665 { 1666 struct cache_set *c = arg; 1667 struct cache *ca; 1668 unsigned i; 1669 1670 while (1) { 1671 again: 1672 bch_btree_gc(c); 1673 1674 set_current_state(TASK_INTERRUPTIBLE); 1675 if (kthread_should_stop()) 1676 break; 1677 1678 mutex_lock(&c->bucket_lock); 1679 1680 for_each_cache(ca, c, i) 1681 if (ca->invalidate_needs_gc) { 1682 mutex_unlock(&c->bucket_lock); 1683 set_current_state(TASK_RUNNING); 1684 goto again; 1685 } 1686 1687 mutex_unlock(&c->bucket_lock); 1688 1689 try_to_freeze(); 1690 schedule(); 1691 } 1692 1693 return 0; 1694 } 1695 1696 int bch_gc_thread_start(struct cache_set *c) 1697 { 1698 c->gc_thread = kthread_create(bch_gc_thread, c, "bcache_gc"); 1699 if (IS_ERR(c->gc_thread)) 1700 return PTR_ERR(c->gc_thread); 1701 1702 set_task_state(c->gc_thread, TASK_INTERRUPTIBLE); 1703 return 0; 1704 } 1705 1706 /* Initial partial gc */ 1707 1708 static int bch_btree_check_recurse(struct btree *b, struct btree_op *op, 1709 unsigned long **seen) 1710 { 1711 int ret = 0; 1712 unsigned i; 1713 struct bkey *k, *p = NULL; 1714 struct bucket *g; 1715 struct btree_iter iter; 1716 1717 for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid) { 1718 for (i = 0; i < KEY_PTRS(k); i++) { 1719 if (!ptr_available(b->c, k, i)) 1720 continue; 1721 1722 g = PTR_BUCKET(b->c, k, i); 1723 1724 if (!__test_and_set_bit(PTR_BUCKET_NR(b->c, k, i), 1725 seen[PTR_DEV(k, i)]) || 1726 !ptr_stale(b->c, k, i)) { 1727 g->gen = PTR_GEN(k, i); 1728 1729 if (b->level) 1730 g->prio = BTREE_PRIO; 1731 else if (g->prio == BTREE_PRIO) 1732 g->prio = INITIAL_PRIO; 1733 } 1734 } 1735 1736 btree_mark_key(b, k); 1737 } 1738 1739 if (b->level) { 1740 bch_btree_iter_init(&b->keys, &iter, NULL); 1741 1742 do { 1743 k = bch_btree_iter_next_filter(&iter, &b->keys, 1744 bch_ptr_bad); 1745 if (k) 1746 btree_node_prefetch(b->c, k, b->level - 1); 1747 1748 if (p) 1749 ret = btree(check_recurse, p, b, op, seen); 1750 1751 p = k; 1752 } while (p && !ret); 1753 } 1754 1755 return 0; 1756 } 1757 1758 int bch_btree_check(struct cache_set *c) 1759 { 1760 int ret = -ENOMEM; 1761 unsigned i; 1762 unsigned long *seen[MAX_CACHES_PER_SET]; 1763 struct btree_op op; 1764 1765 memset(seen, 0, sizeof(seen)); 1766 bch_btree_op_init(&op, SHRT_MAX); 1767 1768 for (i = 0; c->cache[i]; i++) { 1769 size_t n = DIV_ROUND_UP(c->cache[i]->sb.nbuckets, 8); 1770 seen[i] = kmalloc(n, GFP_KERNEL); 1771 if (!seen[i]) 1772 goto err; 1773 1774 /* Disables the seen array until prio_read() uses it too */ 1775 memset(seen[i], 0xFF, n); 1776 } 1777 1778 ret = btree_root(check_recurse, c, &op, seen); 1779 err: 1780 for (i = 0; i < MAX_CACHES_PER_SET; i++) 1781 kfree(seen[i]); 1782 return ret; 1783 } 1784 1785 /* Btree insertion */ 1786 1787 static bool btree_insert_key(struct btree *b, struct bkey *k, 1788 struct bkey *replace_key) 1789 { 1790 unsigned status; 1791 1792 BUG_ON(bkey_cmp(k, &b->key) > 0); 1793 1794 status = bch_btree_insert_key(&b->keys, k, replace_key); 1795 if (status != BTREE_INSERT_STATUS_NO_INSERT) { 1796 bch_check_keys(&b->keys, "%u for %s", status, 1797 replace_key ? "replace" : "insert"); 1798 