1 /* 2 * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com> 3 * 4 * Uses a block device as cache for other block devices; optimized for SSDs. 5 * All allocation is done in buckets, which should match the erase block size 6 * of the device. 7 * 8 * Buckets containing cached data are kept on a heap sorted by priority; 9 * bucket priority is increased on cache hit, and periodically all the buckets 10 * on the heap have their priority scaled down. This currently is just used as 11 * an LRU but in the future should allow for more intelligent heuristics. 12 * 13 * Buckets have an 8 bit counter; freeing is accomplished by incrementing the 14 * counter. Garbage collection is used to remove stale pointers. 15 * 16 * Indexing is done via a btree; nodes are not necessarily fully sorted, rather 17 * as keys are inserted we only sort the pages that have not yet been written. 18 * When garbage collection is run, we resort the entire node. 19 * 20 * All configuration is done via sysfs; see Documentation/bcache.txt. 21 */ 22 23 #include "bcache.h" 24 #include "btree.h" 25 #include "debug.h" 26 #include "extents.h" 27 28 #include <linux/slab.h> 29 #include <linux/bitops.h> 30 #include <linux/freezer.h> 31 #include <linux/hash.h> 32 #include <linux/kthread.h> 33 #include <linux/prefetch.h> 34 #include <linux/random.h> 35 #include <linux/rcupdate.h> 36 #include <trace/events/bcache.h> 37 38 /* 39 * Todo: 40 * register_bcache: Return errors out to userspace correctly 41 * 42 * Writeback: don't undirty key until after a cache flush 43 * 44 * Create an iterator for key pointers 45 * 46 * On btree write error, mark bucket such that it won't be freed from the cache 47 * 48 * Journalling: 49 * Check for bad keys in replay 50 * Propagate barriers 51 * Refcount journal entries in journal_replay 52 * 53 * Garbage collection: 54 * Finish incremental gc 55 * Gc should free old UUIDs, data for invalid UUIDs 56 * 57 * Provide a way to list backing device UUIDs we have data cached for, and 58 * probably how long it's been since we've seen them, and a way to invalidate 59 * dirty data for devices that will never be attached again 60 * 61 * Keep 1 min/5 min/15 min statistics of how busy a block device has been, so 62 * that based on that and how much dirty data we have we can keep writeback 63 * from being starved 64 * 65 * Add a tracepoint or somesuch to watch for writeback starvation 66 * 67 * When btree depth > 1 and splitting an interior node, we have to make sure 68 * alloc_bucket() cannot fail. This should be true but is not completely 69 * obvious. 70 * 71 * Plugging? 72 * 73 * If data write is less than hard sector size of ssd, round up offset in open 74 * bucket to the next whole sector 75 * 76 * Superblock needs to be fleshed out for multiple cache devices 77 * 78 * Add a sysfs tunable for the number of writeback IOs in flight 79 * 80 * Add a sysfs tunable for the number of open data buckets 81 * 82 * IO tracking: Can we track when one process is doing io on behalf of another? 83 * IO tracking: Don't use just an average, weigh more recent stuff higher 84 * 85 * Test module load/unload 86 */ 87 88 #define MAX_NEED_GC 64 89 #define MAX_SAVE_PRIO 72 90 91 #define PTR_DIRTY_BIT (((uint64_t) 1 << 36)) 92 93 #define PTR_HASH(c, k) \ 94 (((k)->ptr[0] >> c->bucket_bits) | PTR_GEN(k, 0)) 95 96 #define insert_lock(s, b) ((b)->level <= (s)->lock) 97 98 /* 99 * These macros are for recursing down the btree - they handle the details of 100 * locking and looking up nodes in the cache for you. They're best treated as 101 * mere syntax when reading code that uses them. 102 * 103 * op->lock determines whether we take a read or a write lock at a given depth. 104 * If you've got a read lock and find that you need a write lock (i.e. you're 105 * going to have to split), set op->lock and return -EINTR; btree_root() will 106 * call you again and you'll have the correct lock. 107 */ 108 109 /** 110 * btree - recurse down the btree on a specified key 111 * @fn: function to call, which will be passed the child node 112 * @key: key to recurse on 113 * @b: parent btree node 114 * @op: pointer to struct btree_op 115 */ 116 #define btree(fn, key, b, op, ...) \ 117 ({ \ 118 int _r, l = (b)->level - 1; \ 119 bool _w = l <= (op)->lock; \ 120 struct btree *_child = bch_btree_node_get((b)->c, op, key, l, \ 121 _w, b); \ 122 if (!IS_ERR(_child)) { \ 123 _r = bch_btree_ ## fn(_child, op, ##__VA_ARGS__); \ 124 rw_unlock(_w, _child); \ 125 } else \ 126 _r = PTR_ERR(_child); \ 127 _r; \ 128 }) 129 130 /** 131 * btree_root - call a function on the root of the btree 132 * @fn: function to call, which will be passed the child node 133 * @c: cache set 134 * @op: pointer to struct btree_op 135 */ 136 #define btree_root(fn, c, op, ...) \ 137 ({ \ 138 int _r = -EINTR; \ 139 do { \ 140 struct btree *_b = (c)->root; \ 141 bool _w = insert_lock(op, _b); \ 142 rw_lock(_w, _b, _b->level); \ 143 if (_b == (c)->root && \ 144 _w == insert_lock(op, _b)) { \ 145 _r = bch_btree_ ## fn(_b, op, ##__VA_ARGS__); \ 146 } \ 147 rw_unlock(_w, _b); \ 148 bch_cannibalize_unlock(c); \ 149 if (_r == -EINTR) \ 150 schedule(); \ 151 } while (_r == -EINTR); \ 152 \ 153 finish_wait(&(c)->btree_cache_wait, &(op)->wait); \ 154 _r; \ 155 }) 156 157 static inline struct bset *write_block(struct btree *b) 158 { 159 return ((void *) btree_bset_first(b)) + b->written * block_bytes(b->c); 160 } 161 162 static void bch_btree_init_next(struct btree *b) 163 { 164 /* If not a leaf node, always sort */ 165 if (b->level && b->keys.nsets) 166 bch_btree_sort(&b->keys, &b->c->sort); 167 else 168 bch_btree_sort_lazy(&b->keys, &b->c->sort); 169 170 if (b->written < btree_blocks(b)) 171 bch_bset_init_next(&b->keys, write_block(b), 172 bset_magic(&b->c->sb)); 173 174 } 175 176 /* Btree key manipulation */ 177 178 void bkey_put(struct cache_set *c, struct bkey *k) 179 { 180 unsigned i; 181 182 for (i = 0; i < KEY_PTRS(k); i++) 183 if (ptr_available(c, k, i)) 184 atomic_dec_bug(&PTR_BUCKET(c, k, i)->pin); 185 } 186 187 /* Btree IO */ 188 189 static uint64_t btree_csum_set(struct btree *b, struct bset *i) 190 { 191 uint64_t crc = b->key.ptr[0]; 192 void *data = (void *) i + 8, *end = bset_bkey_last(i); 193 194 crc = bch_crc64_update(crc, data, end - data); 195 return crc ^ 0xffffffffffffffffULL; 196 } 197 198 void bch_btree_node_read_done(struct btree *b) 199 { 200 const char *err = "bad btree header"; 201 struct bset *i = btree_bset_first(b); 202 struct btree_iter *iter; 203 204 iter = mempool_alloc(b->c->fill_iter, GFP_NOIO); 205 iter->size = b->c->sb.bucket_size / b->c->sb.block_size; 206 iter->used = 0; 207 208 #ifdef CONFIG_BCACHE_DEBUG 209 iter->b = &b->keys; 210 #endif 211 212 if (!i->seq) 213 goto err; 214 215 for (; 216 b->written < btree_blocks(b) && i->seq == b->keys.set[0].data->seq; 217 i = write_block(b)) { 218 err = "unsupported bset version"; 219 if (i->version > BCACHE_BSET_VERSION) 220 goto err; 221 222 err = "bad btree header"; 223 if (b->written + set_blocks(i, block_bytes(b->c)) > 224 btree_blocks(b)) 225 goto err; 226 227 err = "bad magic"; 228 if (i->magic != bset_magic(&b->c->sb)) 229 goto err; 230 231 err = "bad checksum"; 232 switch (i->version) { 233 case 0: 234 if (i->csum != csum_set(i)) 235 goto err; 236 break; 237 case BCACHE_BSET_VERSION: 238 if (i->csum != btree_csum_set(b, i)) 239 goto err; 240 break; 241 } 242 243 err = "empty set"; 244 if (i != b->keys.set[0].data && !i->keys) 245 goto err; 246 247 bch_btree_iter_push(iter, i->start, bset_bkey_last(i)); 248 249 b->written += set_blocks(i, block_bytes(b->c)); 250 } 251 252 err = "corrupted btree"; 253 for (i = write_block(b); 254 bset_sector_offset(&b->keys, i) < KEY_SIZE(&b->key); 255 i = ((void *) i) + block_bytes(b->c)) 256 if (i->seq == b->keys.set[0].data->seq) 257 goto err; 258 259 bch_btree_sort_and_fix_extents(&b->keys, iter, &b->c->sort); 260 261 i = b->keys.set[0].data; 262 err = "short btree key"; 263 if (b->keys.set[0].size && 264 bkey_cmp(&b->key, &b->keys.set[0].end) < 0) 265 goto err; 266 267 if (b->written < btree_blocks(b)) 268 bch_bset_init_next(&b->keys, write_block(b), 269 bset_magic(&b->c->sb)); 270 out: 271 mempool_free(iter, b->c->fill_iter); 