xref: /openbmc/linux/drivers/md/bcache/btree.c (revision 0c874100)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com>
4  *
5  * Uses a block device as cache for other block devices; optimized for SSDs.
6  * All allocation is done in buckets, which should match the erase block size
7  * of the device.
8  *
9  * Buckets containing cached data are kept on a heap sorted by priority;
10  * bucket priority is increased on cache hit, and periodically all the buckets
11  * on the heap have their priority scaled down. This currently is just used as
12  * an LRU but in the future should allow for more intelligent heuristics.
13  *
14  * Buckets have an 8 bit counter; freeing is accomplished by incrementing the
15  * counter. Garbage collection is used to remove stale pointers.
16  *
17  * Indexing is done via a btree; nodes are not necessarily fully sorted, rather
18  * as keys are inserted we only sort the pages that have not yet been written.
19  * When garbage collection is run, we resort the entire node.
20  *
21  * All configuration is done via sysfs; see Documentation/admin-guide/bcache.rst.
22  */
23 
24 #include "bcache.h"
25 #include "btree.h"
26 #include "debug.h"
27 #include "extents.h"
28 
29 #include <linux/slab.h>
30 #include <linux/bitops.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/prefetch.h>
34 #include <linux/random.h>
35 #include <linux/rcupdate.h>
36 #include <linux/sched/clock.h>
37 #include <linux/rculist.h>
38 
39 #include <trace/events/bcache.h>
40 
41 /*
42  * Todo:
43  * register_bcache: Return errors out to userspace correctly
44  *
45  * Writeback: don't undirty key until after a cache flush
46  *
47  * Create an iterator for key pointers
48  *
49  * On btree write error, mark bucket such that it won't be freed from the cache
50  *
51  * Journalling:
52  *   Check for bad keys in replay
53  *   Propagate barriers
54  *   Refcount journal entries in journal_replay
55  *
56  * Garbage collection:
57  *   Finish incremental gc
58  *   Gc should free old UUIDs, data for invalid UUIDs
59  *
60  * Provide a way to list backing device UUIDs we have data cached for, and
61  * probably how long it's been since we've seen them, and a way to invalidate
62  * dirty data for devices that will never be attached again
63  *
64  * Keep 1 min/5 min/15 min statistics of how busy a block device has been, so
65  * that based on that and how much dirty data we have we can keep writeback
66  * from being starved
67  *
68  * Add a tracepoint or somesuch to watch for writeback starvation
69  *
70  * When btree depth > 1 and splitting an interior node, we have to make sure
71  * alloc_bucket() cannot fail. This should be true but is not completely
72  * obvious.
73  *
74  * Plugging?
75  *
76  * If data write is less than hard sector size of ssd, round up offset in open
77  * bucket to the next whole sector
78  *
79  * Superblock needs to be fleshed out for multiple cache devices
80  *
81  * Add a sysfs tunable for the number of writeback IOs in flight
82  *
83  * Add a sysfs tunable for the number of open data buckets
84  *
85  * IO tracking: Can we track when one process is doing io on behalf of another?
86  * IO tracking: Don't use just an average, weigh more recent stuff higher
87  *
88  * Test module load/unload
89  */
90 
91 #define MAX_NEED_GC		64
92 #define MAX_SAVE_PRIO		72
93 #define MAX_GC_TIMES		100
94 #define MIN_GC_NODES		100
95 #define GC_SLEEP_MS		100
96 
97 #define PTR_DIRTY_BIT		(((uint64_t) 1 << 36))
98 
99 #define PTR_HASH(c, k)							\
100 	(((k)->ptr[0] >> c->bucket_bits) | PTR_GEN(k, 0))
101 
102 #define insert_lock(s, b)	((b)->level <= (s)->lock)
103 
104 /*
105  * These macros are for recursing down the btree - they handle the details of
106  * locking and looking up nodes in the cache for you. They're best treated as
107  * mere syntax when reading code that uses them.
108  *
109  * op->lock determines whether we take a read or a write lock at a given depth.
110  * If you've got a read lock and find that you need a write lock (i.e. you're
111  * going to have to split), set op->lock and return -EINTR; btree_root() will
112  * call you again and you'll have the correct lock.