1799 trace_bcache_btree_insert_key(b, k, replace_key != NULL, 1800 status); 1801 return true; 1802 } else 1803 return false; 1804 } 1805 1806 static size_t insert_u64s_remaining(struct btree *b) 1807 { 1808 ssize_t ret = bch_btree_keys_u64s_remaining(&b->keys); 1809 1810 /* 1811 * Might land in the middle of an existing extent and have to split it 1812 */ 1813 if (b->keys.ops->is_extents) 1814 ret -= KEY_MAX_U64S; 1815 1816 return max(ret, 0L); 1817 } 1818 1819 static bool bch_btree_insert_keys(struct btree *b, struct btree_op *op, 1820 struct keylist *insert_keys, 1821 struct bkey *replace_key) 1822 { 1823 bool ret = false; 1824 int oldsize = bch_count_data(&b->keys); 1825 1826 while (!bch_keylist_empty(insert_keys)) { 1827 struct bkey *k = insert_keys->keys; 1828 1829 if (bkey_u64s(k) > insert_u64s_remaining(b)) 1830 break; 1831 1832 if (bkey_cmp(k, &b->key) <= 0) { 1833 if (!b->level) 1834 bkey_put(b->c, k); 1835 1836 ret |= btree_insert_key(b, k, replace_key); 1837 bch_keylist_pop_front(insert_keys); 1838 } else if (bkey_cmp(&START_KEY(k), &b->key) < 0) { 1839 BKEY_PADDED(key) temp; 1840 bkey_copy(&temp.key, insert_keys->keys); 1841 1842 bch_cut_back(&b->key, &temp.key); 1843 bch_cut_front(&b->key, insert_keys->keys); 1844 1845 ret |= btree_insert_key(b, &temp.key, replace_key); 1846 break; 1847 } else { 1848 break; 1849 } 1850 } 1851 1852 if (!ret) 1853 op->insert_collision = true; 1854 1855 BUG_ON(!bch_keylist_empty(insert_keys) && b->level); 1856 1857 BUG_ON(bch_count_data(&b->keys) < oldsize); 1858 return ret; 1859 } 1860 1861 static int btree_split(struct btree *b, struct btree_op *op, 1862 struct keylist *insert_keys, 1863 struct bkey *replace_key) 1864 { 1865 bool split; 1866 struct btree *n1, *n2 = NULL, *n3 = NULL; 1867 uint64_t start_time = local_clock(); 1868 struct closure cl; 1869 struct keylist parent_keys; 1870 1871 closure_init_stack(&cl); 1872 bch_keylist_init(&parent_keys); 1873 1874 if (!b->level && 1875 btree_check_reserve(b, op)) 1876 return -EINTR; 1877 1878 n1 = btree_node_alloc_replacement(b, true); 1879 if (IS_ERR(n1)) 1880 goto err; 1881 1882 split = set_blocks(btree_bset_first(n1), 1883 block_bytes(n1->c)) > (btree_blocks(b) * 4) / 5; 1884 1885 if (split) { 1886 unsigned keys = 0; 1887 1888 trace_bcache_btree_node_split(b, btree_bset_first(n1)->keys); 1889 1890 n2 = bch_btree_node_alloc(b->c, b->level, true); 1891 if (IS_ERR(n2)) 1892 goto err_free1; 1893 1894 if (!b->parent) { 1895 n3 = bch_btree_node_alloc(b->c, b->level + 1, true); 1896 if (IS_ERR(n3)) 1897 goto err_free2; 1898 } 1899 1900 bch_btree_insert_keys(n1, op, insert_keys, replace_key); 1901 1902 /* 1903 * Has to be a linear search because we don't have an auxiliary 1904 * search tree yet 1905 */ 1906 1907 while (keys < (btree_bset_first(n1)->keys * 3) / 5) 1908 keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1), 1909 keys)); 1910 1911 bkey_copy_key(&n1->key, 1912 bset_bkey_idx(btree_bset_first(n1), keys)); 1913 keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1), keys)); 1914 1915 btree_bset_first(n2)->keys = btree_bset_first(n1)->keys - keys; 