272 return; 273 err: 274 set_btree_node_io_error(b); 275 bch_cache_set_error(b->c, "%s at bucket %zu, block %u, %u keys", 276 err, PTR_BUCKET_NR(b->c, &b->key, 0), 277 bset_block_offset(b, i), i->keys); 278 goto out; 279 } 280 281 static void btree_node_read_endio(struct bio *bio) 282 { 283 struct closure *cl = bio->bi_private; 284 closure_put(cl); 285 } 286 287 static void bch_btree_node_read(struct btree *b) 288 { 289 uint64_t start_time = local_clock(); 290 struct closure cl; 291 struct bio *bio; 292 293 trace_bcache_btree_read(b); 294 295 closure_init_stack(&cl); 296 297 bio = bch_bbio_alloc(b->c); 298 bio->bi_rw = REQ_META|READ_SYNC; 299 bio->bi_iter.bi_size = KEY_SIZE(&b->key) << 9; 300 bio->bi_end_io = btree_node_read_endio; 301 bio->bi_private = &cl; 302 303 bch_bio_map(bio, b->keys.set[0].data); 304 305 bch_submit_bbio(bio, b->c, &b->key, 0); 306 closure_sync(&cl); 307 308 if (bio->bi_error) 309 set_btree_node_io_error(b); 310 311 bch_bbio_free(bio, b->c); 312 313 if (btree_node_io_error(b)) 314 goto err; 315 316 bch_btree_node_read_done(b); 317 bch_time_stats_update(&b->c->btree_read_time, start_time); 318 319 return; 320 err: 321 bch_cache_set_error(b->c, "io error reading bucket %zu", 322 PTR_BUCKET_NR(b->c, &b->key, 0)); 323 } 324 325 static void btree_complete_write(struct btree *b, struct btree_write *w) 326 { 327 if (w->prio_blocked && 328 !atomic_sub_return(w->prio_blocked, &b->c->prio_blocked)) 329 wake_up_allocators(b->c); 330 331 if (w->journal) { 332 atomic_dec_bug(w->journal); 333 __closure_wake_up(&b->c->journal.wait); 334 } 335 336 w->prio_blocked = 0; 337 w->journal = NULL; 338 } 339 340 static void btree_node_write_unlock(struct closure *cl) 341 { 342 struct btree *b = container_of(cl, struct btree, io); 343 344 up(&b->io_mutex); 345 } 346 347 static void __btree_node_write_done(struct closure *cl) 348 { 349 struct btree *b = container_of(cl, struct btree, io); 350 struct btree_write *w = btree_prev_write(b); 351 352 bch_bbio_free(b->bio, b->c); 353 b->bio = NULL; 354 btree_complete_write(b, w); 355 356 if (btree_node_dirty(b)) 357 schedule_delayed_work(&b->work, 30 * HZ); 358 359 closure_return_with_destructor(cl, btree_node_write_unlock); 360 } 361 362 static void btree_node_write_done(struct closure *cl) 363 { 364 struct btree *b = container_of(cl, struct btree, io); 365 struct bio_vec *bv; 366 int n; 367 368 bio_for_each_segment_all(bv, b->bio, n) 369 __free_page(bv->bv_page); 370 371 __btree_node_write_done(cl); 372 } 373 374 static void btree_node_write_endio(struct bio *bio) 375 { 376 struct closure *cl = bio->bi_private; 377 struct btree *b = container_of(cl, struct btree, io); 378 379 if (bio->bi_error) 380 set_btree_node_io_error(b); 381 382 bch_bbio_count_io_errors(b->c, bio, bio->bi_error, "writing btree"); 383 closure_put(cl); 384 } 385 386 static void do_btree_node_write(struct btree *b) 387 { 388 struct closure *cl = &b->io; 389 struct bset *i = btree_bset_last(b); 390 BKEY_PADDED(key) k; 391 392 i->version = BCACHE_BSET_VERSION; 393 i->csum = btree_csum_set(b, i); 394 395 BUG_ON(b->bio); 396 b->bio = bch_bbio_alloc(b->c); 397 398 b->bio->bi_end_io = btree_node_write_endio; 399 b->bio->bi_private = cl; 400 b->bio->bi_rw = REQ_META|WRITE_SYNC|REQ_FUA; 401 b->bio->bi_iter.bi_size = roundup(set_bytes(i), block_bytes(b->c)); 402 bch_bio_map(b->bio, i); 403 404 /* 405 * If we're appending to a leaf node, we don't technically need FUA - 406 * this write just needs to be persisted before the next journal write, 407 * which will be marked FLUSH|FUA. 408 * 409 * Similarly if we're writing a new btree root - the pointer is going to 410 * be in the next journal entry. 411 * 412 * But if we're writing a new btree node (that isn't a root) or 413 * appending to a non leaf btree node, we need either FUA or a flush 414 * when we write the parent with the new pointer. FUA is cheaper than a 415 * flush, and writes appending to leaf nodes aren't blocking anything so 416 * just make all btree node writes FUA to keep things sane. 417 */ 418 419 bkey_copy(&k.key, &b->key); 420 SET_PTR_OFFSET(&k.key, 0, PTR_OFFSET(&k.key, 0) + 421 bset_sector_offset(&b->keys, i)); 422 423 if (!bio_alloc_pages(b->bio, __GFP_NOWARN|GFP_NOWAIT)) { 424 int j; 425 struct bio_vec *bv; 426 void *base = (void *) ((unsigned long) i & ~(PAGE_SIZE - 1)); 427 428 bio_for_each_segment_all(bv, b->bio, j) 429 memcpy(page_address(bv->bv_page), 430 base + j * PAGE_SIZE, PAGE_SIZE); 431 432 bch_submit_bbio(b->bio, b->c, &k.key, 0); 433 434 continue_at(cl, btree_node_write_done, NULL); 435 } else { 436 b->bio->bi_vcnt = 0; 437 bch_bio_map(b->bio, i); 438 439 bch_submit_bbio(b->bio, b->c, &k.key, 0); 440 441 closure_sync(cl); 442 continue_at_nobarrier(cl, __btree_node_write_done, NULL); 443 } 444 } 445 446 void __bch_btree_node_write(struct btree *b, struct closure *parent) 447 { 448 struct bset *i = btree_bset_last(b); 449 450 lockdep_assert_held(&b->write_lock); 451 452 trace_bcache_btree_write(b); 453 454 BUG_ON(current->bio_list); 455 BUG_ON(b->written >= btree_blocks(b)); 456 BUG_ON(b->written && !i->keys); 457 BUG_ON(btree_bset_first(b)->seq != i->seq); 458 bch_check_keys(&b->keys, "writing"); 459 460 cancel_delayed_work(&b->work); 461 462 /* If caller isn't waiting for write, parent refcount is cache set */ 463 down(&b->io_mutex); 464 closure_init(&b->io, parent ?: &b->c->cl); 465 466 clear_bit(BTREE_NODE_dirty, &b->flags); 467 change_bit(BTREE_NODE_write_idx, &b->flags); 468 469 do_btree_node_write(b); 470 471 atomic_long_add(set_blocks(i, block_bytes(b->c)) * b->c->sb.block_size, 472 &PTR_CACHE(b->c, &b->key, 0)->btree_sectors_written); 473 474 b->written += set_blocks(i, block_bytes(b->c)); 475 } 476 477 void bch_btree_node_write(struct btree *b, struct closure *parent) 478 { 479 unsigned nsets = b->keys.nsets; 480 481 lockdep_assert_held(&b->lock); 482 483 __bch_btree_node_write(b, parent); 484 485 /* 486 * do verify if there was more than one set initially (i.e. we did a 487 * sort) and we sorted down to a single set: 488 */ 489 if (nsets && !b->keys.nsets) 490 bch_btree_verify(b); 491 492 bch_btree_init_next(b); 493 } 494 495 static void bch_btree_node_write_sync(struct btree *b) 496 { 497 struct closure cl; 498 499 closure_init_stack(&cl); 500 501 mutex_lock(&b->write_lock); 502 bch_btree_node_write(b, &cl); 503 mutex_unlock(&b->write_lock); 504 505 closure_sync(&cl); 506 } 507 508 static void btree_node_write_work(struct work_struct *w) 509 { 510 struct btree *b = container_of(to_delayed_work(w), struct btree, work); 511 512 mutex_lock(&b->write_lock); 513 if (btree_node_dirty(b)) 514 __bch_btree_node_write(b, NULL); 515 mutex_unlock(&b->write_lock); 516 } 517 518 static void bch_btree_leaf_dirty(struct btree *b, atomic_t *journal_ref) 519 { 520 struct bset *i = btree_bset_last(b); 521 struct btree_write *w = btree_current_write(b); 522 523 lockdep_assert_held(&b->write_lock); 524 525 BUG_ON(!b->written); 526 BUG_ON(!i->keys); 527 528 if (!btree_node_dirty(b)) 529 schedule_delayed_work(&b->work, 30 * HZ); 530 531 set_btree_node_dirty(b); 532 533 if (journal_ref) { 534 if (w->journal && 535 journal_pin_cmp(b->c, w->journal, journal_ref)) { 536 atomic_dec_bug(w->journal); 537 w->journal = NULL; 538 } 539 540 if (!w->journal) { 541 w->journal = journal_ref; 542 atomic_inc(w->journal); 543 } 544 } 545 546 /* Force write if set is too big */ 547 if (set_bytes(i) > PAGE_SIZE - 48 && 548 !current->bio_list) 549 bch_btree_node_write(b, NULL); 550 } 551 552 /* 553 * Btree in memory cache - allocation/freeing 554 * mca -> memory cache 555 */ 556 557 #define mca_reserve(c) (((c->root && c->root->level) \ 558 ? c->root->level : 1) * 8 + 16) 559 #define mca_can_free(c) \ 560 max_t(int, 0, c->btree_cache_used - mca_reserve(c)) 561 562 static void mca_data_free(struct btree *b) 563 { 564 BUG_ON(b->io_mutex.count != 1); 565 566 bch_btree_keys_free(&b->keys); 567 568 b->c->btree_cache_used--; 569 list_move(&b->list, &b->c->btree_cache_freed); 570 } 571 572 static void mca_bucket_free(struct btree *b) 573 { 574 BUG_ON(btree_node_dirty(b)); 575 576 b->key.ptr[0] = 0; 577 hlist_del_init_rcu(&b->hash); 578 list_move(&b->list, &b->c->btree_cache_freeable); 