xref: /openbmc/linux/drivers/md/bcache/btree.c (revision 37be287c)
1 /*
2  * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com>
3  *
4  * Uses a block device as cache for other block devices; optimized for SSDs.
5  * All allocation is done in buckets, which should match the erase block size
6  * of the device.
7  *
8  * Buckets containing cached data are kept on a heap sorted by priority;
9  * bucket priority is increased on cache hit, and periodically all the buckets
10  * on the heap have their priority scaled down. This currently is just used as
11  * an LRU but in the future should allow for more intelligent heuristics.
12  *
13  * Buckets have an 8 bit counter; freeing is accomplished by incrementing the
14  * counter. Garbage collection is used to remove stale pointers.
15  *
16  * Indexing is done via a btree; nodes are not necessarily fully sorted, rather
17  * as keys are inserted we only sort the pages that have not yet been written.
18  * When garbage collection is run, we resort the entire node.
19  *
20  * All configuration is done via sysfs; see Documentation/bcache.txt.
21  */
22 
23 #include "bcache.h"
24 #include "btree.h"
25 #include "debug.h"
26 #include "extents.h"
27 
28 #include <linux/slab.h>
29 #include <linux/bitops.h>
30 #include <linux/freezer.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/prefetch.h>
34 #include <linux/random.h>
35 #include <linux/rcupdate.h>
36 #include <trace/events/bcache.h>
37 
38 /*
39  * Todo:
40  * register_bcache: Return errors out to userspace correctly
41  *
42  * Writeback: don't undirty key until after a cache flush
43  *
44  * Create an iterator for key pointers
45  *
46  * On btree write error, mark bucket such that it won't be freed from the cache
47  *
48  * Journalling:
49  *   Check for bad keys in replay
50  *   Propagate barriers
51  *   Refcount journal entries in journal_replay
52  *
53  * Garbage collection:
54  *   Finish incremental gc
55  *   Gc should free old UUIDs, data for invalid UUIDs
56  *
57  * Provide a way to list backing device UUIDs we have data cached for, and
58  * probably how long it's been since we've seen them, and a way to invalidate
59  * dirty data for devices that will never be attached again
60  *
61  * Keep 1 min/5 min/15 min statistics of how busy a block device has been, so
62  * that based on that and how much dirty data we have we can keep writeback
63  * from being starved
64  *
65  * Add a tracepoint or somesuch to watch for writeback starvation
66  *
67  * When btree depth > 1 and splitting an interior node, we have to make sure
68  * alloc_bucket() cannot fail. This should be true but is not completely
69  * obvious.
70  *
71  * Make sure all allocations get charged to the root cgroup
72  *
73  * Plugging?
74  *
75  * If data write is less than hard sector size of ssd, round up offset in open
76  * bucket to the next whole sector
77  *
78  * Also lookup by cgroup in get_open_bucket()
79  *
80  * Superblock needs to be fleshed out for multiple cache devices
81  *
82  * Add a sysfs tunable for the number of writeback IOs in flight
83  *
84  * Add a sysfs tunable for the number of open data buckets
85  *
86  * IO tracking: Can we track when one process is doing io on behalf of another?
87  * IO tracking: Don't use just an average, weigh more recent stuff higher
88  *
89  * Test module load/unload
90  */
91 
92 #define MAX_NEED_GC		64
93 #define MAX_SAVE_PRIO		72
94 
95 #define PTR_DIRTY_BIT		(((uint64_t) 1 << 36))
96 
97 #define PTR_HASH(c, k)							\
98 	(((k)->ptr[0] >> c->bucket_bits) | PTR_GEN(k, 0))
99 
100 static struct workqueue_struct *btree_io_wq;
101 
102 #define insert_lock(s, b)	((b)->level <= (s)->lock)
103 
104 /*
105  * These macros are for recursing down the btree - they handle the details of
106  * locking and looking up nodes in the cache for you. They're best treated as
107  * mere syntax when reading code that uses them.
108  *
109  * op->lock determines whether we take a read or a write lock at a given depth.
110  * If you've got a read lock and find that you need a write lock (i.e. you're
111  * going to have to split), set op->lock and return -EINTR; btree_root() will
112  * call you again and you'll have the correct lock.
113  */
114 
115 /**
116  * btree - recurse down the btree on a specified key
117  * @fn:		function to call, which will be passed the child node
118  * @key:	key to recurse on
119  * @b:		parent btree node
120  * @op:		pointer to struct btree_op
121  */
122 #define btree(fn, key, b, op, ...)					\
123 ({									\
124 	int _r, l = (b)->level - 1;					\
125 	bool _w = l <= (op)->lock;					\
126 	struct btree *_child = bch_btree_node_get((b)->c, key, l, _w);	\
127 	if (!IS_ERR(_child)) {						\
128 		_child->parent = (b);					\
129 		_r = bch_btree_ ## fn(_child, op, ##__VA_ARGS__);	\
130 		rw_unlock(_w, _child);					\
131 	} else								\
132 		_r = PTR_ERR(_child);					\
133 	_r;								\
134 })
135 
136 /**
137  * btree_root - call a function on the root of the btree
138  * @fn:		function to call, which will be passed the child node
139  * @c:		cache set
140  * @op:		pointer to struct btree_op
141  */
142 #define btree_root(fn, c, op, ...)					\
143 ({									\
144 	int _r = -EINTR;						\
145 	do {								\
146 		struct btree *_b = (c)->root;				\
147 		bool _w = insert_lock(op, _b);				\
148 		rw_lock(_w, _b, _b->level);				\
149 		if (_b == (c)->root &&					\
150 		    _w == insert_lock(op, _b)) {			\
151 			_b->parent = NULL;				\
152 			_r = bch_btree_ ## fn(_b, op, ##__VA_ARGS__);	\
153 		}							\
154 		rw_unlock(_w, _b);					\
155 		if (_r == -EINTR)					\
156 			schedule();					\
157 		bch_cannibalize_unlock(c);				\
158 		if (_r == -ENOSPC) {					\
159 			wait_event((c)->try_wait,			\
160 				   !(c)->try_harder);			\
161 			_r = -EINTR;					\
162 		}							\
163 	} while (_r == -EINTR);						\
164 									\
165 	finish_wait(&(c)->bucket_wait, &(op)->wait);			\
166 	_r;								\
167 })
168 
169 static inline struct bset *write_block(struct btree *b)
170 {
171 	return ((void *) btree_bset_first(b)) + b->written * block_bytes(b->c);
172 }
173 
174 /* Btree key manipulation */
175 
176 void bkey_put(struct cache_set *c, struct bkey *k)
177 {
178 	unsigned i;
179 
180 	for (i = 0; i < KEY_PTRS(k); i++)
181 		if (ptr_available(c, k, i))
182 			atomic_dec_bug(&PTR_BUCKET(c, k, i)->pin);
183 }
184 
185 /* Btree IO */
186 
187 static uint64_t btree_csum_set(struct btree *b, struct bset *i)
188 {
189 	uint64_t crc = b->key.ptr[0];
190 	void *data = (void *) i + 8, *end = bset_bkey_last(i);
191 
192 	crc = bch_crc64_update(crc, data, end - data);
193 	return crc ^ 0xffffffffffffffffULL;
194 }
195 
196 void bch_btree_node_read_done(struct btree *b)
197 {
198 	const char *err = "bad btree header";
199 	struct bset *i = btree_bset_first(b);
200 	struct btree_iter *iter;
201 
202 	iter = mempool_alloc(b->c->fill_iter, GFP_NOWAIT);
203 	iter->size = b->c->sb.bucket_size / b->c->sb.block_size;
204 	iter->used = 0;
205 
206 #ifdef CONFIG_BCACHE_DEBUG
207 	iter->b = &b->keys;
208 #endif
209 
210 	if (!i->seq)
211 		goto err;
212 
213 	for (;
214 	     b->written < btree_blocks(b) && i->seq == b->keys.set[0].data->seq;
215 	     i = write_block(b)) {
216 		err = "unsupported bset version";
217 		if (i->version > BCACHE_BSET_VERSION)
218 			goto err;
219 
220 		err = "bad btree header";
221 		if (b->written + set_blocks(i, block_bytes(b->c)) >
222 		    btree_blocks(b))
223 			goto err;
224 
225 		err = "bad magic";
226 		if (i->magic != bset_magic(&b->c->sb))
227 			goto err;
228 
229 		err = "bad checksum";
230 		switch (i->version) {
231 		case 0:
232 			if (i->csum != csum_set(i))
233 				goto err;
234 			break;
235 		case BCACHE_BSET_VERSION:
236 			if (i->csum != btree_csum_set(b, i))
237 				goto err;
238 			break;
239 		}
240 
241 		err = "empty set";
242 		if (i != b->keys.set[0].data && !i->keys)
243 			goto err;
244 
245 		bch_btree_iter_push(iter, i->start, bset_bkey_last(i));
246 
247 		b->written += set_blocks(i, block_bytes(b->c));
248 	}
249 
250 	err = "corrupted btree";
251 	for (i = write_block(b);
252 	     bset_sector_offset(&b->keys, i) < KEY_SIZE(&b->key);
253 	     i = ((void *) i) + block_bytes(b->c))
254 		if (i->seq == b->keys.set[0].data->seq)
255 			goto err;
256 
257 	bch_btree_sort_and_fix_extents(&b->keys, iter, &b->c->sort);
258 
259 	i = b->keys.set[0].data;
260 	err = "short btree key";
261 	if (b->keys.set[0].size &&
262 	    bkey_cmp(&b->key, &b->keys.set[0].end) < 0)
263 		goto err;
264 
265 	if (b->written < btree_blocks(b))
266 		bch_bset_init_next(&b->keys, write_block(b),
267 				   bset_magic(&b->c->sb));
268 out:
269 	mempool_free(iter, b->c->fill_iter);
270 	return;
271 err:
272 	set_btree_node_io_error(b);
273 	bch_cache_set_error(b->c, "%s at bucket %zu, block %u, %u keys",
274 			    err, PTR_BUCKET_NR(b->c, &b->key, 0),
275 			    bset_block_offset(b, i), i->keys);
276 	goto out;
277 }
278 
279 static void btree_node_read_endio(struct bio *bio, int error)