1916 btree_bset_first(n1)->keys = keys; 1917 1918 memcpy(btree_bset_first(n2)->start, 1919 bset_bkey_last(btree_bset_first(n1)), 1920 btree_bset_first(n2)->keys * sizeof(uint64_t)); 1921 1922 bkey_copy_key(&n2->key, &b->key); 1923 1924 bch_keylist_add(&parent_keys, &n2->key); 1925 bch_btree_node_write(n2, &cl); 1926 rw_unlock(true, n2); 1927 } else { 1928 trace_bcache_btree_node_compact(b, btree_bset_first(n1)->keys); 1929 1930 bch_btree_insert_keys(n1, op, insert_keys, replace_key); 1931 } 1932 1933 bch_keylist_add(&parent_keys, &n1->key); 1934 bch_btree_node_write(n1, &cl); 1935 1936 if (n3) { 1937 /* Depth increases, make a new root */ 1938 bkey_copy_key(&n3->key, &MAX_KEY); 1939 bch_btree_insert_keys(n3, op, &parent_keys, NULL); 1940 bch_btree_node_write(n3, &cl); 1941 1942 closure_sync(&cl); 1943 bch_btree_set_root(n3); 1944 rw_unlock(true, n3); 1945 1946 btree_node_free(b); 1947 } else if (!b->parent) { 1948 /* Root filled up but didn't need to be split */ 1949 closure_sync(&cl); 1950 bch_btree_set_root(n1); 1951 1952 btree_node_free(b); 1953 } else { 1954 /* Split a non root node */ 1955 closure_sync(&cl); 1956 make_btree_freeing_key(b, parent_keys.top); 1957 bch_keylist_push(&parent_keys); 1958 1959 btree_node_free(b); 1960 1961 bch_btree_insert_node(b->parent, op, &parent_keys, NULL, NULL); 1962 BUG_ON(!bch_keylist_empty(&parent_keys)); 1963 } 1964 1965 rw_unlock(true, n1); 1966 1967 bch_time_stats_update(&b->c->btree_split_time, start_time); 1968 1969 return 0; 1970 err_free2: 1971 bkey_put(b->c, &n2->key); 1972 btree_node_free(n2); 1973 rw_unlock(true, n2); 1974 err_free1: 1975 bkey_put(b->c, &n1->key); 1976 btree_node_free(n1); 1977 rw_unlock(true, n1); 1978 err: 1979 WARN(1, "bcache: btree split failed"); 1980 1981 if (n3 == ERR_PTR(-EAGAIN) || 1982 n2 == ERR_PTR(-EAGAIN) || 1983 n1 == ERR_PTR(-EAGAIN)) 1984 return -EAGAIN; 1985 1986 return -ENOMEM; 1987 } 1988 1989 static int bch_btree_insert_node(struct btree *b, struct btree_op *op, 1990 struct keylist *insert_keys, 1991 atomic_t *journal_ref, 1992 struct bkey *replace_key) 1993 { 1994 BUG_ON(b->level && replace_key); 1995 1996 if (bch_keylist_nkeys(insert_keys) > insert_u64s_remaining(b)) { 1997 if (current->bio_list) { 1998 op->lock = b->c->root->level + 1; 1999 return -EAGAIN; 2000 } else if (op->lock <= b->c->root->level) { 2001 op->lock = b->c->root->level + 1; 2002 return -EINTR; 2003 } else { 2004 /* Invalidated all iterators */ 2005 int ret = btree_split(b, op, insert_keys, replace_key); 2006 2007 return bch_keylist_empty(insert_keys) ? 2008 0 : ret ?: -EINTR; 2009 } 2010 } else { 2011 BUG_ON(write_block(b) != btree_bset_last(b)); 2012 2013 if (bch_btree_insert_keys(b, op, insert_keys, replace_key)) { 2014 if (!b->level) 2015 bch_btree_leaf_dirty(b, journal_ref); 2016 else 2017 bch_btree_node_write_sync(b); 2018 } 2019 2020 return 0; 2021 } 2022 } 2023 2024 int bch_btree_insert_check_key(struct btree *b, struct btree_op *op, 2025 struct bkey *check_key) 2026 { 2027 int ret = -EINTR; 2028 uint64_t btree_ptr = b->key.ptr[0]; 2029 unsigned long seq = b->seq; 2030 struct keylist