579 } 580 581 static unsigned btree_order(struct bkey *k) 582 { 583 return ilog2(KEY_SIZE(k) / PAGE_SECTORS ?: 1); 584 } 585 586 static void mca_data_alloc(struct btree *b, struct bkey *k, gfp_t gfp) 587 { 588 if (!bch_btree_keys_alloc(&b->keys, 589 max_t(unsigned, 590 ilog2(b->c->btree_pages), 591 btree_order(k)), 592 gfp)) { 593 b->c->btree_cache_used++; 594 list_move(&b->list, &b->c->btree_cache); 595 } else { 596 list_move(&b->list, &b->c->btree_cache_freed); 597 } 598 } 599 600 static struct btree *mca_bucket_alloc(struct cache_set *c, 601 struct bkey *k, gfp_t gfp) 602 { 603 struct btree *b = kzalloc(sizeof(struct btree), gfp); 604 if (!b) 605 return NULL; 606 607 init_rwsem(&b->lock); 608 lockdep_set_novalidate_class(&b->lock); 609 mutex_init(&b->write_lock); 610 lockdep_set_novalidate_class(&b->write_lock); 611 INIT_LIST_HEAD(&b->list); 612 INIT_DELAYED_WORK(&b->work, btree_node_write_work); 613 b->c = c; 614 sema_init(&b->io_mutex, 1); 615 616 mca_data_alloc(b, k, gfp); 617 return b; 618 } 619 620 static int mca_reap(struct btree *b, unsigned min_order, bool flush) 621 { 622 struct closure cl; 623 624 closure_init_stack(&cl); 625 lockdep_assert_held(&b->c->bucket_lock); 626 627 if (!down_write_trylock(&b->lock)) 628 return -ENOMEM; 629 630 BUG_ON(btree_node_dirty(b) && !b->keys.set[0].data); 631 632 if (b->keys.page_order < min_order) 633 goto out_unlock; 634 635 if (!flush) { 636 if (btree_node_dirty(b)) 637 goto out_unlock; 638 639 if (down_trylock(&b->io_mutex)) 640 goto out_unlock; 641 up(&b->io_mutex); 642 } 643 644 mutex_lock(&b->write_lock); 645 if (btree_node_dirty(b)) 646 __bch_btree_node_write(b, &cl); 647 mutex_unlock(&b->write_lock); 648 649 closure_sync(&cl); 650 651 /* wait for any in flight btree write */ 652 down(&b->io_mutex); 653 up(&b->io_mutex); 654 655 return 0; 656 out_unlock: 657 rw_unlock(true, b); 658 return -ENOMEM; 659 } 660 661 static unsigned long bch_mca_scan(struct shrinker *shrink, 662 struct shrink_control *sc) 663 { 664 struct cache_set *c = container_of(shrink, struct cache_set, shrink); 665 struct btree *b, *t; 666 unsigned long i, nr = sc->nr_to_scan; 667 unsigned long freed = 0; 668 669 if (c->shrinker_disabled) 670 return SHRINK_STOP; 671 672 if (c->btree_cache_alloc_lock) 673 return SHRINK_STOP; 674 675 /* Return -1 if we can't do anything right now */ 676 if (sc->gfp_mask & __GFP_IO) 677 mutex_lock(&c->bucket_lock); 678 else if (!mutex_trylock(&c->bucket_lock)) 679 return -1; 680 681 /* 682 * It's _really_ critical that we don't free too many btree nodes - we 683 * have to always leave ourselves a reserve. The reserve is how we 684 * guarantee that allocating memory for a new btree node can always 685 * succeed, so that inserting keys into the btree can always succeed and 686 * IO can always make forward progress: 687 */ 688 nr /= c->btree_pages; 689 nr = min_t(unsigned long, nr, mca_can_free(c)); 690 691 i = 0; 692 list_for_each_entry_safe(b, t, &c->btree_cache_freeable, list) { 693 if (freed >= nr) 694 break; 695 696 if (++i > 3 && 697 !mca_reap(b, 0, false)) { 698 mca_data_free(b); 699 rw_unlock(true, b); 700 freed++; 701 } 702 } 703 704 for (i = 0; (nr--) && i < c->btree_cache_used; i++) { 705 if (list_empty(&c->btree_cache)) 706 goto out; 707 708 b = list_first_entry(&c->btree_cache, struct btree, list); 709 list_rotate_left(&c->btree_cache); 710 711 if (!b->accessed && 712 !mca_reap(b, 0, false)) { 713 mca_bucket_free(b); 714 mca_data_free(b); 715 rw_unlock(true, b); 716 freed++; 717 } else 718 b->accessed = 0; 719 } 720 out: 721 mutex_unlock(&c->bucket_lock); 722 return freed; 723 } 724 725 static unsigned long bch_mca_count(struct shrinker *shrink, 726 struct shrink_control *sc) 727 { 728 struct cache_set *c = container_of(shrink, struct cache_set, shrink); 729 730 if (c->shrinker_disabled) 731 return 0; 732 733 if (c->btree_cache_alloc_lock) 734 return 0; 735 736 return mca_can_free(c) * c->btree_pages; 737 } 738 739 void bch_btree_cache_free(struct cache_set *c) 740 { 741 struct btree *b; 742 struct closure cl; 743 closure_init_stack(&cl); 744 745 if (c->shrink.list.next) 746 unregister_shrinker(&c->shrink); 747 748 mutex_lock(&c->bucket_lock); 749 750 #ifdef CONFIG_BCACHE_DEBUG 751 if (c->verify_data) 752 list_move(&c->verify_data->list, &c->btree_cache); 753 754 free_pages((unsigned long) c->verify_ondisk, ilog2(bucket_pages(c))); 755 #endif 756 757 list_splice(&c->btree_cache_freeable, 758 &c->btree_cache); 759 760 while (!list_empty(&c->btree_cache)) { 761 b = list_first_entry(&c->btree_cache, struct btree, list); 762 763 if (btree_node_dirty(b)) 764 btree_complete_write(b, btree_current_write(b)); 765 clear_bit(BTREE_NODE_dirty, &b->flags); 766 767 mca_data_free(b); 768 } 769 770 while (!list_empty(&c->btree_cache_freed)) { 771 b = list_first_entry(&c->btree_cache_freed, 772 struct btree, list); 773 list_del(&b->list); 774 cancel_delayed_work_sync(&b->work); 775 kfree(b); 776 } 777 778 mutex_unlock(&c->bucket_lock); 779 } 780 781 int bch_btree_cache_alloc(struct cache_set *c) 782 { 783 unsigned i; 784 785 for (i = 0; i < mca_reserve(c); i++) 786 if (!mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL)) 787 return -ENOMEM; 788 789 list_splice_init(&c->btree_cache, 790 &c->btree_cache_freeable); 791 792 #ifdef CONFIG_BCACHE_DEBUG 793 mutex_init(&c->verify_lock); 794 795 c->verify_ondisk = (void *) 796 __get_free_pages(GFP_KERNEL, ilog2(bucket_pages(c))); 797 798 c->verify_data = mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL); 799 800 if (c->verify_data && 801 c->verify_data->keys.set->data) 802 list_del_init(&c->verify_data->list); 803 else 804 c->verify_data = NULL; 805 #endif 806 807 c->shrink.count_objects = bch_mca_count; 808 c->shrink.scan_objects = bch_mca_scan; 809 c->shrink.seeks = 4; 810 c->shrink.batch = c->btree_pages * 2; 811 register_shrinker(&c->shrink); 812 813 return 0; 814 } 815 816 /* Btree in memory cache - hash table */ 817 818 static struct hlist_head *mca_hash(struct cache_set *c, struct bkey *k) 819 { 820 return &c->bucket_hash[hash_32(PTR_HASH(c, k), BUCKET_HASH_BITS)]; 821 } 822 823 static struct btree *mca_find(struct cache_set *c, struct bkey *k) 824 { 825 struct btree *b; 826 827 rcu_read_lock(); 828 hlist_for_each_entry_rcu(b, mca_hash(c, k), hash) 829 if (PTR_HASH(c, &b->key) == PTR_HASH(c, k)) 830 goto out; 831 b = NULL; 832 out: 833 rcu_read_unlock(); 834 return b; 835 } 836 837 static int mca_cannibalize_lock(struct cache_set *c, struct btree_op *op) 838 { 839 struct task_struct *old; 840 841 old = cmpxchg(&c->btree_cache_alloc_lock, NULL, current); 842 if (old && old != current) { 843 if (op) 844 prepare_to_wait(&c->btree_cache_wait, &op->wait, 845 TASK_UNINTERRUPTIBLE); 846 return -EINTR; 847 } 848 849 return 0; 850 } 851 852 static struct btree *mca_cannibalize(struct cache_set *c, struct btree_op *op, 853 struct bkey *k) 854 { 855 struct btree *b; 856 857 trace_bcache_btree_cache_cannibalize(c); 858 859 if (mca_cannibalize_lock(c, op)) 860 return ERR_PTR(-EINTR); 861 862 list_for_each_entry_reverse(b, &c->btree_cache, list) 863 if (!mca_reap(b, btree_order(k), false)) 864 return b; 865 866 list_for_each_entry_reverse(b, &c->btree_cache, list) 867 if (!mca_reap(b, btree_order(k), true)) 868 return b; 869 870 WARN(1, "btree cache cannibalize failed\n"); 871 return ERR_PTR(-ENOMEM); 872 } 873 874 /* 875 * We can only have one thread cannibalizing other cached btree nodes at a time, 876 * or we'll deadlock. We use an open coded mutex to ensure that, which a 877 * cannibalize_bucket() will take. This means every time we unlock the root of 878 * the btree, we need to release this lock if we have it held. 879 */ 880 static void bch_cannibalize_unlock(struct cache_set *c) 881 { 882 if (c->btree_cache_alloc_lock == current) { 883 c->btree_cache_alloc_lock = NULL; 884 wake_up(&c->btree_cache_wait); 885 } 886 } 887 888 static struct btree *mca_alloc(struct cache_set *c, struct btree_op *op, 889 struct bkey *k, int level) 890 { 891 struct btree *b; 892 893 BUG_ON(current->bio_list); 894 895 lockdep_assert_held(&c->bucket_lock); 896 897 if (mca_find(c, k)) 898 return NULL; 899 900 /* btree_free() doesn't free memory; it sticks the