113  */
114 
115 /**
116  * btree - recurse down the btree on a specified key
117  * @fn:		function to call, which will be passed the child node
118  * @key:	key to recurse on
119  * @b:		parent btree node
120  * @op:		pointer to struct btree_op
121  */
122 #define btree(fn, key, b, op, ...)					\
123 ({									\
124 	int _r, l = (b)->level - 1;					\
125 	bool _w = l <= (op)->lock;					\
126 	struct btree *_child = bch_btree_node_get((b)->c, op, key, l,	\
127 						  _w, b);		\
128 	if (!IS_ERR(_child)) {						\
129 		_r = bch_btree_ ## fn(_child, op, ##__VA_ARGS__);	\
130 		rw_unlock(_w, _child);					\
131 	} else								\
132 		_r = PTR_ERR(_child);					\
133 	_r;								\
134 })
135 
136 /**
137  * btree_root - call a function on the root of the btree
138  * @fn:		function to call, which will be passed the child node
139  * @c:		cache set
140  * @op:		pointer to struct btree_op
141  */
142 #define btree_root(fn, c, op, ...)					\
143 ({									\
144 	int _r = -EINTR;						\
145 	do {								\
146 		struct btree *_b = (c)->root;				\
147 		bool _w = insert_lock(op, _b);				\
148 		rw_lock(_w, _b, _b->level);				\
149 		if (_b == (c)->root &&					\
150 		    _w == insert_lock(op, _b)) {			\
151 			_r = bch_btree_ ## fn(_b, op, ##__VA_ARGS__);	\
152 		}							\
153 		rw_unlock(_w, _b);					\
154 		bch_cannibalize_unlock(c);				\
155 		if (_r == -EINTR)					\
156 			schedule();					\
157 	} while (_r == -EINTR);						\
158 									\
159 	finish_wait(&(c)->btree_cache_wait, &(op)->wait);		\
160 	_r;								\
161 })
162 
163 static inline struct bset *write_block(struct btree *b)
164 {
165 	return ((void *) btree_bset_first(b)) + b->written * block_bytes(b->c);
166 }
167 
168 static void bch_btree_init_next(struct btree *b)
169 {
170 	/* If not a leaf node, always sort */
171 	if (b->level && b->keys.nsets)
172 		bch_btree_sort(&b->keys, &b->c->sort);
173 	else
174 		bch_btree_sort_lazy(&b->keys, &b->c->sort);
175 
176 	if (b->written < btree_blocks(b))
177 		bch_bset_init_next(&b->keys, write_block(b),
178 				   bset_magic(&b->c->sb));
179 
180 }
181 
182 /* Btree key manipulation */
183 
184 void bkey_put(struct cache_set *c, struct bkey *k)
185 {
186 	unsigned int i;
187 
188 	for (i = 0; i < KEY_PTRS(k); i++)
189 		if (ptr_available(c, k, i))
190 			atomic_dec_bug(&PTR_BUCKET(c, k, i)->pin);
191 }
192 
193 /* Btree IO */
194 
195 static uint64_t btree_csum_set(struct btree *b, struct bset *i)
196 {
197 	uint64_t crc = b->key.ptr[0];
198 	void *data = (void *) i + 8, *end = bset_bkey_last(i);
199 
200 	crc = bch_crc64_update(crc, data, end - data);
201 	return crc ^ 0xffffffffffffffffULL;
202 }
203 
204 void bch_btree_node_read_done(struct btree *b)
205 {
206 	const char *err = "bad btree header";
207 	struct bset *i = btree_bset_first(b);
208 	struct btree_iter *iter;
209 
210 	iter = mempool_alloc(&b->c->fill_iter, GFP_NOIO);
211 	iter->size = b->c->sb.bucket_size / b->c->sb.block_size;
212 	iter->used = 0;
213 
214 #ifdef CONFIG_BCACHE_DEBUG
215 	iter->b = &b->keys;
216 #endif
217 
218 	if (!i->seq)
219 		goto err;
220 
221 	for (;
222 	     b->written < btree_blocks(b) && i->seq == b->keys.set[0].data->seq;
223 	     i = write_block(b)) {
224 		err = "unsupported bset version";
225 		if (i->version > BCACHE_BSET_VERSION)
226 			goto err;
227 
228 		err = "bad btree header";