insert; 2031 bool upgrade = op->lock == -1; 2032 2033 bch_keylist_init(&insert); 2034 2035 if (upgrade) { 2036 rw_unlock(false, b); 2037 rw_lock(true, b, b->level); 2038 2039 if (b->key.ptr[0] != btree_ptr || 2040 b->seq != seq + 1) 2041 goto out; 2042 } 2043 2044 SET_KEY_PTRS(check_key, 1); 2045 get_random_bytes(&check_key->ptr[0], sizeof(uint64_t)); 2046 2047 SET_PTR_DEV(check_key, 0, PTR_CHECK_DEV); 2048 2049 bch_keylist_add(&insert, check_key); 2050 2051 ret = bch_btree_insert_node(b, op, &insert, NULL, NULL); 2052 2053 BUG_ON(!ret && !bch_keylist_empty(&insert)); 2054 out: 2055 if (upgrade) 2056 downgrade_write(&b->lock); 2057 return ret; 2058 } 2059 2060 struct btree_insert_op { 2061 struct btree_op op; 2062 struct keylist *keys; 2063 atomic_t *journal_ref; 2064 struct bkey *replace_key; 2065 }; 2066 2067 static int btree_insert_fn(struct btree_op *b_op, struct btree *b) 2068 { 2069 struct btree_insert_op *op = container_of(b_op, 2070 struct btree_insert_op, op); 2071 2072 int ret = bch_btree_insert_node(b, &op->op, op->keys, 2073 op->journal_ref, op->replace_key); 2074 if (ret && !bch_keylist_empty(op->keys)) 2075 return ret; 2076 else 2077 return MAP_DONE; 2078 } 2079 2080 int bch_btree_insert(struct cache_set *c, struct keylist *keys, 2081 atomic_t *journal_ref, struct bkey *replace_key) 2082 { 2083 struct btree_insert_op op; 2084 int ret = 0; 2085 2086 BUG_ON(current->bio_list); 2087 BUG_ON(bch_keylist_empty(keys)); 2088 2089 bch_btree_op_init(&op.op, 0); 2090 op.keys = keys; 2091 op.journal_ref = journal_ref; 2092 op.replace_key = replace_key; 2093 2094 while (!ret && !bch_keylist_empty(keys)) { 2095 op.op.lock = 0; 2096 ret = bch_btree_map_leaf_nodes(&op.op, c, 2097 &START_KEY(keys->keys), 2098 btree_insert_fn); 2099 } 2100 2101 if (ret) { 2102 struct bkey *k; 2103 2104 pr_err("error %i", ret); 2105 2106 while ((k = bch_keylist_pop(keys))) 2107 bkey_put(c, k); 2108 } else if (op.op.insert_collision) 2109 ret = -ESRCH; 2110 2111 return ret; 2112 } 2113 2114 void bch_btree_set_root(struct btree *b) 2115 { 2116 unsigned i; 2117 struct closure cl; 2118 2119 closure_init_stack(&cl); 2120 2121 trace_bcache_btree_set_root(b); 2122 2123 BUG_ON(!b->written); 2124 2125 for (i = 0; i < KEY_PTRS(&b->key); i++) 2126 BUG_ON(PTR_BUCKET(b->c, &b->key, i)->prio != BTREE_PRIO); 2127 2128 mutex_lock(&b->c->bucket_lock); 2129 list_del_init(&b->list); 2130 mutex_unlock(&b->c->bucket_lock); 2131 2132 b->c->root = b; 2133 2134 bch_journal_meta(b->c, &cl); 2135 closure_sync(&cl); 2136 } 2137 2138 /* Map across nodes or keys */ 2139 2140 static int bch_btree_map_nodes_recurse(struct btree *b, struct btree_op *op, 2141 struct bkey *from, 2142 btree_map_nodes_fn *fn, int flags) 2143 { 2144 int ret = MAP_CONTINUE; 2145 2146 if (b->level) { 2147 struct bkey *k; 2148 struct btree_iter iter; 2149 2150 bch_btree_iter_init(&b->keys, &iter, from); 2151 2152 while ((k = bch_btree_iter_next_filter(&iter, &b->keys, 2153 bch_ptr_bad))) { 2154 ret = btree(map_nodes_recurse, k, b, 2155 op, from, fn, flags); 2156 from = NULL; 2157 2158 if (ret != MAP_CONTINUE) 2159 return ret; 2160 } 2161 } 2162 2163 if (!b->level || flags == MAP_ALL_NODES) 2164 ret = fn(op, b); 2165 2166 return ret; 2167 } 2168 2169 int __bch_btree_map_nodes(struct btree_op *op, struct cache_set *c, 2170 struct bkey *from, btree_map_nodes_fn *fn, int flags) 2171 { 2172 return btree_root(map_nodes_recurse, c, op, from, fn, flags); 2173 } 2174 2175 static int bch_btree_map_keys_recurse(struct btree *b, struct btree_op *op, 2176 struct bkey *from, btree_map_keys_fn *fn, 2177 int flags) 2178 { 2179 int ret = MAP_CONTINUE; 2180 struct bkey *k; 2181 struct btree_iter iter; 2182 2183 bch_btree_iter_init(&b->keys, &iter, from); 2184 2185 while ((k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad))) { 2186 ret = !b->level 2187 ? fn(op, b, k) 2188 : btree(map_keys_recurse, k, b, op, from, fn, flags); 2189 from = NULL; 2190 2191 if (ret != MAP_CONTINUE) 2192 return ret; 2193 } 2194 2195 if (!b->level && (flags & MAP_END_KEY)) 2196 ret = fn(op, b, &KEY(KEY_INODE(&b->key), 2197 KEY_OFFSET(&b->key), 0)); 2198 2199 return ret; 2200 } 2201 2202 int bch_btree_map_keys(struct btree_op *op, struct cache_set *c, 2203 struct bkey *from, btree_map_keys_fn *fn, int flags) 2204 { 2205 return btree_root(map_keys_recurse, c, op, from, fn, flags); 2206 } 2207 2208 /* Keybuf code */ 2209 2210 static inline int keybuf_cmp(struct keybuf_key *l, struct keybuf_key *r) 2211 { 2212 /* Overlapping keys compare equal */ 2213 if (bkey_cmp(&l->key, &START_KEY(&r->key)) <= 0) 2214 return -1; 2215 if (bkey_cmp(&START_KEY(&l->key), &r->key) >= 0) 2216 return 1; 2217 return 0; 2218 } 2219 2220 static inline int keybuf_nonoverlapping_cmp(struct keybuf_key *l, 2221 struct keybuf_key *r) 2222 { 2223 return clamp_t(int64_t, bkey_cmp(&l->key, &r->key), -1, 1); 2224 } 2225 2226 struct refill { 2227 struct btree_op op; 2228 unsigned nr_found; 2229 struct keybuf *buf; 2230 struct bkey *end; 2231 keybuf_pred_fn *pred; 2232 }; 2233 2234 static int refill_keybuf_fn(struct btree_op *op, struct btree *b, 2235 struct bkey *k) 2236 { 2237 struct refill *refill = container_of(op, struct refill, op); 2238 struct keybuf *buf = refill->buf; 2239 int ret = MAP_CONTINUE; 2240 2241 if (bkey_cmp(k, refill->end) >= 0) { 2242 ret = MAP_DONE; 2243 goto out; 2244 } 2245 2246 if (!KEY_SIZE(k)) /* end key */ 2247 goto out; 2248 2249 if (refill->pred(buf, k)) { 2250 struct keybuf_key *w; 2251 2252 spin_lock(&buf->lock); 2253 2254 w = array_alloc(&buf->freelist); 2255 if (!w) { 2256 spin_unlock(&buf->lock); 2257 return MAP_DONE; 2258 } 2259 2260 w->private = NULL; 2261 bkey_copy(&w->key, k); 2262 2263 if (RB_INSERT(&buf->keys, w, node, keybuf_cmp)) 2264 array_free(&buf->freelist, w); 2265 else 2266 refill->nr_found++; 2267 2268 if (array_freelist_empty(&buf->freelist)) 2269 ret = MAP_DONE; 2270 2271 spin_unlock(&buf->lock); 2272 } 2273 out: 2274 buf->last_scanned = *k; 2275 return ret; 2276 } 2277 2278 void bch_refill_keybuf(struct cache_set *c, struct keybuf *buf, 2279 struct bkey *end, keybuf_pred_fn *pred) 2280 { 2281 struct bkey start = buf->last_scanned; 2282 struct refill refill; 2283 2284 cond_resched(); 2285 2286 