node on the end of 901 * the list. Check if there's any freed nodes there: 902 */ 903 list_for_each_entry(b, &c->btree_cache_freeable, list) 904 if (!mca_reap(b, btree_order(k), false)) 905 goto out; 906 907 /* We never free struct btree itself, just the memory that holds the on 908 * disk node. Check the freed list before allocating a new one: 909 */ 910 list_for_each_entry(b, &c->btree_cache_freed, list) 911 if (!mca_reap(b, 0, false)) { 912 mca_data_alloc(b, k, __GFP_NOWARN|GFP_NOIO); 913 if (!b->keys.set[0].data) 914 goto err; 915 else 916 goto out; 917 } 918 919 b = mca_bucket_alloc(c, k, __GFP_NOWARN|GFP_NOIO); 920 if (!b) 921 goto err; 922 923 BUG_ON(!down_write_trylock(&b->lock)); 924 if (!b->keys.set->data) 925 goto err; 926 out: 927 BUG_ON(b->io_mutex.count != 1); 928 929 bkey_copy(&b->key, k); 930 list_move(&b->list, &c->btree_cache); 931 hlist_del_init_rcu(&b->hash); 932 hlist_add_head_rcu(&b->hash, mca_hash(c, k)); 933 934 lock_set_subclass(&b->lock.dep_map, level + 1, _THIS_IP_); 935 b->parent = (void *) ~0UL; 936 b->flags = 0; 937 b->written = 0; 938 b->level = level; 939 940 if (!b->level) 941 bch_btree_keys_init(&b->keys, &bch_extent_keys_ops, 942 &b->c->expensive_debug_checks); 943 else 944 bch_btree_keys_init(&b->keys, &bch_btree_keys_ops, 945 &b->c->expensive_debug_checks); 946 947 return b; 948 err: 949 if (b) 950 rw_unlock(true, b); 951 952 b = mca_cannibalize(c, op, k); 953 if (!IS_ERR(b)) 954 goto out; 955 956 return b; 957 } 958 959 /** 960 * bch_btree_node_get - find a btree node in the cache and lock it, reading it 961 * in from disk if necessary. 962 * 963 * If IO is necessary and running under generic_make_request, returns -EAGAIN. 964 * 965 * The btree node will have either a read or a write lock held, depending on 966 * level and op->lock. 967 */ 968 struct btree *bch_btree_node_get(struct cache_set *c, struct btree_op *op, 969 struct bkey *k, int level, bool write, 970 struct btree *parent) 971 { 972 int i = 0; 973 struct btree *b; 974 975 BUG_ON(level < 0); 976 retry: 977 b = mca_find(c, k); 978 979 if (!b) { 980 if (current->bio_list) 981 return ERR_PTR(-EAGAIN); 982 983 mutex_lock(&c->bucket_lock); 984 b = mca_alloc(c, op, k, level); 985 mutex_unlock(&c->bucket_lock); 986 987 if (!b) 988 goto retry; 989 if (IS_ERR(b)) 990 return b; 991 992 bch_btree_node_read(b); 993 994 if (!write) 995 downgrade_write(&b->lock); 996 } else { 997 rw_lock(write, b, level); 998 if (PTR_HASH(c, &b->key) != PTR_HASH(c, k)) { 999 rw_unlock(write, b); 1000 goto retry; 1001 } 1002 BUG_ON(b->level != level); 1003 } 1004 1005 b->parent = parent; 1006 b->accessed = 1; 1007 1008 for (; i <= b->keys.nsets && b->keys.set[i].size; i++) { 1009 prefetch(b->keys.set[i].tree); 1010 prefetch(b->keys.set[i].data); 1011 } 1012 1013 for (; i <= b->keys.nsets; i++) 1014 prefetch(b->keys.set[i].data); 1015 1016 if (btree_node_io_error(b)) { 1017 rw_unlock(write, b); 1018 return ERR_PTR(-EIO); 1019 } 1020 1021 BUG_ON(!b->written); 1022 1023 return b; 1024 } 1025 1026 static void btree_node_prefetch(struct btree *parent, struct bkey *k) 1027 { 1028 struct btree *b; 1029 1030 mutex_lock(&parent->c->bucket_lock); 1031 b = mca_alloc(parent->c, NULL, k, parent->level - 1); 1032 mutex_unlock(&parent->c->bucket_lock); 1033 1034 if (!IS_ERR_OR_NULL(b)) { 1035 b->parent = parent; 1036 bch_btree_node_read(b); 1037 rw_unlock(true, b); 1038 } 1039 } 1040 1041 /* Btree alloc */ 1042 1043 static void btree_node_free(struct btree *b) 1044 { 1045 trace_bcache_btree_node_free(b); 1046 1047 BUG_ON(b == b->c->root); 1048 1049 mutex_lock(&b->write_lock); 1050 1051 if (btree_node_dirty(b)) 1052 btree_complete_write(b, btree_current_write(b)); 1053 clear_bit(BTREE_NODE_dirty, &b->flags); 1054 1055 mutex_unlock(&b->write_lock); 1056 1057 cancel_delayed_work(&b->work); 1058 1059 mutex_lock(&b->c->bucket_lock); 1060 bch_bucket_free(b->c, &b->key); 1061 mca_bucket_free(b); 1062 mutex_unlock(&b->c->bucket_lock); 1063 } 1064 1065 struct btree *__bch_btree_node_alloc(struct cache_set *c, struct btree_op *op, 1066 int level, bool wait, 1067 struct btree *parent) 1068 { 1069 BKEY_PADDED(key) k; 1070 struct btree *b = ERR_PTR(-EAGAIN); 1071 1072 mutex_lock(&c->bucket_lock); 1073 retry: 1074 if (__bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, 1, wait)) 1075 goto err; 1076 1077 bkey_put(c, &k.key); 1078 SET_KEY_SIZE(&k.key, c->btree_pages * PAGE_SECTORS); 1079 1080 b = mca_alloc(c, op, &k.key, level); 1081 if (IS_ERR(b)) 1082 goto err_free; 1083 1084 if (!b) { 1085 cache_bug(c, 1086 "Tried to allocate bucket that was in btree cache"); 1087 goto retry; 1088 } 1089 1090 b->accessed = 1; 1091 b->parent = parent; 1092 bch_bset_init_next(&b->keys, b->keys.set->data, bset_magic(&b->c->sb)); 1093 1094 mutex_unlock(&c->bucket_lock); 1095 1096 trace_bcache_btree_node_alloc(b); 1097 return b; 1098 err_free: 1099 bch_bucket_free(c, &k.key); 1100 err: 1101 mutex_unlock(&c->bucket_lock); 1102 1103 trace_bcache_btree_node_alloc_fail(c); 1104 return b; 1105 } 1106 1107 static struct btree *bch_btree_node_alloc(struct cache_set *c, 1108 struct btree_op *op, int level, 1109 struct btree *parent) 1110 { 1111 return __bch_btree_node_alloc(c, op, level, op != NULL, parent); 1112 } 1113 1114 static struct btree *btree_node_alloc_replacement(struct btree *b, 1115 struct btree_op *op) 1116 { 1117 struct btree *n = bch_btree_node_alloc(b->c, op, b->level, b->parent); 1118 if (!IS_ERR_OR_NULL(n)) { 1119 mutex_lock(&n->write_lock); 1120 bch_btree_sort_into(&b->keys, &n->keys, &b->c->sort); 1121 bkey_copy_key(&n->key, &b->key); 1122 mutex_unlock(&n->write_lock); 1123 } 1124 1125 return n; 1126 } 1127 1128 static void make_btree_freeing_key(struct btree *b, struct bkey *k) 1129 { 1130 unsigned i; 1131 1132 mutex_lock(&b->c->bucket_lock); 1133 1134 atomic_inc(&b->c->prio_blocked); 1135 1136 bkey_copy(k, &b->key); 1137 bkey_copy_key(k, &ZERO_KEY); 1138 1139 for (i = 0; i < KEY_PTRS(k); i++) 1140 SET_PTR_GEN(k, i, 1141 bch_inc_gen(PTR_CACHE(b->c, &b->key, i), 1142 PTR_BUCKET(b->c, &b->key, i))); 1143 1144 mutex_unlock(&b->c->bucket_lock); 1145 } 1146 1147 static int btree_check_reserve(struct btree *b, struct btree_op *op) 1148 { 1149 struct cache_set *c = b->c; 1150 struct cache *ca; 1151 unsigned i, reserve = (c->root->level - b->level) * 2 + 1; 1152 1153 mutex_lock(&c->bucket_lock); 1154 1155 for_each_cache(ca, c, i) 1156 if (fifo_used(&ca->free[RESERVE_BTREE]) < reserve) { 1157 if (op) 1158 prepare_to_wait(&c->btree_cache_wait, &op->wait, 1159 TASK_UNINTERRUPTIBLE); 1160 mutex_unlock(&c->bucket_lock); 1161 return -EINTR; 1162 } 1163 1164 mutex_unlock(&c->bucket_lock); 1165 1166 return mca_cannibalize_lock(b->c, op); 1167 } 1168 1169 /* Garbage collection */ 1170 1171 static uint8_t __bch_btree_mark_key(struct cache_set *c, int level, 1172 struct bkey *k) 1173 { 1174 uint8_t stale = 0; 1175 unsigned i; 1176 struct bucket *g; 1177 1178 /* 1179 * ptr_invalid() can't return true for the keys that mark btree nodes as 1180 * freed, but since ptr_bad() returns true we'll never actually use them 1181 * for anything and thus we don't want mark their pointers here 1182 */ 1183 if (!bkey_cmp(k, &ZERO_KEY)) 1184 return stale; 1185 1186 for (i = 0; i < KEY_PTRS(k); i++) { 1187 if (!ptr_available(c, k, i)) 1188 continue; 1189 1190 g = PTR_BUCKET(c, k, i); 1191 1192 if (gen_after(g->last_gc, PTR_GEN(k, i))) 1193 g->last_gc = PTR_GEN(k, i); 1194 1195 if (ptr_stale(c, k, i)) { 1196 stale = max(stale, ptr_stale(c, k, i)); 1197 continue; 1198 } 1199 1200 cache_bug_on(GC_MARK(g) && 1201 (GC_MARK(g) == GC_MARK_METADATA) != (level != 0), 1202 c, "inconsistent ptrs: mark = %llu, level = %i", 1203 GC_MARK(g), level); 1204 1205 if (level) 1206 SET_GC_MARK(g, GC_MARK_METADATA); 1207 else if (KEY_DIRTY(k)) 1208 SET_GC_MARK(g, GC_MARK_DIRTY); 1209 else if (!GC_MARK(g)) 1210 SET_GC_MARK(g, GC_MARK_RECLAIMABLE); 1211 1212 /* guard against overflow */ 1213 SET_GC_SECTORS_USED(g, min_t(unsigned, 1214 GC_SECTORS_USED(g) + KEY_SIZE(k), 1215 MAX_GC_SECTORS_USED)); 1216 1217 BUG_ON(!GC_SECTORS_USED(g)); 1218 } 1219 1220 return stale; 1221 } 1222 1223 #define btree_mark_key(b, k) __bch_btree_mark_key(b->c, b->level, k) 1224 