229 		if (b->written + set_blocks(i, block_bytes(b->c)) >
230 		    btree_blocks(b))
231 			goto err;
232 
233 		err = "bad magic";
234 		if (i->magic != bset_magic(&b->c->sb))
235 			goto err;
236 
237 		err = "bad checksum";
238 		switch (i->version) {
239 		case 0:
240 			if (i->csum != csum_set(i))
241 				goto err;
242 			break;
243 		case BCACHE_BSET_VERSION:
244 			if (i->csum != btree_csum_set(b, i))
245 				goto err;
246 			break;
247 		}
248 
249 		err = "empty set";
250 		if (i != b->keys.set[0].data && !i->keys)
251 			goto err;
252 
253 		bch_btree_iter_push(iter, i->start, bset_bkey_last(i));
254 
255 		b->written += set_blocks(i, block_bytes(b->c));
256 	}
257 
258 	err = "corrupted btree";
259 	for (i = write_block(b);
260 	     bset_sector_offset(&b->keys, i) < KEY_SIZE(&b->key);
261 	     i = ((void *) i) + block_bytes(b->c))
262 		if (i->seq == b->keys.set[0].data->seq)
263 			goto err;
264 
265 	bch_btree_sort_and_fix_extents(&b->keys, iter, &b->c->sort);
266 
267 	i = b->keys.set[0].data;
268 	err = "short btree key";
269 	if (b->keys.set[0].size &&
270 	    bkey_cmp(&b->key, &b->keys.set[0].end) < 0)
271 		goto err;
272 
273 	if (b->written < btree_blocks(b))
274 		bch_bset_init_next(&b->keys, write_block(b),
275 				   bset_magic(&b->c->sb));
276 out:
277 	mempool_free(iter, &b->c->fill_iter);
278 	return;
279 err:
280 	set_btree_node_io_error(b);
281 	bch_cache_set_error(b->c, "%s at bucket %zu, block %u, %u keys",
282 			    err, PTR_BUCKET_NR(b->c, &b->key, 0),
283 			    bset_block_offset(b, i), i->keys);
284 	goto out;
285 }
286 
287 static void btree_node_read_endio(struct bio *bio)
288 {
289 	struct closure *cl = bio->bi_private;
290 
291 	closure_put(cl);
292 }
293 
294 static void bch_btree_node_read(struct btree *b)
295 {
296 	uint64_t start_time = local_clock();
297 	struct closure cl;
298 	struct bio *bio;
299 
300 	trace_bcache_btree_read(b);
301 
302 	closure_init_stack(&cl);
303 
304 	bio = bch_bbio_alloc(b->c);
305 	bio->bi_iter.bi_size = KEY_SIZE(&b->key) << 9;
306 	bio->bi_end_io	= btree_node_read_endio;
307 	bio->bi_private	= &cl;
308 	bio->bi_opf = REQ_OP_READ | REQ_META;
309 
310 	bch_bio_map(bio, b->keys.set[0].data);
311 
312 	bch_submit_bbio(bio, b->c, &b->key, 0);
313 	closure_sync(&cl);
314 
315 	if (bio->bi_status)
316 		set_btree_node_io_error(b);
317 
318 	bch_bbio_free(bio, b->c);
319 
320 	if (btree_node_io_error(b))
321 		goto err;
322 
323 	bch_btree_node_read_done(b);
324 	bch_time_stats_update(&b->c->btree_read_time, start_time);
325 
326 	return;
327 err:
328 	bch_cache_set_error(b->c, "io error reading bucket %zu",
329 			    PTR_BUCKET_NR(b->c, &b->key, 0));
330 }
331 
332 static void btree_complete_write(struct btree *b, struct btree_write *w)
333 {
334 	if (w->prio_blocked &&
335 	    !atomic_sub_return(w->prio_blocked, &b->c->prio_blocked))
336 		wake_up_allocators(b->c);
337 
338 	if (w->journal) {
339 		atomic_dec_bug(w->journal);
340 		__closure_wake_up(&b->c->journal.wait);
341 	}
342 
343 	w->prio_blocked	= 0;
344 	w->journal	= NULL;
345 }
346 
347 static void btree_node_write_unlock(struct closure *cl)
348 {
349 	struct btree *b = container_of(cl, struct btree, io);
350 
351 	up(&b->io_mutex);
352 }
353 
354 static void __btree_node_write_done(struct closure *cl)
355 {
356 	struct btree *b = container_of(cl, struct btree, io);
