1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com> 4 * 5 * Uses a block device as cache for other block devices; optimized for SSDs. 6 * All allocation is done in buckets, which should match the erase block size 7 * of the device. 8 * 9 * Buckets containing cached data are kept on a heap sorted by priority; 10 * bucket priority is increased on cache hit, and periodically all the buckets 11 * on the heap have their priority scaled down. This currently is just used as 12 * an LRU but in the future should allow for more intelligent heuristics. 13 * 14 * Buckets have an 8 bit counter; freeing is accomplished by incrementing the 15 * counter. Garbage collection is used to remove stale pointers. 16 * 17 * Indexing is done via a btree; nodes are not necessarily fully sorted, rather 18 * as keys are inserted we only sort the pages that have not yet been written. 19 * When garbage collection is run, we resort the entire node. 20 * 21 * All configuration is done via sysfs; see Documentation/admin-guide/bcache.rst. 22 */ 23 24 #include "bcache.h" 25 #include "btree.h" 26 #include "debug.h" 27 #include "extents.h" 28 29 #include <linux/slab.h> 30 #include <linux/bitops.h> 31 #include <linux/hash.h> 32 #include <linux/kthread.h> 33 #include <linux/prefetch.h> 34 #include <linux/random.h> 35 #include <linux/rcupdate.h> 36 #include <linux/sched/clock.h> 37 #include <linux/rculist.h> 38 #include <linux/delay.h> 39 #include <trace/events/bcache.h> 40 41 /* 42 * Todo: 43 * register_bcache: Return errors out to userspace correctly 44 * 45 * Writeback: don't undirty key until after a cache flush 46 * 47 * Create an iterator for key pointers 48 * 49 * On btree write error, mark bucket such that it won't be freed from the cache 50 * 51 * Journalling: 52 * Check for bad keys in replay 53 * Propagate barriers 54 * Refcount journal entries in journal_replay 55 * 56 * Garbage collection: 57 * Finish incremental gc 58 * Gc should free old UUIDs, data for invalid UUIDs 59 * 60 * Provide a way to list backing device UUIDs we have data cached for, and 61 * probably how long it's been since we've seen them, and a way to invalidate 62 * dirty data for devices that will never be attached again 63 * 64 * Keep 1 min/5 min/15 min statistics of how busy a block device has been, so 65 * that based on that and how much dirty data we have we can keep writeback 66 * from being starved 67 * 68 * Add a tracepoint or somesuch to watch for writeback starvation 69 * 70 * When btree depth > 1 and splitting an interior node, we have to make sure 71 * alloc_bucket() cannot fail. This should be true but is not completely 72 * obvious. 73 * 74 * Plugging? 75 * 76 * If data write is less than hard sector size of ssd, round up offset in open 77 * bucket to the next whole sector 78 * 79 * Superblock needs to be fleshed out for multiple cache devices 80 * 81 * Add a sysfs tunable for the number of writeback IOs in flight 82 * 83 * Add a sysfs tunable for the number of open data buckets 84 * 85 * IO tracking: Can we track when one process is doing io on behalf of another? 86 * IO tracking: Don't use just an average, weigh more recent stuff higher 87 * 88 * Test module load/unload 89 */ 90 91 #define MAX_NEED_GC 64 92 #define MAX_SAVE_PRIO 72 93 #define MAX_GC_TIMES 100 94 #define MIN_GC_NODES 100 95 #define GC_SLEEP_MS 100 96 97 #define PTR_DIRTY_BIT (((uint64_t) 1 << 36)) 98 99 #define PTR_HASH(c, k) \ 100 (((k)->ptr[0] >> c->bucket_bits) | PTR_GEN(k, 0)) 101 102 static struct workqueue_struct *btree_io_wq; 103 104 #define insert_lock(s, b) ((b)->level <= (s)->lock) 105 106 107 static inline struct bset *write_block(struct btree *b) 108 { 109 return ((void *) btree_bset_first(b)) + b->written * block_bytes(b->c->cache); 110 } 111 112 static void bch_btree_init_next(struct btree *b) 113 { 114 /* If not a leaf node, always sort */ 115 if (b->level && b->keys.nsets) 116 bch_btree_sort(&b->keys, &b->c->sort); 117 else 118 bch_btree_sort_lazy(&b->keys, &b->c->sort); 119 120 if (b->written < btree_blocks(b)) 121 bch_bset_init_next(&b->keys, write_block(b), 122 bset_magic(&b->c->cache->sb)); 123 124 } 125 126 /* Btree key manipulation */ 127 128 void bkey_put(struct cache_set *c, struct bkey *k) 129 { 130 unsigned int i; 131 132 for (i = 0; i < KEY_PTRS(k); i++) 133 if (ptr_available(c, k, i)) 134 atomic_dec_bug(&PTR_BUCKET(c, k, i)->pin); 135 } 136 137 /* Btree IO */ 138 139 static uint64_t btree_csum_set(struct btree *b, struct bset *i) 140 { 141 uint64_t crc = b->key.ptr[0]; 142 void *data = (void *) i + 8, *end = bset_bkey_last(i); 143 144 crc = crc64_be(crc, data, end - data); 145 return crc ^ 0xffffffffffffffffULL; 146 } 147 148 void bch_btree_node_read_done(struct btree *b) 149 { 150 const char *err = "bad btree header"; 151 struct bset *i = btree_bset_first(b); 152 struct btree_iter *iter; 153 154 /* 155 * c->fill_iter can allocate an iterator with more memory space 156 * than static MAX_BSETS. 157 * See the comment arount cache_set->fill_iter. 158 */ 159 iter = mempool_alloc(&b->c->fill_iter, GFP_NOIO); 160 iter->size = b->c->cache->sb.bucket_size / b->c->cache->sb.block_size; 161 iter->used = 0; 162 163 #ifdef CONFIG_BCACHE_DEBUG 164 iter->b = &b->keys; 165 #endif 166 167 if (!i->seq) 168 goto err; 169 170 for (; 171 b->written < btree_blocks(b) && i->seq == b->keys.set[0].data->seq; 172 i = write_block(b)) { 173 err = "unsupported bset version"; 174 if (i->version > BCACHE_BSET_VERSION) 175 goto err; 176 177 err = "bad btree header"; 178 if (b->written + set_blocks(i, block_bytes(b->c->cache)) > 179 btree_blocks(b)) 180 goto err; 181 182 err = "bad magic"; 183 if (i->magic != bset_magic(&b->c->cache->sb)) 184 goto err; 185 186 err = "bad checksum"; 187 switch (i->version) { 188 case 0: 189 if (i->csum != csum_set(i)) 190 goto err; 191 break; 192 case BCACHE_BSET_VERSION: 193 if (i->csum != btree_csum_set(b, i)) 194 goto err; 195 break; 196 } 197 198 err = "empty set"; 199 if (i != b->keys.set[0].data && !i->keys) 200 goto err; 201 202 bch_btree_iter_push(iter, i->start, bset_bkey_last(i)); 203 204 b->written += set_blocks(i, block_bytes(b->c->cache)); 205 } 206 207 err = "corrupted btree"; 208 for (i = write_block(b); 209 bset_sector_offset(&b->keys, i) < KEY_SIZE(&b->key); 210 i = ((void *) i) + block_bytes(b->c->cache)) 211 if (i->seq == b->keys.set[0].data->seq) 212 goto err; 213 214 bch_btree_sort_and_fix_extents(&b->keys, iter, &b->c->sort); 215 216 i = b->keys.set[0].data; 217 err = "short btree key"; 218 if (b->keys.set[0].size && 219 bkey_cmp(&b->key, &b->keys.set[0].end) < 0) 220 goto err; 221 222 if (b->written < btree_blocks(b)) 223 bch_bset_init_next(&b->keys, write_block(b), 224 bset_magic(&b->c->cache->sb)); 225 out: 226 mempool_free(iter, &b->c->fill_iter); 227 return; 228 err: 229 set_btree_node_io_error(b); 230 bch_cache_set_error(b->c, "%s at bucket %zu, block %u, %u keys", 231 err, PTR_BUCKET_NR(b->c, &b->key, 0), 232 bset_block_offset(b, i), i->keys); 233 goto out; 234 } 235 236 static void btree_node_read_endio(struct bio *bio) 237 { 238 struct closure *cl = bio->bi_private; 239 240 closure_put(cl); 241 } 242 243 static void bch_btree_node_read(struct btree *b) 244 { 245 uint64_t start_time = local_clock(); 246 struct closure cl; 247 struct bio *bio; 248 249 trace_bcache_btree_read(b); 250 251 closure_init_stack(&cl); 252 253 bio = bch_bbio_alloc(b->c); 254 bio->bi_iter.bi_size = KEY_SIZE(&b->key) << 9; 255 bio->bi_end_io = btree_node_read_endio; 256 bio->bi_private = &cl; 257 bio->bi_opf = REQ_OP_READ | REQ_META; 258 259 bch_bio_map(bio, b->keys.set[0].data); 260 261 bch_submit_bbio(bio, b->c, &b->key, 0); 262 closure_sync(&cl); 263 264 if (bio->bi_status) 265 set_btree_node_io_error(b); 266 267 bch_bbio_free(bio, b->c); 268 269 if (btree_node_io_error(b)) 270 goto err; 271 272 bch_btree_node_read_done(b); 273 bch_time_stats_update(&b->c->btree_read_time, start_time); 274 275 return; 276 err: 277 bch_cache_set_error(b->c, "io error reading bucket %zu", 278 PTR_BUCKET_NR(b->c, &b->key, 0)); 279 } 280 281 static void btree_complete_write(struct btree *b, struct btree_write *w) 282 { 283 if (w->prio_blocked && 284 !atomic_sub_return(w->prio_blocked, &b->c->prio_blocked)) 285 wake_up_allocators(b->c); 286 287 if (w->journal) { 288 atomic_dec_bug(w->journal); 289 __closure_wake_up(&b->c->journal.wait); 290 } 291 292 w->prio_blocked = 0; 293 w->journal = NULL; 294 } 295 296 static void btree_node_write_unlock(struct closure *cl) 297 { 298 struct btree *b = container_of(cl, struct btree, io); 299 300 up(&b->io_mutex); 301 } 302 303 static void __btree_node_write_done(struct closure *cl) 304 { 305 struct btree *b = container_of(cl, struct btree, io); 306 struct btree_write *w = btree_prev_write(b); 307 308 bch_bbio_free(b->bio, b->c); 309 b->bio = NULL; 310 btree_complete_write(b, w); 311 312 if (btree_node_dirty(b)) 313 queue_delayed_work(btree_io_wq, &b->work, 30 * HZ); 314 315 closure_return_with_destructor(cl, btree_node_write_unlock); 316 } 317 318 static void btree_node_write_done(struct closure *cl) 319 { 320 struct btree *b = container_of(cl, struct btree, io); 321 322 bio_free_pages(b->bio); 323 __btree_node_write_done(cl); 324 } 325 326 static void btree_node_write_endio(struct bio *bio) 327 { 328 struct closure *cl = bio->bi_private; 329 struct btree *b = container_of(cl, struct btree, io); 330 331 if (bio->bi_status) 332 set_btree_node_io_error(b); 333 334 bch_bbio_count_io_errors(b->c, bio, bio->bi_status, "writing btree"); 335 closure_put(cl); 336 } 337 338 static void do_btree_node_write(struct btree *b) 339 { 340 struct closure *cl = &b->io; 341 struct bset *i = btree_bset_last(b); 342 BKEY_PADDED(key) k; 343 344 i->version = BCACHE_BSET_VERSION; 345 i->csum = btree_csum_set(b, i); 346 347 BUG_ON(b->bio); 348 b->bio = bch_bbio_alloc(b->c); 349 350 b->bio->bi_end_io = btree_node_write_endio; 351 b->bio->bi_private = cl; 352 b->bio->bi_iter.bi_size = roundup(set_bytes(i), block_bytes(b->c->cache)); 353 b->bio->bi_opf = REQ_OP_WRITE | REQ_META | REQ_FUA; 354 bch_bio_map(b->bio, i); 355 356 /* 357 * If we're appending to a leaf node, we don't technically need FUA - 358 * this write just needs to be persisted before the next journal write, 359 * which will be marked FLUSH|FUA. 360 * 361 * Similarly if we're writing a new btree root - the pointer is going to 362 * be in the next journal entry. 