280 {
281 	struct closure *cl = bio->bi_private;
282 	closure_put(cl);
283 }
284 
285 static void bch_btree_node_read(struct btree *b)
286 {
287 	uint64_t start_time = local_clock();
288 	struct closure cl;
289 	struct bio *bio;
290 
291 	trace_bcache_btree_read(b);
292 
293 	closure_init_stack(&cl);
294 
295 	bio = bch_bbio_alloc(b->c);
296 	bio->bi_rw	= REQ_META|READ_SYNC;
297 	bio->bi_iter.bi_size = KEY_SIZE(&b->key) << 9;
298 	bio->bi_end_io	= btree_node_read_endio;
299 	bio->bi_private	= &cl;
300 
301 	bch_bio_map(bio, b->keys.set[0].data);
302 
303 	bch_submit_bbio(bio, b->c, &b->key, 0);
304 	closure_sync(&cl);
305 
306 	if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
307 		set_btree_node_io_error(b);
308 
309 	bch_bbio_free(bio, b->c);
310 
311 	if (btree_node_io_error(b))
312 		goto err;
313 
314 	bch_btree_node_read_done(b);
315 	bch_time_stats_update(&b->c->btree_read_time, start_time);
316 
317 	return;
318 err:
319 	bch_cache_set_error(b->c, "io error reading bucket %zu",
320 			    PTR_BUCKET_NR(b->c, &b->key, 0));
321 }
322 
323 static void btree_complete_write(struct btree *b, struct btree_write *w)
324 {
325 	if (w->prio_blocked &&
326 	    !atomic_sub_return(w->prio_blocked, &b->c->prio_blocked))
327 		wake_up_allocators(b->c);
328 
329 	if (w->journal) {
330 		atomic_dec_bug(w->journal);
331 		__closure_wake_up(&b->c->journal.wait);
332 	}
333 
334 	w->prio_blocked	= 0;
335 	w->journal	= NULL;
336 }
337 
338 static void btree_node_write_unlock(struct closure *cl)
339 {
340 	struct btree *b = container_of(cl, struct btree, io);
341 
342 	up(&b->io_mutex);
343 }
344 
345 static void __btree_node_write_done(struct closure *cl)
346 {
347 	struct btree *b = container_of(cl, struct btree, io);
348 	struct btree_write *w = btree_prev_write(b);
349 
350 	bch_bbio_free(b->bio, b->c);
351 	b->bio = NULL;
352 	btree_complete_write(b, w);
353 
354 	if (btree_node_dirty(b))
355 		queue_delayed_work(btree_io_wq, &b->work,
356 				   msecs_to_jiffies(30000));
357 
358 	closure_return_with_destructor(cl, btree_node_write_unlock);
359 }
360 
361 static void btree_node_write_done(struct closure *cl)
362 {
363 	struct btree *b = container_of(cl, struct btree, io);
364 	struct bio_vec *bv;
365 	int n;
366 
367 	bio_for_each_segment_all(bv, b->bio, n)
368 		__free_page(bv->bv_page);
369 
370 	__btree_node_write_done(cl);
371 }
372 
373 static void btree_node_write_endio(struct bio *bio, int error)
374 {
375 	struct closure *cl = bio->bi_private;
376 	struct btree *b = container_of(cl, struct btree, io);
377 
378 	if (error)
379 		set_btree_node_io_error(b);
380 
381 	bch_bbio_count_io_errors(b->c, bio, error, "writing btree");
382 	closure_put(cl);
383 }
384 
385 static void do_btree_node_write(struct btree *b)
386 {
387 	struct closure *cl = &b->io;
388 	struct bset *i = btree_bset_last(b);
389 	BKEY_PADDED(key) k;
390 
391 	i->version	= BCACHE_BSET_VERSION;
392 	i->csum		= btree_csum_set(b, i);
393 
394 	BUG_ON(b->bio);
395 	b->bio = bch_bbio_alloc(b->c);
396 
397 	b->bio->bi_end_io	= btree_node_write_endio;
398 	b->bio->bi_private	= cl;
399 	b->bio->bi_rw		= REQ_META|WRITE_SYNC|REQ_FUA;
400 	b->bio->bi_iter.bi_size	= roundup(set_bytes(i), block_bytes(b->c));
401 	bch_bio_map(b->bio, i);
402 
403 	/*
404 	 * If we're appending to a leaf node, we don't technically need FUA -
405 	 * this write just needs to be persisted before the next journal write,
406 	 * which will be marked FLUSH|FUA.
407 	 *
408 	 * Similarly if we're writing a new btree root - the pointer is going to
409 	 * be in the next journal entry.
410 	 *
411 	 * But if we're writing a new btree node (that isn't a root) or
412 	 * appending to a non leaf btree node, we need either FUA or a flush
413 	 * when we write the parent with the new pointer. FUA is cheaper than a
414 	 * flush, and writes appending to leaf nodes aren't blocking anything so
415 	 * just make all btree node writes FUA to keep things sane.
416 	 */
417 
418 	bkey_copy(&k.key, &b->key);
419 	SET_PTR_OFFSET(&k.key, 0, PTR_OFFSET(&k.key, 0) +
420 		       bset_sector_offset(&b->keys, i));
421 
422 	if (!bio_alloc_pages(b->bio, GFP_NOIO)) {
423 		int j;
424 		struct bio_vec *bv;
425 		void *base = (void *) ((unsigned long) i & ~(PAGE_SIZE - 1));
426 
427 		bio_for_each_segment_all(bv, b->bio, j)
428 			memcpy(page_address(bv->bv_page),
429 			       base + j * PAGE_SIZE, PAGE_SIZE);
430 
431 		bch_submit_bbio(b->bio, b->c, &k.key, 0);
432 
433 		continue_at(cl, btree_node_write_done, NULL);
434 	} else {
435 		b->bio->bi_vcnt = 0;
436 		bch_bio_map(b->bio, i);
437 
438 		bch_submit_bbio(b->bio, b->c, &k.key, 0);
439 
440 		closure_sync(cl);
441 		continue_at_nobarrier(cl, __btree_node_write_done, NULL);
442 	}
443 }
444 
445 void bch_btree_node_write(struct btree *b, struct closure *parent)
446 {
447 	struct bset *i = btree_bset_last(b);
448 
449 	trace_bcache_btree_write(b);
450 
451 	BUG_ON(current->bio_list);
452 	BUG_ON(b->written >= btree_blocks(b));
453 	BUG_ON(b->written && !i->keys);
454 	BUG_ON(btree_bset_first(b)->seq != i->seq);
455 	bch_check_keys(&b->keys, "writing");
456 
457 	cancel_delayed_work(&b->work);
458 
459 	/* If caller isn't waiting for write, parent refcount is cache set */
460 	down(&b->io_mutex);
461 	closure_init(&b->io, parent ?: &b->c->cl);
462 
463 	clear_bit(BTREE_NODE_dirty,	 &b->flags);
464 	change_bit(BTREE_NODE_write_idx, &b->flags);
465 
466 	do_btree_node_write(b);
467 
468 	atomic_long_add(set_blocks(i, block_bytes(b->c)) * b->c->sb.block_size,
469 			&PTR_CACHE(b->c, &b->key, 0)->btree_sectors_written);
470 
471 	b->written += set_blocks(i, block_bytes(b->c));
472 
473 	/* If not a leaf node, always sort */
474 	if (b->level && b->keys.nsets)
475 		bch_btree_sort(&b->keys, &b->c->sort);
476 	else
477 		bch_btree_sort_lazy(&b->keys, &b->c->sort);
478 
479 	/*
480 	 * do verify if there was more than one set initially (i.e. we did a
481 	 * sort) and we sorted down to a single set:
482 	 */
483 	if (i != b->keys.set->data && !b->keys.nsets)
484 		bch_btree_verify(b);
485 
486 	if (b->written < btree_blocks(b))
487 		bch_bset_init_next(&b->keys, write_block(b),
488 				   bset_magic(&b->c->sb));
489 }
490 
491 static void bch_btree_node_write_sync(struct btree *b)
492 {
493 	struct closure cl;
494 
495 	closure_init_stack(&cl);
496 	bch_btree_node_write(b, &cl);
497 	closure_sync(&cl);
498 }
499 
500 static void btree_node_write_work(struct work_struct *w)
501 {
502 	struct btree *b = container_of(to_delayed_work(w), struct btree, work);
503 
504 	rw_lock(true, b, b->level);
505 
506 	if (btree_node_dirty(b))
507 		bch_btree_node_write(b, NULL);
508 	rw_unlock(true, b);
509 }
510 
511 static void bch_btree_leaf_dirty(struct btree *b, atomic_t *journal_ref)
512 {
513 	struct bset *i = btree_bset_last(b);
514 	struct btree_write *w = btree_current_write(b);
515 
516 	BUG_ON(!b->written);
517 	BUG_ON(!i->keys);
518 
519 	if (!btree_node_dirty(b))
520 		queue_delayed_work(btree_io_wq, &b->work, 30 * HZ);
521 
522 	set_btree_node_dirty(b);
523 
524 	if (journal_ref) {
525 		if (w->journal &&
526 		    journal_pin_cmp(b->c, w->journal, journal_ref)) {
527 			atomic_dec_bug(w->journal);
528 			w->journal = NULL;
529 		}
530 
531 		if (!w->journal) {
532 			w->journal = journal_ref;
533 			atomic_inc(w->journal);
534 		}
535 	}
536 
537 	/* Force write if set is too big */
538 	if (set_bytes(i) > PAGE_SIZE - 48 &&
539 	    !current->bio_list)
540 		bch_btree_node_write(b, NULL);
541 }
542 
543 /*
544  * Btree in memory cache - allocation/freeing
545  * mca -> memory cache
546  */
547 
548 #define mca_reserve(c)	(((c->root && c->root->level)		\
549 			  ? c->root->level : 1) * 8 + 16)
550 #define mca_can_free(c)						\
551 	max_t(int, 0, c->bucket_cache_used - mca_reserve(c))
552 
553 static void mca_data_free(struct btree *b)
554 {
555 	BUG_ON(b->io_mutex.count != 1);
556 
557 	bch_btree_keys_free(&b->keys);
558 
559 	b->c->bucket_cache_used--;
560 	list_move(&b->list, &b->c->btree_cache_freed);
561 }
562 
563 static void mca_bucket_free(struct btree *b)
564 {
565 	BUG_ON(btree_node_dirty(b));
566 
567 	b->key.ptr[0] = 0;
568 	hlist_del_init_rcu(&b->hash);
569 	list_move(&b->list, &b->c->btree_cache_freeable);
570 }
571 
572 static unsigned btree_order(struct bkey *k)
573 {
574 	return ilog2(KEY_SIZE(k) / PAGE_SECTORS ?: 1);
575 }
576 
577 static void mca_data_alloc(struct btree *b, struct bkey *k, gfp_t gfp)
578 {
579 	if (!bch_btree_keys_alloc(&b->keys,
580 				  max_t(unsigned,
581 					ilog2(b->c->btree_pages),
582 					btree_order(k)),
583 				  gfp)) {
584 		b->c->bucket_cache_used++;
585 		list_move(&b->list, &b->c->btree_cache);
586 	} else {
587 		list_move(&b->list, &b->c->btree_cache_freed);
588 	}
589 }
590 
591 static struct btree *mca_bucket_alloc(struct cache_set *c,
592 				      struct bkey *k, gfp_t gfp)
593 {
594 	struct btree *b = kzalloc(sizeof(struct btree), gfp);
595 	if (!b)
596 		return NULL;
597 
598 	init_rwsem(&b->lock);