1225 void bch_initial_mark_key(struct cache_set *c, int level, struct bkey *k) 1226 { 1227 unsigned i; 1228 1229 for (i = 0; i < KEY_PTRS(k); i++) 1230 if (ptr_available(c, k, i) && 1231 !ptr_stale(c, k, i)) { 1232 struct bucket *b = PTR_BUCKET(c, k, i); 1233 1234 b->gen = PTR_GEN(k, i); 1235 1236 if (level && bkey_cmp(k, &ZERO_KEY)) 1237 b->prio = BTREE_PRIO; 1238 else if (!level && b->prio == BTREE_PRIO) 1239 b->prio = INITIAL_PRIO; 1240 } 1241 1242 __bch_btree_mark_key(c, level, k); 1243 } 1244 1245 static bool btree_gc_mark_node(struct btree *b, struct gc_stat *gc) 1246 { 1247 uint8_t stale = 0; 1248 unsigned keys = 0, good_keys = 0; 1249 struct bkey *k; 1250 struct btree_iter iter; 1251 struct bset_tree *t; 1252 1253 gc->nodes++; 1254 1255 for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid) { 1256 stale = max(stale, btree_mark_key(b, k)); 1257 keys++; 1258 1259 if (bch_ptr_bad(&b->keys, k)) 1260 continue; 1261 1262 gc->key_bytes += bkey_u64s(k); 1263 gc->nkeys++; 1264 good_keys++; 1265 1266 gc->data += KEY_SIZE(k); 1267 } 1268 1269 for (t = b->keys.set; t <= &b->keys.set[b->keys.nsets]; t++) 1270 btree_bug_on(t->size && 1271 bset_written(&b->keys, t) && 1272 bkey_cmp(&b->key, &t->end) < 0, 1273 b, "found short btree key in gc"); 1274 1275 if (b->c->gc_always_rewrite) 1276 return true; 1277 1278 if (stale > 10) 1279 return true; 1280 1281 if ((keys - good_keys) * 2 > keys) 1282 return true; 1283 1284 return false; 1285 } 1286 1287 #define GC_MERGE_NODES 4U 1288 1289 struct gc_merge_info { 1290 struct btree *b; 1291 unsigned keys; 1292 }; 1293 1294 static int bch_btree_insert_node(struct btree *, struct btree_op *, 1295 struct keylist *, atomic_t *, struct bkey *); 1296 1297 static int btree_gc_coalesce(struct btree *b, struct btree_op *op, 1298 struct gc_stat *gc, struct gc_merge_info *r) 1299 { 1300 unsigned i, nodes = 0, keys = 0, blocks; 1301 struct btree *new_nodes[GC_MERGE_NODES]; 1302 struct keylist keylist; 1303 struct closure cl; 1304 struct bkey *k; 1305 1306 bch_keylist_init(&keylist); 1307 1308 if (btree_check_reserve(b, NULL)) 1309 return 0; 1310 1311 memset(new_nodes, 0, sizeof(new_nodes)); 1312 closure_init_stack(&cl); 1313 1314 while (nodes < GC_MERGE_NODES && !IS_ERR_OR_NULL(r[nodes].b)) 1315 keys += r[nodes++].keys; 1316 1317 blocks = btree_default_blocks(b->c) * 2 / 3; 1318 1319 if (nodes < 2 || 1320 __set_blocks(b->keys.set[0].data, keys, 1321 block_bytes(b->c)) > blocks * (nodes - 1)) 1322 return 0; 1323 1324 for (i = 0; i < nodes; i++) { 1325 new_nodes[i] = btree_node_alloc_replacement(r[i].b, NULL); 1326 if (IS_ERR_OR_NULL(new_nodes[i])) 1327 goto out_nocoalesce; 1328 } 1329 1330 /* 1331 * We have to check the reserve here, after we've allocated our new 1332 * nodes, to make sure the insert below will succeed - we also check 1333 * before as an optimization to potentially avoid a bunch of expensive 1334 * allocs/sorts 1335 */ 1336 if (btree_check_reserve(b, NULL)) 1337 goto out_nocoalesce; 1338 1339 for (i = 0; i < nodes; i++) 1340 mutex_lock(&new_nodes[i]->write_lock); 1341 1342 for (i = nodes - 1; i > 0; --i) { 1343 struct bset *n1 = btree_bset_first(new_nodes[i]); 1344 struct bset *n2 = btree_bset_first(new_nodes[i - 1]); 1345 struct bkey *k, *last = NULL; 1346 1347 keys = 0; 1348 1349 if (i > 1) { 1350 for (k = n2->start; 1351 k < bset_bkey_last(n2); 1352 k = bkey_next(k)) { 1353 if (__set_blocks(n1, n1->keys + keys + 1354 bkey_u64s(k), 1355 block_bytes(b->c)) > blocks) 1356 break; 1357 1358 last = k; 1359 keys += bkey_u64s(k); 1360 } 1361 } else { 1362 /* 1363 * Last node we're not getting rid of - we're getting 1364 * rid of the node at r[0]. Have to try and fit all of 1365 * the remaining keys into this node; we can't ensure 1366 * they will always fit due to rounding and variable 1367 * length keys (shouldn't be possible in practice, 1368 * though) 1369 */ 1370 if (__set_blocks(n1, n1->keys + n2->keys, 1371 block_bytes(b->c)) > 1372 btree_blocks(new_nodes[i])) 1373 goto out_nocoalesce; 1374 1375 keys = n2->keys; 1376 /* Take the key of the node we're getting rid of */ 1377 last = &r->b->key; 1378 } 1379 1380 BUG_ON(__set_blocks(n1, n1->keys + keys, block_bytes(b->c)) > 1381 btree_blocks(new_nodes[i])); 1382 1383 if (last) 1384 bkey_copy_key(&new_nodes[i]->key, last); 1385 1386 memcpy(bset_bkey_last(n1), 1387 n2->start, 1388 (void *) bset_bkey_idx(n2, keys) - (void *) n2->start); 1389 1390 n1->keys += keys; 1391 r[i].keys = n1->keys; 1392 1393 memmove(n2->start, 1394 bset_bkey_idx(n2, keys), 1395 (void *) bset_bkey_last(n2) - 1396 (void *) bset_bkey_idx(n2, keys)); 1397 1398 n2->keys -= keys; 1399 1400 if (__bch_keylist_realloc(&keylist, 1401 bkey_u64s(&new_nodes[i]->key))) 1402 goto out_nocoalesce; 1403 1404 bch_btree_node_write(new_nodes[i], &cl); 1405 bch_keylist_add(&keylist, &new_nodes[i]->key); 1406 } 1407 1408 for (i = 0; i < nodes; i++) 1409 mutex_unlock(&new_nodes[i]->write_lock); 1410 1411 closure_sync(&cl); 1412 1413 /* We emptied out this node */ 1414 BUG_ON(btree_bset_first(new_nodes[0])->keys); 1415 btree_node_free(new_nodes[0]); 1416 rw_unlock(true, new_nodes[0]); 1417 new_nodes[0] = NULL; 1418 1419 for (i = 0; i < nodes; i++) { 1420 if (__bch_keylist_realloc(&keylist, bkey_u64s(&r[i].b->key))) 1421 goto out_nocoalesce; 1422 1423 make_btree_freeing_key(r[i].b, keylist.top); 1424 bch_keylist_push(&keylist); 1425 } 1426 1427 bch_btree_insert_node(b, op, &keylist, NULL, NULL); 1428 BUG_ON(!bch_keylist_empty(&keylist)); 1429 1430 for (i = 0; i < nodes; i++) { 1431 btree_node_free(r[i].b); 1432 rw_unlock(true, r[i].b); 1433 1434 r[i].b = new_nodes[i]; 1435 } 1436 1437 memmove(r, r + 1, sizeof(r[0]) * (nodes - 1)); 1438 r[nodes - 1].b = ERR_PTR(-EINTR); 1439 1440 trace_bcache_btree_gc_coalesce(nodes); 1441 gc->nodes--; 1442 1443 bch_keylist_free(&keylist); 1444 1445 /* Invalidated our iterator */ 1446 return -EINTR; 1447 1448 out_nocoalesce: 1449 closure_sync(&cl); 1450 bch_keylist_free(&keylist); 1451 1452 while ((k = bch_keylist_pop(&keylist))) 1453 if (!bkey_cmp(k, &ZERO_KEY)) 1454 atomic_dec(&b->c->prio_blocked); 1455 1456 for (i = 0; i < nodes; i++) 1457 if (!IS_ERR_OR_NULL(new_nodes[i])) { 1458 btree_node_free(new_nodes[i]); 1459 rw_unlock(true, new_nodes[i]); 1460 } 1461 return 0; 1462 } 1463 1464 static int btree_gc_rewrite_node(struct btree *b, struct btree_op *op, 1465 struct btree *replace) 1466 { 1467 struct keylist keys; 1468 struct btree *n; 1469 1470 if (btree_check_reserve(b, NULL)) 1471 return 0; 1472 1473 n = btree_node_alloc_replacement(replace, NULL); 1474 1475 /* recheck reserve after allocating replacement node */ 1476 if (btree_check_reserve(b, NULL)) { 1477 btree_node_free(n); 1478 rw_unlock(true, n); 1479 return 0; 1480 } 1481 1482 bch_btree_node_write_sync(n); 1483 1484 bch_keylist_init(&keys); 1485 bch_keylist_add(&keys, &n->key); 1486 1487 make_btree_freeing_key(replace, keys.top); 1488 bch_keylist_push(&keys); 1489 1490 bch_btree_insert_node(b, op, &keys, NULL, NULL); 1491 BUG_ON(!bch_keylist_empty(&keys)); 1492 1493 btree_node_free(replace); 1494 rw_unlock(true, n); 1495 1496 /* Invalidated our iterator */ 1497 return -EINTR; 1498 } 1499 1500 static unsigned btree_gc_count_keys(struct btree *b) 1501 { 1502 struct bkey *k; 1503 struct btree_iter iter; 1504 unsigned ret = 0; 1505 1506 for_each_key_filter(&b->keys, k, &iter, bch_ptr_bad) 1507 ret += bkey_u64s(k); 1508 1509 return ret; 1510 } 1511 1512 static int btree_gc_recurse(struct btree *b, struct btree_op *op, 1513 struct closure *writes, struct gc_stat *gc) 1514 { 1515 int ret = 0; 1516 bool should_rewrite; 1517 struct bkey *k; 1518 struct btree_iter iter; 1519 struct gc_merge_info r[GC_MERGE_NODES]; 1520 struct gc_merge_info *i, *last = r + ARRAY_SIZE(r) - 1; 1521 1522 bch_btree_iter_init(&b->keys, &iter, &b->c->gc_done); 1523 1524 for (i = r; i < r + ARRAY_SIZE(r); i++) 1525 i->b = ERR_PTR(-EINTR); 1526 1527 while (1) { 1528 k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad); 1529 if (k) { 1530 r->b = bch_btree_node_get(b->c, op, k, b->level - 1, 1531 true, b); 1532 if (IS_ERR(r->b)) { 1533 ret = PTR_ERR(r->b); 1534 break; 1535 } 1536 1537 r->keys = btree_gc_count_keys(r->b); 1538 1539 ret = btree_gc_coalesce(b, op, gc, r); 1540 if (ret) 1541 break; 1542 } 1543 1544 if (!last->b) 1545 break; 1546 1547 if (!IS_ERR(last->b)) { 1548 should_rewrite = btree_gc_mark_node(last->b, gc); 1549 if (should_rewrite) { 1550 ret = btree_gc_rewrite_node(b, op, last->b); 1551 if (ret) 1552 break; 1553 } 1554 1555 if (last->b->level) { 1556 ret = btree_gc_recurse(last->b, op, writes, gc); 1557 if (ret) 1558 break; 1559 } 1560 1561 bkey_copy_key(&b->c->gc_done, &last->b->key); 1562 1563 /* 1564 * Must flush leaf nodes before gc ends, since replace 1565 * operations aren't journalled 1566 */ 1567 mutex_lock(&last->b->write_lock); 1568 if (btree_node_dirty(last->b)) 1569 bch_btree_node_write(last->b, writes); 1570 mutex_unlock(&last->b->write_lock); 1571 rw_unlock(true, last->b); 1572 } 1573 1574 memmove(r + 1, r, sizeof(r[0]) * (GC_MERGE_NODES - 1)); 1575 r->b = NULL; 1576 1577 if (need_resched()) { 1578 ret = -EAGAIN; 1579 break; 1580 } 1581 } 1582 1583 for (i = r; i < r + ARRAY_SIZE(r); i++) 1584 if (!IS_ERR_OR_NULL(i->b)) { 1585 mutex_lock(&i->b->write_lock); 1586 if (btree_node_dirty(i->b)) 1587 bch_btree_node_write(i->b, writes); 1588 mutex_unlock(&i->b->write_lock); 1589 rw_unlock(true, i->b); 1590 } 1591 1592 return ret; 1593 } 1594 1595 static int bch_btree_gc_root(struct btree *b, struct btree_op *op, 1596 struct closure *writes, struct gc_stat *gc) 1597 { 1598 struct btree *n = NULL; 1599 int ret = 0; 1600 bool should_rewrite; 1601 1602 should_rewrite = btree_gc_mark_node(b, gc); 1603 if (should_rewrite) { 1604 n = btree_node_alloc_replacement(b, NULL); 1605 1606 if (!IS_ERR_OR_NULL(n)) { 1607 bch_btree_node_write_sync(n); 1608 1609 bch_btree_set_root(n); 1610 btree_node_free(b); 1611 rw_unlock(true, n); 1612 1613 return -EINTR; 1614 } 1615 } 1616 1617 __bch_btree_mark_key(b->c, b->level + 1, &b->key); 1618 1619 if (b->level) { 1620 ret = btree_gc_recurse(b, op, writes, gc); 1621 if (ret) 1622 return ret; 1623 } 1624 1625 bkey_copy_key(&b->c->gc_done, &b->key); 1626 1627 return ret; 1628 } 1629 1630 static void btree_gc_start(struct cache_set *c) 1631 { 1632 struct cache *ca; 1633 struct bucket *b; 1634 unsigned i; 1635 1636 if (!c->gc_mark_valid) 1637 return; 1638 1639 mutex_lock(&c->bucket_lock); 1640 1641 c->gc_mark_valid = 0; 1642 c->gc_done = ZERO_KEY; 1643 1644 for_each_cache(ca, c, i) 1645 for_each_bucket(b, ca) { 1646 b->last_gc = b->gen; 1647 if (!atomic_read(&b->pin)) { 1648 SET_GC_MARK(b, 0); 1649 SET_GC_SECTORS_USED(b, 0); 1650 } 1651 } 1652 1653 mutex_unlock(&c->bucket_lock); 1654 } 1655 1656 static size_t bch_btree_gc_finish(struct cache_set *c) 1657 { 1658 size_t available = 0; 1659 struct bucket *b; 1660 struct cache *ca; 1661 unsigned i; 1662 1663 mutex_lock(&c->bucket_lock); 1664 1665 set_gc_sectors(c); 1666 c->gc_mark_valid = 1; 1667 c->need_gc = 0; 1668 1669 for (i = 0; i < KEY_PTRS(&c->uuid_bucket); i++) 1670 SET_GC_MARK(PTR_BUCKET(c, &c->uuid_bucket, i), 1671 GC_MARK_METADATA); 1672 1673 /* don't reclaim buckets to which writeback keys point */ 1674 rcu_read_lock(); 1675 for (i = 0; i < c->nr_uuids; i++) { 1676 struct bcache_device *d = c->devices[i]; 1677 struct cached_dev *dc; 1678 struct keybuf_key *w, *n; 1679 unsigned j; 1680 1681 if (!d || UUID_FLASH_ONLY(&c->uuids[i])) 1682 continue; 1683 dc = container_of(d, struct cached_dev, disk); 1684 1685 spin_lock(&dc->writeback_keys.lock); 1686 rbtree_postorder_for_each_entry_safe(w, n, 1687 &dc->writeback_keys.keys, node) 1688 for (j = 0; j < KEY_PTRS(&w->key); j++) 1689 SET_GC_MARK(PTR_BUCKET(c, &w->key, j), 1690 GC_MARK_DIRTY); 1691 spin_unlock(&dc->writeback_keys.lock); 1692 } 1693 rcu_read_unlock(); 1694 1695 for_each_cache(ca, c, i) { 1696 uint64_t *i; 1697 1698 ca->invalidate_needs_gc = 0; 1699 1700 for (i = ca->sb.d; i < ca->sb.d + ca->sb.keys; i++) 1701 SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA); 1702 1703 for (i = ca->prio_buckets; 1704 i < ca->prio_buckets + prio_buckets(ca) * 2; i++) 1705 SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA); 1706 1707 for_each_bucket(b, ca) { 1708 c->need_gc = max(c->need_gc, bucket_gc_gen(b)); 1709 1710 if (atomic_read(&b->pin)) 1711 continue; 1712 1713 BUG_ON(!GC_MARK(b) && GC_SECTORS_USED(b)); 1714 1715 if (!GC_MARK(b) || GC_MARK(b) == GC_MARK_RECLAIMABLE) 1716 available++; 1717 } 1718 } 1719 1720 mutex_unlock(&c->bucket_lock); 1721 return available; 1722 } 1723 1724 static void bch_btree_gc(struct cache_set *c) 1725 { 1726 int ret; 1727 unsigned long available; 1728 struct gc_stat stats; 1729 struct closure writes; 1730 struct btree_op op; 1731 uint64_t start_time = local_clock(); 1732 1733 trace_bcache_gc_start(c); 1734 1735 memset(&stats, 0, sizeof(struct gc_stat)); 1736 closure_init_stack(&writes); 1737 bch_btree_op_init(&op, SHRT_MAX); 1738 1739 btree_gc_start(c); 1740 1741 do { 1742 ret = btree_root(gc_root, c, &op, &writes, &stats); 1743 closure_sync(&writes); 1744 1745 if (ret && ret != -EAGAIN) 1746 pr_warn("gc failed!"); 1747 } while (ret); 1748 1749 available = bch_btree_gc_finish(c); 1750 wake_up_allocators(c); 1751 1752 bch_time_stats_update(&c->btree_gc_time, start_time); 1753 1754 stats.key_bytes *= sizeof(uint64_t); 1755 stats.data <<= 9; 1756 stats.in_use = (c->nbuckets - available) * 100 / c->nbuckets; 1757 memcpy(&c->gc_stats, &stats, sizeof(struct gc_stat)); 1758 1759 trace_bcache_gc_end(c); 1760 1761 bch_moving_gc(c); 1762 } 1763 1764 static int bch_gc_thread(void *arg) 1765 { 1766 struct cache_set *c = arg; 1767 struct cache *ca; 1768 unsigned i; 1769 1770 while (1) { 1771 again: 1772 bch_btree_gc(c); 1773 1774 set_current_state(TASK_INTERRUPTIBLE); 1775 if (kthread_should_stop()) 1776 break; 1777 1778 mutex_lock(&c->bucket_lock); 1779 1780 for_each_cache(ca, c, i) 1781 if (ca->invalidate_needs_gc) { 1782 mutex_unlock(&c->bucket_lock); 1783 set_current_state(TASK_RUNNING); 1784 goto again; 1785 } 1786 1787 mutex_unlock(&c->bucket_lock); 1788 1789 try_to_freeze(); 1790 schedule(); 1791 } 1792 1793 return 0; 1794 } 1795 1796 int bch_gc_thread_start(struct cache_set *c) 1797 { 1798 c->gc_thread = kthread_create(bch_gc_thread, c, "bcache_gc"); 1799 if (IS_ERR(c->gc_thread)) 1800 return PTR_ERR(c->gc_thread); 1801 1802 set_task_state(c->gc_thread, TASK_INTERRUPTIBLE); 1803 return 0; 1804 } 1805 1806 /* Initial partial gc */ 1807 1808 static int bch_btree_check_recurse(struct btree *b, struct btree_op *op) 1809 { 1810 int ret = 0; 1811 struct bkey *k, *p = NULL; 1812 struct btree_iter iter; 1813 1814 for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid) 1815 bch_initial_mark_key(b->c, b->level, k); 1816 1817 bch_initial_mark_key(b->c, b->level + 1, &b->key); 1818 1819 if (b->level) { 1820 bch_btree_iter_init(&b->keys, &iter, NULL); 1821 1822 do { 1823 k = bch_btree_iter_next_filter(&iter, &b->keys, 1824 bch_ptr_bad); 1825 if (k) 1826 btree_node_prefetch(b, k); 1827 1828 if (p) 1829 ret = btree(check_recurse, p, b, op); 1830 1831 p = k; 1832 } while (p && !ret); 1833 } 1834 1835 return ret; 1836 } 1837 1838 int bch_btree_check(struct cache_set *c) 1839 { 1840 struct btree_op op; 1841 1842 bch_btree_op_init(&op, SHRT_MAX); 1843 1844 return btree_root(check_recurse, c, &op); 1845 } 1846 1847 void bch_initial_gc_finish(struct cache_set *c) 1848 { 1849 struct cache *ca; 1850 struct bucket *b; 1851 unsigned i; 1852 1853 bch_btree_gc_finish(c); 1854 1855 mutex_lock(&c->bucket_lock); 1856 1857 /* 1858 * We need to put some unused buckets directly on the prio freelist in 1859 * order to get the allocator thread started - it needs freed buckets in 1860 * order to rewrite the prios and gens, and it needs to rewrite prios 1861 * and gens in order to free buckets. 