357 	struct btree_write *w = btree_prev_write(b);
358 
359 	bch_bbio_free(b->bio, b->c);
360 	b->bio = NULL;
361 	btree_complete_write(b, w);
362 
363 	if (btree_node_dirty(b))
364 		schedule_delayed_work(&b->work, 30 * HZ);
365 
366 	closure_return_with_destructor(cl, btree_node_write_unlock);
367 }
368 
369 static void btree_node_write_done(struct closure *cl)
370 {
371 	struct btree *b = container_of(cl, struct btree, io);
372 
373 	bio_free_pages(b->bio);
374 	__btree_node_write_done(cl);
375 }
376 
377 static void btree_node_write_endio(struct bio *bio)
378 {
379 	struct closure *cl = bio->bi_private;
380 	struct btree *b = container_of(cl, struct btree, io);
381 
382 	if (bio->bi_status)
383 		set_btree_node_io_error(b);
384 
385 	bch_bbio_count_io_errors(b->c, bio, bio->bi_status, "writing btree");
386 	closure_put(cl);
387 }
388 
389 static void do_btree_node_write(struct btree *b)
390 {
391 	struct closure *cl = &b->io;
392 	struct bset *i = btree_bset_last(b);
393 	BKEY_PADDED(key) k;
394 
395 	i->version	= BCACHE_BSET_VERSION;
396 	i->csum		= btree_csum_set(b, i);
397 
398 	BUG_ON(b->bio);
399 	b->bio = bch_bbio_alloc(b->c);
400 
401 	b->bio->bi_end_io	= btree_node_write_endio;
402 	b->bio->bi_private	= cl;
403 	b->bio->bi_iter.bi_size	= roundup(set_bytes(i), block_bytes(b->c));
404 	b->bio->bi_opf		= REQ_OP_WRITE | REQ_META | REQ_FUA;
405 	bch_bio_map(b->bio, i);
406 
407 	/*
408 	 * If we're appending to a leaf node, we don't technically need FUA -
409 	 * this write just needs to be persisted before the next journal write,
410 	 * which will be marked FLUSH|FUA.
411 	 *
412 	 * Similarly if we're writing a new btree root - the pointer is going to
413 	 * be in the next journal entry.
414 	 *
415 	 * But if we're writing a new btree node (that isn't a root) or
416 	 * appending to a non leaf btree node, we need either FUA or a flush
417 	 * when we write the parent with the new pointer. FUA is cheaper than a
418 	 * flush, and writes appending to leaf nodes aren't blocking anything so
419 	 * just make all btree node writes FUA to keep things sane.
420 	 */
421 
422 	bkey_copy(&k.key, &b->key);
423 	SET_PTR_OFFSET(&k.key, 0, PTR_OFFSET(&k.key, 0) +
424 		       bset_sector_offset(&b->keys, i));
425 
426 	if (!bch_bio_alloc_pages(b->bio, __GFP_NOWARN|GFP_NOWAIT)) {
427 		int j;
428 		struct bio_vec *bv;
429 		void *base = (void *) ((unsigned long) i & ~(PAGE_SIZE - 1));
430 
431 		bio_for_each_segment_all(bv, b->bio, j)
432 			memcpy(page_address(bv->bv_page),
433 			       base + j * PAGE_SIZE, PAGE_SIZE);
434 
435 		bch_submit_bbio(b->bio, b->c, &k.key, 0);
436 
437 		continue_at(cl, btree_node_write_done, NULL);
438 	} else {
439 		/*
440 		 * No problem for multipage bvec since the bio is
441 		 * just allocated
442 		 */
443 		b->bio->bi_vcnt = 0;
444 		bch_bio_map(b->bio, i);
445 
446 		bch_submit_bbio(b->bio, b->c, &k.key, 0);
447 
448 		closure_sync(cl);
449 		continue_at_nobarrier(cl, __btree_node_write_done, NULL);
450 	}
451 }
452 
453 void __bch_btree_node_write(struct btree *b, struct closure *parent)
454 {
455 	struct bset *i = btree_bset_last(b);
456 
457 	lockdep_assert_held(&b->write_lock);
458 
459 	trace_bcache_btree_write(b);
460 
461 	BUG_ON(current->bio_list);
462 	BUG_ON(b->written >= btree_blocks(b));