599 	lockdep_set_novalidate_class(&b->lock);
600 	INIT_LIST_HEAD(&b->list);
601 	INIT_DELAYED_WORK(&b->work, btree_node_write_work);
602 	b->c = c;
603 	sema_init(&b->io_mutex, 1);
604 
605 	mca_data_alloc(b, k, gfp);
606 	return b;
607 }
608 
609 static int mca_reap(struct btree *b, unsigned min_order, bool flush)
610 {
611 	struct closure cl;
612 
613 	closure_init_stack(&cl);
614 	lockdep_assert_held(&b->c->bucket_lock);
615 
616 	if (!down_write_trylock(&b->lock))
617 		return -ENOMEM;
618 
619 	BUG_ON(btree_node_dirty(b) && !b->keys.set[0].data);
620 
621 	if (b->keys.page_order < min_order)
622 		goto out_unlock;
623 
624 	if (!flush) {
625 		if (btree_node_dirty(b))
626 			goto out_unlock;
627 
628 		if (down_trylock(&b->io_mutex))
629 			goto out_unlock;
630 		up(&b->io_mutex);
631 	}
632 
633 	if (btree_node_dirty(b))
634 		bch_btree_node_write_sync(b);
635 
636 	/* wait for any in flight btree write */
637 	down(&b->io_mutex);
638 	up(&b->io_mutex);
639 
640 	return 0;
641 out_unlock:
642 	rw_unlock(true, b);
643 	return -ENOMEM;
644 }
645 
646 static unsigned long bch_mca_scan(struct shrinker *shrink,
647 				  struct shrink_control *sc)
648 {
649 	struct cache_set *c = container_of(shrink, struct cache_set, shrink);
650 	struct btree *b, *t;
651 	unsigned long i, nr = sc->nr_to_scan;
652 	unsigned long freed = 0;
653 
654 	if (c->shrinker_disabled)
655 		return SHRINK_STOP;
656 
657 	if (c->try_harder)
658 		return SHRINK_STOP;
659 
660 	/* Return -1 if we can't do anything right now */
661 	if (sc->gfp_mask & __GFP_IO)
662 		mutex_lock(&c->bucket_lock);
663 	else if (!mutex_trylock(&c->bucket_lock))
664 		return -1;
665 
666 	/*
667 	 * It's _really_ critical that we don't free too many btree nodes - we
668 	 * have to always leave ourselves a reserve. The reserve is how we
669 	 * guarantee that allocating memory for a new btree node can always
670 	 * succeed, so that inserting keys into the btree can always succeed and
671 	 * IO can always make forward progress:
672 	 */
673 	nr /= c->btree_pages;
674 	nr = min_t(unsigned long, nr, mca_can_free(c));
675 
676 	i = 0;
677 	list_for_each_entry_safe(b, t, &c->btree_cache_freeable, list) {
678 		if (freed >= nr)
679 			break;
680 
681 		if (++i > 3 &&
682 		    !mca_reap(b, 0, false)) {
683 			mca_data_free(b);
684 			rw_unlock(true, b);
685 			freed++;
686 		}
687 	}
688 
689 	for (i = 0; (nr--) && i < c->bucket_cache_used; i++) {
690 		if (list_empty(&c->btree_cache))
691 			goto out;
692 
693 		b = list_first_entry(&c->btree_cache, struct btree, list);
694 		list_rotate_left(&c->btree_cache);
695 
696 		if (!b->accessed &&
697 		    !mca_reap(b, 0, false)) {
698 			mca_bucket_free(b);
699 			mca_data_free(b);
700 			rw_unlock(true, b);
701 			freed++;
702 		} else
703 			b->accessed = 0;
704 	}
705 out:
706 	mutex_unlock(&c->bucket_lock);
707 	return freed;
708 }
709 
710 static unsigned long bch_mca_count(struct shrinker *shrink,
711 				   struct shrink_control *sc)
712 {
713 	struct cache_set *c = container_of(shrink, struct cache_set, shrink);
714 
715 	if (c->shrinker_disabled)
716 		return 0;
717 
718 	if (c->try_harder)
719 		return 0;
720 
721 	return mca_can_free(c) * c->btree_pages;
722 }
723 
724 void bch_btree_cache_free(struct cache_set *c)
725 {
726 	struct btree *b;
727 	struct closure cl;
728 	closure_init_stack(&cl);
729 
730 	if (c->shrink.list.next)
731 		unregister_shrinker(&c->shrink);
732 
733 	mutex_lock(&c->bucket_lock);
734 
735 #ifdef CONFIG_BCACHE_DEBUG
736 	if (c->verify_data)
737 		list_move(&c->verify_data->list, &c->btree_cache);
738 
739 	free_pages((unsigned long) c->verify_ondisk, ilog2(bucket_pages(c)));
740 #endif
741 
742 	list_splice(&c->btree_cache_freeable,
743 		    &c->btree_cache);
744 
745 	while (!list_empty(&c->btree_cache)) {
746 		b = list_first_entry(&c->btree_cache, struct btree, list);
747 
748 		if (btree_node_dirty(b))
749 			btree_complete_write(b, btree_current_write(b));
750 		clear_bit(BTREE_NODE_dirty, &b->flags);
751 
752 		mca_data_free(b);
753 	}
754 
755 	while (!list_empty(&c->btree_cache_freed)) {
756 		b = list_first_entry(&c->btree_cache_freed,
757 				     struct btree, list);
758 		list_del(&b->list);
759 		cancel_delayed_work_sync(&b->work);
760 		kfree(b);
761 	}
762 
763 	mutex_unlock(&c->bucket_lock);
764 }
765 
766 int bch_btree_cache_alloc(struct cache_set *c)
767 {
768 	unsigned i;
769 
770 	for (i = 0; i < mca_reserve(c); i++)
771 		if (!mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL))
772 			return -ENOMEM;
773 
774 	list_splice_init(&c->btree_cache,
775 			 &c->btree_cache_freeable);
776 
777 #ifdef CONFIG_BCACHE_DEBUG
778 	mutex_init(&c->verify_lock);
779 
780 	c->verify_ondisk = (void *)
781 		__get_free_pages(GFP_KERNEL, ilog2(bucket_pages(c)));
782 
783 	c->verify_data = mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL);
784 
785 	if (c->verify_data &&
786 	    c->verify_data->keys.set->data)
787 		list_del_init(&c->verify_data->list);
788 	else
789 		c->verify_data = NULL;
790 #endif
791 
792 	c->shrink.count_objects = bch_mca_count;
793 	c->shrink.scan_objects = bch_mca_scan;
794 	c->shrink.seeks = 4;
795 	c->shrink.batch = c->btree_pages * 2;
796 	register_shrinker(&c->shrink);
797 
798 	return 0;
799 }
800 
801 /* Btree in memory cache - hash table */
802 
803 static struct hlist_head *mca_hash(struct cache_set *c, struct bkey *k)
804 {
805 	return &c->bucket_hash[hash_32(PTR_HASH(c, k), BUCKET_HASH_BITS)];
806 }
807 
808 static struct btree *mca_find(struct cache_set *c, struct bkey *k)
809 {
810 	struct btree *b;
811 
812 	rcu_read_lock();
813 	hlist_for_each_entry_rcu(b, mca_hash(c, k), hash)
814 		if (PTR_HASH(c, &b->key) == PTR_HASH(c, k))
815 			goto out;
816 	b = NULL;
817 out:
818 	rcu_read_unlock();
819 	return b;
820 }
821 
822 static struct btree *mca_cannibalize(struct cache_set *c, struct bkey *k)
823 {
824 	struct btree *b;
825 
826 	trace_bcache_btree_cache_cannibalize(c);
827 
828 	if (!c->try_harder) {
829 		c->try_harder = current;
830 		c->try_harder_start = local_clock();
831 	} else if (c->try_harder != current)
832 		return ERR_PTR(-ENOSPC);
833 
834 	list_for_each_entry_reverse(b, &c->btree_cache, list)
835 		if (!mca_reap(b, btree_order(k), false))
836 			return b;
837 
838 	list_for_each_entry_reverse(b, &c->btree_cache, list)
839 		if (!mca_reap(b, btree_order(k), true))
840 			return b;
841 
842 	return ERR_PTR(-ENOMEM);
843 }
844 
845 /*
846  * We can only have one thread cannibalizing other cached btree nodes at a time,
847  * or we'll deadlock. We use an open coded mutex to ensure that, which a
848  * cannibalize_bucket() will take. This means every time we unlock the root of
849  * the btree, we need to release this lock if we have it held.
850  */
851 static void bch_cannibalize_unlock(struct cache_set *c)
852 {
853 	if (c->try_harder == current) {
854 		bch_time_stats_update(&c->try_harder_time, c->try_harder_start);
855 		c->try_harder = NULL;
856 		wake_up(&c->try_wait);
857 	}
858 }
859 
860 static struct btree *mca_alloc(struct cache_set *c, struct bkey *k, int level)
861 {
862 	struct btree *b;
863 
864 	BUG_ON(current->bio_list);
865 
866 	lockdep_assert_held(&c->bucket_lock);
867 
868 	if (mca_find(c, k))
869 		return NULL;
870 
871 	/* btree_free() doesn't free memory; it sticks the node on the end of
872 	 * the list. Check if there's any freed nodes there:
873 	 */
874 	list_for_each_entry(b, &c->btree_cache_freeable, list)
875 		if (!mca_reap(b, btree_order(k), false))
876 			goto out;
877 
878 	/* We never free struct btree itself, just the memory that holds the on
879 	 * disk node. Check the freed list before allocating a new one:
880 	 */
881 	list_for_each_entry(b, &c->btree_cache_freed, list)
882 		if (!mca_reap(b, 0, false)) {
883 			mca_data_alloc(b, k, __GFP_NOWARN|GFP_NOIO);
884 			if (!b->keys.set[0].data)
885 				goto err;
886 			else
887 				goto out;
888 		}
889 
890 	b = mca_bucket_alloc(c, k, __GFP_NOWARN|GFP_NOIO);
891 	if (!b)
892 		goto err;
893 
894 	BUG_ON(!down_write_trylock(&b->lock));
895 	if (!b->keys.set->data)
896 		goto err;
897 out:
898 	BUG_ON(b->io_mutex.count != 1);
899 
900 	bkey_copy(&b->key, k);
901 	list_move(&b->list, &c->btree_cache);
902 	hlist_del_init_rcu(&b->hash);
903 	hlist_add_head_rcu(&b->hash, mca_hash(c, k));
904 
905 	lock_set_subclass(&b->lock.dep_map, level + 1, _THIS_IP_);
906 	b->parent	= (void *) ~0UL;
907 	b->flags	= 0;
908 	b->written	= 0;
909 	b->level	= level;
910 
911 	if (!b->level)
912 		bch_btree_keys_init(&b->keys, &bch_extent_keys_ops,
913 				    &b->c->expensive_debug_checks);
914 	else
915 		bch_btree_keys_init(&b->keys, &bch_btree_keys_ops,
916 				    &b->c->expensive_debug_checks);
917 
918 	return b;
919 err:
920 	if (b)
921 		rw_unlock(true, b);
922 
923 	b = mca_cannibalize(c, k);
924 	if (!IS_ERR(b))
925 		goto out;
926 
927 	return b;
928 }
929 
930 /**
931  * bch_btree_node_get - find a btree node in the cache and lock it, reading it
932  * in from disk if necessary.
