1 /* 2 * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com> 3 * 4 * Uses a block device as cache for other block devices; optimized for SSDs. 5 * All allocation is done in buckets, which should match the erase block size 6 * of the device. 7 * 8 * Buckets containing cached data are kept on a heap sorted by priority; 9 * bucket priority is increased on cache hit, and periodically all the buckets 10 * on the heap have their priority scaled down. This currently is just used as 11 * an LRU but in the future should allow for more intelligent heuristics. 12 * 13 * Buckets have an 8 bit counter; freeing is accomplished by incrementing the 14 * counter. Garbage collection is used to remove stale pointers. 15 * 16 * Indexing is done via a btree; nodes are not necessarily fully sorted, rather 17 * as keys are inserted we only sort the pages that have not yet been written. 18 * When garbage collection is run, we resort the entire node. 19 * 20 * All configuration is done via sysfs; see Documentation/bcache.txt. 21 */ 22 23 #include "bcache.h" 24 #include "btree.h" 25 #include "debug.h" 26 #include "extents.h" 27 28 #include <linux/slab.h> 29 #include <linux/bitops.h> 30 #include <linux/hash.h> 31 #include <linux/kthread.h> 32 #include <linux/prefetch.h> 33 #include <linux/random.h> 34 #include <linux/rcupdate.h> 35 #include <linux/sched/clock.h> 36 #include <trace/events/bcache.h> 37 38 /* 39 * Todo: 40 * register_bcache: Return errors out to userspace correctly 41 * 42 * Writeback: don't undirty key until after a cache flush 43 * 44 * Create an iterator for key pointers 45 * 46 * On btree write error, mark bucket such that it won't be freed from the cache 47 * 48 * Journalling: 49 * Check for bad keys in replay 50 * Propagate barriers 51 * Refcount journal entries in journal_replay 52 * 53 * Garbage collection: 54 * Finish incremental gc 55 * Gc should free old UUIDs, data for invalid UUIDs 56 * 57 * Provide a way to list backing device UUIDs we have data cached for, and 58 * probably how long it's been since we've seen them, and a way to invalidate 59 * dirty data for devices that will never be attached again 60 * 61 * Keep 1 min/5 min/15 min statistics of how busy a block device has been, so 62 * that based on that and how much dirty data we have we can keep writeback 63 * from being starved 64 * 65 * Add a tracepoint or somesuch to watch for writeback starvation 66 * 67 * When btree depth > 1 and splitting an interior node, we have to make sure 68 * alloc_bucket() cannot fail. This should be true but is not completely 69 * obvious. 70 * 71 * Plugging? 72 * 73 * If data write is less than hard sector size of ssd, round up offset in open 74 * bucket to the next whole sector 75 * 76 * Superblock needs to be fleshed out for multiple cache devices 77 * 78 * Add a sysfs tunable for the number of writeback IOs in flight 79 * 80 * Add a sysfs tunable for the number of open data buckets 81 * 82 * IO tracking: Can we track when one process is doing io on behalf of another? 83 * IO tracking: Don't use just an average, weigh more recent stuff higher 84 * 85 * Test module load/unload 86 */ 87 88 #define MAX_NEED_GC 64 89 #define MAX_SAVE_PRIO 72 90 91 #define PTR_DIRTY_BIT (((uint64_t) 1 << 36)) 92 93 #define PTR_HASH(c, k) \ 94 (((k)->ptr[0] >> c->bucket_bits) | PTR_GEN(k, 0)) 95 96 #define insert_lock(s, b) ((b)->level <= (s)->lock) 97 98 /* 99 * These macros are for recursing down the btree - they handle the details of 100 * locking and looking up nodes in the cache for you. They're best treated as 101 * mere syntax when reading code that uses them. 102 * 103 * op->lock determines whether we take a read or a write lock at a given depth. 104 * If you've got a read lock and find that you need a write lock (i.e. you're 105 * going to have to split), set op->lock and return -EINTR; btree_root() will 106 * call you again and you'll have the correct lock. 107 */ 108 109 /** 110 * btree - recurse down the btree on a specified key 111 * @fn: function to call, which will be passed the child node 112 * @key: key to recurse on 113 * @b: parent btree node 114 * @op: pointer to struct btree_op 115 */ 116 #define btree(fn, key, b, op, ...) \ 117 ({ \ 118 int _r, l = (b)->level - 1; \ 119 bool _w = l <= (op)->lock; \ 120 struct btree *_child = bch_btree_node_get((b)->c, op, key, l, \ 121 _w, b); \ 122 if (!IS_ERR(_child)) { \ 123 _r = bch_btree_ ## fn(_child, op, ##__VA_ARGS__); \ 124 rw_unlock(_w, _child); \ 125 } else \ 126 _r = PTR_ERR(_child); \ 127 _r; \ 128 }) 129 130 /** 131 * btree_root - call a function on the root of the btree 132 * @fn: function to call, which will be passed the child node 133 * @c: cache set 134 * @op: pointer to struct btree_op 135 */ 136 #define btree_root(fn, c, op, ...) \ 137 ({ \ 138 int _r = -EINTR; \ 139 do { \ 140 struct btree *_b = (c)->root; \ 141 bool _w = insert_lock(op, _b); \ 142 rw_lock(_w, _b, _b->level); \ 143 if (_b == (c)->root && \ 144 _w == insert_lock(op, _b)) { \ 145 _r = bch_btree_ ## fn(_b, op, ##__VA_ARGS__); \ 146 } \ 147 rw_unlock(_w, _b); \ 148 bch_cannibalize_unlock(c); \ 149 if (_r == -EINTR) \ 150 schedule(); \ 151 } while (_r == -EINTR); \ 152 \ 153 finish_wait(&(c)->btree_cache_wait, &(op)->wait); \ 154 _r; \ 155 }) 156 157 static inline struct bset *write_block(struct btree *b) 158 { 159 return ((void *) btree_bset_first(b)) + b->written * block_bytes(b->c); 160 } 161 162 static void bch_btree_init_next(struct btree *b) 163 { 164 /* If not a leaf node, always sort */ 165 if (b->level && b->keys.nsets) 166 bch_btree_sort(&b->keys, &b->c->sort); 167 else 168 bch_btree_sort_lazy(&b->keys, &b->c->sort); 169 170 if (b->written < btree_blocks(b)) 171 bch_bset_init_next(&b->keys, write_block(b), 172 bset_magic(&b->c->sb)); 173 174 } 175 176 /* Btree key manipulation */ 177 178 void bkey_put(struct cache_set *c, struct bkey *k) 179 { 180 unsigned i; 181 182 for (i = 0; i < KEY_PTRS(k); i++) 183 if (ptr_available(c, k, i)) 184 atomic_dec_bug(&PTR_BUCKET(c, k, i)->pin); 185 } 186 187 /* Btree IO */ 188 189 static uint64_t btree_csum_set(struct btree *b, struct bset *i) 190 { 191 uint64_t crc = b->key.ptr[0]; 192 void *data = (void *) i + 8, *end = bset_bkey_last(i); 193 194 crc = bch_crc64_update(crc, data, end - data); 195 return crc ^ 0xffffffffffffffffULL; 196 } 197 198 void bch_btree_node_read_done(struct btree *b) 199 { 200 const char *err = "bad btree header"; 201 struct bset *i = btree_bset_first(b); 202 struct btree_iter *iter; 203 204 iter = mempool_alloc(b->c->fill_iter, GFP_NOIO); 205 iter->size = b->c->sb.bucket_size / b->c->sb.block_size; 206 iter->used = 0; 207 208 #ifdef CONFIG_BCACHE_DEBUG 209 iter->b = &b->keys; 210 #endif 211 212 if (!i->seq) 213 goto err; 214 215 for (; 216 b->written < btree_blocks(b) && i->seq == b->keys.set[0].data->seq; 217 i = write_block(b)) { 218 err = "unsupported bset version"; 219 if (i->version > BCACHE_BSET_VERSION) 220 goto err; 221 222 err = "bad btree header"; 223 if (b->written + set_blocks(i, block_bytes(b->c)) > 224 btree_blocks(b)) 225 goto err; 226 227 err = "bad magic"; 228 if (i->magic != bset_magic(&b->c->sb)) 229 goto err; 230 231 err = "bad checksum"; 232 switch (i->version) { 233 case 0: 234 if (i->csum != csum_set(i)) 235 goto err; 236 break; 237 case BCACHE_BSET_VERSION: 238 if (i->csum != btree_csum_set(b, i)) 239 goto err; 240 break; 241 } 242 243 err = "empty set"; 244 if (i != b->keys.set[0].data && !i->keys) 245 goto err; 246 247 bch_btree_iter_push(iter, i->start, bset_bkey_last(i)); 248 249 b->written += set_blocks(i, block_bytes(b->c)); 250 } 251 252 err = "corrupted btree"; 253 for (i = write_block(b); 254 bset_sector_offset(&b->keys, i) < KEY_SIZE(&b->key); 255 i = ((void *) i) + block_bytes(b->c)) 256 if (i->seq == b->keys.set[0].data->seq) 257 goto err; 258 259 bch_btree_sort_and_fix_extents(&b->keys, iter, &b->c->sort); 260 261 i = b->keys.set[0].data; 262 err = "short btree key"; 263 if (b->keys.set[0].size && 264 bkey_cmp(&b->key, &b->keys.set[0].end) < 0) 265 goto err; 266 267 if (b->written < btree_blocks(b)) 268 bch_bset_init_next(&b->keys, write_block(b), 269 bset_magic(&b->c->sb)); 270 out: 271 mempool_free(iter, b->c->fill_iter); 