363 * 364 * But if we're writing a new btree node (that isn't a root) or 365 * appending to a non leaf btree node, we need either FUA or a flush 366 * when we write the parent with the new pointer. FUA is cheaper than a 367 * flush, and writes appending to leaf nodes aren't blocking anything so 368 * just make all btree node writes FUA to keep things sane. 369 */ 370 371 bkey_copy(&k.key, &b->key); 372 SET_PTR_OFFSET(&k.key, 0, PTR_OFFSET(&k.key, 0) + 373 bset_sector_offset(&b->keys, i)); 374 375 if (!bch_bio_alloc_pages(b->bio, __GFP_NOWARN|GFP_NOWAIT)) { 376 struct bio_vec *bv; 377 void *addr = (void *) ((unsigned long) i & ~(PAGE_SIZE - 1)); 378 struct bvec_iter_all iter_all; 379 380 bio_for_each_segment_all(bv, b->bio, iter_all) { 381 memcpy(page_address(bv->bv_page), addr, PAGE_SIZE); 382 addr += PAGE_SIZE; 383 } 384 385 bch_submit_bbio(b->bio, b->c, &k.key, 0); 386 387 continue_at(cl, btree_node_write_done, NULL); 388 } else { 389 /* 390 * No problem for multipage bvec since the bio is 391 * just allocated 392 */ 393 b->bio->bi_vcnt = 0; 394 bch_bio_map(b->bio, i); 395 396 bch_submit_bbio(b->bio, b->c, &k.key, 0); 397 398 closure_sync(cl); 399 continue_at_nobarrier(cl, __btree_node_write_done, NULL); 400 } 401 } 402 403 void __bch_btree_node_write(struct btree *b, struct closure *parent) 404 { 405 struct bset *i = btree_bset_last(b); 406 407 lockdep_assert_held(&b->write_lock); 408 409 trace_bcache_btree_write(b); 410 411 BUG_ON(current->bio_list); 412 BUG_ON(b->written >= btree_blocks(b)); 413 BUG_ON(b->written && !i->keys); 414 BUG_ON(btree_bset_first(b)->seq != i->seq); 415 bch_check_keys(&b->keys, "writing"); 416 417 cancel_delayed_work(&b->work); 418 419 /* If caller isn't waiting for write, parent refcount is cache set */ 420 down(&b->io_mutex); 421 closure_init(&b->io, parent ?: &b->c->cl); 422 423 clear_bit(BTREE_NODE_dirty, &b->flags); 424 change_bit(BTREE_NODE_write_idx, &b->flags); 425 426 do_btree_node_write(b); 427 428 atomic_long_add(set_blocks(i, block_bytes(b->c->cache)) * b->c->cache->sb.block_size, 429 &b->c->cache->btree_sectors_written); 430 431 b->written += set_blocks(i, block_bytes(b->c->cache)); 432 } 433 434 void bch_btree_node_write(struct btree *b, struct closure *parent) 435 { 436 unsigned int nsets = b->keys.nsets; 437 438 lockdep_assert_held(&b->lock); 439 440 __bch_btree_node_write(b, parent); 441 442 /* 443 * do verify if there was more than one set initially (i.e. we did a 444 * sort) and we sorted down to a single set: 445 */ 446 if (nsets && !b->keys.nsets) 447 bch_btree_verify(b); 448 449 bch_btree_init_next(b); 450 } 451 452 static void bch_btree_node_write_sync(struct btree *b) 453 { 454 struct closure cl; 455 456 closure_init_stack(&cl); 457 458 mutex_lock(&b->write_lock); 459 bch_btree_node_write(b, &cl); 460 mutex_unlock(&b->write_lock); 461 462 closure_sync(&cl); 463 } 464 465 static void btree_node_write_work(struct work_struct *w) 466 { 467 struct btree *b = container_of(to_delayed_work(w), struct btree, work); 468 469 mutex_lock(&b->write_lock); 470 if (btree_node_dirty(b)) 471 __bch_btree_node_write(b, NULL); 472 mutex_unlock(&b->write_lock); 473 } 474 475 static void bch_btree_leaf_dirty(struct btree *b, atomic_t *journal_ref) 476 { 477 struct bset *i = btree_bset_last(b); 478 struct btree_write *w = btree_current_write(b); 479 480 lockdep_assert_held(&b->write_lock); 481 482 BUG_ON(!b->written); 483 BUG_ON(!i->keys); 484 485 if (!btree_node_dirty(b)) 486 queue_delayed_work(btree_io_wq, &b->work, 30 * HZ); 487 488 set_btree_node_dirty(b); 489 490 /* 491 * w->journal is always the oldest journal pin of all bkeys 492 * in the leaf node, to make sure the oldest jset seq won't 493 * be increased before this btree node is flushed. 494 */ 495 if (journal_ref) { 496 if (w->journal && 497 journal_pin_cmp(b->c, w->journal, journal_ref)) { 498 atomic_dec_bug(w->journal); 499 w->journal = NULL; 500 } 501 502 if (!w->journal) { 503 w->journal = journal_ref; 504 atomic_inc(w->journal); 505 } 506 } 507 508 /* Force write if set is too big */ 509 if (set_bytes(i) > PAGE_SIZE - 48 && 510 !current->bio_list) 511 bch_btree_node_write(b, NULL); 512 } 513 514 /* 515 * Btree in memory cache - allocation/freeing 516 * mca -> memory cache 517 */ 518 519 #define mca_reserve(c) (((!IS_ERR_OR_NULL(c->root) && c->root->level) \ 520 ? c->root->level : 1) * 8 + 16) 521 #define mca_can_free(c) \ 522 max_t(int, 0, c->btree_cache_used - mca_reserve(c)) 523 524 static void mca_data_free(struct btree *b) 525 { 526 BUG_ON(b->io_mutex.count != 1); 527 528 bch_btree_keys_free(&b->keys); 529 530 b->c->btree_cache_used--; 531 list_move(&b->list, &b->c->btree_cache_freed); 532 } 533 534 static void mca_bucket_free(struct btree *b) 535 { 536 BUG_ON(btree_node_dirty(b)); 537 538 b->key.ptr[0] = 0; 539 hlist_del_init_rcu(&b->hash); 540 list_move(&b->list, &b->c->btree_cache_freeable); 541 } 542 543 static unsigned int btree_order(struct bkey *k) 544 { 545 return ilog2(KEY_SIZE(k) / PAGE_SECTORS ?: 1); 546 } 547 548 static void mca_data_alloc(struct btree *b, struct bkey *k, gfp_t gfp) 549 { 550 if (!bch_btree_keys_alloc(&b->keys, 551 max_t(unsigned int, 552 ilog2(b->c->btree_pages), 553 btree_order(k)), 554 gfp)) { 555 b->c->btree_cache_used++; 556 list_move(&b->list, &b->c->btree_cache); 557 } else { 558 list_move(&b->list, &b->c->btree_cache_freed); 559 } 560 } 561 562 #define cmp_int(l, r) ((l > r) - (l < r)) 563 564 #ifdef CONFIG_PROVE_LOCKING 565 static int btree_lock_cmp_fn(const struct lockdep_map *_a, 566 const struct lockdep_map *_b) 567 { 568 const struct btree *a = container_of(_a, struct btree, lock.dep_map); 569 const struct btree *b = container_of(_b, struct btree, lock.dep_map); 570 571 return -cmp_int(a->level, b->level) ?: bkey_cmp(&a->key, &b->key); 572 } 573 574 static void btree_lock_print_fn(const struct lockdep_map *map) 575 { 576 const struct btree *b = container_of(map, struct btree, lock.dep_map); 577 578 printk(KERN_CONT " l=%u %llu:%llu", b->level, 579 KEY_INODE(&b->key), KEY_OFFSET(&b->key)); 580 } 581 #endif 582 583 static struct btree *mca_bucket_alloc(struct cache_set *c, 584 struct bkey *k, gfp_t gfp) 585 { 586 /* 587 * kzalloc() is necessary here for initialization, 588 * see code comments in bch_btree_keys_init(). 589 */ 590 struct btree *b = kzalloc(sizeof(struct btree), gfp); 591 592 if (!b) 593 return NULL; 594 595 init_rwsem(&b->lock); 596 lock_set_cmp_fn(&b->lock, btree_lock_cmp_fn, btree_lock_print_fn); 597 mutex_init(&b->write_lock); 598 lockdep_set_novalidate_class(&b->write_lock); 599 INIT_LIST_HEAD(&b->list); 600 INIT_DELAYED_WORK(&b->work, btree_node_write_work); 601 b->c = c; 602 sema_init(&b->io_mutex, 1); 603 604 mca_data_alloc(b, k, gfp); 605 return b; 606 } 607 608 static int mca_reap(struct btree *b, unsigned int min_order, bool flush) 609 { 610 struct closure cl; 611 612 closure_init_stack(&cl); 613 lockdep_assert_held(&b->c->bucket_lock); 614 615 if (!down_write_trylock(&b->lock)) 616 return -ENOMEM; 617 618 BUG_ON(btree_node_dirty(b) && !b->keys.set[0].data); 619 620 if (b->keys.page_order < min_order) 621 goto out_unlock; 622 623 if (!flush) { 624 if (btree_node_dirty(b)) 625 goto out_unlock; 626 627 if (down_trylock(&b->io_mutex)) 628 goto out_unlock; 629 up(&b->io_mutex); 630 } 631 632 retry: 633 /* 634 * BTREE_NODE_dirty might be cleared in btree_flush_btree() by 635 * __bch_btree_node_write(). To avoid an extra flush, acquire 636 * b->write_lock before checking BTREE_NODE_dirty bit. 637 */ 638 mutex_lock(&b->write_lock); 639 /* 640 * If this btree node is selected in btree_flush_write() by journal 641 * code, delay and retry until the node is flushed by journal code 642 * and BTREE_NODE_journal_flush bit cleared by btree_flush_write(). 