463 	BUG_ON(b->written && !i->keys);
464 	BUG_ON(btree_bset_first(b)->seq != i->seq);
465 	bch_check_keys(&b->keys, "writing");
466 
467 	cancel_delayed_work(&b->work);
468 
469 	/* If caller isn't waiting for write, parent refcount is cache set */
470 	down(&b->io_mutex);
471 	closure_init(&b->io, parent ?: &b->c->cl);
472 
473 	clear_bit(BTREE_NODE_dirty,	 &b->flags);
474 	change_bit(BTREE_NODE_write_idx, &b->flags);
475 
476 	do_btree_node_write(b);
477 
478 	atomic_long_add(set_blocks(i, block_bytes(b->c)) * b->c->sb.block_size,
479 			&PTR_CACHE(b->c, &b->key, 0)->btree_sectors_written);
480 
481 	b->written += set_blocks(i, block_bytes(b->c));
482 }
483 
484 void bch_btree_node_write(struct btree *b, struct closure *parent)
485 {
486 	unsigned int nsets = b->keys.nsets;
487 
488 	lockdep_assert_held(&b->lock);
489 
490 	__bch_btree_node_write(b, parent);
491 
492 	/*
493 	 * do verify if there was more than one set initially (i.e. we did a
494 	 * sort) and we sorted down to a single set:
495 	 */
496 	if (nsets && !b->keys.nsets)
497 		bch_btree_verify(b);
498 
499 	bch_btree_init_next(b);
500 }
501 
502 static void bch_btree_node_write_sync(struct btree *b)
503 {
504 	struct closure cl;
505 
506 	closure_init_stack(&cl);
507 
508 	mutex_lock(&b->write_lock);
509 	bch_btree_node_write(b, &cl);
510 	mutex_unlock(&b->write_lock);
511 
512 	closure_sync(&cl);
513 }
514 
515 static void btree_node_write_work(struct work_struct *w)
516 {
517 	struct btree *b = container_of(to_delayed_work(w), struct btree, work);
518 
519 	mutex_lock(&b->write_lock);
520 	if (btree_node_dirty(b))
521 		__bch_btree_node_write(b, NULL);
522 	mutex_unlock(&b->write_lock);
523 }
524 
525 static void bch_btree_leaf_dirty(struct btree *b, atomic_t *journal_ref)
526 {
527 	struct bset *i = btree_bset_last(b);
528 	struct btree_write *w = btree_current_write(b);
529 
530 	lockdep_assert_held(&b->write_lock);
531 
532 	BUG_ON(!b->written);
533 	BUG_ON(!i->keys);
534 
535 	if (!btree_node_dirty(b))
536 		schedule_delayed_work(&b->work, 30 * HZ);
537 
538 	set_btree_node_dirty(b);
539 
540 	if (journal_ref) {
541 		if (w->journal &&
542 		    journal_pin_cmp(b->c, w->journal, journal_ref)) {
543 			atomic_dec_bug(w->journal);
544 			w->journal = NULL;
545 		}
546 
547 		if (!w->journal) {
548 			w->journal = journal_ref;
549 			atomic_inc(w->journal);
550 		}
551 	}
552 
553 	/* Force write if set is too big */
554 	if (set_bytes(i) > PAGE_SIZE - 48 &&
555 	    !current->bio_list)
556 		bch_btree_node_write(b, NULL);
557 }
558 
559 /*
560  * Btree in memory cache - allocation/freeing
561  * mca -> memory cache
562  */
563 
564 #define mca_reserve(c)	(((c->root && c->root->level)		\
565 			  ? c->root->level : 1) * 8 + 16)
566 #define mca_can_free(c)						\
567 	max_t(int, 0, c->btree_cache_used - mca_reserve(c))
568 
569 static void mca_data_free(struct btree *b)
570 {
571 	BUG_ON(b->io_mutex.count != 1);
572 
573 	bch_btree_keys_free(&b->keys);
574 
575 	b->c->btree_cache_used--;
576 	list_move(&b->list, &b->c->btree_cache_freed);
577 }
578 
579 static void mca_bucket_free(struct btree *b)
580 {
581 	BUG_ON(btree_node_dirty(b));
582 
583 	b->key.ptr[0] = 0;
584 	hlist_del_init_rcu(&b->hash);
585 	list_move(&b->list, &b->c->btree_cache_freeable);
586 }
587 
588 static unsigned int btree_order(struct bkey *k)
589 {