272 return; 273 err: 274 set_btree_node_io_error(b); 275 bch_cache_set_error(b->c, "%s at bucket %zu, block %u, %u keys", 276 err, PTR_BUCKET_NR(b->c, &b->key, 0), 277 bset_block_offset(b, i), i->keys); 278 goto out; 279 } 280 281 static void btree_node_read_endio(struct bio *bio) 282 { 283 struct closure *cl = bio->bi_private; 284 closure_put(cl); 285 } 286 287 static void bch_btree_node_read(struct btree *b) 288 { 289 uint64_t start_time = local_clock(); 290 struct closure cl; 291 struct bio *bio; 292 293 trace_bcache_btree_read(b); 294 295 closure_init_stack(&cl); 296 297 bio = bch_bbio_alloc(b->c); 298 bio->bi_iter.bi_size = KEY_SIZE(&b->key) << 9; 299 bio->bi_end_io = btree_node_read_endio; 300 bio->bi_private = &cl; 301 bio->bi_opf = REQ_OP_READ | REQ_META; 302 303 bch_bio_map(bio, b->keys.set[0].data); 304 305 bch_submit_bbio(bio, b->c, &b->key, 0); 306 closure_sync(&cl); 307 308 if (bio->bi_error) 309 set_btree_node_io_error(b); 310 311 bch_bbio_free(bio, b->c); 312 313 if (btree_node_io_error(b)) 314 goto err; 315 316 bch_btree_node_read_done(b); 317 bch_time_stats_update(&b->c->btree_read_time, start_time); 318 319 return; 320 err: 321 bch_cache_set_error(b->c, "io error reading bucket %zu", 322 PTR_BUCKET_NR(b->c, &b->key, 0)); 323 } 324 325 static void btree_complete_write(struct btree *b, struct btree_write *w) 326 { 327 if (w->prio_blocked && 328 !atomic_sub_return(w->prio_blocked, &b->c->prio_blocked)) 329 wake_up_allocators(b->c); 330 331 if (w->journal) { 332 atomic_dec_bug(w->journal); 333 __closure_wake_up(&b->c->journal.wait); 334 } 335 336 w->prio_blocked = 0; 337 w->journal = NULL; 338 } 339 340 static void btree_node_write_unlock(struct closure *cl) 341 { 342 struct btree *b = container_of(cl, struct btree, io); 343 344 up(&b->io_mutex); 345 } 346 347 static void __btree_node_write_done(struct closure *cl) 348 { 349 struct btree *b = container_of(cl, struct btree, io); 350 struct btree_write *w = btree_prev_write(b); 351 352 bch_bbio_free(b->bio, b->c); 353 b->bio = NULL; 354 btree_complete_write(b, w); 355 356 if (btree_node_dirty(b)) 357 schedule_delayed_work(&b->work, 30 * HZ); 358 359 closure_return_with_destructor(cl, btree_node_write_unlock); 360 } 361 362 static void btree_node_write_done(struct closure *cl) 363 { 364 struct btree *b = container_of(cl, struct btree, io); 365 366 bio_free_pages(b->bio); 367 __btree_node_write_done(cl); 368 } 369 370 static void btree_node_write_endio(struct bio *bio) 371 { 372 struct closure *cl = bio->bi_private; 373 struct btree *b = container_of(cl, struct btree, io); 374 375 if (bio->bi_error) 376 set_btree_node_io_error(b); 377 378 bch_bbio_count_io_errors(b->c, bio, bio->bi_error, "writing btree"); 379 closure_put(cl); 380 } 381 382 static void do_btree_node_write(struct btree *b) 383 { 384 struct closure *cl = &b->io; 385 struct bset *i = btree_bset_last(b); 386 BKEY_PADDED(key) k; 387 388 i->version = BCACHE_BSET_VERSION; 389 i->csum = btree_csum_set(b, i); 390 391 BUG_ON(b->bio); 392 b->bio = bch_bbio_alloc(b->c); 393 394 b->bio->bi_end_io = btree_node_write_endio; 395 b->bio->bi_private = cl; 396 b->bio->bi_iter.bi_size = roundup(set_bytes(i), block_bytes(b->c)); 397 b->bio->bi_opf = REQ_OP_WRITE | REQ_META | REQ_FUA; 398 bch_bio_map(b->bio, i); 399 400 /* 401 * If we're appending to a leaf node, we don't technically need FUA - 402 * this write just needs to be persisted before the next journal write, 403 * which will be marked FLUSH|FUA. 404 * 405 * Similarly if we're writing a new btree root - the pointer is going to 406 * be in the next journal entry. 407 * 408 * But if we're writing a new btree node (that isn't a root) or 409 * appending to a non leaf btree node, we need either FUA or a flush 410 * when we write the parent with the new pointer. FUA is cheaper than a 411 * flush, and writes appending to leaf nodes aren't blocking anything so 412 * just make all btree node writes FUA to keep things sane. 413 */ 414 415 bkey_copy(&k.key, &b->key); 416 SET_PTR_OFFSET(&k.key, 0, PTR_OFFSET(&k.key, 0) + 417 bset_sector_offset(&b->keys, i)); 418 419 if (!bio_alloc_pages(b->bio, __GFP_NOWARN|GFP_NOWAIT)) { 420 int j; 421 struct bio_vec *bv; 422 void *base = (void *) ((unsigned long) i & ~(PAGE_SIZE - 1)); 423 424 bio_for_each_segment_all(bv, b->bio, j) 425 memcpy(page_address(bv->bv_page), 426 base + j * PAGE_SIZE, PAGE_SIZE); 427 428 bch_submit_bbio(b->bio, b->c, &k.key, 0); 429 430 continue_at(cl, btree_node_write_done, NULL); 431 } else { 432 b->bio->bi_vcnt = 0; 433 bch_bio_map(b->bio, i); 434 435 bch_submit_bbio(b->bio, b->c, &k.key, 0); 436 437 closure_sync(cl); 438 continue_at_nobarrier(cl, __btree_node_write_done, NULL); 439 } 440 } 441 442 void __bch_btree_node_write(struct btree *b, struct closure *parent) 443 { 444 struct bset *i = btree_bset_last(b); 445 446 lockdep_assert_held(&b->write_lock); 447 448 trace_bcache_btree_write(b); 449 450 BUG_ON(current->bio_list); 451 BUG_ON(b->written >= btree_blocks(b)); 452 BUG_ON(b->written && !i->keys); 453 BUG_ON(btree_bset_first(b)->seq != i->seq); 454 bch_check_keys(&b->keys, "writing"); 455 456 cancel_delayed_work(&b->work); 457 458 /* If caller isn't waiting for write, parent refcount is cache set */ 459 down(&b->io_mutex); 460 closure_init(&b->io, parent ?: &b->c->cl); 461 462 clear_bit(BTREE_NODE_dirty, &b->flags); 463 change_bit(BTREE_NODE_write_idx, &b->flags); 464 465 do_btree_node_write(b); 466 467 atomic_long_add(set_blocks(i, block_bytes(b->c)) * b->c->sb.block_size, 468 &PTR_CACHE(b->c, &b->key, 0)->btree_sectors_written); 469 470 b->written += set_blocks(i, block_bytes(b->c)); 471 } 472 473 void bch_btree_node_write(struct btree *b, struct closure *parent) 474 { 475 unsigned nsets = b->keys.nsets; 476 477 lockdep_assert_held(&b->lock); 478 479 __bch_btree_node_write(b, parent); 480 481 /* 482 * do verify if there was more than one set initially (i.e. we did a 483 * sort) and we sorted down to a single set: 484 */ 485 if (nsets && !b->keys.nsets) 486 bch_btree_verify(b); 487 488 bch_btree_init_next(b); 489 } 490 491 static void bch_btree_node_write_sync(struct btree *b) 492 { 493 struct closure cl; 494 495 closure_init_stack(&cl); 496 497 mutex_lock(&b->write_lock); 498 bch_btree_node_write(b, &cl); 499 mutex_unlock(&b->write_lock); 500 501 closure_sync(&cl); 502 } 503 504 static void btree_node_write_work(struct work_struct *w) 505 { 506 struct btree *b = container_of(to_delayed_work(w), struct btree, work); 507 508 mutex_lock(&b->write_lock); 509 if (btree_node_dirty(b)) 510 __bch_btree_node_write(b, NULL); 511 mutex_unlock(&b->write_lock); 512 } 513 514 static void bch_btree_leaf_dirty(struct btree *b, atomic_t *journal_ref) 515 { 516 struct bset *i = btree_bset_last(b); 517 struct btree_write *w = btree_current_write(b); 518 519 lockdep_assert_held(&b->write_lock); 520 521 BUG_ON(!b->written); 522 BUG_ON(!i->keys); 523 524 if (!btree_node_dirty(b)) 525 schedule_delayed_work(&b->work, 30 * HZ); 526 527 set_btree_node_dirty(b); 528 529 if (journal_ref) { 530 if (w->journal && 531 journal_pin_cmp(b->c, w->journal, journal_ref)) { 532 atomic_dec_bug(w->journal); 533 w->journal = NULL; 534 } 535 536 if (!w->journal) { 537 w->journal = journal_ref; 538 atomic_inc(w->journal); 539 } 540 } 541 542 /* Force write if set is too big */ 543 if (set_bytes(i) > PAGE_SIZE - 48 && 544 !current->bio_list) 545 bch_btree_node_write(b, NULL); 546 } 547 548 /* 549 * Btree in memory cache - allocation/freeing 550 * mca -> memory cache 551 */ 552 553 #define mca_reserve(c) (((c->root && c->root->level) \ 554 ? c->root->level : 1) * 8 + 16) 555 #define mca_can_free(c) \ 556 max_t(int, 0, c->btree_cache_used - mca_reserve(c)) 557 558 static void mca_data_free(struct btree *b) 559 { 560 BUG_ON(b->io_mutex.count != 1); 561 562 bch_btree_keys_free(&b->keys); 563 564 b->c->btree_cache_used--; 565 list_move(&b->list, &b->c->btree_cache_freed); 566 } 567 568 static void mca_bucket_free(struct btree *b) 569 { 570 BUG_ON(btree_node_dirty(b)); 571 572 b->key.ptr[0] = 0; 573 hlist_del_init_rcu(&b->hash); 574 list_move(&b->list, &b->c->btree_cache_freeable); 575 } 576 577 static unsigned btree_order(struct bkey *k) 578 { 579 return ilog2(KEY_SIZE(k) / PAGE_SECTORS ?: 1); 580 } 581 582 static void mca_data_alloc(struct btree *b, struct bkey *k, gfp_t gfp) 583 { 584 if (!bch_btree_keys_alloc(&b->keys, 585 max_t(unsigned, 586 ilog2(b->c->btree_pages), 587 btree_order(k)), 588 gfp)) { 589 b->c->btree_cache_used++; 590 list_move(&b->list, &b->c->btree_cache); 591 } else { 592 list_move(&b->list, &b->c->btree_cache_freed); 593 } 594 } 595 596 static struct btree *mca_bucket_alloc(struct cache_set *c, 597 struct bkey *k, gfp_t gfp) 598 { 599 struct btree *b = kzalloc(sizeof(struct btree), gfp); 600 if (!b) 601 return NULL; 602 603 init_rwsem(&b->lock); 604 lockdep_set_novalidate_class(&b->lock); 605 mutex_init(&b->write_lock); 606 lockdep_set_novalidate_class(&b->write_lock); 607 INIT_LIST_HEAD(&b->list); 608 INIT_DELAYED_WORK(&b->work, btree_node_write_work); 609 b->c = c; 610 sema_init(&b->io_mutex, 1); 611 612 mca_data_alloc(b, k, gfp); 613 return b; 614 } 615 616 static int mca_reap(struct btree *b, unsigned min_order, bool flush) 617 { 618 struct closure cl; 619 620 closure_init_stack(&cl); 621 lockdep_assert_held(&b->c->bucket_lock); 622 623 if (!down_write_trylock(&b->lock)) 624 return -ENOMEM; 625 626 BUG_ON(btree_node_dirty(b) && !b->keys.set[0].data); 627 628 if (b->keys.page_order < min_order) 629 goto out_unlock; 630 631 if (!flush) { 632 if (btree_node_dirty(b)) 633 goto out_unlock; 634 635 if (down_trylock(&b->io_mutex)) 636 goto out_unlock; 637 up(&b->io_mutex); 638 } 639 640 mutex_lock(&b->write_lock); 641 if (btree_node_dirty(b)) 642 __bch_btree_node_write(b, &cl); 643 mutex_unlock(&b->write_lock); 644 645 closure_sync(&cl); 646 647 /* wait for any in flight btree write */ 648 down(&b->io_mutex); 649 up(&b->io_mutex); 650 651 return 0; 652 out_unlock: 653 rw_unlock(true, b); 654 return -ENOMEM; 655 } 656 657 static unsigned long bch_mca_scan(struct shrinker *shrink, 658 struct shrink_control *sc) 659 { 660 struct cache_set *c = container_of(shrink, struct cache_set, shrink); 661 struct btree *b, *t; 662 unsigned long i, nr = sc->nr_to_scan; 663 unsigned long freed = 0; 664 665 if (c->shrinker_disabled) 666 return SHRINK_STOP; 667 668 if (c->btree_cache_alloc_lock) 669 return SHRINK_STOP; 670 671 /* Return -1 if we can't do anything right now */ 672 if (sc->gfp_mask & __GFP_IO) 673 mutex_lock(&c->bucket_lock); 674 else if (!mutex_trylock(&c->bucket_lock)) 675 return -1; 676 677 /* 678 * It's _really_ critical that we don't free too many btree nodes - we 679 * have to always leave ourselves a reserve. The reserve is how we 680 * guarantee that allocating memory for a new btree node can always 681 * succeed, so that inserting keys into the btree can always succeed and 682 * IO can always make forward progress: 683 */ 684 nr /= c->btree_pages; 685 nr = min_t(unsigned long, nr, mca_can_free(c)); 686 687 i = 0; 688 list_for_each_entry_safe(b, t, &c->btree_cache_freeable, list) { 689 if (freed >= nr) 690 break; 691 692 if (++i > 3 && 693 !mca_reap(b, 0, false)) { 694 mca_data_free(b); 695 rw_unlock(true, b); 696 freed++; 697 } 698 } 699 700 for (i = 0; (nr--) && i < c->btree_cache_used; i++) { 701 if (list_empty(&c->btree_cache)) 702 goto out; 703 704 b = list_first_entry(&c->btree_cache, struct btree, list); 705 list_rotate_left(&c->btree_cache); 706 707 if (!b->accessed && 708 !mca_reap(b, 0, false)) { 709 mca_bucket_free(b); 710 mca_data_free(b); 711 rw_unlock(true, b); 712 freed++; 713 } else 714 b->accessed = 0; 715 } 716 out: 717 mutex_unlock(&c->bucket_lock); 718 return freed; 719 } 720 721 static unsigned long bch_mca_count(struct shrinker *shrink, 722 struct shrink_control *sc) 723 { 724 struct cache_set *c = container_of(shrink, struct cache_set, shrink); 725 726 if (c->shrinker_disabled) 727 return 0; 728 729 if (c->btree_cache_alloc_lock) 730 return 0; 731 732 return mca_can_free(c) * c->btree_pages; 733 } 734 735 void bch_btree_cache_free(struct cache_set *c) 736 { 737 struct btree *b; 738 struct closure cl; 739 closure_init_stack(&cl); 740 741 if (c->shrink.list.next) 742 unregister_shrinker(&c->shrink); 743 744 mutex_lock(&c->bucket_lock); 745 746 #ifdef CONFIG_BCACHE_DEBUG 747 if (c->verify_data) 748 list_move(&c->verify_data->list, &c->btree_cache); 749 750 free_pages((unsigned long) c->verify_ondisk, ilog2(bucket_pages(c))); 751 #endif 752 753 list_splice(&c->btree_cache_freeable, 754 &c->btree_cache); 755 756 while (!list_empty(&c->btree_cache)) { 757 b = list_first_entry(&c->btree_cache, struct btree, list); 758 759 if (btree_node_dirty(b)) 760 btree_complete_write(b, btree_current_write(b)); 761 clear_bit(BTREE_NODE_dirty, &b->flags); 762 763 mca_data_free(b); 764 } 765 766 while (!list_empty(&c->btree_cache_freed)) { 767 b = list_first_entry(&c->btree_cache_freed, 768 struct btree, list); 769 list_del(&b->list); 770 cancel_delayed_work_sync(&b->work); 771 kfree(b); 772 } 773 774 mutex_unlock(&c->bucket_lock); 775 } 776 777 int bch_btree_cache_alloc(struct cache_set *c) 778 { 779 unsigned i; 780 781 for (i = 0; i < mca_reserve(c); i++) 782 if (!mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL)) 783 return -ENOMEM; 784 785 list_splice_init(&c->btree_cache, 786 &c->btree_cache_freeable); 787 788 #ifdef CONFIG_BCACHE_DEBUG 789 mutex_init(&c->verify_lock); 790 791 c->verify_ondisk = (void *) 792 __get_free_pages(GFP_KERNEL, ilog2(bucket_pages(c))); 793 794 c->verify_data = mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL); 795 796 if (c->verify_data && 797 c->verify_data->keys.set->data) 798 list_del_init(&c->verify_data->list); 799 else 800 c->verify_data = NULL; 801 #endif 802 803 c->shrink.count_objects = bch_mca_count; 804 c->shrink.scan_objects = bch_mca_scan; 805 c->shrink.seeks = 4; 806 c->shrink.batch = c->btree_pages * 2; 807 register_shrinker(&c->shrink); 808 809 return 0; 810 } 811 812 /* Btree in memory cache - hash table */ 813 814 static struct hlist_head *mca_hash(struct cache_set *c, struct bkey *k) 815 { 816 return &c->bucket_hash[hash_32(PTR_HASH(c, k), BUCKET_HASH_BITS)]; 817 } 818 819 static struct btree *mca_find(struct cache_set *c, struct bkey *k) 820 { 821 struct btree *b; 822 823 rcu_read_lock(); 824 hlist_for_each_entry_rcu(b, mca_hash(c, k), hash) 825 if (PTR_HASH(c, &b->key) == PTR_HASH(c, k)) 826 goto out; 827 b = NULL; 828 out: 829 rcu_read_unlock(); 830 return b; 831 } 832 833 static int mca_cannibalize_lock(struct cache_set *c, struct btree_op *op) 834 { 835 struct task_struct *old; 836 837 old = cmpxchg(&c->btree_cache_alloc_lock, NULL, current); 838 if (old && old != current) { 839 if (op) 840 prepare_to_wait(&c->btree_cache_wait, &op->wait, 841 TASK_UNINTERRUPTIBLE); 842 return -EINTR; 843 } 844 845 return 0; 846 } 847 848 static struct btree *mca_cannibalize(struct cache_set *c, struct btree_op *op, 849 struct bkey *k) 850 { 851 struct btree *b; 852 853 trace_bcache_btree_cache_cannibalize(c); 854 855 if (mca_cannibalize_lock(c, op)) 856 return ERR_PTR(-EINTR); 857 858 list_for_each_entry_reverse(b, &c->btree_cache, list) 859 if (!mca_reap(b, btree_order(k), false)) 860 return b; 861 862 list_for_each_entry_reverse(b, &c->btree_cache, list) 863 if (!mca_reap(b, btree_order(k), true)) 864 return b; 865 866 WARN(1, "btree cache cannibalize failed\n"); 867 return ERR_PTR(-ENOMEM); 868 } 869 870 /* 871 * We can only have one thread cannibalizing other cached btree nodes at a time, 872 * or we'll deadlock. We use an open coded mutex to ensure that, which a 873 * cannibalize_bucket() will take. This means every time we unlock the root of 874 * the btree, we need to release this lock if we have it held. 875 */ 876 static void bch_cannibalize_unlock(struct cache_set *c) 877 { 878 if (c->btree_cache_alloc_lock == current) { 879 c->btree_cache_alloc_lock = NULL; 880 wake_up(&c->btree_cache_wait); 881 } 882 } 883 884 static struct btree *mca_alloc(struct cache_set *c, struct btree_op *op, 885 struct bkey *k, int level) 886 { 887 struct btree *b; 888 889 BUG_ON(current->bio_list); 890 891 lockdep_assert_held(&c->bucket_lock); 892 893 if (mca_find(c, k)) 894 return NULL; 895 896 /* btree_free() doesn't free memory; it sticks the node on the end of 897 * the list. Check if there's