1862 * 1863 * This is only safe for buckets that have no live data in them, which 1864 * there should always be some of. 1865 */ 1866 for_each_cache(ca, c, i) { 1867 for_each_bucket(b, ca) { 1868 if (fifo_full(&ca->free[RESERVE_PRIO])) 1869 break; 1870 1871 if (bch_can_invalidate_bucket(ca, b) && 1872 !GC_MARK(b)) { 1873 __bch_invalidate_one_bucket(ca, b); 1874 fifo_push(&ca->free[RESERVE_PRIO], 1875 b - ca->buckets); 1876 } 1877 } 1878 } 1879 1880 mutex_unlock(&c->bucket_lock); 1881 } 1882 1883 /* Btree insertion */ 1884 1885 static bool btree_insert_key(struct btree *b, struct bkey *k, 1886 struct bkey *replace_key) 1887 { 1888 unsigned status; 1889 1890 BUG_ON(bkey_cmp(k, &b->key) > 0); 1891 1892 status = bch_btree_insert_key(&b->keys, k, replace_key); 1893 if (status != BTREE_INSERT_STATUS_NO_INSERT) { 1894 bch_check_keys(&b->keys, "%u for %s", status, 1895 replace_key ? "replace" : "insert"); 1896 1897 trace_bcache_btree_insert_key(b, k, replace_key != NULL, 1898 status); 1899 return true; 1900 } else 1901 return false; 1902 } 1903 1904 static size_t insert_u64s_remaining(struct btree *b) 1905 { 1906 long ret = bch_btree_keys_u64s_remaining(&b->keys); 1907 1908 /* 1909 * Might land in the middle of an existing extent and have to split it 1910 */ 1911 if (b->keys.ops->is_extents) 1912 ret -= KEY_MAX_U64S; 1913 1914 return max(ret, 0L); 1915 } 1916 1917 static bool bch_btree_insert_keys(struct btree *b, struct btree_op *op, 1918 struct keylist *insert_keys, 1919 struct bkey *replace_key) 1920 { 1921 bool ret = false; 1922 int oldsize = bch_count_data(&b->keys); 1923 1924 while (!bch_keylist_empty(insert_keys)) { 1925 struct bkey *k = insert_keys->keys; 1926 1927 if (bkey_u64s(k) > insert_u64s_remaining(b)) 1928 break; 1929 1930 if (bkey_cmp(k, &b->key) <= 0) { 1931 if (!b->level) 1932 bkey_put(b->c, k); 1933 1934 ret |= btree_insert_key(b, k, replace_key); 1935 bch_keylist_pop_front(insert_keys); 1936 } else if (bkey_cmp(&START_KEY(k), &b->key) < 0) { 1937 BKEY_PADDED(key) temp; 1938 bkey_copy(&temp.key, insert_keys->keys); 1939 1940 bch_cut_back(&b->key, &temp.key); 1941 bch_cut_front(&b->key, insert_keys->keys); 1942 1943 ret |= btree_insert_key(b, &temp.key, replace_key); 1944 break; 1945 } else { 1946 break; 1947 } 1948 } 1949 1950 if (!ret) 1951 op->insert_collision = true; 1952 1953 BUG_ON(!bch_keylist_empty(insert_keys) && b->level); 1954 1955 BUG_ON(bch_count_data(&b->keys) < oldsize); 1956 return ret; 1957 } 1958 1959 static int btree_split(struct btree *b, struct btree_op *op, 1960 struct keylist *insert_keys, 1961 struct bkey *replace_key) 1962 { 1963 bool split; 1964 struct btree *n1, *n2 = NULL, *n3 = NULL; 1965 uint64_t start_time = local_clock(); 1966 struct closure cl; 1967 struct keylist parent_keys; 1968 1969 closure_init_stack(&cl); 1970 bch_keylist_init(&parent_keys); 1971 1972 if (btree_check_reserve(b, op)) { 1973 if (!b->level) 1974 return -EINTR; 1975 else 1976 WARN(1, "insufficient reserve for split\n"); 1977 } 1978 1979 n1 = btree_node_alloc_replacement(b, op); 1980 if (IS_ERR(n1)) 1981 goto err; 1982 1983 split = set_blocks(btree_bset_first(n1), 1984 block_bytes(n1->c)) > (btree_blocks(b) * 4) / 5; 1985 1986 if (split) { 1987 unsigned keys = 0; 1988 1989 trace_bcache_btree_node_split(b, btree_bset_first(n1)->keys); 1990 1991 n2 = bch_btree_node_alloc(b->c, op, b->level, b->parent); 1992 if (IS_ERR(n2)) 1993 goto err_free1; 1994 1995 if (!b->parent) { 1996 n3 = bch_btree_node_alloc(b->c, op, b->level + 1, NULL); 1997 if (IS_ERR(n3)) 1998 goto err_free2; 1999 } 2000 2001 mutex_lock(&n1->write_lock); 2002 mutex_lock(&n2->write_lock); 2003 2004 bch_btree_insert_keys(n1, op, insert_keys, replace_key); 2005 2006 /* 2007 * Has to be a linear search because we don't have an auxiliary 2008 * search tree yet 2009 */ 2010 2011 while (keys < (btree_bset_first(n1)->keys * 3) / 5) 2012 keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1), 2013 keys)); 2014 2015 bkey_copy_key(&n1->key, 2016 bset_bkey_idx(btree_bset_first(n1), keys)); 2017 keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1), keys)); 2018 2019 btree_bset_first(n2)->keys = btree_bset_first(n1)->keys - keys; 2020 btree_bset_first(n1)->keys = keys; 2021 2022 memcpy(btree_bset_first(n2)->start, 2023 bset_bkey_last(btree_bset_first(n1)), 2024 btree_bset_first(n2)->keys * sizeof(uint64_t)); 2025 2026 bkey_copy_key(&n2->key, &b->key); 2027 2028 bch_keylist_add(&parent_keys, &n2->key); 2029 bch_btree_node_write(n2, &cl); 2030 mutex_unlock(&n2->write_lock); 2031 rw_unlock(true, n2); 2032 } else { 2033 trace_bcache_btree_node_compact(b, btree_bset_first(n1)->keys); 2034 2035 mutex_lock(&n1->write_lock); 2036 bch_btree_insert_keys(n1, op, insert_keys, replace_key); 2037 } 2038 2039 bch_keylist_add(&parent_keys, &n1->key); 2040 bch_btree_node_write(n1, &cl); 2041 mutex_unlock(&n1->write_lock); 2042 2043 if (n3) { 2044 /* Depth increases, make a new root */ 2045 mutex_lock(&n3->write_lock); 2046 bkey_copy_key(&n3->key, &MAX_KEY); 2047 bch_btree_insert_keys(n3, op, &parent_keys, NULL); 2048 bch_btree_node_write(n3, &cl); 2049 mutex_unlock(&n3->write_lock); 2050 2051 closure_sync(&cl); 2052 bch_btree_set_root(n3); 2053 rw_unlock(true, n3); 2054 } else if (!b->parent) { 2055 /* Root filled up but didn't need to be split */ 2056 closure_sync(&cl); 2057 bch_btree_set_root(n1); 2058 } else { 2059 /* Split a non root node */ 2060 closure_sync(&cl); 2061 make_btree_freeing_key(b, parent_keys.top); 2062 bch_keylist_push(&parent_keys); 2063 2064 bch_btree_insert_node(b->parent, op, &parent_keys, NULL, NULL); 2065 BUG_ON(!bch_keylist_empty(&parent_keys)); 2066 } 2067 2068 btree_node_free(b); 2069 rw_unlock(true, n1); 2070 2071 bch_time_stats_update(&b->c->btree_split_time, start_time); 2072 2073 return 0; 2074 err_free2: 2075 bkey_put(b->c, &n2->key); 2076 btree_node_free(n2); 2077 rw_unlock(true, n2); 2078 err_free1: 2079 bkey_put(b->c, &n1->key); 2080 btree_node_free(n1); 2081 rw_unlock(true, n1); 2082 err: 2083 WARN(1, "bcache: btree split failed (level %u)", b->level); 2084 2085 if (n3 == ERR_PTR(-EAGAIN) || 2086 n2 == ERR_PTR(-EAGAIN) || 2087 n1 == ERR_PTR(-EAGAIN)) 2088 return -EAGAIN; 2089 2090 return -ENOMEM; 2091 } 2092 2093 static int bch_btree_insert_node(struct btree *b, struct btree_op *op, 2094 struct keylist *insert_keys, 2095 atomic_t *journal_ref, 2096 struct bkey *replace_key) 2097 { 2098 struct closure cl; 2099 2100 BUG_ON(b->level && replace_key); 2101 2102 closure_init_stack(&cl); 2103 2104 mutex_lock(&b->write_lock); 2105 2106 if (write_block(b) != btree_bset_last(b) && 2107 b->keys.last_set_unwritten) 2108 bch_btree_init_next(b); /* just wrote a set */ 2109 2110 if (bch_keylist_nkeys(insert_keys) > insert_u64s_remaining(b)) { 2111 mutex_unlock(&b->write_lock); 2112 goto split; 2113 } 2114 2115 BUG_ON(write_block(b) != btree_bset_last(b)); 2116 2117 if (bch_btree_insert_keys(b, op, insert_keys, replace_key)) { 2118 if (!b->level) 2119 bch_btree_leaf_dirty(b, journal_ref); 2120 else 2121 bch_btree_node_write(b, &cl); 2122 } 2123 2124 mutex_unlock(&b->write_lock); 2125 2126 /* wait for btree node write if necessary, after unlock */ 2127 closure_sync(&cl); 2128 2129 return 0; 2130 split: 2131 if (current->bio_list) { 2132 op->lock = b->c->root->level + 1; 2133 return -EAGAIN; 2134 } else if (op->lock <= b->c->root->level) { 2135 op->lock = b->c->root->level + 1; 2136 return -EINTR; 2137 } else { 2138 /* Invalidated all iterators */ 2139 int ret = btree_split(b, op, insert_keys, replace_key); 2140 2141 if (bch_keylist_empty(insert_keys)) 2142 return 0; 2143 else if (!ret) 2144 return -EINTR; 2145 return ret; 2146 } 2147 } 2148 2149 int bch_btree_insert_check_key(struct btree *b, struct btree_op *op, 2150 struct bkey *check_key) 2151 { 2152 int ret = -EINTR; 2153 uint64_t btree_ptr = b->key.ptr[0]; 2154 unsigned long seq = b->seq; 2155 struct keylist insert; 2156 bool upgrade = op->lock == -1; 2157 2158 bch_keylist_init(&insert); 2159 2160 if (upgrade) { 2161 rw_unlock(false, b); 2162 rw_lock(true, b, b->level); 2163 2164 if (b->key.ptr[0] != btree_ptr || 2165 b->seq != seq + 1) 2166 goto out; 2167 } 2168 2169 SET_KEY_PTRS(check_key, 1); 2170 get_random_bytes(&check_key->ptr[0], sizeof(uint64_t)); 2171 2172 SET_PTR_DEV(check_key, 0, PTR_CHECK_DEV); 2173 2174 bch_keylist_add(&insert, check_key); 2175 2176 ret = bch_btree_insert_node(b, op, &insert, NULL, NULL); 2177 2178 BUG_ON(!ret && !bch_keylist_empty(&insert)); 2179 out: 2180 if (upgrade) 2181 downgrade_write(&b->lock); 2182 return ret; 2183 } 2184 2185 struct btree_insert_op { 2186 struct btree_op op; 2187 struct keylist *keys; 2188 atomic_t *journal_ref; 2189 struct bkey *replace_key; 2190 }; 2191 2192 static int