933  *
934  * If IO is necessary and running under generic_make_request, returns -EAGAIN.
935  *
936  * The btree node will have either a read or a write lock held, depending on
937  * level and op->lock.
938  */
939 struct btree *bch_btree_node_get(struct cache_set *c, struct bkey *k,
940 				 int level, bool write)
941 {
942 	int i = 0;
943 	struct btree *b;
944 
945 	BUG_ON(level < 0);
946 retry:
947 	b = mca_find(c, k);
948 
949 	if (!b) {
950 		if (current->bio_list)
951 			return ERR_PTR(-EAGAIN);
952 
953 		mutex_lock(&c->bucket_lock);
954 		b = mca_alloc(c, k, level);
955 		mutex_unlock(&c->bucket_lock);
956 
957 		if (!b)
958 			goto retry;
959 		if (IS_ERR(b))
960 			return b;
961 
962 		bch_btree_node_read(b);
963 
964 		if (!write)
965 			downgrade_write(&b->lock);
966 	} else {
967 		rw_lock(write, b, level);
968 		if (PTR_HASH(c, &b->key) != PTR_HASH(c, k)) {
969 			rw_unlock(write, b);
970 			goto retry;
971 		}
972 		BUG_ON(b->level != level);
973 	}
974 
975 	b->accessed = 1;
976 
977 	for (; i <= b->keys.nsets && b->keys.set[i].size; i++) {
978 		prefetch(b->keys.set[i].tree);
979 		prefetch(b->keys.set[i].data);
980 	}
981 
982 	for (; i <= b->keys.nsets; i++)
983 		prefetch(b->keys.set[i].data);
984 
985 	if (btree_node_io_error(b)) {
986 		rw_unlock(write, b);
987 		return ERR_PTR(-EIO);
988 	}
989 
990 	BUG_ON(!b->written);
991 
992 	return b;
993 }
994 
995 static void btree_node_prefetch(struct cache_set *c, struct bkey *k, int level)
996 {
997 	struct btree *b;
998 
999 	mutex_lock(&c->bucket_lock);
1000 	b = mca_alloc(c, k, level);
1001 	mutex_unlock(&c->bucket_lock);
1002 
1003 	if (!IS_ERR_OR_NULL(b)) {
1004 		bch_btree_node_read(b);
1005 		rw_unlock(true, b);
1006 	}
1007 }
1008 
1009 /* Btree alloc */
1010 
1011 static void btree_node_free(struct btree *b)
1012 {
1013 	unsigned i;
1014 
1015 	trace_bcache_btree_node_free(b);
1016 
1017 	BUG_ON(b == b->c->root);
1018 
1019 	if (btree_node_dirty(b))
1020 		btree_complete_write(b, btree_current_write(b));
1021 	clear_bit(BTREE_NODE_dirty, &b->flags);
1022 
1023 	cancel_delayed_work(&b->work);
1024 
1025 	mutex_lock(&b->c->bucket_lock);
1026 
1027 	for (i = 0; i < KEY_PTRS(&b->key); i++) {
1028 		BUG_ON(atomic_read(&PTR_BUCKET(b->c, &b->key, i)->pin));
1029 
1030 		bch_inc_gen(PTR_CACHE(b->c, &b->key, i),
1031 			    PTR_BUCKET(b->c, &b->key, i));
1032 	}
1033 
1034 	bch_bucket_free(b->c, &b->key);
1035 	mca_bucket_free(b);
1036 	mutex_unlock(&b->c->bucket_lock);
1037 }
1038 
1039 struct btree *bch_btree_node_alloc(struct cache_set *c, int level, bool wait)
1040 {
1041 	BKEY_PADDED(key) k;
1042 	struct btree *b = ERR_PTR(-EAGAIN);
1043 
1044 	mutex_lock(&c->bucket_lock);
1045 retry:
1046 	if (__bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, 1, wait))
1047 		goto err;
1048 
1049 	bkey_put(c, &k.key);
1050 	SET_KEY_SIZE(&k.key, c->btree_pages * PAGE_SECTORS);
1051 
1052 	b = mca_alloc(c, &k.key, level);
1053 	if (IS_ERR(b))
1054 		goto err_free;
1055 
1056 	if (!b) {
1057 		cache_bug(c,
1058 			"Tried to allocate bucket that was in btree cache");
1059 		goto retry;
1060 	}
1061 
1062 	b->accessed = 1;
1063 	bch_bset_init_next(&b->keys, b->keys.set->data, bset_magic(&b->c->sb));
1064 
1065 	mutex_unlock(&c->bucket_lock);
1066 
1067 	trace_bcache_btree_node_alloc(b);
1068 	return b;
1069 err_free:
1070 	bch_bucket_free(c, &k.key);
1071 err:
1072 	mutex_unlock(&c->bucket_lock);
1073 
1074 	trace_bcache_btree_node_alloc_fail(b);
1075 	return b;
1076 }
1077 
1078 static struct btree *btree_node_alloc_replacement(struct btree *b, bool wait)
1079 {
1080 	struct btree *n = bch_btree_node_alloc(b->c, b->level, wait);
1081 	if (!IS_ERR_OR_NULL(n)) {
1082 		bch_btree_sort_into(&b->keys, &n->keys, &b->c->sort);
1083 		bkey_copy_key(&n->key, &b->key);
1084 	}
1085 
1086 	return n;
1087 }
1088 
1089 static void make_btree_freeing_key(struct btree *b, struct bkey *k)
1090 {
1091 	unsigned i;
1092 
1093 	bkey_copy(k, &b->key);
1094 	bkey_copy_key(k, &ZERO_KEY);
1095 
1096 	for (i = 0; i < KEY_PTRS(k); i++) {
1097 		uint8_t g = PTR_BUCKET(b->c, k, i)->gen + 1;
1098 
1099 		SET_PTR_GEN(k, i, g);
1100 	}
1101 
1102 	atomic_inc(&b->c->prio_blocked);
1103 }
1104 
1105 static int btree_check_reserve(struct btree *b, struct btree_op *op)
1106 {
1107 	struct cache_set *c = b->c;
1108 	struct cache *ca;
1109 	unsigned i, reserve = c->root->level * 2 + 1;
1110 	int ret = 0;
1111 
1112 	mutex_lock(&c->bucket_lock);
1113 
1114 	for_each_cache(ca, c, i)
1115 		if (fifo_used(&ca->free[RESERVE_BTREE]) < reserve) {
1116 			if (op)
1117 				prepare_to_wait(&c->bucket_wait, &op->wait,
1118 						TASK_UNINTERRUPTIBLE);
1119 			ret = -EINTR;
1120 			break;
1121 		}
1122 
1123 	mutex_unlock(&c->bucket_lock);
1124 	return ret;
1125 }
1126 
1127 /* Garbage collection */
1128 
1129 uint8_t __bch_btree_mark_key(struct cache_set *c, int level, struct bkey *k)
1130 {
1131 	uint8_t stale = 0;
1132 	unsigned i;
1133 	struct bucket *g;
1134 
1135 	/*
1136 	 * ptr_invalid() can't return true for the keys that mark btree nodes as
1137 	 * freed, but since ptr_bad() returns true we'll never actually use them
1138 	 * for anything and thus we don't want mark their pointers here
1139 	 */
1140 	if (!bkey_cmp(k, &ZERO_KEY))
1141 		return stale;
1142 
1143 	for (i = 0; i < KEY_PTRS(k); i++) {
1144 		if (!ptr_available(c, k, i))
1145 			continue;
1146 
1147 		g = PTR_BUCKET(c, k, i);
1148 
1149 		if (gen_after(g->gc_gen, PTR_GEN(k, i)))
1150 			g->gc_gen = PTR_GEN(k, i);
1151 
1152 		if (ptr_stale(c, k, i)) {
1153 			stale = max(stale, ptr_stale(c, k, i));
1154 			continue;
1155 		}
1156 
1157 		cache_bug_on(GC_MARK(g) &&
1158 			     (GC_MARK(g) == GC_MARK_METADATA) != (level != 0),
1159 			     c, "inconsistent ptrs: mark = %llu, level = %i",
1160 			     GC_MARK(g), level);
1161 
1162 		if (level)
1163 			SET_GC_MARK(g, GC_MARK_METADATA);
1164 		else if (KEY_DIRTY(k))
1165 			SET_GC_MARK(g, GC_MARK_DIRTY);
1166 
1167 		/* guard against overflow */
1168 		SET_GC_SECTORS_USED(g, min_t(unsigned,
1169 					     GC_SECTORS_USED(g) + KEY_SIZE(k),
1170 					     (1 << 14) - 1));
1171 
1172 		BUG_ON(!GC_SECTORS_USED(g));
1173 	}
1174 
1175 	return stale;
1176 }
1177 
1178 #define btree_mark_key(b, k)	__bch_btree_mark_key(b->c, b->level, k)
1179 
1180 static bool btree_gc_mark_node(struct btree *b, struct gc_stat *gc)
1181 {
1182 	uint8_t stale = 0;
1183 	unsigned keys = 0, good_keys = 0;
1184 	struct bkey *k;
1185 	struct btree_iter iter;
1186 	struct bset_tree *t;
1187 
1188 	gc->nodes++;
1189 
1190 	for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid) {
1191 		stale = max(stale, btree_mark_key(b, k));
1192 		keys++;
1193 
1194 		if (bch_ptr_bad(&b->keys, k))
1195 			continue;
1196 
1197 		gc->key_bytes += bkey_u64s(k);
1198 		gc->nkeys++;
1199 		good_keys++;
1200 
1201 		gc->data += KEY_SIZE(k);
1202 	}
1203 
1204 	for (t = b->keys.set; t <= &b->keys.set[b->keys.nsets]; t++)
1205 		btree_bug_on(t->size &&
1206 			     bset_written(&b->keys, t) &&
1207 			     bkey_cmp(&b->key, &t->end) < 0,
1208 			     b, "found short btree key in gc");
1209 
1210 	if (b->c->gc_always_rewrite)
1211 		return true;
1212 
1213 	if (stale > 10)
1214 		return true;
1215 
1216 	if ((keys - good_keys) * 2 > keys)
1217 		return true;
1218 
1219 	return false;
1220 }
1221 
1222 #define GC_MERGE_NODES	4U
1223 
1224 struct gc_merge_info {
1225 	struct btree	*b;
1226 	unsigned	keys;
1227 };
1228 
1229 static int bch_btree_insert_node(struct btree *, struct btree_op *,
1230 				 struct keylist *, atomic_t *, struct bkey *);
1231 
1232 static int btree_gc_coalesce(struct btree *b, struct btree_op *op,
1233 			     struct keylist *keylist, struct gc_stat *gc,
1234 			     struct gc_merge_info *r)
1235 {
1236 	unsigned i, nodes = 0, keys = 0, blocks;
1237 	struct btree *new_nodes[GC_MERGE_NODES];
1238 	struct closure cl;