643 */ 644 if (btree_node_journal_flush(b)) { 645 pr_debug("bnode %p is flushing by journal, retry\n", b); 646 mutex_unlock(&b->write_lock); 647 udelay(1); 648 goto retry; 649 } 650 651 if (btree_node_dirty(b)) 652 __bch_btree_node_write(b, &cl); 653 mutex_unlock(&b->write_lock); 654 655 closure_sync(&cl); 656 657 /* wait for any in flight btree write */ 658 down(&b->io_mutex); 659 up(&b->io_mutex); 660 661 return 0; 662 out_unlock: 663 rw_unlock(true, b); 664 return -ENOMEM; 665 } 666 667 static unsigned long bch_mca_scan(struct shrinker *shrink, 668 struct shrink_control *sc) 669 { 670 struct cache_set *c = container_of(shrink, struct cache_set, shrink); 671 struct btree *b, *t; 672 unsigned long i, nr = sc->nr_to_scan; 673 unsigned long freed = 0; 674 unsigned int btree_cache_used; 675 676 if (c->shrinker_disabled) 677 return SHRINK_STOP; 678 679 if (c->btree_cache_alloc_lock) 680 return SHRINK_STOP; 681 682 /* Return -1 if we can't do anything right now */ 683 if (sc->gfp_mask & __GFP_IO) 684 mutex_lock(&c->bucket_lock); 685 else if (!mutex_trylock(&c->bucket_lock)) 686 return -1; 687 688 /* 689 * It's _really_ critical that we don't free too many btree nodes - we 690 * have to always leave ourselves a reserve. The reserve is how we 691 * guarantee that allocating memory for a new btree node can always 692 * succeed, so that inserting keys into the btree can always succeed and 693 * IO can always make forward progress: 694 */ 695 nr /= c->btree_pages; 696 if (nr == 0) 697 nr = 1; 698 nr = min_t(unsigned long, nr, mca_can_free(c)); 699 700 i = 0; 701 btree_cache_used = c->btree_cache_used; 702 list_for_each_entry_safe_reverse(b, t, &c->btree_cache_freeable, list) { 703 if (nr <= 0) 704 goto out; 705 706 if (!mca_reap(b, 0, false)) { 707 mca_data_free(b); 708 rw_unlock(true, b); 709 freed++; 710 } 711 nr--; 712 i++; 713 } 714 715 list_for_each_entry_safe_reverse(b, t, &c->btree_cache, list) { 716 if (nr <= 0 || i >= btree_cache_used) 717 goto out; 718 719 if (!mca_reap(b, 0, false)) { 720 mca_bucket_free(b); 721 mca_data_free(b); 722 rw_unlock(true, b); 723 freed++; 724 } 725 726 nr--; 727 i++; 728 } 729 out: 730 mutex_unlock(&c->bucket_lock); 731 return freed * c->btree_pages; 732 } 733 734 static unsigned long bch_mca_count(struct shrinker *shrink, 735 struct shrink_control *sc) 736 { 737 struct cache_set *c = container_of(shrink, struct cache_set, shrink); 738 739 if (c->shrinker_disabled) 740 return 0; 741 742 if (c->btree_cache_alloc_lock) 743 return 0; 744 745 return mca_can_free(c) * c->btree_pages; 746 } 747 748 void bch_btree_cache_free(struct cache_set *c) 749 { 750 struct btree *b; 751 struct closure cl; 752 753 closure_init_stack(&cl); 754 755 if (c->shrink.list.next) 756 unregister_shrinker(&c->shrink); 757 758 mutex_lock(&c->bucket_lock); 759 760 #ifdef CONFIG_BCACHE_DEBUG 761 if (c->verify_data) 762 list_move(&c->verify_data->list, &c->btree_cache); 763 764 free_pages((unsigned long) c->verify_ondisk, ilog2(meta_bucket_pages(&c->cache->sb))); 765 #endif 766 767 list_splice(&c->btree_cache_freeable, 768 &c->btree_cache); 769 770 while (!list_empty(&c->btree_cache)) { 771 b = list_first_entry(&c->btree_cache, struct btree, list); 772 773 /* 774 * This function is called by cache_set_free(), no I/O 775 * request on cache now, it is unnecessary to acquire 776 * b->write_lock before clearing BTREE_NODE_dirty anymore. 777 */ 778 if (btree_node_dirty(b)) { 779 btree_complete_write(b, btree_current_write(b)); 780 clear_bit(BTREE_NODE_dirty, &b->flags); 781 } 782 mca_data_free(b); 783 } 784 785 while (!list_empty(&c->btree_cache_freed)) { 786 b = list_first_entry(&c->btree_cache_freed, 787 struct btree, list); 788 list_del(&b->list); 789 cancel_delayed_work_sync(&b->work); 790 kfree(b); 791 } 792 793 mutex_unlock(&c->bucket_lock); 794 } 795 796 int bch_btree_cache_alloc(struct cache_set *c) 797 { 798 unsigned int i; 799 800 for (i = 0; i < mca_reserve(c); i++) 801 if (!mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL)) 802 return -ENOMEM; 803 804 list_splice_init(&c->btree_cache, 805 &c->btree_cache_freeable); 806 807 #ifdef CONFIG_BCACHE_DEBUG 808 mutex_init(&c->verify_lock); 809 810 c->verify_ondisk = (void *) 811 __get_free_pages(GFP_KERNEL|__GFP_COMP, 812 ilog2(meta_bucket_pages(&c->cache->sb))); 813 if (!c->verify_ondisk) { 814 /* 815 * Don't worry about the mca_rereserve buckets 816 * allocated in previous for-loop, they will be 817 * handled properly in bch_cache_set_unregister(). 818 */ 819 return -ENOMEM; 820 } 821 822 c->verify_data = mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL); 823 824 if (c->verify_data && 825 c->verify_data->keys.set->data) 826 list_del_init(&c->verify_data->list); 827 else 828 c->verify_data = NULL; 829 #endif 830 831 c->shrink.count_objects = bch_mca_count; 832 c->shrink.scan_objects = bch_mca_scan; 833 c->shrink.seeks = 4; 834 c->shrink.batch = c->btree_pages * 2; 835 836 if (register_shrinker(&c->shrink, "md-bcache:%pU", c->set_uuid)) 837 pr_warn("bcache: %s: could not register shrinker\n", 838 __func__); 839 840 return 0; 841 } 842 843 /* Btree in memory cache - hash table */ 844 845 static struct hlist_head *mca_hash(struct cache_set *c, struct bkey *k) 846 { 847 return &c->bucket_hash[hash_32(PTR_HASH(c, k), BUCKET_HASH_BITS)]; 848 } 849 850 static struct btree *mca_find(struct cache_set *c, struct bkey *k) 851 { 852 struct btree *b; 853 854 rcu_read_lock(); 855 hlist_for_each_entry_rcu(b, mca_hash(c, k), hash) 856 if (PTR_HASH(c, &b->key) == PTR_HASH(c, k)) 857 goto out; 858 b = NULL; 859 out: 860 rcu_read_unlock(); 861 return b; 862 } 863 864 static int mca_cannibalize_lock(struct cache_set *c, struct btree_op *op) 865 { 866 spin_lock(&c->btree_cannibalize_lock); 867 if (likely(c->btree_cache_alloc_lock == NULL)) { 868 c->btree_cache_alloc_lock = current; 869 } else if (c->btree_cache_alloc_lock != current) { 870 if (op) 871 prepare_to_wait(&c->btree_cache_wait, &op->wait, 872 TASK_UNINTERRUPTIBLE); 873 spin_unlock(&c->btree_cannibalize_lock); 874 return -EINTR; 875 } 876 spin_unlock(&c->btree_cannibalize_lock); 877 878 return 0; 879 } 880 881 static struct btree *mca_cannibalize(struct cache_set *c, struct btree_op *op, 882 struct bkey *k) 883 { 884 struct btree *b; 885 886 trace_bcache_btree_cache_cannibalize(c); 887 888 if (mca_cannibalize_lock(c, op)) 889 return ERR_PTR(-EINTR); 890 891 list_for_each_entry_reverse(b, &c->btree_cache, list) 892 if (!mca_reap(b, btree_order(k), false)) 893 return b; 894 895 list_for_each_entry_reverse(b, &c->btree_cache, list) 896 if (!mca_reap(b, btree_order(k), true)) 897 return b; 898 899 WARN(1, "btree cache cannibalize failed\n"); 900 return ERR_PTR(-ENOMEM); 901 } 902 903 /* 904 * We can only have one thread cannibalizing other cached btree nodes at a time, 905 * or we'll deadlock. We use an open coded mutex to ensure that, which a 906 * cannibalize_bucket() will take. This means every time we unlock the root of 907 * the btree, we need to release this lock if we have it held. 908 */ 909 static void bch_cannibalize_unlock(struct cache_set *c) 910 { 911 spin_lock(&c->btree_cannibalize_lock); 912 if (c->btree_cache_alloc_lock == current) { 913 c->btree_cache_alloc_lock = NULL; 914 wake_up(&c->btree_cache_wait); 915 } 916 spin_unlock(&c->btree_cannibalize_lock); 917 } 918 919 static struct btree *mca_alloc(struct cache_set *c, struct btree_op *op, 920 struct bkey *k, int level) 921 { 922 struct btree *b; 923 924 BUG_ON(current->bio_list); 925 926 lockdep_assert_held(&c->bucket_lock); 927 928 if (mca_find(c, k)) 929 return NULL; 930 931 /* btree_free() doesn't free memory; it sticks the node on the end of 932 * the list. Check if there's any freed nodes there: 933 */ 934 list_for_each_entry(b, &c->btree_cache_freeable, list) 935 if (!mca_reap(b, btree_order(k), false)) 936 goto out; 937 938 /* We never free struct btree itself, just the memory that holds the on 939 * disk node. Check the freed list before allocating a new one: 940 */ 941 list_for_each_entry(b, &c->btree_cache_freed, list) 942 if (!mca_reap(b, 0, false)) { 943 mca_data_alloc(b, k, __GFP_NOWARN|GFP_NOIO); 944 if (!b->keys.set[0].data) 945 goto err; 946 else 947 goto out; 948 } 949 950 b = mca_bucket_alloc(c, k, __GFP_NOWARN|GFP_NOIO); 951 if (!b) 952 goto err; 953 954 BUG_ON(!down_write_trylock(&b->lock)); 955 if (!b->keys.set->data) 956 goto err; 957 out: 958 BUG_ON(b->io_mutex.count != 1); 959 960 bkey_copy(&b->key, k); 961 list_move(&b->list, &c->btree_cache); 962 hlist_del_init_rcu(&b->hash); 963 hlist_add_head_rcu(&b->hash, mca_hash(c, k)); 964 965 lock_set_subclass(&b->lock.dep_map, level + 1, _THIS_IP_); 966 b->parent = (void *) ~0UL; 967 b->flags = 0; 968 b->written = 0; 969 b->level = level; 970 971 if (!b->level) 972 bch_btree_keys_init(&b->keys, &bch_extent_keys_ops, 973 &b->c->expensive_debug_checks); 974 else 975 bch_btree_keys_init(&b->keys, &bch_btree_keys_ops, 976 &b->c->expensive_debug_checks); 977 978 return b; 979 err: 980 if (b) 981 rw_unlock(true, b); 982 983 b = mca_cannibalize(c, op, k); 984 if (!IS_ERR(b)) 985 goto out; 986 987 return b; 988 } 989 990 /* 991 * bch_btree_node_get - find a btree node in the cache and lock it, reading it 992 * in from disk if necessary. 993 * 994 * If IO is necessary and running under submit_bio_noacct, returns -EAGAIN. 