any freed nodes there: 898 */ 899 list_for_each_entry(b, &c->btree_cache_freeable, list) 900 if (!mca_reap(b, btree_order(k), false)) 901 goto out; 902 903 /* We never free struct btree itself, just the memory that holds the on 904 * disk node. Check the freed list before allocating a new one: 905 */ 906 list_for_each_entry(b, &c->btree_cache_freed, list) 907 if (!mca_reap(b, 0, false)) { 908 mca_data_alloc(b, k, __GFP_NOWARN|GFP_NOIO); 909 if (!b->keys.set[0].data) 910 goto err; 911 else 912 goto out; 913 } 914 915 b = mca_bucket_alloc(c, k, __GFP_NOWARN|GFP_NOIO); 916 if (!b) 917 goto err; 918 919 BUG_ON(!down_write_trylock(&b->lock)); 920 if (!b->keys.set->data) 921 goto err; 922 out: 923 BUG_ON(b->io_mutex.count != 1); 924 925 bkey_copy(&b->key, k); 926 list_move(&b->list, &c->btree_cache); 927 hlist_del_init_rcu(&b->hash); 928 hlist_add_head_rcu(&b->hash, mca_hash(c, k)); 929 930 lock_set_subclass(&b->lock.dep_map, level + 1, _THIS_IP_); 931 b->parent = (void *) ~0UL; 932 b->flags = 0; 933 b->written = 0; 934 b->level = level; 935 936 if (!b->level) 937 bch_btree_keys_init(&b->keys, &bch_extent_keys_ops, 938 &b->c->expensive_debug_checks); 939 else 940 bch_btree_keys_init(&b->keys, &bch_btree_keys_ops, 941 &b->c->expensive_debug_checks); 942 943 return b; 944 err: 945 if (b) 946 rw_unlock(true, b); 947 948 b = mca_cannibalize(c, op, k); 949 if (!IS_ERR(b)) 950 goto out; 951 952 return b; 953 } 954 955 /** 956 * bch_btree_node_get - find a btree node in the cache and lock it, reading it 957 * in from disk if necessary. 958 * 959 * If IO is necessary and running under generic_make_request, returns -EAGAIN. 960 * 961 * The btree node will have either a read or a write lock held, depending on 962 * level and op->lock. 963 */ 964 struct btree *bch_btree_node_get(struct cache_set *c, struct btree_op *op, 965 struct bkey *k, int level, bool write, 966 struct btree *parent) 967 { 968 int i = 0; 969 struct btree *b; 970 971 BUG_ON(level < 0); 972 retry: 973 b = mca_find(c, k); 974 975 if (!b) { 976 if (current->bio_list) 977 return ERR_PTR(-EAGAIN); 978 979 mutex_lock(&c->bucket_lock); 980 b = mca_alloc(c, op, k, level); 981 mutex_unlock(&c->bucket_lock); 982 983 if (!b) 984 goto retry; 985 if (IS_ERR(b)) 986 return b; 987 988 bch_btree_node_read(b); 989 990 if (!write) 991 downgrade_write(&b->lock); 992 } else { 993 rw_lock(write, b, level); 994 if (PTR_HASH(c, &b->key) != PTR_HASH(c, k)) { 995 rw_unlock(write, b); 996 goto retry; 997 } 998 BUG_ON(b->level != level); 999 } 1000 1001 b->parent = parent; 1002 b->accessed = 1; 1003 1004 for (; i <= b->keys.nsets && b->keys.set[i].size; i++) { 1005 prefetch(b->keys.set[i].tree); 1006 prefetch(b->keys.set[i].data); 1007 } 1008 1009 for (; i <= b->keys.nsets; i++) 1010 prefetch(b->keys.set[i].data); 1011 1012 if (btree_node_io_error(b)) { 1013 rw_unlock(write, b); 1014 return ERR_PTR(-EIO); 1015 } 1016 1017 BUG_ON(!b->written); 1018 1019 return b; 1020 } 1021 1022 static void btree_node_prefetch(struct btree *parent, struct bkey *k) 1023 { 1024 struct btree *b; 1025 1026 mutex_lock(&parent->c->bucket_lock); 1027 b = mca_alloc(parent->c, NULL, k, parent->level - 1); 1028 mutex_unlock(&parent->c->bucket_lock); 1029 1030 if (!IS_ERR_OR_NULL(b)) { 1031 b->parent = parent; 1032 bch_btree_node_read(b); 1033 rw_unlock(true, b); 1034 } 1035 } 1036 1037 /* Btree alloc */ 1038 1039 static void btree_node_free(struct btree *b) 1040 { 1041 trace_bcache_btree_node_free(b); 1042 1043 BUG_ON(b == b->c->root); 1044 1045 mutex_lock(&b->write_lock); 1046 1047 if (btree_node_dirty(b)) 1048 btree_complete_write(b, btree_current_write(b)); 1049 clear_bit(BTREE_NODE_dirty, &b->flags); 1050 1051 mutex_unlock(&b->write_lock); 1052 1053 cancel_delayed_work(&b->work); 1054 1055 mutex_lock(&b->c->bucket_lock); 1056 bch_bucket_free(b->c, &b->key); 1057 mca_bucket_free(b); 1058 mutex_unlock(&b->c->bucket_lock); 1059 } 1060 1061 struct btree *__bch_btree_node_alloc(struct cache_set *c, struct btree_op *op, 1062 int level, bool wait, 1063 struct btree *parent) 1064 { 1065 BKEY_PADDED(key) k; 1066 struct btree *b = ERR_PTR(-EAGAIN); 1067 1068 mutex_lock(&c->bucket_lock); 1069 retry: 1070 if (__bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, 1, wait)) 1071 goto err; 1072 1073 bkey_put(c, &k.key); 1074 SET_KEY_SIZE(&k.key, c->btree_pages * PAGE_SECTORS); 1075 1076 b = mca_alloc(c, op, &k.key, level); 1077 if (IS_ERR(b)) 1078 goto err_free; 1079 1080 if (!b) { 1081 cache_bug(c, 1082 "Tried to allocate bucket that was in btree cache"); 1083 goto retry; 1084 } 1085 1086 b->accessed = 1; 1087 b->parent = parent; 1088 bch_bset_init_next(&b->keys, b->keys.set->data, bset_magic(&b->c->sb)); 1089 1090 mutex_unlock(&c->bucket_lock); 1091 1092 trace_bcache_btree_node_alloc(b); 1093 return b; 1094 err_free: 1095 bch_bucket_free(c, &k.key); 1096 err: 1097 mutex_unlock(&c->bucket_lock); 1098 1099 trace_bcache_btree_node_alloc_fail(c); 1100 return b; 1101 } 1102 1103 static struct btree *bch_btree_node_alloc(struct cache_set *c, 1104 struct btree_op *op, int level, 1105 struct btree *parent) 1106 { 1107 return __bch_btree_node_alloc(c, op, level, op != NULL, parent); 1108 } 1109 1110 static struct btree *btree_node_alloc_replacement(struct btree *b, 1111 struct btree_op *op) 1112 { 1113 struct btree *n = bch_btree_node_alloc(b->c, op, b->level, b->parent); 1114 if (!IS_ERR_OR_NULL(n)) { 1115 mutex_lock(&n->write_lock); 1116 bch_btree_sort_into(&b->keys, &n->keys, &b->c->sort); 1117 bkey_copy_key(&n->key, &b->key); 1118 mutex_unlock(&n->write_lock); 1119 } 1120 1121 return n; 1122 } 1123 1124 static void make_btree_freeing_key(struct btree *b, struct bkey *k) 1125 { 1126 unsigned i; 1127 1128 mutex_lock(&b->c->bucket_lock); 1129 1130 atomic_inc(&b->c->prio_blocked); 1131 1132 bkey_copy(k, &b->key); 1133 bkey_copy_key(k, &ZERO_KEY); 1134 1135 for (i = 0; i < KEY_PTRS(k); i++) 1136 SET_PTR_GEN(k, i, 1137 bch_inc_gen(PTR_CACHE(b->c, &b->key, i), 1138 PTR_BUCKET(b->c, &b->key, i))); 1139 1140 mutex_unlock(&b->c->bucket_lock); 1141 } 1142 1143 static int btree_check_reserve(struct btree *b, struct btree_op *op) 1144 { 1145 struct cache_set *c = b->c; 1146 struct cache *ca; 1147 unsigned i, reserve = (c->root->level - b->level) * 2 + 1; 1148 1149 mutex_lock(&c->bucket_lock); 1150 1151 for_each_cache(ca, c, i) 1152 if (fifo_used(&ca->free[RESERVE_BTREE]) < reserve) { 1153 if (op) 1154 prepare_to_wait(&c->btree_cache_wait, &op->wait, 1155 TASK_UNINTERRUPTIBLE); 1156 mutex_unlock(&c->bucket_lock); 1157 return -EINTR; 1158 } 1159 1160 mutex_unlock(&c->bucket_lock); 1161 1162 return mca_cannibalize_lock(b->c, op); 1163 } 1164 1165 /* Garbage collection */ 1166 1167 static uint8_t __bch_btree_mark_key(struct cache_set *c, int level, 1168 struct bkey *k) 1169 { 1170 uint8_t stale = 0; 1171 unsigned i; 1172 struct bucket *g; 1173 1174 /* 1175 * ptr_invalid() can't return true for the keys that mark btree nodes as 1176 * freed, but since ptr_bad() returns true we'll never actually use them 1177 * for anything and thus we don't want mark their pointers here 1178 */ 1179 if (!bkey_cmp(k, &ZERO_KEY)) 1180 return stale; 1181 1182 for (i = 0; i < KEY_PTRS(k); i++) { 1183 if (!ptr_available(c, k, i)) 1184 continue; 1185 1186 g = PTR_BUCKET(c, k, i); 1187 1188 if (gen_after(g->last_gc, PTR_GEN(k, i))) 1189 g->last_gc = PTR_GEN(k, i); 1190 1191 if (ptr_stale(c, k, i)) { 1192 stale = max(stale, ptr_stale(c, k, i)); 1193 continue; 1194 } 1195 1196 cache_bug_on(GC_MARK(g) && 1197 (GC_MARK(g) == GC_MARK_METADATA) != (level != 0), 1198 c, "inconsistent ptrs: mark = %llu, level = %i", 1199 GC_MARK(g), level); 1200 1201 if (level) 1202 SET_GC_MARK(g, GC_MARK_METADATA); 1203 else if (KEY_DIRTY(k)) 1204 SET_GC_MARK(g, GC_MARK_DIRTY); 1205 else if (!GC_MARK(g)) 1206 SET_GC_MARK(g, GC_MARK_RECLAIMABLE); 1207 1208 /* guard against overflow */ 1209 SET_GC_SECTORS_USED(g, min_t(unsigned, 1210 GC_SECTORS_USED(g) + KEY_SIZE(k), 1211 MAX_GC_SECTORS_USED)); 1212 1213 BUG_ON(!GC_SECTORS_USED(g)); 1214 } 1215 1216 return stale; 1217 } 1218 1219 #define btree_mark_key(b, k) __bch_btree_mark_key(b->c, b->level, k) 1220 1221 void bch_initial_mark_key(struct cache_set *c, int level, struct bkey *k) 1222 { 1223 unsigned i; 1224 1225 for (i = 0; i < KEY_PTRS(k); i++) 1226 if (ptr_available(c, k, i) && 1227 !ptr_stale(c, k, i)) { 1228 struct bucket *b = PTR_BUCKET(c, k, i); 1229 1230 b->gen = PTR_GEN(k, i); 1231 1232 if (level && bkey_cmp(k, &ZERO_KEY)) 1233 b->prio = BTREE_PRIO; 1234 else if (!level && b->prio == BTREE_PRIO) 1235 b->prio = INITIAL_PRIO; 1236 } 1237 1238 __bch_btree_mark_key(c, level, k); 1239 } 1240 1241 static bool btree_gc_mark_node(struct btree *b, struct gc_stat *gc) 1242 { 1243 uint8_t stale = 0; 1244 unsigned keys = 0, good_keys = 0; 1245 struct bkey *k; 1246 struct btree_iter iter; 1247 struct bset_tree *t; 1248 1249 gc->nodes++; 1250 1251 for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid) { 1252 stale = max(stale, btree_mark_key(b, k)); 1253 keys++; 1254 1255 if (bch_ptr_bad(&b->keys, k)) 1256 continue; 1257 1258 gc->key_bytes += bkey_u64s(k); 1259 gc->nkeys++; 1260 good_keys++; 1261 1262 gc->data += KEY_SIZE(k); 1263 } 1264 1265 for (t = b->keys.set; t <= &b->keys.set[b->keys.nsets]; t++) 1266 btree_bug_on(t->size && 1267 bset_written(&b->keys, t) && 1268 bkey_cmp(&b->key, &t->end) < 0, 1269 b, "found short btree key in gc"); 1270 1271 if (b->c->gc_always_rewrite) 1272 return true; 1273 1274 if (stale > 10) 1275 return true; 1276 1277 if ((keys - good_keys) * 2 > keys) 1278 return true; 1279 1280 return false; 1281 } 1282 1283 #define GC_MERGE_NODES 4U 1284 1285 struct gc_merge_info { 1286 struct btree *b; 1287 unsigned keys; 1288 }; 1289 1290 static int bch_btree_insert_node(struct btree *, struct btree_op *, 1291 struct keylist *, atomic_t *, struct bkey *); 1292 1293 static int btree_gc_coalesce(struct btree *b, struct btree_op *op, 1294 struct gc_stat *gc, struct gc_merge_info *r) 1295 { 1296 unsigned i, nodes = 0, keys = 0, blocks; 1297 struct btree *new_nodes[GC_MERGE_NODES]; 1298 struct keylist keylist; 1299 struct closure cl; 1300 struct bkey *k; 1301 1302 bch_keylist_init(&keylist); 1303 1304 if (btree_check_reserve(b, NULL)) 1305 return 0; 1306 1307 memset(new_nodes, 0, sizeof(new_nodes)); 1308 closure_init_stack(&cl); 1309 1310 while (nodes < GC_MERGE_NODES && !IS_ERR_OR_NULL(r[nodes].b)) 1311 keys += r[nodes++].keys; 1312 1313 blocks = btree_default_blocks(b->c) * 2 / 3; 1314 1315 if (nodes < 2 || 1316 __set_blocks(b->keys.set[0].data, keys, 1317 block_bytes(b->c)) > blocks * (nodes - 1)) 1318 return 0; 1319 1320 for (i = 0; i < nodes; i++) { 1321 new_nodes[i] = btree_node_alloc_replacement(r[i].b, NULL); 1322 if (IS_ERR_OR_NULL(new_nodes[i])) 1323 goto out_nocoalesce; 1324 } 1325 1326 /* 1327 * We have to check the reserve here, after we've allocated our new 1328 * nodes, to make sure the insert below will succeed - we also check 1329 * before as an optimization to potentially avoid a bunch of expensive 1330 * allocs/sorts 1331 */ 1332 if (btree_check_reserve(b, NULL)) 1333 goto out_nocoalesce; 1334 1335 for (i = 0; i < nodes; i++) 1336 mutex_lock(&new_nodes[i]->write_lock); 1337 1338 for (i = nodes - 1; i > 0; --i) { 1339 struct bset *n1 = btree_bset_first(new_nodes[i]); 1340 struct bset *n2 = btree_bset_first(new_nodes[i - 1]); 1341 struct bkey *k, *last = NULL; 1342 1343 keys = 0; 1344 1345 if (i > 1) { 1346 for (k = n2->start; 1347 k < bset_bkey_last(n2); 1348 k = bkey_next(k)) { 1349 if (__set_blocks(n1, n1->keys + keys + 1350 bkey_u64s(k), 1351 block_bytes(b->c)) > blocks) 1352 break; 1353 1354 last = k; 1355 keys += bkey_u64s(k); 1356 } 1357 } else { 1358 /* 1359 * Last node we're not getting rid of - we're getting 1360 * rid of the node at r[0]. Have to try and fit all of 1361 * the remaining keys into this node; we can't ensure 1362 * they will always fit due to rounding and variable 1363 * length keys (shouldn't be possible in practice, 1364 * though) 1365 */ 1366 if (__set_blocks(n1, n1->keys + n2->keys, 1367 block_bytes(b->c)) > 1368 btree_blocks(new_nodes[i])) 1369 goto out_nocoalesce; 1370 1371 keys = n2->keys; 1372 /* Take the key of the node we're getting rid of */ 1373 last = &r->b->key; 1374 } 1375 1376 BUG_ON(__set_blocks(n1, n1->keys + keys, block_bytes(b->c)) > 1377 btree_blocks(new_nodes[i])); 1378 1379 if (last) 1380 bkey_copy_key(&new_nodes[i]->key, last); 1381 1382 memcpy(bset_bkey_last(n1), 1383 n2->start, 1384 (void *) bset_bkey_idx(n2, keys) - (void *) n2->start); 1385 1386 n1->keys += keys; 1387 r[i].keys = n1->keys; 1388 1389 memmove(n2->start, 1390 bset_bkey_idx(n2, keys), 1391 (void *) bset_bkey_last(n2) - 1392 (void *) bset_bkey_idx(n2, keys)); 1393 1394 n2->keys -= keys; 1395 1396 if (__bch_keylist_realloc(&keylist, 1397 bkey_u64s(&new_nodes[i]->key))) 1398 goto out_nocoalesce; 1399 1400 bch_btree_node_write(new_nodes[i], &cl); 1401 bch_keylist_add(&keylist, &new_nodes[i]->key); 1402 } 1403 1404 for (i = 0; i < nodes; i++) 1405 mutex_unlock(&new_nodes[i]->write_lock); 1406 1407 closure_sync(&cl); 1408 1409 /* We emptied out this node */ 1410 BUG_ON(btree_bset_first(new_nodes[0])->keys); 1411 btree_node_free(new_nodes[0]); 1412 rw_unlock(true, new_nodes[0]); 1413 new_nodes[0] = NULL; 1414 1415 for (i = 0; i < nodes; i++) { 1416 if (__bch_keylist_realloc(&keylist, bkey_u64s(&r[i].b->key))) 1417 goto out_nocoalesce; 1418 1419 make_btree_freeing_key(r[i].b, keylist.top); 1420 bch_keylist_push(&keylist); 1421 } 1422 1423 bch_btree_insert_node(b, op, &keylist, NULL, NULL); 1424 BUG_ON(!bch_keylist_empty(&keylist)); 1425 1426 for (i = 0; i < nodes; i++) { 1427 btree_node_free(r[i].b); 1428 rw_unlock(true, r[i].b); 1429 1430 r[i].b = new_nodes[i]; 1431 } 1432 1433 memmove(r, r + 1, sizeof(r[0]) * (nodes - 1)); 1434 r[nodes - 1].b = ERR_PTR(-EINTR); 1435 1436 trace_bcache_btree_gc_coalesce(nodes); 1437 gc->nodes--; 1438 1439 bch_keylist_free(&keylist); 1440 1441 /* Invalidated our iterator */ 1442 return -EINTR; 1443 1444 out_nocoalesce: 1445 closure_sync(&cl); 1446 bch_keylist_free(&keylist); 1447 1448 while ((k = bch_keylist_pop(&keylist))) 1449 if (!bkey_cmp(k, &ZERO_KEY)) 1450 atomic_dec(&b->c->prio_blocked); 1451 1452 for (i = 0; i < nodes; i++) 1453 if (!IS_ERR_OR_NULL(new_nodes[i])) { 1454 btree_node_free(new_nodes[i]); 1455 rw_unlock(true, new_nodes[i]); 1456 } 1457 return 0; 1458 } 1459 1460 static int btree_gc_rewrite_node(struct btree *b, struct btree_op *op, 1461 struct btree *replace) 1462 { 1463 struct keylist keys; 1464 struct btree *n; 1465 1466 if (btree_check_reserve(b, NULL)) 1467 return 0; 1468 1469 n = btree_node_alloc_replacement(replace, NULL); 1470 1471 /* recheck reserve after allocating replacement node */ 1472 if (btree_check_reserve(b, NULL)) { 1473 btree_node_free(n); 1474 rw_unlock(true, n); 1475 return 0; 1476 } 1477 1478 bch_btree_node_write_sync(n); 1479 1480 bch_keylist_init(&keys); 1481 bch_keylist_add(&keys, &n->key); 1482 1483 make_btree_freeing_key(replace, keys.top); 1484 bch_keylist_push(&keys); 1485 1486 bch_btree_insert_node(b, op, &keys, NULL, NULL); 1487 BUG_ON(!bch_keylist_empty(&keys)); 1488 1489 btree_node_free(replace); 1490 rw_unlock(true, n); 1491 1492 /* Invalidated our iterator */ 1493 return -EINTR; 1494 } 1495 1496 static unsigned btree_gc_count_keys(struct btree *b) 1497 { 1498 struct bkey *k; 1499 struct btree_iter iter; 1500 unsigned ret = 0; 1501 1502 for_each_key_filter(&b->keys, k, &iter, bch_ptr_bad) 1503 ret += bkey_u64s(k); 1504 1505 return ret; 1506 } 1507 1508 static int btree_gc_recurse(struct btree *b, struct btree_op *op, 1509 struct closure *writes, struct gc_stat *gc) 1510 { 1511 int ret = 0; 1512 bool should_rewrite; 1513 struct bkey *k; 1514 struct btree_iter iter; 1515 struct gc_merge_info r[GC_MERGE_NODES]; 1516 struct gc_merge_info *i, *last = r + ARRAY_SIZE(r) - 1; 1517 1518 bch_btree_iter_init(&b->keys, &iter, &b->c->gc_done); 1519 1520 for (i = r; i < r + ARRAY_SIZE(r); i++) 1521 i->b = ERR_PTR(-EINTR); 1522 1523 while (1) { 1524 k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad); 1525 if (k) { 1526 r->b = bch_btree_node_get(b->c, op, k, b->level - 1, 1527 true, b); 1528 if (IS_ERR(r->b)) { 1529 ret = PTR_ERR(r->b); 1530 break; 1531 } 1532 1533 r->keys = btree_gc_count_keys(r->b); 1534 1535 ret = btree_gc_coalesce(b, op, gc, r); 1536 if (ret) 1537 break; 1538 } 1539 1540 if (!last->b) 1541 break; 1542 1543 if (!IS_ERR(last->b)) { 1544 should_rewrite = btree_gc_mark_node(last->b, gc); 1545 if (should_rewrite) { 1546 ret = btree_gc_rewrite_node(b, op, last->b); 1547 if (ret) 1548 break; 1549 } 1550 1551 if (last->b->level) { 1552 ret = btree_gc_recurse(last->b, op, writes, gc); 1553 if (ret) 1554 break; 1555 } 1556 1557 bkey_copy_key(&b->c->gc_done, &last->b->key); 1558 1559 /* 1560 * Must flush leaf nodes before gc ends, since replace 1561 * operations aren't journalled 1562 */ 1563 mutex_lock(&last->b->write_lock); 1564 if (btree_node_dirty(last->b)) 1565 bch_btree_node_write(last->b, writes); 1566 mutex_unlock(&last->b->write_lock); 1567 rw_unlock(true, last->b); 1568 } 1569 1570 memmove(r + 1, r, sizeof(r[0]) * (GC_MERGE_NODES - 1)); 1571 r->b = NULL; 1572 1573 if (need_resched()) { 1574 ret = -EAGAIN; 1575 break; 1576 } 1577 } 1578 1579 for (i = r; i < r + ARRAY_SIZE(r); i++) 1580 if (!IS_ERR_OR_NULL(i->b)) { 1581 mutex_lock(&i->b->write_lock); 1582 if (btree_node_dirty(i->b)) 1583 bch_btree_node_write(i->b, writes); 1584 mutex_unlock(&i->b->write_lock); 1585 rw_unlock(true, i->b); 1586 } 1587 1588 return ret; 1589 } 1590 1591 static int bch_btree_gc_root(struct btree *b, struct btree_op *op, 1592 struct closure *writes, struct gc_stat *gc) 1593 { 1594 struct btree *n = NULL; 1595 int ret = 0; 1596 bool should_rewrite; 1597 1598 should_rewrite = btree_gc_mark_node(b, gc); 1599 if (should_rewrite) { 1600 n = btree_node_alloc_replacement(b, NULL); 1601 1602 if (!IS_ERR_OR_NULL(n)) { 1603 bch_btree_node_write_sync(n); 1604 1605 bch_btree_set_root(n); 1606 btree_node_free(b); 1607 rw_unlock(true, n); 1608 1609 return -EINTR; 1610 } 1611 } 1612 1613 __bch_btree_mark_key(b->c, b->level + 1, &b->key); 1614 1615 if (b->level) { 1616 ret = btree_gc_recurse(b, op, writes, gc); 1617 if (ret) 1618 return ret; 1619 } 1620 1621 bkey_copy_key(&b->c->gc_done, &b->key); 1622 1623 return ret; 1624 } 1625 1626 static void btree_gc_start(struct cache_set *c) 1627 { 1628 struct cache *ca; 1629 struct bucket *b; 1630 unsigned i; 1631 1632 if (!c->gc_mark_valid) 1633 return; 1634 1635 mutex_lock(&c->bucket_lock); 1636 1637 c->gc_mark_valid = 0; 1638 c->gc_done = ZERO_KEY; 1639 1640 for_each_cache(ca, c, i) 1641 for_each_bucket(b, ca) { 1642 b->last_gc = b->gen; 1643 if (!atomic_read(&b->pin)) { 1644 SET_GC_MARK(b, 0); 1645 SET_GC_SECTORS_USED(b, 0); 1646 } 1647 } 1648 1649 mutex_unlock(&c->bucket_lock); 1650 } 1651 1652 static size_t bch_btree_gc_finish(struct cache_set *c) 1653 { 1654 size_t available = 0; 1655 struct bucket *b; 1656 struct cache *ca; 1657 unsigned i; 1658 1659 mutex_lock(&c->bucket_lock); 1660 1661 set_gc_sectors(c); 1662 c->gc_mark_valid = 1; 1663 c->need_gc = 0; 1664 1665 for (i = 0; i < KEY_PTRS(&c->uuid_bucket); i++) 1666 SET_GC_MARK(PTR_BUCKET(c, &c->uuid_bucket, i), 1667 GC_MARK_METADATA); 1668 1669 /* don't reclaim buckets to which writeback keys point */ 1670 rcu_read_lock(); 1671 for (i = 0; i < c->nr_uuids; i++) { 1672 struct bcache_device *d = c->devices[i]; 1673 struct cached_dev *dc; 1674 struct keybuf_key *w, *n; 1675 unsigned j; 1676 1677 if (!d || UUID_FLASH_ONLY(&c->uuids[i])) 1678 continue; 1679 dc = container_of(d, struct cached_dev, disk); 1680 1681 spin_lock(&dc->writeback_keys.lock); 1682 rbtree_postorder_for_each_entry_safe(w, n, 1683 &dc->writeback_keys.keys, node) 1684 for (j = 0; j < KEY_PTRS(&w->key); j++) 1685 SET_GC_MARK(PTR_BUCKET(c, &w->key, j), 1686 GC_MARK_DIRTY); 1687 spin_unlock(&dc->writeback_keys.lock); 1688 } 1689 rcu_read_unlock(); 1690 1691 for_each_cache(ca, c, i) { 1692 uint64_t *i; 1693 1694 ca->invalidate_needs_gc = 0; 1695 1696 for (i = ca->sb.d; i < ca->sb.d + ca->sb.keys; i++) 1697 SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA); 1698 1699 for (i = ca->prio_buckets; 1700 i < ca->prio_buckets + prio_buckets(ca) * 2; i++) 1701 SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA); 1702 1703 for_each_bucket(b, ca) { 1704 c->need_gc = max(c->need_gc, bucket_gc_gen(b)); 1705 1706 if (atomic_read(&b->pin)) 1707 continue; 1708 1709 BUG_ON(!GC_MARK(b) && GC_SECTORS_USED(b)); 1710 1711 if (!GC_MARK(b) || GC_MARK(b) == GC_MARK_RECLAIMABLE) 1712 available++; 1713 } 1714 } 1715 1716 mutex_unlock(&c->bucket_lock); 1717 return available; 1718 } 1719 1720 static void bch_btree_gc(struct cache_set *c) 1721 { 1722 int ret; 1723 unsigned long available; 1724 struct gc_stat stats; 1725 struct closure writes; 1726 struct btree_op op; 1727 uint64_t start_time = local_clock(); 1728 1729 trace_bcache_gc_start(c); 1730 1731 memset(&stats, 0, sizeof(struct gc_stat)); 1732 closure_init_stack(&writes); 1733 bch_btree_op_init(&op, SHRT_MAX); 1734 1735 btree_gc_start(c); 1736 1737 do { 1738 ret = btree_root(gc_root, c, &op, &writes, &stats); 1739 closure_sync(&writes); 1740 cond_resched(); 1741 1742 if (ret && ret != -EAGAIN) 1743 pr_warn("gc failed!"); 1744 } while (ret); 1745 1746 available = bch_btree_gc_finish(c); 1747 wake_up_allocators(c); 1748 1749 bch_time_stats_update(&c->btree_gc_time, start_time); 1750 1751 stats.key_bytes *= sizeof(uint64_t); 1752 stats.data <<= 9; 1753 stats.in_use = (c->nbuckets - available) * 100 / c->nbuckets; 1754 memcpy(&c->gc_stats, &stats, sizeof(struct gc_stat)); 1755 1756 trace_bcache_gc_end(c); 1757 1758 bch_moving_gc(c); 1759 } 1760 1761 static bool gc_should_run(struct cache_set *c) 1762 { 1763 struct cache *ca; 1764 unsigned i; 1765 1766 for_each_cache(ca, c, i) 1767 if (ca->invalidate_needs_gc) 1768 return true; 1769 1770 if (atomic_read(&c->sectors_to_gc) < 0) 1771 return true; 1772 1773 return false; 1774 } 1775 1776 static int bch_gc_thread(void *arg) 1777 { 1778 struct cache_set *c = arg; 1779 1780 while (1) { 1781 wait_event_interruptible(c->gc_wait, 1782 kthread_should_stop() || gc_should_run(c)); 1783 1784 if (kthread_should_stop()) 1785 break; 1786 1787 set_gc_sectors(c); 1788 bch_btree_gc(c); 1789 } 1790 1791 return 0; 1792 } 1793 1794 int bch_gc_thread_start(struct cache_set *c) 1795 { 1796 c->gc_thread = kthread_run(bch_gc_thread, c, "bcache_gc"); 1797 if (IS_ERR(c->gc_thread)) 1798 return PTR_ERR(c->gc_thread); 1799 1800 return 0; 1801 } 1802 1803 /* Initial partial gc */ 1804 1805 static int bch_btree_check_recurse(struct btree *b, struct btree_op *op) 1806 { 1807 int ret = 0; 1808 struct bkey *k, *p = NULL; 1809 struct btree_iter iter; 1810 1811 for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid) 1812 bch_initial_mark_key(b->c, b->level, k); 1813 1814 bch_initial_mark_key(b->c, b->level + 1, &b->key); 1815 1816 if (b->level) { 1817 bch_btree_iter_init(&b->keys, &iter, NULL); 1818 1819 do { 1820 k = bch_btree_iter_next_filter(&iter, &b->keys, 1821 bch_ptr_bad); 1822 if (k) 1823 btree_node_prefetch(b, k); 1824 1825 if (p) 1826 ret = btree(check_recurse, p, b, op); 1827 1828 p = k; 1829 } while (p && !ret); 1830 } 1831 1832 return ret; 1833 } 1834 1835 int bch_btree_check(struct cache_set *c) 1836 { 1837 struct btree_op op; 1838 1839 bch_btree_op_init(&op, SHRT_MAX); 1840 1841 return btree_root(check_recurse, c, &op); 1842 } 1843 1844 void bch_initial_gc_finish(struct cache_set *c) 1845 { 1846 struct cache *ca; 1847 struct bucket *b; 1848 unsigned i; 1849 1850 bch_btree_gc_finish(c); 1851 1852 mutex_lock(&c->bucket_lock); 1853 1854 /* 1855 * We need to put some unused buckets directly on the prio freelist in 1856 * order to get the allocator thread started - it needs freed buckets in 1857 * order to rewrite the prios and gens, and it needs to rewrite prios 1858 * and gens in order to free buckets. 