590 	return ilog2(KEY_SIZE(k) / PAGE_SECTORS ?: 1);
591 }
592 
593 static void mca_data_alloc(struct btree *b, struct bkey *k, gfp_t gfp)
594 {
595 	if (!bch_btree_keys_alloc(&b->keys,
596 				  max_t(unsigned int,
597 					ilog2(b->c->btree_pages),
598 					btree_order(k)),
599 				  gfp)) {
600 		b->c->btree_cache_used++;
601 		list_move(&b->list, &b->c->btree_cache);
602 	} else {
603 		list_move(&b->list, &b->c->btree_cache_freed);
604 	}
605 }
606 
607 static struct btree *mca_bucket_alloc(struct cache_set *c,
608 				      struct bkey *k, gfp_t gfp)
609 {
610 	struct btree *b = kzalloc(sizeof(struct btree), gfp);
611 
612 	if (!b)
613 		return NULL;
614 
615 	init_rwsem(&b->lock);
616 	lockdep_set_novalidate_class(&b->lock);
617 	mutex_init(&b->write_lock);
618 	lockdep_set_novalidate_class(&b->write_lock);
619 	INIT_LIST_HEAD(&b->list);
620 	INIT_DELAYED_WORK(&b->work, btree_node_write_work);
621 	b->c = c;
622 	sema_init(&b->io_mutex, 1);
623 
624 	mca_data_alloc(b, k, gfp);
625 	return b;
626 }
627 
628 static int mca_reap(struct btree *b, unsigned int min_order, bool flush)
629 {
630 	struct closure cl;
631 
632 	closure_init_stack(&cl);
633 	lockdep_assert_held(&b->c->bucket_lock);
634 
635 	if (!down_write_trylock(&b->lock))
636 		return -ENOMEM;
637 
638 	BUG_ON(btree_node_dirty(b) && !b->keys.set[0].data);
639 
640 	if (b->keys.page_order < min_order)
641 		goto out_unlock;
642 
643 	if (!flush) {
644 		if (btree_node_dirty(b))
645 			goto out_unlock;
646 
647 		if (down_trylock(&b->io_mutex))
648 			goto out_unlock;
649 		up(&b->io_mutex);
650 	}
651 
652 	mutex_lock(&b->write_lock);
653 	if (btree_node_dirty(b))
654 		__bch_btree_node_write(b, &cl);
655 	mutex_unlock(&b->write_lock);
656 
657 	closure_sync(&cl);
658 
659 	/* wait for any in flight btree write */
660 	down(&b->io_mutex);
661 	up(&b->io_mutex);
662 
663 	return 0;
664 out_unlock:
665 	rw_unlock(true, b);
666 	return -ENOMEM;
667 }
668 
669 static unsigned long bch_mca_scan(struct shrinker *shrink,
670 				  struct shrink_control *sc)
671 {
672 	struct cache_set *c = container_of(shrink, struct cache_set, shrink);
673 	struct btree *b, *t;
674 	unsigned long i, nr = sc->nr_to_scan;
675 	unsigned long freed = 0;
676 	unsigned int btree_cache_used;
677 
678 	if (c->shrinker_disabled)
679 		return SHRINK_STOP;
680 
681 	if (c->btree_cache_alloc_lock)
682 		return SHRINK_STOP;
683 
684 	/* Return -1 if we can't do anything right now */
685 	if (sc->gfp_mask & __GFP_IO)
686 		mutex_lock(&c->bucket_lock);
687 	else if (!mutex_trylock(&c->bucket_lock))
688 		return -1;
689 
690 	/*
691 	 * It's _really_ critical that we don't free too many btree nodes - we
692 	 * have to always leave ourselves a reserve. The reserve is how we
693 	 * guarantee that allocating memory for a new btree node can always
694 	 * succeed, so that inserting keys into the btree can always succeed and
695 	 * IO can always make forward progress:
696 	 */
697 	nr /= c->btree_pages;
698 	nr = min_t(unsigned long, nr, mca_can_free(c));
699 
700 	i = 0;
701 	btree_cache_used = c->btree_cache_used;
702 	list_for_each_entry_safe(b, t, &c->btree_cache_freeable, list) {
703 		if (nr <= 0)
704 			goto out;
705 
706 		if (++i > 3 &&
707 		    !mca_reap(b, 0, false)) {
708 			mca_data_free(b);
709 			rw_unlock(true, b);
710 			freed++;
711 		}
712 		nr--;