995 * 996 * The btree node will have either a read or a write lock held, depending on 997 * level and op->lock. 998 */ 999 struct btree *bch_btree_node_get(struct cache_set *c, struct btree_op *op, 1000 struct bkey *k, int level, bool write, 1001 struct btree *parent) 1002 { 1003 int i = 0; 1004 struct btree *b; 1005 1006 BUG_ON(level < 0); 1007 retry: 1008 b = mca_find(c, k); 1009 1010 if (!b) { 1011 if (current->bio_list) 1012 return ERR_PTR(-EAGAIN); 1013 1014 mutex_lock(&c->bucket_lock); 1015 b = mca_alloc(c, op, k, level); 1016 mutex_unlock(&c->bucket_lock); 1017 1018 if (!b) 1019 goto retry; 1020 if (IS_ERR(b)) 1021 return b; 1022 1023 bch_btree_node_read(b); 1024 1025 if (!write) 1026 downgrade_write(&b->lock); 1027 } else { 1028 rw_lock(write, b, level); 1029 if (PTR_HASH(c, &b->key) != PTR_HASH(c, k)) { 1030 rw_unlock(write, b); 1031 goto retry; 1032 } 1033 BUG_ON(b->level != level); 1034 } 1035 1036 if (btree_node_io_error(b)) { 1037 rw_unlock(write, b); 1038 return ERR_PTR(-EIO); 1039 } 1040 1041 BUG_ON(!b->written); 1042 1043 b->parent = parent; 1044 1045 for (; i <= b->keys.nsets && b->keys.set[i].size; i++) { 1046 prefetch(b->keys.set[i].tree); 1047 prefetch(b->keys.set[i].data); 1048 } 1049 1050 for (; i <= b->keys.nsets; i++) 1051 prefetch(b->keys.set[i].data); 1052 1053 return b; 1054 } 1055 1056 static void btree_node_prefetch(struct btree *parent, struct bkey *k) 1057 { 1058 struct btree *b; 1059 1060 mutex_lock(&parent->c->bucket_lock); 1061 b = mca_alloc(parent->c, NULL, k, parent->level - 1); 1062 mutex_unlock(&parent->c->bucket_lock); 1063 1064 if (!IS_ERR_OR_NULL(b)) { 1065 b->parent = parent; 1066 bch_btree_node_read(b); 1067 rw_unlock(true, b); 1068 } 1069 } 1070 1071 /* Btree alloc */ 1072 1073 static void btree_node_free(struct btree *b) 1074 { 1075 trace_bcache_btree_node_free(b); 1076 1077 BUG_ON(b == b->c->root); 1078 1079 retry: 1080 mutex_lock(&b->write_lock); 1081 /* 1082 * If the btree node is selected and flushing in btree_flush_write(), 1083 * delay and retry until the BTREE_NODE_journal_flush bit cleared, 1084 * then it is safe to free the btree node here. Otherwise this btree 1085 * node will be in race condition. 1086 */ 1087 if (btree_node_journal_flush(b)) { 1088 mutex_unlock(&b->write_lock); 1089 pr_debug("bnode %p journal_flush set, retry\n", b); 1090 udelay(1); 1091 goto retry; 1092 } 1093 1094 if (btree_node_dirty(b)) { 1095 btree_complete_write(b, btree_current_write(b)); 1096 clear_bit(BTREE_NODE_dirty, &b->flags); 1097 } 1098 1099 mutex_unlock(&b->write_lock); 1100 1101 cancel_delayed_work(&b->work); 1102 1103 mutex_lock(&b->c->bucket_lock); 1104 bch_bucket_free(b->c, &b->key); 1105 mca_bucket_free(b); 1106 mutex_unlock(&b->c->bucket_lock); 1107 } 1108 1109 struct btree *__bch_btree_node_alloc(struct cache_set *c, struct btree_op *op, 1110 int level, bool wait, 1111 struct btree *parent) 1112 { 1113 BKEY_PADDED(key) k; 1114 struct btree *b = ERR_PTR(-EAGAIN); 1115 1116 mutex_lock(&c->bucket_lock); 1117 retry: 1118 if (__bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, wait)) 1119 goto err; 1120 1121 bkey_put(c, &k.key); 1122 SET_KEY_SIZE(&k.key, c->btree_pages * PAGE_SECTORS); 1123 1124 b = mca_alloc(c, op, &k.key, level); 1125 if (IS_ERR(b)) 1126 goto err_free; 1127 1128 if (!b) { 1129 cache_bug(c, 1130 "Tried to allocate bucket that was in btree cache"); 1131 goto retry; 1132 } 1133 1134 b->parent = parent; 1135 bch_bset_init_next(&b->keys, b->keys.set->data, bset_magic(&b->c->cache->sb)); 1136 1137 mutex_unlock(&c->bucket_lock); 1138 1139 trace_bcache_btree_node_alloc(b); 1140 return b; 1141 err_free: 1142 bch_bucket_free(c, &k.key); 1143 err: 1144 mutex_unlock(&c->bucket_lock); 1145 1146 trace_bcache_btree_node_alloc_fail(c); 1147 return b; 1148 } 1149 1150 static struct btree *bch_btree_node_alloc(struct cache_set *c, 1151 struct btree_op *op, int level, 1152 struct btree *parent) 1153 { 1154 return __bch_btree_node_alloc(c, op, level, op != NULL, parent); 1155 } 1156 1157 static struct btree *btree_node_alloc_replacement(struct btree *b, 1158 struct btree_op *op) 1159 { 1160 struct btree *n = bch_btree_node_alloc(b->c, op, b->level, b->parent); 1161 1162 if (!IS_ERR_OR_NULL(n)) { 1163 mutex_lock(&n->write_lock); 1164 bch_btree_sort_into(&b->keys, &n->keys, &b->c->sort); 1165 bkey_copy_key(&n->key, &b->key); 1166 mutex_unlock(&n->write_lock); 1167 } 1168 1169 return n; 1170 } 1171 1172 static void make_btree_freeing_key(struct btree *b, struct bkey *k) 1173 { 1174 unsigned int i; 1175 1176 mutex_lock(&b->c->bucket_lock); 1177 1178 atomic_inc(&b->c->prio_blocked); 1179 1180 bkey_copy(k, &b->key); 1181 bkey_copy_key(k, &ZERO_KEY); 1182 1183 for (i = 0; i < KEY_PTRS(k); i++) 1184 SET_PTR_GEN(k, i, 1185 bch_inc_gen(b->c->cache, 1186 PTR_BUCKET(b->c, &b->key, i))); 1187 1188 mutex_unlock(&b->c->bucket_lock); 1189 } 1190 1191 static int btree_check_reserve(struct btree *b, struct btree_op *op) 1192 { 1193 struct cache_set *c = b->c; 1194 struct cache *ca = c->cache; 1195 unsigned int reserve = (c->root->level - b->level) * 2 + 1; 1196 1197 mutex_lock(&c->bucket_lock); 1198 1199 if (fifo_used(&ca->free[RESERVE_BTREE]) < reserve) { 1200 if (op) 1201 prepare_to_wait(&c->btree_cache_wait, &op->wait, 1202 TASK_UNINTERRUPTIBLE); 1203 mutex_unlock(&c->bucket_lock); 1204 return -EINTR; 1205 } 1206 1207 mutex_unlock(&c->bucket_lock); 1208 1209 return mca_cannibalize_lock(b->c, op); 1210 } 1211 1212 /* Garbage collection */ 1213 1214 static uint8_t __bch_btree_mark_key(struct cache_set *c, int level, 1215 struct bkey *k) 1216 { 1217 uint8_t stale = 0; 1218 unsigned int i; 1219 struct bucket *g; 1220 1221 /* 1222 * ptr_invalid() can't return true for the keys that mark btree nodes as 1223 * freed, but since ptr_bad() returns true we'll never actually use them 1224 * for anything and thus we don't want mark their pointers here 1225 */ 1226 if (!bkey_cmp(k, &ZERO_KEY)) 1227 return stale; 1228 1229 for (i = 0; i < KEY_PTRS(k); i++) { 1230 if (!ptr_available(c, k, i)) 1231 continue; 1232 1233 g = PTR_BUCKET(c, k, i); 1234 1235 if (gen_after(g->last_gc, PTR_GEN(k, i))) 1236 g->last_gc = PTR_GEN(k, i); 1237 1238 if (ptr_stale(c, k, i)) { 1239 stale = max(stale, ptr_stale(c, k, i)); 1240 continue; 1241 } 1242 1243 cache_bug_on(GC_MARK(g) && 1244 (GC_MARK(g) == GC_MARK_METADATA) != (level != 0), 1245 c, "inconsistent ptrs: mark = %llu, level = %i", 1246 GC_MARK(g), level); 1247 1248 if (level) 1249 SET_GC_MARK(g, GC_MARK_METADATA); 1250 else if (KEY_DIRTY(k)) 1251 SET_GC_MARK(g, GC_MARK_DIRTY); 1252 else if (!GC_MARK(g)) 1253 SET_GC_MARK(g, GC_MARK_RECLAIMABLE); 1254 1255 /* guard against overflow */ 1256 SET_GC_SECTORS_USED(g, min_t(unsigned int, 1257 GC_SECTORS_USED(g) + KEY_SIZE(k), 1258 MAX_GC_SECTORS_USED)); 1259 1260 BUG_ON(!GC_SECTORS_USED(g)); 1261 } 1262 1263 return stale; 1264 } 1265 1266 #define btree_mark_key(b, k) __bch_btree_mark_key(b->c, b->level, k) 1267 1268 void bch_initial_mark_key(struct cache_set *c, int level, struct bkey *k) 1269 { 1270 unsigned int i; 1271 1272 for (i = 0; i < KEY_PTRS(k); i++) 1273 if (ptr_available(c, k, i) && 1274 !ptr_stale(c, k, i)) { 1275 struct bucket *b = PTR_BUCKET(c, k, i); 1276 1277 b->gen = PTR_GEN(k, i); 1278 1279 if (level && bkey_cmp(k, &ZERO_KEY)) 1280 b->prio = BTREE_PRIO; 1281 else if (!level && b->prio == BTREE_PRIO) 1282 b->prio = INITIAL_PRIO; 1283 } 1284 1285 __bch_btree_mark_key(c, level, k); 1286 } 1287 1288 void bch_update_bucket_in_use(struct cache_set *c, struct gc_stat *stats) 1289 { 1290 stats->in_use = (c->nbuckets - c->avail_nbuckets) * 100 / c->nbuckets; 1291 } 1292 1293 static bool btree_gc_mark_node(struct btree *b, struct gc_stat *gc) 1294 { 1295 uint8_t stale = 0; 1296 unsigned int keys = 0, good_keys = 0; 1297 struct bkey *k; 1298 struct btree_iter iter; 1299 struct bset_tree *t; 1300 1301 gc->nodes++; 1302 1303 for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid) { 1304 stale = max(stale, btree_mark_key(b, k)); 1305 keys++; 1306 1307 if (bch_ptr_bad(&b->keys, k)) 1308 continue; 1309 1310 gc->key_bytes += bkey_u64s(k); 1311 gc->nkeys++; 1312 good_keys++; 1313 1314 gc->data += KEY_SIZE(k); 1315 } 1316 1317 for (t = b->keys.set; t <= &b->keys.set[b->keys.nsets]; t++) 1318 btree_bug_on(t->size && 1319 bset_written(&b->keys, t) && 1320 bkey_cmp(&b->key, &t->end) < 0, 1321 b, "found short btree key in gc"); 1322 1323 if (b->c->gc_always_rewrite) 1324 return true; 1325 1326 if (stale > 10) 1327 return true; 1328 1329 if ((keys - good_keys) * 2 > keys) 1330 return true; 1331 1332 return false; 1333 } 1334 1335 #define GC_MERGE_NODES 4U 1336 1337 struct gc_merge_info { 1338 struct btree *b; 1339 unsigned int keys; 1340 }; 1341 1342 static int bch_btree_insert_node(struct btree *b, struct btree_op *op, 1343 struct keylist *insert_keys, 1344 atomic_t *journal_ref, 1345 struct bkey *replace_key); 1346 1347 static int btree_gc_coalesce(struct btree *b, struct btree_op *op, 1348 struct gc_stat *gc, struct gc_merge_info *r) 1349 { 1350 unsigned int i, nodes = 0, keys = 0, blocks; 1351 struct btree *new_nodes[GC_MERGE_NODES]; 1352 struct keylist keylist; 1353 struct closure cl; 1354 struct bkey *k; 1355 1356 bch_keylist_init(&keylist); 1357 1358 if (btree_check_reserve(b, NULL)) 1359 return 0; 1360 1361 memset(new_nodes, 0, sizeof(new_nodes)); 1362 