1859 * 1860 * This is only safe for buckets that have no live data in them, which 1861 * there should always be some of. 1862 */ 1863 for_each_cache(ca, c, i) { 1864 for_each_bucket(b, ca) { 1865 if (fifo_full(&ca->free[RESERVE_PRIO])) 1866 break; 1867 1868 if (bch_can_invalidate_bucket(ca, b) && 1869 !GC_MARK(b)) { 1870 __bch_invalidate_one_bucket(ca, b); 1871 fifo_push(&ca->free[RESERVE_PRIO], 1872 b - ca->buckets); 1873 } 1874 } 1875 } 1876 1877 mutex_unlock(&c->bucket_lock); 1878 } 1879 1880 /* Btree insertion */ 1881 1882 static bool btree_insert_key(struct btree *b, struct bkey *k, 1883 struct bkey *replace_key) 1884 { 1885 unsigned status; 1886 1887 BUG_ON(bkey_cmp(k, &b->key) > 0); 1888 1889 status = bch_btree_insert_key(&b->keys, k, replace_key); 1890 if (status != BTREE_INSERT_STATUS_NO_INSERT) { 1891 bch_check_keys(&b->keys, "%u for %s", status, 1892 replace_key ? "replace" : "insert"); 1893 1894 trace_bcache_btree_insert_key(b, k, replace_key != NULL, 1895 status); 1896 return true; 1897 } else 1898 return false; 1899 } 1900 1901 static size_t insert_u64s_remaining(struct btree *b) 1902 { 1903 long ret = bch_btree_keys_u64s_remaining(&b->keys); 1904 1905 /* 1906 * Might land in the middle of an existing extent and have to split it 1907 */ 1908 if (b->keys.ops->is_extents) 1909 ret -= KEY_MAX_U64S; 1910 1911 return max(ret, 0L); 1912 } 1913 1914 static bool bch_btree_insert_keys(struct btree *b, struct btree_op *op, 1915 struct keylist *insert_keys, 1916 struct bkey *replace_key) 1917 { 1918 bool ret = false; 1919 int oldsize = bch_count_data(&b->keys); 1920 1921 while (!bch_keylist_empty(insert_keys)) { 1922 struct bkey *k = insert_keys->keys; 1923 1924 if (bkey_u64s(k) > insert_u64s_remaining(b)) 1925 break; 1926 1927 if (bkey_cmp(k, &b->key) <= 0) { 1928 if (!b->level) 1929 bkey_put(b->c, k); 1930 1931 ret |= btree_insert_key(b, k, replace_key); 1932 bch_keylist_pop_front(insert_keys); 1933 } else if (bkey_cmp(&START_KEY(k), &b->key) < 0) { 1934 BKEY_PADDED(key) temp; 1935 bkey_copy(&temp.key, insert_keys->keys); 1936 1937 bch_cut_back(&b->key, &temp.key); 1938 bch_cut_front(&b->key, insert_keys->keys); 1939 1940 ret |= btree_insert_key(b, &temp.key, replace_key); 1941 break; 1942 } else { 1943 break; 1944 } 1945 } 1946 1947 if (!ret) 1948 op->insert_collision = true; 1949 1950 BUG_ON(!bch_keylist_empty(insert_keys) && b->level); 1951 1952 BUG_ON(bch_count_data(&b->keys) < oldsize); 1953 return ret; 1954 } 1955 1956 static int btree_split(struct btree *b, struct btree_op *op, 1957 struct keylist *insert_keys, 1958 struct bkey *replace_key) 1959 { 1960 bool split; 1961 struct btree *n1, *n2 = NULL, *n3 = NULL; 1962 uint64_t start_time = local_clock(); 1963 struct closure cl; 1964 struct keylist parent_keys; 1965 1966 closure_init_stack(&cl); 1967 bch_keylist_init(&parent_keys); 1968 1969 if (btree_check_reserve(b, op)) { 1970 if (!b->level) 1971 return -EINTR; 1972 else 1973 WARN(1, "insufficient reserve for split\n"); 1974 } 1975 1976 n1 = btree_node_alloc_replacement(b, op); 1977 if (IS_ERR(n1)) 1978 goto err; 1979 1980 split = set_blocks(btree_bset_first(n1), 1981 block_bytes(n1->c)) > (btree_blocks(b) * 4) / 5; 1982 1983 if (split) { 1984 unsigned keys = 0; 1985 1986 trace_bcache_btree_node_split(b, btree_bset_first(n1)->keys); 1987 1988 n2 = bch_btree_node_alloc(b->c, op, b->level, b->parent); 1989 if (IS_ERR(n2)) 1990 goto err_free1; 1991 1992 if (!b->parent) { 1993 n3 = bch_btree_node_alloc(b->c, op, b->level + 1, NULL); 1994 if (IS_ERR(n3)) 1995 goto err_free2; 1996 } 1997 1998 mutex_lock(&n1->write_lock); 1999 mutex_lock(&n2->write_lock); 2000 2001 bch_btree_insert_keys(n1, op, insert_keys, replace_key); 2002 2003 /* 2004 * Has to be a linear search because we don't have an auxiliary 2005 * search tree yet 2006 */ 2007 2008 while (keys < (btree_bset_first(n1)->keys * 3) / 5) 2009 keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1), 2010 keys)); 2011 2012 bkey_copy_key(&n1->key, 2013 bset_bkey_idx(btree_bset_first(n1), keys)); 2014 keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1), keys)); 2015 2016 btree_bset_first(n2)->keys = btree_bset_first(n1)->keys - keys; 2017 btree_bset_first(n1)->keys = keys; 2018 2019 memcpy(btree_bset_first(n2)->start, 2020 bset_bkey_last(btree_bset_first(n1)), 2021 btree_bset_first(n2)->keys * sizeof(uint64_t)); 2022 2023 bkey_copy_key(&n2->key, &b->key); 2024 2025 bch_keylist_add(&parent_keys, &n2->key); 2026 bch_btree_node_write(n2, &cl); 2027 mutex_unlock(&n2->write_lock); 2028 rw_unlock(true, n2); 2029 } else { 2030 trace_bcache_btree_node_compact(b, btree_bset_first(n1)->keys); 2031 2032 mutex_lock(&n1->write_lock); 2033 bch_btree_insert_keys(n1, op, insert_keys, replace_key); 2034 } 2035 2036 bch_keylist_add(&parent_keys, &n1->key); 2037 bch_btree_node_write(n1, &cl); 2038 mutex_unlock(&n1->write_lock); 2039 2040 if (n3) { 2041 /* Depth increases, make a new root */ 2042 mutex_lock(&n3->write_lock); 2043 bkey_copy_key(&n3->key, &MAX_KEY); 2044 bch_btree_insert_keys(n3, op, &parent_keys, NULL); 2045 bch_btree_node_write(n3, &cl); 2046 mutex_unlock(&n3->write_lock); 2047 2048 closure_sync(&cl); 2049 bch_btree_set_root(n3); 2050 rw_unlock(true, n3); 2051 } else if (!b->parent) { 2052 /* Root filled up but didn't need to be split */ 2053 closure_sync(&cl); 2054 bch_btree_set_root(n1); 2055 } else { 2056 /* Split a non root node */ 2057 closure_sync(&cl); 2058 make_btree_freeing_key(b, parent_keys.top); 2059 bch_keylist_push(&parent_keys); 2060 2061 bch_btree_insert_node(b->parent, op, &parent_keys, NULL, NULL); 2062 BUG_ON(!bch_keylist_empty(&parent_keys)); 2063 } 2064 2065 btree_node_free(b); 2066 rw_unlock(true, n1); 2067 2068 bch_time_stats_update(&b->c->btree_split_time, start_time); 2069 2070 return 0; 2071 err_free2: 2072 bkey_put(b->c, &n2->key); 2073 btree_node_free(n2); 2074 rw_unlock(true, n2); 2075 err_free1: 2076 bkey_put(b->c, &n1->key); 2077 btree_node_free(n1); 2078 rw_unlock(true, n1); 2079 err: 2080 WARN(1, "bcache: btree split failed (level %u)", b->level); 2081 2082 if (n3 == ERR_PTR(-EAGAIN) || 2083 n2 == ERR_PTR(-EAGAIN) || 2084 n1 == ERR_PTR(-EAGAIN)) 2085 return -EAGAIN; 2086 2087 return -ENOMEM; 2088 } 2089 2090 static int bch_btree_insert_node(struct btree *b, struct btree_op *op, 2091 struct keylist *insert_keys, 2092 atomic_t *journal_ref, 2093 struct bkey *replace_key) 2094 { 2095 struct closure cl; 2096 2097 BUG_ON(b->level && replace_key); 2098 2099 closure_init_stack(&cl); 2100 2101 mutex_lock(&b->write_lock); 2102 2103 if (write_block(b) != btree_bset_last(b) && 2104 b->keys.last_set_unwritten) 2105 bch_btree_init_next(b); /* just wrote a set */ 2106 2107 if (bch_keylist_nkeys(insert_keys) > insert_u64s_remaining(b)) { 2108 mutex_unlock(&b->write_lock); 2109 goto split; 2110 } 2111 2112 BUG_ON(write_block(b) != btree_bset_last(b)); 2113 2114 if (bch_btree_insert_keys(b, op, insert_keys, replace_key)) { 2115 if (!b->level) 2116 bch_btree_leaf_dirty(b, journal_ref); 2117 else 2118 bch_btree_node_write(b, &cl); 2119 } 2120 2121 mutex_unlock(&b->write_lock); 2122 2123 /* wait for btree node write if necessary, after unlock */ 2124 closure_sync(&cl); 2125 2126 return 0; 2127 split: 2128 if (current->bio_list) { 2129 op->lock = b->c->root->level + 1; 2130 return -EAGAIN; 2131 } else if (op->lock <= b->c->root->level) { 2132 op->lock = b->c->root->level + 1; 2133 return -EINTR; 2134 } else { 2135 /* Invalidated all iterators */ 2136 int ret = btree_split(b, op, insert_keys, replace_key); 2137 2138 if (bch_keylist_empty(insert_keys)) 2139 return 0; 2140 else if (!ret) 2141 return -EINTR; 2142 return ret; 2143 } 2144 } 2145 2146 int bch_btree_insert_check_key(struct btree *b, struct btree_op *op, 2147 struct bkey *check_key) 2148 { 2149 int ret = -EINTR; 2150 uint64_t btree_ptr = b->key.ptr[0]; 2151 unsigned long seq = b->seq; 2152 struct keylist insert; 2153 bool upgrade = op->lock == -1; 2154 2155 bch_keylist_init(&insert); 2156 2157 if (upgrade) { 2158 rw_unlock(false, b); 2159 rw_lock(true, b, b->level); 2160 2161 if (b->key.ptr[0] != btree_ptr || 2162 b->seq != seq + 1) { 2163 op->lock = b->level; 2164 goto out; 2165 } 2166 } 2167 2168 SET_KEY_PTRS(check_key, 1); 2169 get_random_bytes(&check_key->ptr[0], sizeof(uint64_t)); 2170 2171 SET_PTR_DEV(check_key, 0, PTR_CHECK_DEV); 2172 2173 bch_keylist_add(&insert, check_key); 2174 2175 ret = bch_btree_insert_node(b, op, &insert, NULL, NULL); 2176 2177 BUG_ON(!ret && !bch_keylist_empty(&insert)); 2178 out: 2179 if (upgrade) 2180 downgrade_write(&b->lock); 2181 return ret; 2182 } 2183 2184 struct btree_insert_op { 2185 struct btree_op op; 2186 struct keylist *keys; 2187 atomic_t *journal_ref; 2188 struct bkey *replace_key; 2189 }; 2190 2191 static int btree_insert_fn(struct