btree_insert_fn(struct btree_op *b_op, struct btree *b) 2193 { 2194 struct btree_insert_op *op = container_of(b_op, 2195 struct btree_insert_op, op); 2196 2197 int ret = bch_btree_insert_node(b, &op->op, op->keys, 2198 op->journal_ref, op->replace_key); 2199 if (ret && !bch_keylist_empty(op->keys)) 2200 return ret; 2201 else 2202 return MAP_DONE; 2203 } 2204 2205 int bch_btree_insert(struct cache_set *c, struct keylist *keys, 2206 atomic_t *journal_ref, struct bkey *replace_key) 2207 { 2208 struct btree_insert_op op; 2209 int ret = 0; 2210 2211 BUG_ON(current->bio_list); 2212 BUG_ON(bch_keylist_empty(keys)); 2213 2214 bch_btree_op_init(&op.op, 0); 2215 op.keys = keys; 2216 op.journal_ref = journal_ref; 2217 op.replace_key = replace_key; 2218 2219 while (!ret && !bch_keylist_empty(keys)) { 2220 op.op.lock = 0; 2221 ret = bch_btree_map_leaf_nodes(&op.op, c, 2222 &START_KEY(keys->keys), 2223 btree_insert_fn); 2224 } 2225 2226 if (ret) { 2227 struct bkey *k; 2228 2229 pr_err("error %i", ret); 2230 2231 while ((k = bch_keylist_pop(keys))) 2232 bkey_put(c, k); 2233 } else if (op.op.insert_collision) 2234 ret = -ESRCH; 2235 2236 return ret; 2237 } 2238 2239 void bch_btree_set_root(struct btree *b) 2240 { 2241 unsigned i; 2242 struct closure cl; 2243 2244 closure_init_stack(&cl); 2245 2246 trace_bcache_btree_set_root(b); 2247 2248 BUG_ON(!b->written); 2249 2250 for (i = 0; i < KEY_PTRS(&b->key); i++) 2251 BUG_ON(PTR_BUCKET(b->c, &b->key, i)->prio != BTREE_PRIO); 2252 2253 mutex_lock(&b->c->bucket_lock); 2254 list_del_init(&b->list); 2255 mutex_unlock(&b->c->bucket_lock); 2256 2257 b->c->root = b; 2258 2259 bch_journal_meta(b->c, &cl); 2260 closure_sync(&cl); 2261 } 2262 2263 /* Map across nodes or keys */ 2264 2265 static int bch_btree_map_nodes_recurse(struct btree *b, struct btree_op *op, 2266 struct bkey *from, 2267 btree_map_nodes_fn *fn, int flags) 2268 { 2269 int ret = MAP_CONTINUE; 2270 2271 if (b->level) { 2272 struct bkey *k; 2273 struct btree_iter iter; 2274 2275 bch_btree_iter_init(&b->keys, &iter, from); 2276 2277 while ((k = bch_btree_iter_next_filter(&iter, &b->keys, 2278 bch_ptr_bad))) { 2279 ret = btree(map_nodes_recurse, k, b, 2280 op, from, fn, flags); 2281 from = NULL; 2282 2283 if (ret != MAP_CONTINUE) 2284 return ret; 2285 } 2286 } 2287 2288 if (!b->level || flags == MAP_ALL_NODES) 2289 ret = fn(op, b); 2290 2291 return ret; 2292 } 2293 2294 int __bch_btree_map_nodes(struct btree_op *op, struct cache_set *c, 2295 struct bkey *from, btree_map_nodes_fn *fn, int flags) 2296 { 2297 return btree_root(map_nodes_recurse, c, op, from, fn, flags); 2298 } 2299 2300 static int bch_btree_map_keys_recurse(struct btree *b, struct btree_op *op, 2301 struct bkey *from, btree_map_keys_fn *fn, 2302 int flags) 2303 { 2304 int ret = MAP_CONTINUE; 2305 struct bkey *k; 2306 struct btree_iter iter; 2307 2308 bch_btree_iter_init(&b->keys, &iter, from); 2309 2310 while ((k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad))) { 2311 ret = !b->level 2312 ? fn(op, b, k) 2313 : btree(map_keys_recurse, k, b, op, from, fn, flags); 2314 from = NULL; 2315 2316 if (ret != MAP_CONTINUE) 2317 return ret; 2318 } 2319 2320 if (!b->level && (flags & MAP_END_KEY)) 2321 ret = fn(op, b, &KEY(KEY_INODE(&b->key), 2322 KEY_OFFSET(&b->key), 0)); 2323 2324 return ret; 2325 } 2326 2327 int bch_btree_map_keys(struct btree_op *op, struct cache_set *c, 2328 struct bkey *from, btree_map_keys_fn *fn, int flags) 2329 { 2330 return btree_root(map_keys_recurse, c, op, from, fn, flags); 2331 } 2332 2333 /* Keybuf code */ 2334 2335 static inline int keybuf_cmp(struct keybuf_key *l, struct keybuf_key *r) 2336 { 2337 /* Overlapping keys compare equal */ 2338 if (bkey_cmp(&l->key, &START_KEY(&r->key)) <= 0) 2339 return -1; 2340 if (bkey_cmp(&START_KEY(&l->key), &r->key) >= 0) 2341 return 1; 2342 return 0; 2343 } 2344 2345 static inline int keybuf_nonoverlapping_cmp(struct keybuf_key *l, 2346 struct keybuf_key *r) 2347 { 2348 return clamp_t(int64_t, bkey_cmp(&l->key, &r->key), -1, 1); 2349 } 2350 2351 struct refill { 2352 struct btree_op op; 2353 unsigned nr_found; 2354 struct keybuf *buf; 2355 struct bkey *end; 2356 keybuf_pred_fn *pred; 2357 }; 2358 2359 static int refill_keybuf_fn(struct btree_op *op, struct btree *b, 2360 struct bkey *k) 2361 { 2362 struct refill *refill = container_of(op, struct refill, op); 2363 struct keybuf *buf = refill->buf; 2364 int ret = MAP_CONTINUE; 2365 2366 if (bkey_cmp(k, refill->end) >= 0) { 2367 ret = MAP_DONE; 2368 goto out; 2369 } 2370 2371 if (!KEY_SIZE(k)) /* end key */ 2372 goto out; 2373 2374 if (refill->pred(buf, k)) { 2375 struct keybuf_key *w; 2376 2377 spin_lock(&buf->lock); 2378 2379 w = array_alloc(&buf->freelist); 2380 if (!w) { 2381 spin_unlock(&buf->lock); 2382 return MAP_DONE; 2383 } 2384 2385 w->private = NULL; 2386 bkey_copy(&w->key, k); 2387 2388 if (RB_INSERT(&buf->keys, w, node, keybuf_cmp)) 2389 array_free(&buf->freelist, w); 2390 else 2391 refill->nr_found++; 2392 2393 if (array_freelist_empty(&buf->freelist)) 2394 ret = MAP_DONE; 2395 2396 spin_unlock(&buf->lock); 2397 } 2398 out: 2399 buf->last_scanned = *k; 2400 return ret; 2401 } 2402 2403 void bch_refill_keybuf(struct cache_set *c, struct keybuf *buf, 2404 struct bkey *end, keybuf_pred_fn *pred) 2405 { 2406 struct bkey start = buf->last_scanned; 2407 struct refill refill; 2408 2409 cond_resched(); 2410 2411 bch_btree_op_init(&refill.op, -1); 2412 refill.nr_found = 0; 2413 refill.buf = buf; 2414 refill.end = end; 2415 refill.pred = pred; 2416 2417 bch_btree_map_keys(&refill.op, c, &buf->last_scanned, 2418 refill_keybuf_fn, MAP_END_KEY); 2419 2420 trace_bcache_keyscan(refill.nr_found, 2421 KEY_INODE(&start), KEY_OFFSET(&start), 2422 KEY_INODE(&buf->last_scanned), 2423 KEY_OFFSET(&buf->last_scanned)); 2424 2425 spin_lock(&buf->lock); 2426 2427 if (!RB_EMPTY_ROOT(&buf->keys)) { 2428 struct keybuf_key *w; 2429 w = RB_FIRST(&buf->keys, struct keybuf_key, node); 2430 buf->start = START_KEY(&w->key); 2431 2432 w = RB_LAST(&buf->keys, struct keybuf_key, node); 2433 buf->end = w->key; 2434 } else { 2435 buf->start = MAX_KEY; 2436 buf->end = MAX_KEY; 2437 } 2438 2439 spin_unlock(&buf->lock); 2440 } 2441 2442 static void __bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w) 2443 { 2444 rb_erase(&w->node, &buf->keys); 2445 array_free(&buf->freelist, w); 2446 } 2447 2448 void bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w) 2449 { 2450 spin_lock(&buf->lock); 2451 __bch_keybuf_del(buf, w); 2452 spin_unlock(&buf->lock); 2453 } 2454 2455 bool bch_keybuf_check_overlapping(struct keybuf *buf, struct bkey *start, 2456 struct bkey *end) 2457 { 2458 bool ret = false; 2459 struct keybuf_key *p, *w, s; 2460 s.key = *start; 2461 2462 if (bkey_cmp(end, &buf->start) <= 0 || 2463 bkey_cmp(start, &buf->end) >= 0) 2464 return false; 2465 2466 spin_lock(&buf->lock); 2467 w = RB_GREATER(&buf->keys, s, node, keybuf_nonoverlapping_cmp); 2468 2469 while (w && bkey_cmp(&START_KEY(&w->key), end) < 0) { 2470 p = w; 2471 w = RB_NEXT(w, node); 2472 2473 if (p->private) 2474 ret = true; 2475 else 2476 __bch_keybuf_del(buf, p); 2477 } 2478 2479 spin_unlock(&buf->lock); 2480 return ret; 2481 } 2482 2483 struct keybuf_key *bch_keybuf_next(struct keybuf *buf) 2484 { 2485 struct keybuf_key *w; 2486 spin_lock(&buf->lock); 2487 2488 w = RB_FIRST(&buf->keys, struct keybuf_key, node); 2489 2490 while (w && w->private) 2491 w = RB_NEXT(w, node); 2492 2493 if (w) 2494 w->private = ERR_PTR(-EINTR); 2495 2496 spin_unlock(&buf->lock); 2497 return w; 2498 } 2499 2500 struct keybuf_key *bch_keybuf_next_rescan(struct cache_set *c, 2501 struct keybuf *buf, 2502 struct bkey *end, 2503 keybuf_pred_fn *pred) 2504 { 2505 struct keybuf_key *ret; 2506 2507 while (1) { 2508 ret = bch_keybuf_next(buf); 2509 if (ret) 2510 break; 2511 2512 if (bkey_cmp(&buf->last_scanned, end) >= 0) { 2513 pr_debug("scan finished"); 2514 break; 2515 } 2516 2517 bch_refill_keybuf(c, buf, end, pred); 2518 } 2519 2520 return ret; 2521 } 2522 2523 void bch_keybuf_init(struct keybuf *buf) 2524 { 2525 buf->last_scanned = MAX_KEY; 2526 buf->keys = RB_ROOT; 2527 2528 spin_lock_init(&buf->lock); 2529 array_allocator_init(&buf->freelist); 2530 } 2531