closure_init_stack(&cl); 1363 1364 while (nodes < GC_MERGE_NODES && !IS_ERR_OR_NULL(r[nodes].b)) 1365 keys += r[nodes++].keys; 1366 1367 blocks = btree_default_blocks(b->c) * 2 / 3; 1368 1369 if (nodes < 2 || 1370 __set_blocks(b->keys.set[0].data, keys, 1371 block_bytes(b->c->cache)) > blocks * (nodes - 1)) 1372 return 0; 1373 1374 for (i = 0; i < nodes; i++) { 1375 new_nodes[i] = btree_node_alloc_replacement(r[i].b, NULL); 1376 if (IS_ERR_OR_NULL(new_nodes[i])) 1377 goto out_nocoalesce; 1378 } 1379 1380 /* 1381 * We have to check the reserve here, after we've allocated our new 1382 * nodes, to make sure the insert below will succeed - we also check 1383 * before as an optimization to potentially avoid a bunch of expensive 1384 * allocs/sorts 1385 */ 1386 if (btree_check_reserve(b, NULL)) 1387 goto out_nocoalesce; 1388 1389 for (i = 0; i < nodes; i++) 1390 mutex_lock(&new_nodes[i]->write_lock); 1391 1392 for (i = nodes - 1; i > 0; --i) { 1393 struct bset *n1 = btree_bset_first(new_nodes[i]); 1394 struct bset *n2 = btree_bset_first(new_nodes[i - 1]); 1395 struct bkey *k, *last = NULL; 1396 1397 keys = 0; 1398 1399 if (i > 1) { 1400 for (k = n2->start; 1401 k < bset_bkey_last(n2); 1402 k = bkey_next(k)) { 1403 if (__set_blocks(n1, n1->keys + keys + 1404 bkey_u64s(k), 1405 block_bytes(b->c->cache)) > blocks) 1406 break; 1407 1408 last = k; 1409 keys += bkey_u64s(k); 1410 } 1411 } else { 1412 /* 1413 * Last node we're not getting rid of - we're getting 1414 * rid of the node at r[0]. Have to try and fit all of 1415 * the remaining keys into this node; we can't ensure 1416 * they will always fit due to rounding and variable 1417 * length keys (shouldn't be possible in practice, 1418 * though) 1419 */ 1420 if (__set_blocks(n1, n1->keys + n2->keys, 1421 block_bytes(b->c->cache)) > 1422 btree_blocks(new_nodes[i])) 1423 goto out_unlock_nocoalesce; 1424 1425 keys = n2->keys; 1426 /* Take the key of the node we're getting rid of */ 1427 last = &r->b->key; 1428 } 1429 1430 BUG_ON(__set_blocks(n1, n1->keys + keys, block_bytes(b->c->cache)) > 1431 btree_blocks(new_nodes[i])); 1432 1433 if (last) 1434 bkey_copy_key(&new_nodes[i]->key, last); 1435 1436 memcpy(bset_bkey_last(n1), 1437 n2->start, 1438 (void *) bset_bkey_idx(n2, keys) - (void *) n2->start); 1439 1440 n1->keys += keys; 1441 r[i].keys = n1->keys; 1442 1443 memmove(n2->start, 1444 bset_bkey_idx(n2, keys), 1445 (void *) bset_bkey_last(n2) - 1446 (void *) bset_bkey_idx(n2, keys)); 1447 1448 n2->keys -= keys; 1449 1450 if (__bch_keylist_realloc(&keylist, 1451 bkey_u64s(&new_nodes[i]->key))) 1452 goto out_unlock_nocoalesce; 1453 1454 bch_btree_node_write(new_nodes[i], &cl); 1455 bch_keylist_add(&keylist, &new_nodes[i]->key); 1456 } 1457 1458 for (i = 0; i < nodes; i++) 1459 mutex_unlock(&new_nodes[i]->write_lock); 1460 1461 closure_sync(&cl); 1462 1463 /* We emptied out this node */ 1464 BUG_ON(btree_bset_first(new_nodes[0])->keys); 1465 btree_node_free(new_nodes[0]); 1466 rw_unlock(true, new_nodes[0]); 1467 new_nodes[0] = NULL; 1468 1469 for (i = 0; i < nodes; i++) { 1470 if (__bch_keylist_realloc(&keylist, bkey_u64s(&r[i].b->key))) 1471 goto out_nocoalesce; 1472 1473 make_btree_freeing_key(r[i].b, keylist.top); 1474 bch_keylist_push(&keylist); 1475 } 1476 1477 bch_btree_insert_node(b, op, &keylist, NULL, NULL); 1478 BUG_ON(!bch_keylist_empty(&keylist)); 1479 1480 for (i = 0; i < nodes; i++) { 1481 btree_node_free(r[i].b); 1482 rw_unlock(true, r[i].b); 1483 1484 r[i].b = new_nodes[i]; 1485 } 1486 1487 memmove(r, r + 1, sizeof(r[0]) * (nodes - 1)); 1488 r[nodes - 1].b = ERR_PTR(-EINTR); 1489 1490 trace_bcache_btree_gc_coalesce(nodes); 1491 gc->nodes--; 1492 1493 bch_keylist_free(&keylist); 1494 1495 /* Invalidated our iterator */ 1496 return -EINTR; 1497 1498 out_unlock_nocoalesce: 1499 for (i = 0; i < nodes; i++) 1500 mutex_unlock(&new_nodes[i]->write_lock); 1501 1502 out_nocoalesce: 1503 closure_sync(&cl); 1504 1505 while ((k = bch_keylist_pop(&keylist))) 1506 if (!bkey_cmp(k, &ZERO_KEY)) 1507 atomic_dec(&b->c->prio_blocked); 1508 bch_keylist_free(&keylist); 1509 1510 for (i = 0; i < nodes; i++) 1511 if (!IS_ERR_OR_NULL(new_nodes[i])) { 1512 btree_node_free(new_nodes[i]); 1513 rw_unlock(true, new_nodes[i]); 1514 } 1515 return 0; 1516 } 1517 1518 static int btree_gc_rewrite_node(struct btree *b, struct btree_op *op, 1519 struct btree *replace) 1520 { 1521 struct keylist keys; 1522 struct btree *n; 1523 1524 if (btree_check_reserve(b, NULL)) 1525 return 0; 1526 1527 n = btree_node_alloc_replacement(replace, NULL); 1528 1529 /* recheck reserve after allocating replacement node */ 1530 if (btree_check_reserve(b, NULL)) { 1531 btree_node_free(n); 1532 rw_unlock(true, n); 1533 return 0; 1534 } 1535 1536 bch_btree_node_write_sync(n); 1537 1538 bch_keylist_init(&keys); 1539 bch_keylist_add(&keys, &n->key); 1540 1541 make_btree_freeing_key(replace, keys.top); 1542 bch_keylist_push(&keys); 1543 1544 bch_btree_insert_node(b, op, &keys, NULL, NULL); 1545 BUG_ON(!bch_keylist_empty(&keys)); 1546 1547 btree_node_free(replace); 1548 rw_unlock(true, n); 1549 1550 /* Invalidated our iterator */ 1551 return -EINTR; 1552 } 1553 1554 static unsigned int btree_gc_count_keys(struct btree *b) 1555 { 1556 struct bkey *k; 1557 struct btree_iter iter; 1558 unsigned int ret = 0; 1559 1560 for_each_key_filter(&b->keys, k, &iter, bch_ptr_bad) 1561 ret += bkey_u64s(k); 1562 1563 return ret; 1564 } 1565 1566 static size_t btree_gc_min_nodes(struct cache_set *c) 1567 { 1568 size_t min_nodes; 1569 1570 /* 1571 * Since incremental GC would stop 100ms when front 1572 * side I/O comes, so when there are many btree nodes, 1573 * if GC only processes constant (100) nodes each time, 1574 * GC would last a long time, and the front side I/Os 1575 * would run out of the buckets (since no new bucket 1576 * can be allocated during GC), and be blocked again. 1577 * So GC should not process constant nodes, but varied 1578 * nodes according to the number of btree nodes, which 1579 * realized by dividing GC into constant(100) times, 1580 * so when there are many btree nodes, GC can process 1581 * more nodes each time, otherwise, GC will process less 1582 * nodes each time (but no less than MIN_GC_NODES) 1583 */ 1584 min_nodes = c->gc_stats.nodes / MAX_GC_TIMES; 1585 if (min_nodes < MIN_GC_NODES) 1586 min_nodes = MIN_GC_NODES; 1587 1588 return min_nodes; 1589 } 1590 1591 1592 static int btree_gc_recurse(struct btree *b, struct btree_op *op, 1593 struct closure *writes, struct gc_stat *gc) 1594 { 1595 int ret = 0; 1596 bool should_rewrite; 1597 struct bkey *k; 1598 struct btree_iter iter; 1599 struct gc_merge_info r[GC_MERGE_NODES]; 1600 struct gc_merge_info *i, *last = r + ARRAY_SIZE(r) - 1; 1601 1602 bch_btree_iter_init(&b->keys, &iter, &b->c->gc_done); 1603 1604 for (i = r; i < r + ARRAY_SIZE(r); i++) 1605 i->b = ERR_PTR(-EINTR); 1606 1607 while (1) { 1608 k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad); 1609 if (k) { 1610 r->b = bch_btree_node_get(b->c, op, k, b->level - 1, 1611 true, b); 1612 if (IS_ERR(r->b)) { 1613 ret = PTR_ERR(r->b); 1614 break; 1615 } 1616 1617 r->keys = btree_gc_count_keys(r->b); 1618 1619 ret = btree_gc_coalesce(b, op, gc, r); 1620 if (ret) 1621 break; 1622 } 1623 1624 if (!last->b) 1625 break; 1626 1627 if (!IS_ERR(last->b)) { 1628 should_rewrite = btree_gc_mark_node(last->b, gc); 1629 if (should_rewrite) { 1630 ret = btree_gc_rewrite_node(b, op, last->b); 1631 if (ret) 1632 break; 1633 } 1634 1635 if (last->b->level) { 1636 ret = btree_gc_recurse(last->b, op, writes, gc); 1637 if (ret) 1638 break; 1639 } 1640 1641 bkey_copy_key(&b->c->gc_done, &last->b->key); 1642 1643 /* 1644 * Must flush leaf nodes before gc ends, since replace 1645 * operations aren't journalled 1646 */ 1647 mutex_lock(&last->b->write_lock); 1648 if (btree_node_dirty(last->b)) 1649 bch_btree_node_write(last->b, writes); 1650 mutex_unlock(&last->b->write_lock); 1651 rw_unlock(true, last->b); 1652 } 1653 1654 memmove(r + 1, r, sizeof(r[0]) * (GC_MERGE_NODES - 1)); 1655 r->b = NULL; 1656 1657 if (atomic_read(&b->c->search_inflight) && 1658 gc->nodes >= gc->nodes_pre + btree_gc_min_nodes(b->c)) { 1659 gc->nodes_pre = gc->nodes; 1660 ret = -EAGAIN; 1661 break; 1662 } 1663 1664 if (need_resched()) { 1665 ret = -EAGAIN; 1666 break; 1667 } 1668 } 1669 1670 for (i = r; i < r + ARRAY_SIZE(r); i++) 1671 if (!IS_ERR_OR_NULL(i->b)) { 1672 mutex_lock(&i->b->write_lock); 1673 if (btree_node_dirty(i->b)) 1674 bch_btree_node_write(i->b, writes); 1675 mutex_unlock(&i->b->write_lock); 1676 rw_unlock(true, i->b); 1677 } 1678 1679 return ret; 1680 } 1681 1682 static int bch_btree_gc_root(struct btree *b, struct btree_op *op, 1683 struct closure *writes, struct gc_stat *gc) 1684 { 1685 struct btree *n = NULL; 1686 int ret = 0; 1687 bool should_rewrite; 1688 1689 should_rewrite = btree_gc_mark_node(b, gc); 1690 if (should_rewrite) { 1691 n = btree_node_alloc_replacement(b, NULL); 1692 1693 if (!IS_ERR_OR_NULL(n)) { 1694 bch_btree_node_write_sync(n); 1695 1696 bch_btree_set_root(n); 1697 btree_node_free(b); 1698 rw_unlock(true, n); 1699 1700 return -EINTR; 1701 } 1702 } 1703 1704 __bch_btree_mark_key(b->c, b->level + 1, &b->key); 1705 1706 if (b->level) { 