btree_op *b_op, struct btree *b) 2192 { 2193 struct btree_insert_op *op = container_of(b_op, 2194 struct btree_insert_op, op); 2195 2196 int ret = bch_btree_insert_node(b, &op->op, op->keys, 2197 op->journal_ref, op->replace_key); 2198 if (ret && !bch_keylist_empty(op->keys)) 2199 return ret; 2200 else 2201 return MAP_DONE; 2202 } 2203 2204 int bch_btree_insert(struct cache_set *c, struct keylist *keys, 2205 atomic_t *journal_ref, struct bkey *replace_key) 2206 { 2207 struct btree_insert_op op; 2208 int ret = 0; 2209 2210 BUG_ON(current->bio_list); 2211 BUG_ON(bch_keylist_empty(keys)); 2212 2213 bch_btree_op_init(&op.op, 0); 2214 op.keys = keys; 2215 op.journal_ref = journal_ref; 2216 op.replace_key = replace_key; 2217 2218 while (!ret && !bch_keylist_empty(keys)) { 2219 op.op.lock = 0; 2220 ret = bch_btree_map_leaf_nodes(&op.op, c, 2221 &START_KEY(keys->keys), 2222 btree_insert_fn); 2223 } 2224 2225 if (ret) { 2226 struct bkey *k; 2227 2228 pr_err("error %i", ret); 2229 2230 while ((k = bch_keylist_pop(keys))) 2231 bkey_put(c, k); 2232 } else if (op.op.insert_collision) 2233 ret = -ESRCH; 2234 2235 return ret; 2236 } 2237 2238 void bch_btree_set_root(struct btree *b) 2239 { 2240 unsigned i; 2241 struct closure cl; 2242 2243 closure_init_stack(&cl); 2244 2245 trace_bcache_btree_set_root(b); 2246 2247 BUG_ON(!b->written); 2248 2249 for (i = 0; i < KEY_PTRS(&b->key); i++) 2250 BUG_ON(PTR_BUCKET(b->c, &b->key, i)->prio != BTREE_PRIO); 2251 2252 mutex_lock(&b->c->bucket_lock); 2253 list_del_init(&b->list); 2254 mutex_unlock(&b->c->bucket_lock); 2255 2256 b->c->root = b; 2257 2258 bch_journal_meta(b->c, &cl); 2259 closure_sync(&cl); 2260 } 2261 2262 /* Map across nodes or keys */ 2263 2264 static int bch_btree_map_nodes_recurse(struct btree *b, struct btree_op *op, 2265 struct bkey *from, 2266 btree_map_nodes_fn *fn, int flags) 2267 { 2268 int ret = MAP_CONTINUE; 2269 2270 if (b->level) { 2271 struct bkey *k; 2272 struct btree_iter iter; 2273 2274 bch_btree_iter_init(&b->keys, &iter, from); 2275 2276 while ((k = bch_btree_iter_next_filter(&iter, &b->keys, 2277 bch_ptr_bad))) { 2278 ret = btree(map_nodes_recurse, k, b, 2279 op, from, fn, flags); 2280 from = NULL; 2281 2282 if (ret != MAP_CONTINUE) 2283 return ret; 2284 } 2285 } 2286 2287 if (!b->level || flags == MAP_ALL_NODES) 2288 ret = fn(op, b); 2289 2290 return ret; 2291 } 2292 2293 int __bch_btree_map_nodes(struct btree_op *op, struct cache_set *c, 2294 struct bkey *from, btree_map_nodes_fn *fn, int flags) 2295 { 2296 return btree_root(map_nodes_recurse, c, op, from, fn, flags); 2297 } 2298 2299 static int bch_btree_map_keys_recurse(struct btree *b, struct btree_op *op, 2300 struct bkey *from, btree_map_keys_fn *fn, 2301 int flags) 2302 { 2303 int ret = MAP_CONTINUE; 2304 struct bkey *k; 2305 struct btree_iter iter; 2306 2307 bch_btree_iter_init(&b->keys, &iter, from); 2308 2309 while ((k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad))) { 2310 ret = !b->level 2311 ? fn(op, b, k) 2312 : btree(map_keys_recurse, k, b, op, from, fn, flags); 2313 from = NULL; 2314 2315 if (ret != MAP_CONTINUE) 2316 return ret; 2317 } 2318 2319 if (!b->level && (flags & MAP_END_KEY)) 2320 ret = fn(op, b, &KEY(KEY_INODE(&b->key), 2321 KEY_OFFSET(&b->key), 0)); 2322 2323 return ret; 2324 } 2325 2326 int bch_btree_map_keys(struct btree_op *op, struct cache_set *c, 2327 struct bkey *from, btree_map_keys_fn *fn, int flags) 2328 { 2329 return btree_root(map_keys_recurse, c, op, from, fn, flags); 2330 } 2331 2332 /* Keybuf code */ 2333 2334 static inline int keybuf_cmp(struct keybuf_key *l, struct keybuf_key *r) 2335 { 2336 /* Overlapping keys compare equal */ 2337 if (bkey_cmp(&l->key, &START_KEY(&r->key)) <= 0) 2338 return -1; 2339 if (bkey_cmp(&START_KEY(&l->key), &r->key) >= 0) 2340 return 1; 2341 return 0; 2342 } 2343 2344 static inline int keybuf_nonoverlapping_cmp(struct keybuf_key *l, 2345 struct keybuf_key *r) 2346 { 2347 return clamp_t(int64_t, bkey_cmp(&l->key, &r->key), -1, 1); 2348 } 2349 2350 struct refill { 2351 struct btree_op op; 2352 unsigned nr_found; 2353 struct keybuf *buf; 2354 struct bkey *end; 2355 keybuf_pred_fn *pred; 2356 }; 2357 2358 static int refill_keybuf_fn(struct btree_op *op, struct btree *b, 2359 struct bkey *k) 2360 { 2361 struct refill *refill = container_of(op, struct refill, op); 2362 struct keybuf *buf = refill->buf; 2363 int ret = MAP_CONTINUE; 2364 2365 if (bkey_cmp(k, refill->end) >= 0) { 2366 ret = MAP_DONE; 2367 goto out; 2368 } 2369 2370 if (!KEY_SIZE(k)) /* end key */ 2371 goto out; 2372 2373 if (refill->pred(buf, k)) { 2374 struct keybuf_key *w; 2375 2376 spin_lock(&buf->lock); 2377 2378 w = array_alloc(&buf->freelist); 2379 if (!w) { 2380 spin_unlock(&buf->lock); 2381 return MAP_DONE; 2382 } 2383 2384 w->private = NULL; 2385 bkey_copy(&w->key, k); 2386 2387 if (RB_INSERT(&buf->keys, w, node, keybuf_cmp)) 2388 array_free(&buf->freelist, w); 2389 else 2390 refill->nr_found++; 2391 2392 if (array_freelist_empty(&buf->freelist)) 2393 ret = MAP_DONE; 2394 2395 spin_unlock(&buf->lock); 2396 } 2397 out: 2398 buf->last_scanned = *k; 2399 return ret; 2400 } 2401 2402 void bch_refill_keybuf(struct cache_set *c, struct keybuf *buf, 2403 struct bkey *end, keybuf_pred_fn *pred) 2404 { 2405 struct bkey start = buf->last_scanned; 2406 struct refill refill; 2407 2408 cond_resched(); 2409 2410 bch_btree_op_init(&refill.op, -1); 2411 refill.nr_found = 0; 2412 refill.buf = buf; 2413 refill.end = end; 2414 refill.pred = pred; 2415 2416 bch_btree_map_keys(&refill.op, c, &buf->last_scanned, 2417 refill_keybuf_fn, MAP_END_KEY); 2418 2419 trace_bcache_keyscan(refill.nr_found, 2420 KEY_INODE(&start), KEY_OFFSET(&start), 2421 KEY_INODE(&buf->last_scanned), 2422 KEY_OFFSET(&buf->last_scanned)); 2423 2424 spin_lock(&buf->lock); 2425 2426 if (!RB_EMPTY_ROOT(&buf->keys)) { 2427 struct keybuf_key *w; 2428 w = RB_FIRST(&buf->keys, struct keybuf_key, node); 2429 buf->start = START_KEY(&w->key); 2430 2431 w = RB_LAST(&buf->keys, struct keybuf_key, node); 2432 buf->end = w->key; 2433 } else { 2434 buf->start = MAX_KEY; 2435 buf->end = MAX_KEY; 2436 } 2437 2438 spin_unlock(&buf->lock); 2439 } 2440 2441 static void __bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w) 2442 { 2443 rb_erase(&w->node, &buf->keys); 2444 array_free(&buf->freelist, w); 2445 } 2446 2447 void bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w) 2448 { 2449 spin_lock(&buf->lock); 2450 __bch_keybuf_del(buf, w); 2451 spin_unlock(&buf->lock); 2452 } 2453 2454 bool bch_keybuf_check_overlapping(struct keybuf *buf, struct bkey *start, 2455 struct bkey *end) 2456 { 2457 bool ret = false; 2458 struct keybuf_key *p, *w, s; 2459 s.key = *start; 2460 2461 if (bkey_cmp(end, &buf->start) <= 0 || 2462 bkey_cmp(start, &buf->end) >= 0) 2463 return false; 2464 2465 spin_lock(&buf->lock); 2466 w = RB_GREATER(&buf->keys, s, node, keybuf_nonoverlapping_cmp); 2467 2468 while (w && bkey_cmp(&START_KEY(&w->key), end) < 0) { 2469 p = w; 2470 w = RB_NEXT(w, node); 2471 2472 if (p->private) 2473 ret = true; 2474 else 2475 __bch_keybuf_del(buf, p); 2476 } 2477 2478 spin_unlock(&buf->lock); 2479 return ret; 2480 } 2481 2482 struct keybuf_key *bch_keybuf_next(struct keybuf *buf) 2483 { 2484 struct keybuf_key *w; 2485 spin_lock(&buf->lock); 2486 2487 w = RB_FIRST(&buf->keys, struct keybuf_key, node); 2488 2489 while (w && w->private) 2490 w = RB_NEXT(w, node); 2491 2492 if (w) 2493 w->private = ERR_PTR(-EINTR); 2494 2495 spin_unlock(&buf->lock); 2496 return w; 2497 } 2498 2499 struct keybuf_key *bch_keybuf_next_rescan(struct cache_set *c, 2500 struct keybuf *buf, 2501 struct bkey *end, 2502 keybuf_pred_fn *pred) 2503 { 2504 struct keybuf_key *ret; 2505 2506 while (1) { 2507 ret = bch_keybuf_next(buf); 2508 if (ret) 2509 break; 2510 2511 if (bkey_cmp(&buf->last_scanned, end) >= 0) { 2512 pr_debug("scan finished"); 2513 break; 2514 } 2515 2516 bch_refill_keybuf(c, buf, end, pred); 2517 } 2518 2519 return ret; 2520 } 2521 2522 void bch_keybuf_init(struct keybuf *buf) 2523 { 2524 buf->last_scanned = MAX_KEY; 2525 buf->keys = RB_ROOT; 2526 2527 spin_lock_init(&buf->lock); 2528 array_allocator_init(&buf->freelist); 2529 } 2530