1239 	struct bkey *k;
1240 
1241 	memset(new_nodes, 0, sizeof(new_nodes));
1242 	closure_init_stack(&cl);
1243 
1244 	while (nodes < GC_MERGE_NODES && !IS_ERR_OR_NULL(r[nodes].b))
1245 		keys += r[nodes++].keys;
1246 
1247 	blocks = btree_default_blocks(b->c) * 2 / 3;
1248 
1249 	if (nodes < 2 ||
1250 	    __set_blocks(b->keys.set[0].data, keys,
1251 			 block_bytes(b->c)) > blocks * (nodes - 1))
1252 		return 0;
1253 
1254 	for (i = 0; i < nodes; i++) {
1255 		new_nodes[i] = btree_node_alloc_replacement(r[i].b, false);
1256 		if (IS_ERR_OR_NULL(new_nodes[i]))
1257 			goto out_nocoalesce;
1258 	}
1259 
1260 	for (i = nodes - 1; i > 0; --i) {
1261 		struct bset *n1 = btree_bset_first(new_nodes[i]);
1262 		struct bset *n2 = btree_bset_first(new_nodes[i - 1]);
1263 		struct bkey *k, *last = NULL;
1264 
1265 		keys = 0;
1266 
1267 		if (i > 1) {
1268 			for (k = n2->start;
1269 			     k < bset_bkey_last(n2);
1270 			     k = bkey_next(k)) {
1271 				if (__set_blocks(n1, n1->keys + keys +
1272 						 bkey_u64s(k),
1273 						 block_bytes(b->c)) > blocks)
1274 					break;
1275 
1276 				last = k;
1277 				keys += bkey_u64s(k);
1278 			}
1279 		} else {
1280 			/*
1281 			 * Last node we're not getting rid of - we're getting
1282 			 * rid of the node at r[0]. Have to try and fit all of
1283 			 * the remaining keys into this node; we can't ensure
1284 			 * they will always fit due to rounding and variable
1285 			 * length keys (shouldn't be possible in practice,
1286 			 * though)
1287 			 */
1288 			if (__set_blocks(n1, n1->keys + n2->keys,
1289 					 block_bytes(b->c)) >
1290 			    btree_blocks(new_nodes[i]))
1291 				goto out_nocoalesce;
1292 
1293 			keys = n2->keys;
1294 			/* Take the key of the node we're getting rid of */
1295 			last = &r->b->key;
1296 		}
1297 
1298 		BUG_ON(__set_blocks(n1, n1->keys + keys, block_bytes(b->c)) >
1299 		       btree_blocks(new_nodes[i]));
1300 
1301 		if (last)
1302 			bkey_copy_key(&new_nodes[i]->key, last);
1303 
1304 		memcpy(bset_bkey_last(n1),
1305 		       n2->start,
1306 		       (void *) bset_bkey_idx(n2, keys) - (void *) n2->start);
1307 
1308 		n1->keys += keys;
1309 		r[i].keys = n1->keys;
1310 
1311 		memmove(n2->start,
1312 			bset_bkey_idx(n2, keys),
1313 			(void *) bset_bkey_last(n2) -
1314 			(void *) bset_bkey_idx(n2, keys));
1315 
1316 		n2->keys -= keys;
1317 
1318 		if (__bch_keylist_realloc(keylist,
1319 					  bkey_u64s(&new_nodes[i]->key)))
1320 			goto out_nocoalesce;
1321 
1322 		bch_btree_node_write(new_nodes[i], &cl);
1323 		bch_keylist_add(keylist, &new_nodes[i]->key);
1324 	}
1325 
1326 	for (i = 0; i < nodes; i++) {
1327 		if (__bch_keylist_realloc(keylist, bkey_u64s(&r[i].b->key)))
1328 			goto out_nocoalesce;
1329 
1330 		make_btree_freeing_key(r[i].b, keylist->top);
1331 		bch_keylist_push(keylist);
1332 	}
1333 
1334 	/* We emptied out this node */
1335 	BUG_ON(btree_bset_first(new_nodes[0])->keys);
1336 	btree_node_free(new_nodes[0]);
1337 	rw_unlock(true, new_nodes[0]);
1338 
1339 	closure_sync(&cl);
1340 
1341 	for (i = 0; i < nodes; i++) {
1342 		btree_node_free(r[i].b);
1343 		rw_unlock(true, r[i].b);
1344 
1345 		r[i].b = new_nodes[i];
1346 	}
1347 
1348 	bch_btree_insert_node(b, op, keylist, NULL, NULL);
1349 	BUG_ON(!bch_keylist_empty(keylist));
1350 
1351 	memmove(r, r + 1, sizeof(r[0]) * (nodes - 1));
1352 	r[nodes - 1].b = ERR_PTR(-EINTR);
1353 
1354 	trace_bcache_btree_gc_coalesce(nodes);
1355 	gc->nodes--;
1356 
1357 	/* Invalidated our iterator */
1358 	return -EINTR;
1359 
1360 out_nocoalesce:
1361 	closure_sync(&cl);
1362 
1363 	while ((k = bch_keylist_pop(keylist)))
1364 		if (!bkey_cmp(k, &ZERO_KEY))
1365 			atomic_dec(&b->c->prio_blocked);
1366 
1367 	for (i = 0; i < nodes; i++)
1368 		if (!IS_ERR_OR_NULL(new_nodes[i])) {
1369 			btree_node_free(new_nodes[i]);
1370 			rw_unlock(true, new_nodes[i]);
1371 		}
1372 	return 0;
1373 }
1374 
1375 static unsigned btree_gc_count_keys(struct btree *b)
1376 {
1377 	struct bkey *k;
1378 	struct btree_iter iter;
1379 	unsigned ret = 0;
1380 
1381 	for_each_key_filter(&b->keys, k, &iter, bch_ptr_bad)
1382 		ret += bkey_u64s(k);
1383 
1384 	return ret;
1385 }
1386 
1387 static int btree_gc_recurse(struct btree *b, struct btree_op *op,
1388 			    struct closure *writes, struct gc_stat *gc)
1389 {
1390 	unsigned i;
1391 	int ret = 0;
1392 	bool should_rewrite;
1393 	struct btree *n;
1394 	struct bkey *k;
1395 	struct keylist keys;
1396 	struct btree_iter iter;
1397 	struct gc_merge_info r[GC_MERGE_NODES];
1398 	struct gc_merge_info *last = r + GC_MERGE_NODES - 1;
1399 
1400 	bch_keylist_init(&keys);
1401 	bch_btree_iter_init(&b->keys, &iter, &b->c->gc_done);
1402 
1403 	for (i = 0; i < GC_MERGE_NODES; i++)
1404 		r[i].b = ERR_PTR(-EINTR);
1405 
1406 	while (1) {
1407 		k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad);
1408 		if (k) {
1409 			r->b = bch_btree_node_get(b->c, k, b->level - 1, true);
1410 			if (IS_ERR(r->b)) {
1411 				ret = PTR_ERR(r->b);
1412 				break;
1413 			}
1414 
1415 			r->keys = btree_gc_count_keys(r->b);
1416 
1417 			ret = btree_gc_coalesce(b, op, &keys, gc, r);
1418 			if (ret)
1419 				break;
1420 		}
1421 
1422 		if (!last->b)
1423 			break;
1424 
1425 		if (!IS_ERR(last->b)) {
1426 			should_rewrite = btree_gc_mark_node(last->b, gc);
1427 			if (should_rewrite &&
1428 			    !btree_check_reserve(b, NULL)) {
1429 				n = btree_node_alloc_replacement(last->b,
1430 								 false);
1431 
1432 				if (!IS_ERR_OR_NULL(n)) {
1433 					bch_btree_node_write_sync(n);
1434 					bch_keylist_add(&keys, &n->key);
1435 
1436 					make_btree_freeing_key(last->b,
1437 							       keys.top);
1438 					bch_keylist_push(&keys);
1439 
1440 					btree_node_free(last->b);
1441 
1442 					bch_btree_insert_node(b, op, &keys,
1443 							      NULL, NULL);
1444 					BUG_ON(!bch_keylist_empty(&keys));
1445 
1446 					rw_unlock(true, last->b);
1447 					last->b = n;
1448 
1449 					/* Invalidated our iterator */
1450 					ret = -EINTR;
1451 					break;
1452 				}
1453 			}
1454 
1455 			if (last->b->level) {
1456 				ret = btree_gc_recurse(last->b, op, writes, gc);
1457 				if (ret)
1458 					break;
1459 			}
1460 
1461 			bkey_copy_key(&b->c->gc_done, &last->b->key);
1462 
1463 			/*
1464 			 * Must flush leaf nodes before gc ends, since replace
1465 			 * operations aren't journalled
1466 			 */
1467 			if (btree_node_dirty(last->b))
1468 				bch_btree_node_write(last->b, writes);
1469 			rw_unlock(true, last->b);
1470 		}
1471 
1472 		memmove(r + 1, r, sizeof(r[0]) * (GC_MERGE_NODES - 1));
1473 		r->b = NULL;
1474 
1475 		if (need_resched()) {
1476 			ret = -EAGAIN;
1477 			break;
1478 		}
1479 	}
1480 
1481 	for (i = 0; i < GC_MERGE_NODES; i++)
1482 		if (!IS_ERR_OR_NULL(r[i].b)) {
1483 			if (btree_node_dirty(r[i].b))
1484 				bch_btree_node_write(r[i].b, writes);
1485 			rw_unlock(true, r[i].b);
1486 		}
1487 
1488 	bch_keylist_free(&keys);
1489 
1490 	return ret;
1491 }
1492 
1493 static int bch_btree_gc_root(struct btree *b, struct btree_op *op,
1494 			     struct closure *writes, struct gc_stat *gc)
1495 {
1496 	struct btree *n = NULL;
1497 	int ret = 0;
1498 	bool should_rewrite;
1499 
1500 	should_rewrite = btree_gc_mark_node(b, gc);
1501 	if (should_rewrite) {
1502 		n = btree_node_alloc_replacement(b, false);
1503 
1504 		if (!IS_ERR_OR_NULL(n)) {
1505 			bch_btree_node_write_sync(n);
1506 			bch_btree_set_root(n);
1507 			btree_node_free(b);
1508 			rw_unlock(true, n);
1509 
1510 			return -EINTR;
1511 		}
1512 	}
1513 
1514 	if (b->level) {
1515 		ret = btree_gc_recurse(b, op, writes, gc);
1516 		if (ret)
1517 			return ret;
1518 	}
1519 
1520 	bkey_copy_key(&b->c->gc_done, &b->key);
1521 
1522 	return ret;
1523 }
1524 
1525 static void btree_gc_start(struct cache_set *c)
1526 {
1527 	struct cache *ca;
1528 	struct bucket *b;
1529 	unsigned i;
1530 