1707 ret = btree_gc_recurse(b, op, writes, gc); 1708 if (ret) 1709 return ret; 1710 } 1711 1712 bkey_copy_key(&b->c->gc_done, &b->key); 1713 1714 return ret; 1715 } 1716 1717 static void btree_gc_start(struct cache_set *c) 1718 { 1719 struct cache *ca; 1720 struct bucket *b; 1721 1722 if (!c->gc_mark_valid) 1723 return; 1724 1725 mutex_lock(&c->bucket_lock); 1726 1727 c->gc_mark_valid = 0; 1728 c->gc_done = ZERO_KEY; 1729 1730 ca = c->cache; 1731 for_each_bucket(b, ca) { 1732 b->last_gc = b->gen; 1733 if (!atomic_read(&b->pin)) { 1734 SET_GC_MARK(b, 0); 1735 SET_GC_SECTORS_USED(b, 0); 1736 } 1737 } 1738 1739 mutex_unlock(&c->bucket_lock); 1740 } 1741 1742 static void bch_btree_gc_finish(struct cache_set *c) 1743 { 1744 struct bucket *b; 1745 struct cache *ca; 1746 unsigned int i, j; 1747 uint64_t *k; 1748 1749 mutex_lock(&c->bucket_lock); 1750 1751 set_gc_sectors(c); 1752 c->gc_mark_valid = 1; 1753 c->need_gc = 0; 1754 1755 for (i = 0; i < KEY_PTRS(&c->uuid_bucket); i++) 1756 SET_GC_MARK(PTR_BUCKET(c, &c->uuid_bucket, i), 1757 GC_MARK_METADATA); 1758 1759 /* don't reclaim buckets to which writeback keys point */ 1760 rcu_read_lock(); 1761 for (i = 0; i < c->devices_max_used; i++) { 1762 struct bcache_device *d = c->devices[i]; 1763 struct cached_dev *dc; 1764 struct keybuf_key *w, *n; 1765 1766 if (!d || UUID_FLASH_ONLY(&c->uuids[i])) 1767 continue; 1768 dc = container_of(d, struct cached_dev, disk); 1769 1770 spin_lock(&dc->writeback_keys.lock); 1771 rbtree_postorder_for_each_entry_safe(w, n, 1772 &dc->writeback_keys.keys, node) 1773 for (j = 0; j < KEY_PTRS(&w->key); j++) 1774 SET_GC_MARK(PTR_BUCKET(c, &w->key, j), 1775 GC_MARK_DIRTY); 1776 spin_unlock(&dc->writeback_keys.lock); 1777 } 1778 rcu_read_unlock(); 1779 1780 c->avail_nbuckets = 0; 1781 1782 ca = c->cache; 1783 ca->invalidate_needs_gc = 0; 1784 1785 for (k = ca->sb.d; k < ca->sb.d + ca->sb.keys; k++) 1786 SET_GC_MARK(ca->buckets + *k, GC_MARK_METADATA); 1787 1788 for (k = ca->prio_buckets; 1789 k < ca->prio_buckets + prio_buckets(ca) * 2; k++) 1790 SET_GC_MARK(ca->buckets + *k, GC_MARK_METADATA); 1791 1792 for_each_bucket(b, ca) { 1793 c->need_gc = max(c->need_gc, bucket_gc_gen(b)); 1794 1795 if (atomic_read(&b->pin)) 1796 continue; 1797 1798 BUG_ON(!GC_MARK(b) && GC_SECTORS_USED(b)); 1799 1800 if (!GC_MARK(b) || GC_MARK(b) == GC_MARK_RECLAIMABLE) 1801 c->avail_nbuckets++; 1802 } 1803 1804 mutex_unlock(&c->bucket_lock); 1805 } 1806 1807 static void bch_btree_gc(struct cache_set *c) 1808 { 1809 int ret; 1810 struct gc_stat stats; 1811 struct closure writes; 1812 struct btree_op op; 1813 uint64_t start_time = local_clock(); 1814 1815 trace_bcache_gc_start(c); 1816 1817 memset(&stats, 0, sizeof(struct gc_stat)); 1818 closure_init_stack(&writes); 1819 bch_btree_op_init(&op, SHRT_MAX); 1820 1821 btree_gc_start(c); 1822 1823 /* if CACHE_SET_IO_DISABLE set, gc thread should stop too */ 1824 do { 1825 ret = bcache_btree_root(gc_root, c, &op, &writes, &stats); 1826 closure_sync(&writes); 1827 cond_resched(); 1828 1829 if (ret == -EAGAIN) 1830 schedule_timeout_interruptible(msecs_to_jiffies 1831 (GC_SLEEP_MS)); 1832 else if (ret) 1833 pr_warn("gc failed!\n"); 1834 } while (ret && !test_bit(CACHE_SET_IO_DISABLE, &c->flags)); 1835 1836 bch_btree_gc_finish(c); 1837 wake_up_allocators(c); 1838 1839 bch_time_stats_update(&c->btree_gc_time, start_time); 1840 1841 stats.key_bytes *= sizeof(uint64_t); 1842 stats.data <<= 9; 1843 bch_update_bucket_in_use(c, &stats); 1844 memcpy(&c->gc_stats, &stats, sizeof(struct gc_stat)); 1845 1846 trace_bcache_gc_end(c); 1847 1848 bch_moving_gc(c); 1849 } 1850 1851 static bool gc_should_run(struct cache_set *c) 1852 { 1853 struct cache *ca = c->cache; 1854 1855 if (ca->invalidate_needs_gc) 1856 return true; 1857 1858 if (atomic_read(&c->sectors_to_gc) < 0) 1859 return true; 1860 1861 return false; 1862 } 1863 1864 static int bch_gc_thread(void *arg) 1865 { 1866 struct cache_set *c = arg; 1867 1868 while (1) { 1869 wait_event_interruptible(c->gc_wait, 1870 kthread_should_stop() || 1871 test_bit(CACHE_SET_IO_DISABLE, &c->flags) || 1872 gc_should_run(c)); 1873 1874 if (kthread_should_stop() || 1875 test_bit(CACHE_SET_IO_DISABLE, &c->flags)) 1876 break; 1877 1878 set_gc_sectors(c); 1879 bch_btree_gc(c); 1880 } 1881 1882 wait_for_kthread_stop(); 1883 return 0; 1884 } 1885 1886 int bch_gc_thread_start(struct cache_set *c) 1887 { 1888 c->gc_thread = kthread_run(bch_gc_thread, c, "bcache_gc"); 1889 return PTR_ERR_OR_ZERO(c->gc_thread); 1890 } 1891 1892 /* Initial partial gc */ 1893 1894 static int bch_btree_check_recurse(struct btree *b, struct btree_op *op) 1895 { 1896 int ret = 0; 1897 struct bkey *k, *p = NULL; 1898 struct btree_iter iter; 1899 1900 for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid) 1901 bch_initial_mark_key(b->c, b->level, k); 1902 1903 bch_initial_mark_key(b->c, b->level + 1, &b->key); 1904 1905 if (b->level) { 1906 bch_btree_iter_init(&b->keys, &iter, NULL); 1907 1908 do { 1909 k = bch_btree_iter_next_filter(&iter, &b->keys, 1910 bch_ptr_bad); 1911 if (k) { 1912 btree_node_prefetch(b, k); 1913 /* 1914 * initiallize c->gc_stats.nodes 1915 * for incremental GC 1916 */ 1917 b->c->gc_stats.nodes++; 1918 } 1919 1920 if (p) 1921 ret = bcache_btree(check_recurse, p, b, op); 1922 1923 p = k; 1924 } while (p && !ret); 1925 } 1926 1927 return ret; 1928 } 1929 1930 1931 static int bch_btree_check_thread(void *arg) 1932 { 1933 int ret; 1934 struct btree_check_info *info = arg; 1935 struct btree_check_state *check_state = info->state; 1936 struct cache_set *c = check_state->c; 1937 struct btree_iter iter; 1938 struct bkey *k, *p; 1939 int cur_idx, prev_idx, skip_nr; 1940 1941 k = p = NULL; 1942 cur_idx = prev_idx = 0; 1943 ret = 0; 1944 1945 /* root node keys are checked before thread created */ 1946 bch_btree_iter_init(&c->root->keys, &iter, NULL); 1947 k = bch_btree_iter_next_filter(&iter, &c->root->keys, bch_ptr_bad); 1948 BUG_ON(!k); 1949 1950 p = k; 1951 while (k) { 1952 /* 1953 * Fetch a root node key index, skip the keys which 1954 * should be fetched by other threads, then check the 1955 * sub-tree indexed by the fetched key. 1956 */ 1957 spin_lock(&check_state->idx_lock); 1958 cur_idx = check_state->key_idx; 1959 check_state->key_idx++; 1960 spin_unlock(&check_state->idx_lock); 1961 1962 skip_nr = cur_idx - prev_idx; 1963 1964 while (skip_nr) { 1965 k = bch_btree_iter_next_filter(&iter, 1966 &c->root->keys, 1967 bch_ptr_bad); 1968 if (k) 1969 p = k; 1970 else { 1971 /* 1972 * No more keys to check in root node, 1973 * current checking threads are enough, 1974 * stop creating more. 1975 */ 1976 atomic_set(&check_state->enough, 1); 1977 /* Update check_state->enough earlier */ 1978 smp_mb__after_atomic(); 1979 goto out; 1980 } 1981 skip_nr--; 1982 cond_resched(); 1983 } 1984 1985 if (p) { 1986 struct btree_op op; 1987 1988 btree_node_prefetch(c->root, p); 1989 c->gc_stats.nodes++; 1990 bch_btree_op_init(&op, 0); 1991 ret = bcache_btree(check_recurse, p, c->root, &op); 1992 if (ret) 1993 goto out; 1994 } 1995 p = NULL; 1996 prev_idx = cur_idx; 1997 cond_resched(); 1998 } 1999 2000 out: 2001 info->result = ret; 2002 /* update check_state->started among all CPUs */ 2003 smp_mb__before_atomic(); 2004 if (atomic_dec_and_test(&check_state->started)) 2005 wake_up(&check_state->wait); 2006 2007 return ret; 2008 } 2009 2010 2011 2012 static int bch_btree_chkthread_nr(void) 2013 { 2014 int n = num_online_cpus()/2; 2015 2016 if (n == 0) 2017 n = 1; 2018 else if (n > BCH_BTR_CHKTHREAD_MAX) 2019 n = BCH_BTR_CHKTHREAD_MAX; 2020 2021 return n; 2022 } 2023 2024 int bch_btree_check(struct cache_set *c) 2025 { 2026 int ret = 0; 2027 int i; 2028 struct bkey *k = NULL; 2029 struct btree_iter iter; 2030 struct btree_check_state check_state; 2031 2032 /* check and mark root node keys */ 2033 for_each_key_filter(&c->root->keys, k, &iter, bch_ptr_invalid) 2034 bch_initial_mark_key(c, c->root->level, k); 2035 2036 bch_initial_mark_key(c, c->root->level + 1, &c->root->key); 2037 2038 if (c->root->level == 0) 2039 return 0; 2040 2041 memset(&check_state, 0, sizeof(struct btree_check_state)); 2042 check_state.c = c; 2043 check_state.total_threads = bch_btree_chkthread_nr(); 2044 check_state.key_idx = 0; 2045 spin_lock_init(&check_state.idx_lock); 2046 atomic_set(&check_state.started, 0); 2047 atomic_set(&check_state.enough, 0); 2048 init_waitqueue_head(&check_state.wait); 2049 2050 rw_lock(0, c->root, c->root->level); 2051 /* 2052 * Run multiple threads to check btree nodes in parallel, 2053 * if check_state.enough is non-zero, it means current 2054 * running check threads are enough, unncessary to create 2055 * more. 2056 */ 2057 for (i = 0; i < check_state.total_threads; i++) { 2058 /* fetch latest check_state.enough earlier */ 2059 smp_mb__before_atomic(); 2060 if (atomic_read(&check_state.enough)) 2061 break; 2062 2063 check_state.infos[i].result = 0; 2064 check_state.infos[i].state = &check_state; 2065 2066 check_state.infos[i].thread = 2067 kthread_run(bch_btree_check_thread, 2068 &check_state.infos[i], 2069 "bch_btrchk[%d]", i); 2070 if (IS_ERR(check_state.infos[i].thread)) { 2071 pr_err("fails to run thread bch_btrchk[%d]\n", i); 2072 for (--i; i >= 0; i--) 2073 kthread_stop(check_state.infos[i].thread); 2074 ret = -ENOMEM; 2075 goto out; 2076 } 2077 atomic_inc(&check_state.started); 2078 } 2079 2080 /* 2081 * Must wait for all threads to stop. 2082 */ 2083 wait_event(check_state.wait, atomic_read(&check_state.started) == 0); 2084 2085 for (i = 0; i < check_state.total_threads; i++) { 2086 if (check_state.infos[i].result) { 2087 ret = check_state.infos[i].result; 2088 goto out; 2089 } 2090 } 2091 2092 out: 2093 rw_unlock(0, c->root); 2094 return ret; 2095 } 2096 2097 void bch_initial_gc_finish(struct cache_set *c) 2098 { 2099 struct cache *ca = c->cache; 2100 struct bucket *b; 2101 2102 bch_btree_gc_finish(c); 2103 2104 mutex_lock(&c->bucket_lock); 2105 2106 /* 2107 * We need to put some unused buckets directly on the prio freelist in 2108 * order to get the allocator thread started - it needs freed buckets in 2109 * order to rewrite the prios and gens, and it needs to rewrite prios 2110 * and gens in order to free buckets. 