bch_btree_op_init(&refill.op, -1); 2287 refill.nr_found = 0; 2288 refill.buf = buf; 2289 refill.end = end; 2290 refill.pred = pred; 2291 2292 bch_btree_map_keys(&refill.op, c, &buf->last_scanned, 2293 refill_keybuf_fn, MAP_END_KEY); 2294 2295 trace_bcache_keyscan(refill.nr_found, 2296 KEY_INODE(&start), KEY_OFFSET(&start), 2297 KEY_INODE(&buf->last_scanned), 2298 KEY_OFFSET(&buf->last_scanned)); 2299 2300 spin_lock(&buf->lock); 2301 2302 if (!RB_EMPTY_ROOT(&buf->keys)) { 2303 struct keybuf_key *w; 2304 w = RB_FIRST(&buf->keys, struct keybuf_key, node); 2305 buf->start = START_KEY(&w->key); 2306 2307 w = RB_LAST(&buf->keys, struct keybuf_key, node); 2308 buf->end = w->key; 2309 } else { 2310 buf->start = MAX_KEY; 2311 buf->end = MAX_KEY; 2312 } 2313 2314 spin_unlock(&buf->lock); 2315 } 2316 2317 static void __bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w) 2318 { 2319 rb_erase(&w->node, &buf->keys); 2320 array_free(&buf->freelist, w); 2321 } 2322 2323 void bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w) 2324 { 2325 spin_lock(&buf->lock); 2326 __bch_keybuf_del(buf, w); 2327 spin_unlock(&buf->lock); 2328 } 2329 2330 bool bch_keybuf_check_overlapping(struct keybuf *buf, struct bkey *start, 2331 struct bkey *end) 2332 { 2333 bool ret = false; 2334 struct keybuf_key *p, *w, s; 2335 s.key = *start; 2336 2337 if (bkey_cmp(end, &buf->start) <= 0 || 2338 bkey_cmp(start, &buf->end) >= 0) 2339 return false; 2340 2341 spin_lock(&buf->lock); 2342 w = RB_GREATER(&buf->keys, s, node, keybuf_nonoverlapping_cmp); 2343 2344 while (w && bkey_cmp(&START_KEY(&w->key), end) < 0) { 2345 p = w; 2346 w = RB_NEXT(w, node); 2347 2348 if (p->private) 2349 ret = true; 2350 else 2351 __bch_keybuf_del(buf, p); 2352 } 2353 2354 spin_unlock(&buf->lock); 2355 return ret; 2356 } 2357 2358 struct keybuf_key *bch_keybuf_next(struct keybuf *buf) 2359 { 2360 struct keybuf_key *w; 2361 spin_lock(&buf->lock); 2362 2363 w = RB_FIRST(&buf->keys, struct keybuf_key, node); 2364 2365 while (w && w->private) 2366 w = RB_NEXT(w, node); 2367 2368 if (w) 2369 w->private = ERR_PTR(-EINTR); 2370 2371 spin_unlock(&buf->lock); 2372 return w; 2373 } 2374 2375 struct keybuf_key *bch_keybuf_next_rescan(struct cache_set *c, 2376 struct keybuf *buf, 2377 struct bkey *end, 2378 keybuf_pred_fn *pred) 2379 { 2380 struct keybuf_key *ret; 2381 2382 while (1) { 2383 ret = bch_keybuf_next(buf); 2384 if (ret) 2385 break; 2386 2387 if (bkey_cmp(&buf->last_scanned, end) >= 0) { 2388 pr_debug("scan finished"); 2389 break; 2390 } 2391 2392 bch_refill_keybuf(c, buf, end, pred); 2393 } 2394 2395 return ret; 2396 } 2397 2398 void bch_keybuf_init(struct keybuf *buf) 2399 { 2400 buf->last_scanned = MAX_KEY; 2401 buf->keys = RB_ROOT; 2402 2403 spin_lock_init(&buf->lock); 2404 array_allocator_init(&buf->freelist); 2405 } 2406 2407 void bch_btree_exit(void) 2408 { 2409 if (btree_io_wq) 2410 destroy_workqueue(btree_io_wq); 2411 } 2412 2413 int __init bch_btree_init(void) 2414 { 2415 btree_io_wq = create_singlethread_workqueue("bch_btree_io"); 2416 if (!btree_io_wq) 2417 return -ENOMEM; 2418 2419 return 0; 2420 } 2421