1531 	if (!c->gc_mark_valid)
1532 		return;
1533 
1534 	mutex_lock(&c->bucket_lock);
1535 
1536 	c->gc_mark_valid = 0;
1537 	c->gc_done = ZERO_KEY;
1538 
1539 	for_each_cache(ca, c, i)
1540 		for_each_bucket(b, ca) {
1541 			b->gc_gen = b->gen;
1542 			if (!atomic_read(&b->pin)) {
1543 				SET_GC_MARK(b, GC_MARK_RECLAIMABLE);
1544 				SET_GC_SECTORS_USED(b, 0);
1545 			}
1546 		}
1547 
1548 	mutex_unlock(&c->bucket_lock);
1549 }
1550 
1551 size_t bch_btree_gc_finish(struct cache_set *c)
1552 {
1553 	size_t available = 0;
1554 	struct bucket *b;
1555 	struct cache *ca;
1556 	unsigned i;
1557 
1558 	mutex_lock(&c->bucket_lock);
1559 
1560 	set_gc_sectors(c);
1561 	c->gc_mark_valid = 1;
1562 	c->need_gc	= 0;
1563 
1564 	if (c->root)
1565 		for (i = 0; i < KEY_PTRS(&c->root->key); i++)
1566 			SET_GC_MARK(PTR_BUCKET(c, &c->root->key, i),
1567 				    GC_MARK_METADATA);
1568 
1569 	for (i = 0; i < KEY_PTRS(&c->uuid_bucket); i++)
1570 		SET_GC_MARK(PTR_BUCKET(c, &c->uuid_bucket, i),
1571 			    GC_MARK_METADATA);
1572 
1573 	/* don't reclaim buckets to which writeback keys point */
1574 	rcu_read_lock();
1575 	for (i = 0; i < c->nr_uuids; i++) {
1576 		struct bcache_device *d = c->devices[i];
1577 		struct cached_dev *dc;
1578 		struct keybuf_key *w, *n;
1579 		unsigned j;
1580 
1581 		if (!d || UUID_FLASH_ONLY(&c->uuids[i]))
1582 			continue;
1583 		dc = container_of(d, struct cached_dev, disk);
1584 
1585 		spin_lock(&dc->writeback_keys.lock);
1586 		rbtree_postorder_for_each_entry_safe(w, n,
1587 					&dc->writeback_keys.keys, node)
1588 			for (j = 0; j < KEY_PTRS(&w->key); j++)
1589 				SET_GC_MARK(PTR_BUCKET(c, &w->key, j),
1590 					    GC_MARK_DIRTY);
1591 		spin_unlock(&dc->writeback_keys.lock);
1592 	}
1593 	rcu_read_unlock();
1594 
1595 	for_each_cache(ca, c, i) {
1596 		uint64_t *i;
1597 
1598 		ca->invalidate_needs_gc = 0;
1599 
1600 		for (i = ca->sb.d; i < ca->sb.d + ca->sb.keys; i++)
1601 			SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA);
1602 
1603 		for (i = ca->prio_buckets;
1604 		     i < ca->prio_buckets + prio_buckets(ca) * 2; i++)
1605 			SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA);
1606 
1607 		for_each_bucket(b, ca) {
1608 			b->last_gc	= b->gc_gen;
1609 			c->need_gc	= max(c->need_gc, bucket_gc_gen(b));
1610 
1611 			if (!atomic_read(&b->pin) &&
1612 			    GC_MARK(b) == GC_MARK_RECLAIMABLE) {
1613 				available++;
1614 				if (!GC_SECTORS_USED(b))
1615 					bch_bucket_add_unused(ca, b);
1616 			}
1617 		}
1618 	}
1619 
1620 	mutex_unlock(&c->bucket_lock);
1621 	return available;
1622 }
1623 
1624 static void bch_btree_gc(struct cache_set *c)
1625 {
1626 	int ret;
1627 	unsigned long available;
1628 	struct gc_stat stats;
1629 	struct closure writes;
1630 	struct btree_op op;
1631 	uint64_t start_time = local_clock();
1632 
1633 	trace_bcache_gc_start(c);
1634 
1635 	memset(&stats, 0, sizeof(struct gc_stat));
1636 	closure_init_stack(&writes);
1637 	bch_btree_op_init(&op, SHRT_MAX);
1638 
1639 	btree_gc_start(c);
1640 
1641 	do {
1642 		ret = btree_root(gc_root, c, &op, &writes, &stats);
1643 		closure_sync(&writes);
1644 
1645 		if (ret && ret != -EAGAIN)
1646 			pr_warn("gc failed!");
1647 	} while (ret);
1648 
1649 	available = bch_btree_gc_finish(c);
1650 	wake_up_allocators(c);
1651 
1652 	bch_time_stats_update(&c->btree_gc_time, start_time);
1653 
1654 	stats.key_bytes *= sizeof(uint64_t);
1655 	stats.data	<<= 9;
1656 	stats.in_use	= (c->nbuckets - available) * 100 / c->nbuckets;
1657 	memcpy(&c->gc_stats, &stats, sizeof(struct gc_stat));
1658 
1659 	trace_bcache_gc_end(c);
1660 
1661 	bch_moving_gc(c);
1662 }
1663 
1664 static int bch_gc_thread(void *arg)
1665 {
1666 	struct cache_set *c = arg;
1667 	struct cache *ca;
1668 	unsigned i;
1669 
1670 	while (1) {
1671 again:
1672 		bch_btree_gc(c);
1673 
1674 		set_current_state(TASK_INTERRUPTIBLE);
1675 		if (kthread_should_stop())
1676 			break;
1677 
1678 		mutex_lock(&c->bucket_lock);
1679 
1680 		for_each_cache(ca, c, i)
1681 			if (ca->invalidate_needs_gc) {
1682 				mutex_unlock(&c->bucket_lock);
1683 				set_current_state(TASK_RUNNING);
1684 				goto again;
1685 			}
1686 
1687 		mutex_unlock(&c->bucket_lock);
1688 
1689 		try_to_freeze();
1690 		schedule();
1691 	}
1692 
1693 	return 0;
1694 }
1695 
1696 int bch_gc_thread_start(struct cache_set *c)
1697 {
1698 	c->gc_thread = kthread_create(bch_gc_thread, c, "bcache_gc");
1699 	if (IS_ERR(c->gc_thread))
1700 		return PTR_ERR(c->gc_thread);
1701 
1702 	set_task_state(c->gc_thread, TASK_INTERRUPTIBLE);
1703 	return 0;
1704 }
1705 
1706 /* Initial partial gc */
1707 
1708 static int bch_btree_check_recurse(struct btree *b, struct btree_op *op,
1709 				   unsigned long **seen)
1710 {
1711 	int ret = 0;
1712 	unsigned i;
1713 	struct bkey *k, *p = NULL;
1714 	struct bucket *g;
1715 	struct btree_iter iter;
1716 
1717 	for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid) {
1718 		for (i = 0; i < KEY_PTRS(k); i++) {
1719 			if (!ptr_available(b->c, k, i))
1720 				continue;
1721 
1722 			g = PTR_BUCKET(b->c, k, i);
1723 
1724 			if (!__test_and_set_bit(PTR_BUCKET_NR(b->c, k, i),
1725 						seen[PTR_DEV(k, i)]) ||
1726 			    !ptr_stale(b->c, k, i)) {
1727 				g->gen = PTR_GEN(k, i);
1728 
1729 				if (b->level)
1730 					g->prio = BTREE_PRIO;
1731 				else if (g->prio == BTREE_PRIO)
1732 					g->prio = INITIAL_PRIO;
1733 			}
1734 		}
1735 
1736 		btree_mark_key(b, k);
1737 	}
1738 
1739 	if (b->level) {
1740 		bch_btree_iter_init(&b->keys, &iter, NULL);
1741 
1742 		do {
1743 			k = bch_btree_iter_next_filter(&iter, &b->keys,
1744 						       bch_ptr_bad);
1745 			if (k)
1746 				btree_node_prefetch(b->c, k, b->level - 1);
1747 
1748 			if (p)
1749 				ret = btree(check_recurse, p, b, op, seen);
1750 
1751 			p = k;
1752 		} while (p && !ret);
1753 	}
1754 
1755 	return 0;
1756 }
1757 
1758 int bch_btree_check(struct cache_set *c)
1759 {
1760 	int ret = -ENOMEM;
1761 	unsigned i;
1762 	unsigned long *seen[MAX_CACHES_PER_SET];
1763 	struct btree_op op;
1764 
1765 	memset(seen, 0, sizeof(seen));
1766 	bch_btree_op_init(&op, SHRT_MAX);
1767 
1768 	for (i = 0; c->cache[i]; i++) {
1769 		size_t n = DIV_ROUND_UP(c->cache[i]->sb.nbuckets, 8);
1770 		seen[i] = kmalloc(n, GFP_KERNEL);
1771 		if (!seen[i])
1772 			goto err;
1773 
1774 		/* Disables the seen array until prio_read() uses it too */
1775 		memset(seen[i], 0xFF, n);
1776 	}
1777 
1778 	ret = btree_root(check_recurse, c, &op, seen);
1779 err:
1780 	for (i = 0; i < MAX_CACHES_PER_SET; i++)
1781 		kfree(seen[i]);
1782 	return ret;
1783 }
1784 
1785 /* Btree insertion */
1786 
1787 static bool btree_insert_key(struct btree *b, struct bkey *k,
1788 			     struct bkey *replace_key)
1789 {
1790 	unsigned status;
1791 
1792 	BUG_ON(bkey_cmp(k, &b->key) > 0);
1793 
1794 	status = bch_btree_insert_key(&b->keys, k, replace_key);
1795 	if (status != BTREE_INSERT_STATUS_NO_INSERT) {
1796 		bch_check_keys(&b->keys, "%u for %s", status,
1797 			       replace_key ? "replace" : "insert");
1798 
1799 		trace_bcache_btree_insert_key(b, k, replace_key != NULL,
1800 					      status);
1801 		return true;
1802 	} else
1803 		return false;
1804 }
1805 
1806 static size_t insert_u64s_remaining(struct btree *b)
1807 {
1808 	ssize_t ret = bch_btree_keys_u64s_remaining(&b->keys);
1809 
1810 	/*
1811 	 * Might land in the middle of an existing extent and have to split it
1812 	 */
1813 	if (b->keys.ops->is_extents)
1814 		ret -= KEY_MAX_U64S;
1815 
1816 	return max(ret, 0L);
1817 }
1818 
1819 static bool bch_btree_insert_keys(struct btree *b, struct btree_op *op,
1820 				  struct keylist *insert_keys,
1821 				  struct bkey *replace_key)
1822 {
1823 	bool ret = false;
1824 	int oldsize = bch_count_data(&b->keys);
1825 
1826 	while (!bch_keylist_empty(insert_keys)) {
1827 		struct bkey *k = insert_keys->keys;
1828 
1829 		if (bkey_u64s(k) > insert_u64s_remaining(b))