2111 * 2112 * This is only safe for buckets that have no live data in them, which 2113 * there should always be some of. 2114 */ 2115 for_each_bucket(b, ca) { 2116 if (fifo_full(&ca->free[RESERVE_PRIO]) && 2117 fifo_full(&ca->free[RESERVE_BTREE])) 2118 break; 2119 2120 if (bch_can_invalidate_bucket(ca, b) && 2121 !GC_MARK(b)) { 2122 __bch_invalidate_one_bucket(ca, b); 2123 if (!fifo_push(&ca->free[RESERVE_PRIO], 2124 b - ca->buckets)) 2125 fifo_push(&ca->free[RESERVE_BTREE], 2126 b - ca->buckets); 2127 } 2128 } 2129 2130 mutex_unlock(&c->bucket_lock); 2131 } 2132 2133 /* Btree insertion */ 2134 2135 static bool btree_insert_key(struct btree *b, struct bkey *k, 2136 struct bkey *replace_key) 2137 { 2138 unsigned int status; 2139 2140 BUG_ON(bkey_cmp(k, &b->key) > 0); 2141 2142 status = bch_btree_insert_key(&b->keys, k, replace_key); 2143 if (status != BTREE_INSERT_STATUS_NO_INSERT) { 2144 bch_check_keys(&b->keys, "%u for %s", status, 2145 replace_key ? "replace" : "insert"); 2146 2147 trace_bcache_btree_insert_key(b, k, replace_key != NULL, 2148 status); 2149 return true; 2150 } else 2151 return false; 2152 } 2153 2154 static size_t insert_u64s_remaining(struct btree *b) 2155 { 2156 long ret = bch_btree_keys_u64s_remaining(&b->keys); 2157 2158 /* 2159 * Might land in the middle of an existing extent and have to split it 2160 */ 2161 if (b->keys.ops->is_extents) 2162 ret -= KEY_MAX_U64S; 2163 2164 return max(ret, 0L); 2165 } 2166 2167 static bool bch_btree_insert_keys(struct btree *b, struct btree_op *op, 2168 struct keylist *insert_keys, 2169 struct bkey *replace_key) 2170 { 2171 bool ret = false; 2172 int oldsize = bch_count_data(&b->keys); 2173 2174 while (!bch_keylist_empty(insert_keys)) { 2175 struct bkey *k = insert_keys->keys; 2176 2177 if (bkey_u64s(k) > insert_u64s_remaining(b)) 2178 break; 2179 2180 if (bkey_cmp(k, &b->key) <= 0) { 2181 if (!b->level) 2182 bkey_put(b->c, k); 2183 2184 ret |= btree_insert_key(b, k, replace_key); 2185 bch_keylist_pop_front(insert_keys); 2186 } else if (bkey_cmp(&START_KEY(k), &b->key) < 0) { 2187 BKEY_PADDED(key) temp; 2188 bkey_copy(&temp.key, insert_keys->keys); 2189 2190 bch_cut_back(&b->key, &temp.key); 2191 bch_cut_front(&b->key, insert_keys->keys); 2192 2193 ret |= btree_insert_key(b, &temp.key, replace_key); 2194 break; 2195 } else { 2196 break; 2197 } 2198 } 2199 2200 if (!ret) 2201 op->insert_collision = true; 2202 2203 BUG_ON(!bch_keylist_empty(insert_keys) && b->level); 2204 2205 BUG_ON(bch_count_data(&b->keys) < oldsize); 2206 return ret; 2207 } 2208 2209 static int btree_split(struct btree *b, struct btree_op *op, 2210 struct keylist *insert_keys, 2211 struct bkey *replace_key) 2212 { 2213 bool split; 2214 struct btree *n1, *n2 = NULL, *n3 = NULL; 2215 uint64_t start_time = local_clock(); 2216 struct closure cl; 2217 struct keylist parent_keys; 2218 2219 closure_init_stack(&cl); 2220 bch_keylist_init(&parent_keys); 2221 2222 if (btree_check_reserve(b, op)) { 2223 if (!b->level) 2224 return -EINTR; 2225 else 2226 WARN(1, "insufficient reserve for split\n"); 2227 } 2228 2229 n1 = btree_node_alloc_replacement(b, op); 2230 if (IS_ERR(n1)) 2231 goto err; 2232 2233 split = set_blocks(btree_bset_first(n1), 2234 block_bytes(n1->c->cache)) > (btree_blocks(b) * 4) / 5; 2235 2236 if (split) { 2237 unsigned int keys = 0; 2238 2239 trace_bcache_btree_node_split(b, btree_bset_first(n1)->keys); 2240 2241 n2 = bch_btree_node_alloc(b->c, op, b->level, b->parent); 2242 if (IS_ERR(n2)) 2243 goto err_free1; 2244 2245 if (!b->parent) { 2246 n3 = bch_btree_node_alloc(b->c, op, b->level + 1, NULL); 2247 if (IS_ERR(n3)) 2248 goto err_free2; 2249 } 2250 2251 mutex_lock(&n1->write_lock); 2252 mutex_lock(&n2->write_lock); 2253 2254 bch_btree_insert_keys(n1, op, insert_keys, replace_key); 2255 2256 /* 2257 * Has to be a linear search because we don't have an auxiliary 2258 * search tree yet 2259 */ 2260 2261 while (keys < (btree_bset_first(n1)->keys * 3) / 5) 2262 keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1), 2263 keys)); 2264 2265 bkey_copy_key(&n1->key, 2266 bset_bkey_idx(btree_bset_first(n1), keys)); 2267 keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1), keys)); 2268 2269 btree_bset_first(n2)->keys = btree_bset_first(n1)->keys - keys; 2270 btree_bset_first(n1)->keys = keys; 2271 2272 memcpy(btree_bset_first(n2)->start, 2273 bset_bkey_last(btree_bset_first(n1)), 2274 btree_bset_first(n2)->keys * sizeof(uint64_t)); 2275 2276 bkey_copy_key(&n2->key, &b->key); 2277 2278 bch_keylist_add(&parent_keys, &n2->key); 2279 bch_btree_node_write(n2, &cl); 2280 mutex_unlock(&n2->write_lock); 2281 rw_unlock(true, n2); 2282 } else { 2283 trace_bcache_btree_node_compact(b, btree_bset_first(n1)->keys); 2284 2285 mutex_lock(&n1->write_lock); 2286 bch_btree_insert_keys(n1, op, insert_keys, replace_key); 2287 } 2288 2289 bch_keylist_add(&parent_keys, &n1->key); 2290 bch_btree_node_write(n1, &cl); 2291 mutex_unlock(&n1->write_lock); 2292 2293 if (n3) { 2294 /* Depth increases, make a new root */ 2295 mutex_lock(&n3->write_lock); 2296 bkey_copy_key(&n3->key, &MAX_KEY); 2297 bch_btree_insert_keys(n3, op, &parent_keys, NULL); 2298 bch_btree_node_write(n3, &cl); 2299 mutex_unlock(&n3->write_lock); 2300 2301 closure_sync(&cl); 2302 bch_btree_set_root(n3); 2303 rw_unlock(true, n3); 2304 } else if (!b->parent) { 2305 /* Root filled up but didn't need to be split */ 2306 closure_sync(&cl); 2307 bch_btree_set_root(n1); 2308 } else { 2309 /* Split a non root node */ 2310 closure_sync(&cl); 2311 make_btree_freeing_key(b, parent_keys.top); 2312 bch_keylist_push(&parent_keys); 2313 2314 bch_btree_insert_node(b->parent, op, &parent_keys, NULL, NULL); 2315 BUG_ON(!bch_keylist_empty(&parent_keys)); 2316 } 2317 2318 btree_node_free(b); 2319 rw_unlock(true, n1); 2320 2321 bch_time_stats_update(&b->c->btree_split_time, start_time); 2322 2323 return 0; 2324 err_free2: 2325 bkey_put(b->c, &n2->key); 2326 btree_node_free(n2); 2327 rw_unlock(true, n2); 2328 err_free1: 2329 bkey_put(b->c, &n1->key); 2330 btree_node_free(n1); 2331 rw_unlock(true, n1); 2332 err: 2333 WARN(1, "bcache: btree split failed (level %u)", b->level); 2334 2335 if (n3 == ERR_PTR(-EAGAIN) || 2336 n2 == ERR_PTR(-EAGAIN) || 2337 n1 == ERR_PTR(-EAGAIN)) 2338 return -EAGAIN; 2339 2340 return -ENOMEM; 2341 } 2342 2343 static int bch_btree_insert_node(struct btree *b, struct btree_op *op, 2344 struct keylist *insert_keys, 2345 atomic_t *journal_ref, 2346 struct bkey *replace_key) 2347 { 2348 struct closure cl; 2349 2350 BUG_ON(b->level && replace_key); 2351 2352 closure_init_stack(&cl); 2353 2354 mutex_lock(&b->write_lock); 2355 2356 if (write_block(b) != btree_bset_last(b) && 2357 b->keys.last_set_unwritten) 2358 bch_btree_init_next(b); /* just wrote a set */ 2359 2360 if (bch_keylist_nkeys(insert_keys) > insert_u64s_remaining(b)) { 2361 mutex_unlock(&b->write_lock); 2362 goto split; 2363 } 2364 2365 BUG_ON(write_block(b) != btree_bset_last(b)); 2366 2367 if (bch_btree_insert_keys(b, op, insert_keys, replace_key)) { 2368 if (!b->level) 2369 bch_btree_leaf_dirty(b, journal_ref); 2370 else 2371 bch_btree_node_write(b, &cl); 2372 } 2373 2374 mutex_unlock(&b->write_lock); 2375 2376 /* wait for btree node write if necessary, after unlock */ 2377 closure_sync(&cl); 2378 2379 return 0; 2380 split: 2381 if (current->bio_list) { 2382 op->lock = b->c->root->level + 1; 2383 return -EAGAIN; 2384 } else if (op->lock <= b->c->root->level) { 2385 op->lock = b->c->root->level + 1; 2386 return -EINTR; 2387 } else { 2388 /* Invalidated all iterators */ 2389 int ret = btree_split(b, op, insert_keys, replace_key); 2390 2391 if (bch_keylist_empty(insert_keys)) 2392 return 0; 2393 else if (!ret) 2394 return -EINTR; 2395 return ret; 2396 } 2397 } 2398 2399 int bch_btree_insert_check_key(struct btree *b, struct btree_op *op, 2400 struct bkey *check_key) 2401 { 2402 int ret = -EINTR; 2403 uint64_t btree_ptr = b->key.ptr[0]; 2404 unsigned long seq = b->seq; 2405 struct keylist insert; 2406 bool upgrade = op->lock == -1; 2407 2408 bch_keylist_init(&insert); 2409 2410 if (upgrade) { 2411 rw_unlock(false, b); 2412 rw_lock(true, b, b->level); 2413 2414 if (b->key.ptr[0] != btree_ptr || 2415 b->seq != seq + 1) { 2416 op->lock = b->level; 2417 goto out; 2418 } 2419 } 2420 2421 SET_KEY_PTRS(check_key, 1); 2422 get_random_bytes(&check_key->ptr[0], sizeof(uint64_t)); 2423 2424 SET_PTR_DEV(check_key, 0, PTR_CHECK_DEV); 2425 2426 bch_keylist_add(&insert, check_key); 2427 2428 ret = bch_btree_insert_node(b, op, &insert, NULL, NULL); 2429 2430 BUG_ON(!ret && !bch_keylist_empty(&insert)); 2431 out: 2432 if (upgrade) 2433 downgrade_write(&b->lock); 2434 return ret; 2435 } 2436 2437 struct btree_insert_op { 2438 struct btree_op op; 2439 struct keylist *keys; 2440 atomic_t *journal_ref; 2441 struct bkey *replace_key; 2442 }; 2443 2444 static int btree_insert_fn(struct btree_op *b_op, struct btree *b) 2445 { 2446 struct btree_insert_op *op = container_of(b_op, 2447 struct btree_insert_op, op); 2448 2449 int ret = bch_btree_insert_node(b, &op->op, op->keys, 2450 op->journal_ref, op->replace_key); 2451 if (ret && !bch_keylist_empty(op->keys)) 2452 return ret; 2453 else 2454 return MAP_DONE; 2455 } 2456 2457 int bch_btree_insert(struct cache_set *c, struct keylist *keys, 2458 atomic_t *journal_ref, struct bkey *replace_key) 2459 { 2460 struct btree_insert_op op; 2461 int ret = 0; 2462 2463 BUG_ON(current->bio_list); 2464 BUG_ON(bch_keylist_empty(keys)); 2465 2466 bch_btree_op_init(&op.op, 0); 2467 op.keys = keys; 2468 op.journal_ref = journal_ref; 2469 op.replace_key = replace_key; 2470 2471 while (!ret && !bch_keylist_empty(keys)) { 2472 op.op.lock = 0; 2473 ret = bch_btree_map_leaf_nodes(&op.op, c, 2474 &START_KEY(keys->keys), 2475 btree_insert_fn); 2476 } 2477 2478 if (ret) { 2479 struct bkey *k; 2480 2481 pr_err("error %i\n", ret); 2482 2483 while ((k = bch_keylist_pop(keys))) 2484 bkey_put(c, k); 2485 } else if (op.op.insert_collision) 2486 ret = -ESRCH; 2487 2488 return ret; 2489 } 2490 2491 void bch_btree_set_root(struct btree *b) 2492 { 2493 unsigned int i; 2494 struct closure cl; 2495 2496 closure_init_stack(&cl); 2497 2498 trace_bcache_btree_set_root(b); 2499 2500 BUG_ON(!b->written); 2501 2502 for (i = 0; i < KEY_PTRS(&b->key); i++) 2503 BUG_ON(PTR_BUCKET(b->c, &b->key, i)->prio != BTREE_PRIO); 2504 2505 mutex_lock(&b->c->bucket_lock); 2506 list_del_init(&b->list); 2507 mutex_unlock(&b->c->bucket_lock); 2508 2509 b->c->root = b; 2510 2511 bch_journal_meta(b->c, &cl); 2512 closure_sync(&cl); 2513 } 2514 2515 /* Map across nodes or keys */ 2516 2517 static int bch_btree_map_nodes_recurse(struct btree *b, struct btree_op *op, 2518 struct bkey *from, 2519 btree_map_nodes_fn *fn, int flags) 2520 { 2521 int ret = MAP_CONTINUE; 2522 2523 if (b->level) { 2524 struct bkey *k; 2525 struct btree_iter iter; 2526 2527 bch_btree_iter_init(&b->keys, &iter, from); 2528 2529 while ((k = bch_btree_iter_next_filter(&iter, &b->keys, 2530 bch_ptr_bad))) { 2531 ret = bcache_btree(map_nodes_recurse, k, b, 2532 op, from, fn, flags); 2533 from = NULL; 2534 2535 if (ret != MAP_CONTINUE) 2536 return ret; 2537 } 2538 } 2539 2540 if (!b->level || flags == MAP_ALL_NODES) 2541 ret = fn(op, b); 2542 2543 return ret; 2544 } 2545 2546 int __bch_btree_map_nodes(struct btree_op *op, struct cache_set *c, 2547 struct bkey *from, btree_map_nodes_fn *fn, int flags) 2548 { 2549 return bcache_btree_root(map_nodes_recurse, c, op, from, fn, flags); 2550 } 2551 2552 int bch_btree_map_keys_recurse(struct btree *b, struct btree_op *op, 2553 struct bkey *from, btree_map_keys_fn *fn, 2554 int flags) 2555 { 2556 int ret = MAP_CONTINUE; 2557 struct bkey *k; 2558 struct btree_iter iter; 2559 2560 bch_btree_iter_init(&b->keys, &iter, from); 2561 2562 while ((k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad))) { 2563 ret = !b->level 2564 ? fn(op, b, k) 2565 : bcache_btree(map_keys_recurse, k, 2566 b, op, from, fn, flags); 2567 from = NULL; 2568 2569 if (ret != MAP_CONTINUE) 2570 return ret; 2571 } 2572 2573 if (!b->level && (flags & MAP_END_KEY)) 2574 ret = fn(op, b, &KEY(KEY_INODE(&b->key), 2575 KEY_OFFSET(&b->key), 0)); 2576 2577 return ret; 2578 } 2579 2580 int bch_btree_map_keys(struct btree_op *op, struct cache_set *c, 2581 struct bkey *from, btree_map_keys_fn *fn, int flags) 2582 { 2583 return bcache_btree_root(map_keys_recurse, c, op, from, fn, flags); 2584 } 2585 2586 /* Keybuf code */ 2587 2588 static inline int keybuf_cmp(struct keybuf_key *l, struct keybuf_key *r) 2589 { 2590 /* Overlapping keys compare equal */ 2591 if (bkey_cmp(&l->key, &START_KEY(&r->key)) <= 0) 2592 return -1; 2593 if (bkey_cmp(&START_KEY(&l->key), &r->key) >= 0) 2594 return 1; 2595 return 0; 2596 } 2597 2598 static inline int keybuf_nonoverlapping_cmp(struct keybuf_key *l, 2599 struct keybuf_key *r) 2600 { 2601 return clamp_t(int64_t, bkey_cmp(&l->key, &r->key), -1, 1); 2602 } 2603 2604 struct refill { 2605 struct btree_op op; 2606 unsigned int nr_found; 2607 struct keybuf *buf; 2608 struct bkey *end; 2609 keybuf_pred_fn *pred; 2610 }; 2611 2612 static int refill_keybuf_fn(struct btree_op *op, struct btree *b, 2613 struct bkey *k) 2614 { 2615 struct refill *refill = container_of(op, struct refill, op); 2616 struct keybuf *buf = refill->buf; 2617 int ret = MAP_CONTINUE; 2618 2619 if (bkey_cmp(k, refill->end) > 0) { 2620 ret = MAP_DONE; 2621 goto out; 2622 } 2623 2624 if (!KEY_SIZE(k)) /* end key */ 2625 goto out; 2626 2627 if (refill->pred(buf, k)) { 2628 struct keybuf_key *w; 2629 2630 spin_lock(&buf->lock); 2631 2632 w = array_alloc(&buf->freelist); 2633 if (!w) { 2634 spin_unlock(&buf->lock); 2635 return MAP_DONE; 2636 } 2637 2638 w->private = NULL; 2639 bkey_copy(&w->key, k); 2640 2641 if (RB_INSERT(&buf->keys, w, node, keybuf_cmp)) 2642 array_free(&buf->freelist, w); 2643 else 2644 refill->nr_found++; 2645 2646 if (array_freelist_empty(&buf->freelist)) 2647 ret = MAP_DONE; 2648 2649 spin_unlock(&buf->lock); 2650 } 2651 out: 2652 buf->last_scanned = *k; 2653 return ret; 2654 } 2655 2656 void bch_refill_keybuf(struct cache_set *c, struct keybuf *buf, 2657 struct bkey *end, keybuf_pred_fn *pred) 2658 { 2659 struct bkey start = buf->last_scanned; 2660 struct refill refill; 2661 2662 cond_resched(); 2663 2664 bch_btree_op_init(&refill.op, -1); 2665 refill.nr_found = 0; 2666 refill.buf = buf; 2667 refill.end = end; 2668 refill.pred = pred; 2669 2670 bch_btree_map_keys(&refill.op, c, &buf->last_scanned, 2671 refill_keybuf_fn, MAP_END_KEY); 2672 2673 trace_bcache_keyscan(refill.nr_found, 2674 KEY_INODE(&start), KEY_OFFSET(&start), 2675 KEY_INODE(&buf->last_scanned), 2676 KEY_OFFSET(&buf->last_scanned)); 2677 2678 spin_lock(&buf->lock); 2679 2680 if (!RB_EMPTY_ROOT(&buf->keys)) { 2681 struct keybuf_key *w; 2682 2683 w = RB_FIRST(&buf->keys, struct keybuf_key, node); 2684 buf->start = START_KEY(&w->key); 2685 2686 w = RB_LAST(&buf->keys, struct keybuf_key, node); 2687 buf->end = w->key; 2688 } else { 2689 buf->start = MAX_KEY; 2690 buf->end = MAX_KEY; 2691 } 2692 2693 spin_unlock(&buf->lock); 2694 } 2695 2696 static void __bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w) 2697 { 2698 rb_erase(&w->node, &buf->keys); 2699 array_free(&buf->freelist, w); 2700 } 2701 2702 void bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w) 2703 { 2704 spin_lock(&buf->lock); 2705 __bch_keybuf_del(buf, w); 2706 spin_unlock(&buf->lock); 2707 } 2708 2709 bool bch_keybuf_check_overlapping(struct keybuf *buf, struct bkey *start, 2710 struct bkey *end) 2711 { 2712 bool ret = false; 2713 struct keybuf_key *p, *w, s; 2714 2715 s.key = *start; 2716 2717 if (bkey_cmp(end, &buf->start) <= 0 || 2718 bkey_cmp(start, &buf->end) >= 0) 2719 return false; 2720 2721 spin_lock(&buf->lock); 2722 w = RB_GREATER(&buf->keys, s, node, keybuf_nonoverlapping_cmp); 2723 2724 while (w && bkey_cmp(&START_KEY(&w->key), end) < 0) { 2725 p = w; 2726 w = RB_NEXT(w, node); 2727 2728 if (p->private) 2729 ret = true; 2730 else 2731 __bch_keybuf_del(buf, p); 2732 } 2733 2734 spin_unlock(&buf->lock); 2735 return ret; 2736 } 2737 2738 struct keybuf_key *bch_keybuf_next(struct keybuf *buf) 2739 { 2740 struct keybuf_key *w; 2741 2742 spin_lock(&buf->lock); 2743 2744 w = RB_FIRST(&buf->keys, struct keybuf_key, node); 2745 2746 while (w && w->private) 2747 w = RB_NEXT(w, node); 2748 2749 if (w) 2750 w->private = ERR_PTR(-EINTR); 2751 2752 spin_unlock(&buf->lock); 2753 return w; 2754 } 2755 2756 struct keybuf_key *bch_keybuf_next_rescan(struct cache_set *c, 2757 struct keybuf *buf, 2758 struct bkey *end, 2759 keybuf_pred_fn *pred) 2760 { 2761 struct keybuf_key *ret; 2762 2763 while (1) { 2764 ret = bch_keybuf_next(buf); 2765 if (ret) 2766 break; 2767 2768 if (bkey_cmp(&buf->last_scanned, end) >= 0) { 2769 pr_debug("scan finished\n"); 2770 break; 2771 } 2772 2773 bch_refill_keybuf(c, buf, end, pred); 2774 } 2775 2776 return ret; 2777 } 2778 2779 void bch_keybuf_init(struct keybuf *buf) 2780 { 2781 buf->last_scanned = MAX_KEY; 2782 buf->keys = RB_ROOT; 2783 2784 spin_lock_init(&buf->lock); 2785 array_allocator_init(&buf->freelist); 2786 } 2787 2788 void bch_btree_exit(void) 2789 { 2790 if (btree_io_wq) 2791 destroy_workqueue(btree_io_wq); 2792 } 2793 2794 int __init bch_btree_init(void) 2795 { 2796 btree_io_wq = alloc_workqueue("bch_btree_io", WQ_MEM_RECLAIM, 0); 2797 if (!btree_io_wq) 2798 return -ENOMEM; 2799 2800 return 0; 2801 } 2802