1830 			break;
1831 
1832 		if (bkey_cmp(k, &b->key) <= 0) {
1833 			if (!b->level)
1834 				bkey_put(b->c, k);
1835 
1836 			ret |= btree_insert_key(b, k, replace_key);
1837 			bch_keylist_pop_front(insert_keys);
1838 		} else if (bkey_cmp(&START_KEY(k), &b->key) < 0) {
1839 			BKEY_PADDED(key) temp;
1840 			bkey_copy(&temp.key, insert_keys->keys);
1841 
1842 			bch_cut_back(&b->key, &temp.key);
1843 			bch_cut_front(&b->key, insert_keys->keys);
1844 
1845 			ret |= btree_insert_key(b, &temp.key, replace_key);
1846 			break;
1847 		} else {
1848 			break;
1849 		}
1850 	}
1851 
1852 	if (!ret)
1853 		op->insert_collision = true;
1854 
1855 	BUG_ON(!bch_keylist_empty(insert_keys) && b->level);
1856 
1857 	BUG_ON(bch_count_data(&b->keys) < oldsize);
1858 	return ret;
1859 }
1860 
1861 static int btree_split(struct btree *b, struct btree_op *op,
1862 		       struct keylist *insert_keys,
1863 		       struct bkey *replace_key)
1864 {
1865 	bool split;
1866 	struct btree *n1, *n2 = NULL, *n3 = NULL;
1867 	uint64_t start_time = local_clock();
1868 	struct closure cl;
1869 	struct keylist parent_keys;
1870 
1871 	closure_init_stack(&cl);
1872 	bch_keylist_init(&parent_keys);
1873 
1874 	if (!b->level &&
1875 	    btree_check_reserve(b, op))
1876 		return -EINTR;
1877 
1878 	n1 = btree_node_alloc_replacement(b, true);
1879 	if (IS_ERR(n1))
1880 		goto err;
1881 
1882 	split = set_blocks(btree_bset_first(n1),
1883 			   block_bytes(n1->c)) > (btree_blocks(b) * 4) / 5;
1884 
1885 	if (split) {
1886 		unsigned keys = 0;
1887 
1888 		trace_bcache_btree_node_split(b, btree_bset_first(n1)->keys);
1889 
1890 		n2 = bch_btree_node_alloc(b->c, b->level, true);
1891 		if (IS_ERR(n2))
1892 			goto err_free1;
1893 
1894 		if (!b->parent) {
1895 			n3 = bch_btree_node_alloc(b->c, b->level + 1, true);
1896 			if (IS_ERR(n3))
1897 				goto err_free2;
1898 		}
1899 
1900 		bch_btree_insert_keys(n1, op, insert_keys, replace_key);
1901 
1902 		/*
1903 		 * Has to be a linear search because we don't have an auxiliary
1904 		 * search tree yet
1905 		 */
1906 
1907 		while (keys < (btree_bset_first(n1)->keys * 3) / 5)
1908 			keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1),
1909 							keys));
1910 
1911 		bkey_copy_key(&n1->key,
1912 			      bset_bkey_idx(btree_bset_first(n1), keys));
1913 		keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1), keys));
1914 
1915 		btree_bset_first(n2)->keys = btree_bset_first(n1)->keys - keys;
1916 		btree_bset_first(n1)->keys = keys;
1917 
1918 		memcpy(btree_bset_first(n2)->start,
1919 		       bset_bkey_last(btree_bset_first(n1)),
1920 		       btree_bset_first(n2)->keys * sizeof(uint64_t));
1921 
1922 		bkey_copy_key(&n2->key, &b->key);
1923 
1924 		bch_keylist_add(&parent_keys, &n2->key);
1925 		bch_btree_node_write(n2, &cl);
1926 		rw_unlock(true, n2);
1927 	} else {
1928 		trace_bcache_btree_node_compact(b, btree_bset_first(n1)->keys);
1929 
1930 		bch_btree_insert_keys(n1, op, insert_keys, replace_key);
1931 	}
1932 
1933 	bch_keylist_add(&parent_keys, &n1->key);
1934 	bch_btree_node_write(n1, &cl);
1935 
1936 	if (n3) {
1937 		/* Depth increases, make a new root */
1938 		bkey_copy_key(&n3->key, &MAX_KEY);
1939 		bch_btree_insert_keys(n3, op, &parent_keys, NULL);
1940 		bch_btree_node_write(n3, &cl);
1941 
1942 		closure_sync(&cl);
1943 		bch_btree_set_root(n3);
1944 		rw_unlock(true, n3);
1945 
1946 		btree_node_free(b);
1947 	} else if (!b->parent) {
1948 		/* Root filled up but didn't need to be split */
1949 		closure_sync(&cl);
1950 		bch_btree_set_root(n1);
1951 
1952 		btree_node_free(b);
1953 	} else {
1954 		/* Split a non root node */
1955 		closure_sync(&cl);
1956 		make_btree_freeing_key(b, parent_keys.top);
1957 		bch_keylist_push(&parent_keys);
1958 
1959 		btree_node_free(b);
1960 
1961 		bch_btree_insert_node(b->parent, op, &parent_keys, NULL, NULL);
1962 		BUG_ON(!bch_keylist_empty(&parent_keys));
1963 	}
1964 
1965 	rw_unlock(true, n1);
1966 
1967 	bch_time_stats_update(&b->c->btree_split_time, start_time);
1968 
1969 	return 0;
1970 err_free2:
1971 	bkey_put(b->c, &n2->key);
1972 	btree_node_free(n2);
1973 	rw_unlock(true, n2);
1974 err_free1:
1975 	bkey_put(b->c, &n1->key);
1976 	btree_node_free(n1);
1977 	rw_unlock(true, n1);
1978 err:
1979 	WARN(1, "bcache: btree split failed");
1980 
1981 	if (n3 == ERR_PTR(-EAGAIN) ||
1982 	    n2 == ERR_PTR(-EAGAIN) ||
1983 	    n1 == ERR_PTR(-EAGAIN))
1984 		return -EAGAIN;
1985 
1986 	return -ENOMEM;
1987 }
1988 
1989 static int bch_btree_insert_node(struct btree *b, struct btree_op *op,
1990 				 struct keylist *insert_keys,
1991 				 atomic_t *journal_ref,
1992 				 struct bkey *replace_key)
1993 {
1994 	BUG_ON(b->level && replace_key);
1995 
1996 	if (bch_keylist_nkeys(insert_keys) > insert_u64s_remaining(b)) {
1997 		if (current->bio_list) {
1998 			op->lock = b->c->root->level + 1;
1999 			return -EAGAIN;
2000 		} else if (op->lock <= b->c->root->level) {
2001 			op->lock = b->c->root->level + 1;
2002 			return -EINTR;
2003 		} else {
2004 			/* Invalidated all iterators */
2005 			int ret = btree_split(b, op, insert_keys, replace_key);
2006 
2007 			return bch_keylist_empty(insert_keys) ?
2008 				0 : ret ?: -EINTR;
2009 		}
2010 	} else {
2011 		BUG_ON(write_block(b) != btree_bset_last(b));
2012 
2013 		if (bch_btree_insert_keys(b, op, insert_keys, replace_key)) {
2014 			if (!b->level)
2015 				bch_btree_leaf_dirty(b, journal_ref);
2016 			else
2017 				bch_btree_node_write_sync(b);
2018 		}
2019 
2020 		return 0;
2021 	}
2022 }
2023 
2024 int bch_btree_insert_check_key(struct btree *b, struct btree_op *op,
2025 			       struct bkey *check_key)
2026 {
2027 	int ret = -EINTR;
2028 	uint64_t btree_ptr = b->key.ptr[0];
2029 	unsigned long seq = b->seq;
2030 	struct keylist insert;
2031 	bool upgrade = op->lock == -1;
2032 
2033 	bch_keylist_init(&insert);
2034 
2035 	if (upgrade) {
2036 		rw_unlock(false, b);
2037 		rw_lock(true, b, b->level);
2038 
2039 		if (b->key.ptr[0] != btree_ptr ||
2040 		    b->seq != seq + 1)
2041 			goto out;
2042 	}
2043 
2044 	SET_KEY_PTRS(check_key, 1);
2045 	get_random_bytes(&check_key->ptr[0], sizeof(uint64_t));
2046 
2047 	SET_PTR_DEV(check_key, 0, PTR_CHECK_DEV);
2048 
2049 	bch_keylist_add(&insert, check_key);
2050 
2051 	ret = bch_btree_insert_node(b, op, &insert, NULL, NULL);
2052 
2053 	BUG_ON(!ret && !bch_keylist_empty(&insert));
2054 out:
2055 	if (upgrade)
2056 		downgrade_write(&b->lock);
2057 	return ret;
2058 }
2059 
2060 struct btree_insert_op {
2061 	struct btree_op	op;
2062 	struct keylist	*keys;
2063 	atomic_t	*journal_ref;
2064 	struct bkey	*replace_key;
2065 };
2066 
2067 static int btree_insert_fn(struct btree_op *b_op, struct btree *b)
2068 {
2069 	struct btree_insert_op *op = container_of(b_op,
2070 					struct btree_insert_op, op);
2071 
2072 	int ret = bch_btree_insert_node(b, &op->op, op->keys,
2073 					op->journal_ref, op->replace_key);
2074 	if (ret && !bch_keylist_empty(op->keys))
2075 		return ret;
2076 	else
2077 		return MAP_DONE;
2078 }
2079 
2080 int bch_btree_insert(struct cache_set *c, struct keylist *keys,
2081 		     atomic_t *journal_ref, struct bkey *replace_key)
2082 {
2083 	struct btree_insert_op op;
2084 	int ret = 0;
2085 
2086 	BUG_ON(current->bio_list);
2087 	BUG_ON(bch_keylist_empty(keys));
2088 
2089 	bch_btree_op_init(&op.op, 0);
2090 	op.keys		= keys;
2091 	op.journal_ref	= journal_ref;
2092 	op.replace_key	= replace_key;
2093 
2094 	while (!ret && !bch_keylist_empty(keys)) {
2095 		op.op.lock = 0;
2096 		ret = bch_btree_map_leaf_nodes(&op.op, c,
2097 					       &START_KEY(keys->keys),
2098 					       btree_insert_fn);
2099 	}
2100 
2101 	if (ret) {
2102 		struct bkey *k;
2103 
2104 		pr_err("error %i", ret);
2105 
2106 		while ((k = bch_keylist_pop(keys)))
2107 			bkey_put(c, k);
2108 	} else if (op.op.insert_collision)
2109 		ret = -ESRCH;
2110 
2111 	return ret;
2112 }
2113 
2114 void bch_btree_set_root(struct btree *b)
2115 {
2116 	unsigned i;
2117 	struct closure cl;
2118 
2119 	closure_init_stack(&cl);
2120 
2121 	trace_bcache_btree_set_root(b);
2122 
2123 	BUG_ON(!b->written);
2124 
2125 	for (i = 0; i < KEY_PTRS(&b->key); i++)
2126 		BUG_ON(PTR_BUCKET(b->c, &b->key, i)->prio != BTREE_PRIO);
2127 
2128 	mutex_lock(&b->c->bucket_lock);
2129 	list_del_init(&b->list);
2130 	mutex_unlock(&b->c->bucket_lock);
2131 
2132 	b->c->root = b;
2133 
2134 	bch_journal_meta(b->c, &cl);
2135 	closure_sync(&cl);
2136 }
2137 
2138 /* Map across nodes or keys */
2139 
2140 static int bch_btree_map_nodes_recurse(struct btree *b, struct btree_op *op,
2141 				       struct bkey *from,
2142 				       btree_map_nodes_fn *fn, int flags)
2143 {
2144 	int ret = MAP_CONTINUE;
2145 
2146 	if (b->level) {
2147 		struct bkey *k;
2148 		struct btree_iter iter;
2149 
2150 		bch_btree_iter_init(&b->keys, &iter, from);
2151 
2152 		while ((k = bch_btree_iter_next_filter(&iter, &b->keys,
2153 						       bch_ptr_bad))) {
2154 			ret = btree(map_nodes_recurse, k, b,
2155 				    op, from, fn, flags);
2156 			from = NULL;
2157 
2158 			if (ret != MAP_CONTINUE)
2159 				return ret;
2160 		}
2161 	}
2162 
2163 	if (!b->level || flags == MAP_ALL_NODES)
2164 		ret = fn(op, b);
2165 
2166 	return ret;
2167 }
2168 
2169 int __bch_btree_map_nodes(struct btree_op *op, struct cache_set *c,
2170 			  struct bkey *from, btree_map_nodes_fn *fn, int flags)
2171 {
2172 	return btree_root(map_nodes_recurse, c, op, from, fn, flags);
2173 }
2174 
2175 static int bch_btree_map_keys_recurse(struct btree *b, struct btree_op *op,
2176 				      struct bkey *from, btree_map_keys_fn *fn,
2177 				      int flags)
2178 {
2179 	int ret = MAP_CONTINUE;
2180 	struct bkey *k;
2181 	struct btree_iter iter;
2182 
2183 	bch_btree_iter_init(&b->keys, &iter, from);
2184 
2185 	while ((k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad))) {
2186 		ret = !b->level
2187 			? fn(op, b, k)
2188 			: btree(map_keys_recurse, k, b, op, from, fn, flags);
2189 		from = NULL;
2190 
2191 		if (ret != MAP_CONTINUE)
2192 			return ret;
2193 	}
2194 
2195 	if (!b->level && (flags & MAP_END_KEY))
2196 		ret = fn(op, b, &KEY(KEY_INODE(&b->key),
2197 				     KEY_OFFSET(&b->key), 0));
2198 
2199 	return ret;
2200 }
2201 
2202 int bch_btree_map_keys(struct btree_op *op, struct cache_set *c,
2203 		       struct bkey *from, btree_map_keys_fn *fn, int flags)
2204 {
2205 	return btree_root(map_keys_recurse, c, op, from, fn, flags);
2206 }
2207 
2208 /* Keybuf code */
2209 
2210 static inline int keybuf_cmp(struct keybuf_key *l, struct keybuf_key *r)
2211 {
2212 	/* Overlapping keys compare equal */
2213 	if (bkey_cmp(&l->key, &START_KEY(&r->key)) <= 0)
2214 		return -1;
2215 	if (bkey_cmp(&START_KEY(&l->key), &r->key) >= 0)
2216 		return 1;
2217 	return 0;
2218 }
2219 
2220 static inline int keybuf_nonoverlapping_cmp(struct keybuf_key *l,
2221 					    struct keybuf_key *r)
2222 {
2223 	return clamp_t(int64_t, bkey_cmp(&l->key, &r->key), -1, 1);
2224 }
2225 
2226 struct refill {
2227 	struct btree_op	op;
2228 	unsigned	nr_found;
2229 	struct keybuf	*buf;
2230 	struct bkey	*end;
2231 	keybuf_pred_fn	*pred;
2232 };
2233 
2234 static int refill_keybuf_fn(struct btree_op *op, struct btree *b,
2235 			    struct bkey *k)
2236 {
2237 	struct refill *refill = container_of(op, struct refill, op);
2238 	struct keybuf *buf = refill->buf;
2239 	int ret = MAP_CONTINUE;
2240 
2241 	if (bkey_cmp(k, refill->end) >= 0) {
2242 		ret = MAP_DONE;
2243 		goto out;
2244 	}
2245 
2246 	if (!KEY_SIZE(k)) /* end key */
2247 		goto out;
2248 
2249 	if (refill->pred(buf, k)) {
2250 		struct keybuf_key *w;
2251 
2252 		spin_lock(&buf->lock);
2253 
2254 		w = array_alloc(&buf->freelist);
2255 		if (!w) {
2256 			spin_unlock(&buf->lock);
2257 			return MAP_DONE;
2258 		}
2259 
2260 		w->private = NULL;
2261 		bkey_copy(&w->key, k);
2262 
2263 		if (RB_INSERT(&buf->keys, w, node, keybuf_cmp))
2264 			array_free(&buf->freelist, w);
2265 		else
2266 			refill->nr_found++;
2267 
2268 		if (array_freelist_empty(&buf->freelist))
2269 			ret = MAP_DONE;
2270 
2271 		spin_unlock(&buf->lock);
2272 	}
2273 out:
2274 	buf->last_scanned = *k;
2275 	return ret;
2276 }
2277 
2278 void bch_refill_keybuf(struct cache_set *c, struct keybuf *buf,
2279 		       struct bkey *end, keybuf_pred_fn *pred)
2280 {
2281 	struct bkey start = buf->last_scanned;
2282 	struct refill refill;
2283 
2284 	cond_resched();
2285 
2286 	bch_btree_op_init(&refill.op, -1);
2287 	refill.nr_found	= 0;
2288 	refill.buf	= buf;
2289 	refill.end	= end;
2290 	refill.pred	= pred;
2291 
2292 	bch_btree_map_keys(&refill.op, c, &buf->last_scanned,
2293 			   refill_keybuf_fn, MAP_END_KEY);
2294 
2295 	trace_bcache_keyscan(refill.nr_found,
2296 			     KEY_INODE(&start), KEY_OFFSET(&start),
2297 			     KEY_INODE(&buf->last_scanned),
2298 			     KEY_OFFSET(&buf->last_scanned));
2299 
2300 	spin_lock(&buf->lock);
2301 
2302 	if (!RB_EMPTY_ROOT(&buf->keys)) {
2303 		struct keybuf_key *w;
2304 		w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2305 		buf->start	= START_KEY(&w->key);
2306 
2307 		w = RB_LAST(&buf->keys, struct keybuf_key, node);
2308 		buf->end	= w->key;
2309 	} else {
2310 		buf->start	= MAX_KEY;
2311 		buf->end	= MAX_KEY;
2312 	}
2313 
2314 	spin_unlock(&buf->lock);
2315 }
2316 
2317 static void __bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2318 {
2319 	rb_erase(&w->node, &buf->keys);
2320 	array_free(&buf->freelist, w);
2321 }
2322 
2323 void bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2324 {
2325 	spin_lock(&buf->lock);
2326 	__bch_keybuf_del(buf, w);
2327 	spin_unlock(&buf->lock);
2328 }
2329 
2330 bool bch_keybuf_check_overlapping(struct keybuf *buf, struct bkey *start,
2331 				  struct bkey *end)
2332 {
2333 	bool ret = false;
2334 	struct keybuf_key *p, *w, s;
2335 	s.key = *start;
2336 
2337 	if (bkey_cmp(end, &buf->start) <= 0 ||
2338 	    bkey_cmp(start, &buf->end) >= 0)
2339 		return false;
2340 
2341 	spin_lock(&buf->lock);
2342 	w = RB_GREATER(&buf->keys, s, node, keybuf_nonoverlapping_cmp);
2343 
2344 	while (w && bkey_cmp(&START_KEY(&w->key), end) < 0) {
2345 		p = w;
2346 		w = RB_NEXT(w, node);
2347 
2348 		if (p->private)
2349 			ret = true;
2350 		else
2351 			__bch_keybuf_del(buf, p);
2352 	}
2353 
2354 	spin_unlock(&buf->lock);
2355 	return ret;
2356 }
2357 
2358 struct keybuf_key *bch_keybuf_next(struct keybuf *buf)
2359 {
2360 	struct keybuf_key *w;
2361 	spin_lock(&buf->lock);
2362 
2363 	w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2364 
2365 	while (w && w->private)
2366 		w = RB_NEXT(w, node);
2367 
2368 	if (w)
2369 		w->private = ERR_PTR(-EINTR);
2370 
2371 	spin_unlock(&buf->lock);
2372 	return w;
2373 }
2374 
2375 struct keybuf_key *bch_keybuf_next_rescan(struct cache_set *c,
2376 					  struct keybuf *buf,
2377 					  struct bkey *end,
2378 					  keybuf_pred_fn *pred)
2379 {
2380 	struct keybuf_key *ret;
2381 
2382 	while (1) {
2383 		ret = bch_keybuf_next(buf);
2384 		if (ret)
2385 			break;
2386 
2387 		if (bkey_cmp(&buf->last_scanned, end) >= 0) {
2388 			pr_debug("scan finished");
2389 			break;
2390 		}
2391 
2392 		bch_refill_keybuf(c, buf, end, pred);
2393 	}
2394 
2395 	return ret;
2396 }
2397 
2398 void bch_keybuf_init(struct keybuf *buf)
2399 {
2400 	buf->last_scanned	= MAX_KEY;
2401 	buf->keys		= RB_ROOT;
2402 
2403 	spin_lock_init(&buf->lock);
2404 	array_allocator_init(&buf->freelist);
2405 }
2406 
2407 void bch_btree_exit(void)
2408 {
2409 	if (btree_io_wq)
2410 		destroy_workqueue(btree_io_wq);
2411 }
2412 
2413 int __init bch_btree_init(void)
2414 {
2415 	btree_io_wq = create_singlethread_workqueue("bch_btree_io");
2416 	if (!btree_io_wq)
2417 		return -ENOMEM;
2418 
2419 	return 0;
2420 }
2421