713 	}
714 
715 	for (;  (nr--) && i < btree_cache_used; i++) {
716 		if (list_empty(&c->btree_cache))
717 			goto out;
718 
719 		b = list_first_entry(&c->btree_cache, struct btree, list);
720 		list_rotate_left(&c->btree_cache);
721 
722 		if (!b->accessed &&
723 		    !mca_reap(b, 0, false)) {
724 			mca_bucket_free(b);
725 			mca_data_free(b);
726 			rw_unlock(true, b);
727 			freed++;
728 		} else
729 			b->accessed = 0;
730 	}
731 out:
732 	mutex_unlock(&c->bucket_lock);
733 	return freed * c->btree_pages;
734 }
735 
736 static unsigned long bch_mca_count(struct shrinker *shrink,
737 				   struct shrink_control *sc)
738 {
739 	struct cache_set *c = container_of(shrink, struct cache_set, shrink);
740 
741 	if (c->shrinker_disabled)
742 		return 0;
743 
744 	if (c->btree_cache_alloc_lock)
745 		return 0;
746 
747 	return mca_can_free(c) * c->btree_pages;
748 }
749 
750 void bch_btree_cache_free(struct cache_set *c)
751 {
752 	struct btree *b;
753 	struct closure cl;
754 
755 	closure_init_stack(&cl);
756 
757 	if (c->shrink.list.next)
758 		unregister_shrinker(&c->shrink);
759 
760 	mutex_lock(&c->bucket_lock);
761 
762 #ifdef CONFIG_BCACHE_DEBUG
763 	if (c->verify_data)
764 		list_move(&c->verify_data->list, &c->btree_cache);
765 
766 	free_pages((unsigned long) c->verify_ondisk, ilog2(bucket_pages(c)));
767 #endif
768 
769 	list_splice(&c->btree_cache_freeable,
770 		    &c->btree_cache);
771 
772 	while (!list_empty(&c->btree_cache)) {
773 		b = list_first_entry(&c->btree_cache, struct btree, list);
774 
775 		if (btree_node_dirty(b))
776 			btree_complete_write(b, btree_current_write(b));
777 		clear_bit(BTREE_NODE_dirty, &b->flags);
778 
779 		mca_data_free(b);
780 	}
781 
782 	while (!list_empty(&c->btree_cache_freed)) {
783 		b = list_first_entry(&c->btree_cache_freed,
784 				     struct btree, list);
785 		list_del(&b->list);
786 		cancel_delayed_work_sync(&b->work);
787 		kfree(b);
788 	}
789 
790 	mutex_unlock(&c->bucket_lock);
791 }
792 
793 int bch_btree_cache_alloc(struct cache_set *c)
794 {
795 	unsigned int i;
796 
797 	for (i = 0; i < mca_reserve(c); i++)
798 		if (!mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL))
799 			return -ENOMEM;
800 
801 	list_splice_init(&c->btree_cache,
802 			 &c->btree_cache_freeable);
803 
804 #ifdef CONFIG_BCACHE_DEBUG
805 	mutex_init(&c->verify_lock);
806 
807 	c->verify_ondisk = (void *)
808 		__get_free_pages(GFP_KERNEL, ilog2(bucket_pages(c)));
809 
810 	c->verify_data = mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL);
811 
812 	if (c->verify_data &&
813 	    c->verify_data->keys.set->data)
814 		list_del_init(&c->verify_data->list);
815 	else
816 		c->verify_data = NULL;
817 #endif
818 
819 	c->shrink.count_objects = bch_mca_count;
820 	c->shrink.scan_objects = bch_mca_scan;
821 	c->shrink.seeks = 4;
822 	c->shrink.batch = c->btree_pages * 2;
823 
824 	if (register_shrinker(&c->shrink))
825 		pr_warn("bcache: %s: could not register shrinker",
826 				__func__);
827 
828 	return 0;
829 }
830 
831 /* Btree in memory cache - hash table */
832 
833 static struct hlist_head *mca_hash(struct cache_set *c, struct bkey *k)
834 {
835 	return &c->bucket_hash[hash_32(PTR_HASH(c, k), BUCKET_HASH_BITS)];
836 }
837 
838 static struct btree *mca_find(struct cache_set *c, struct bkey *k)
839 {
840 	struct btree *b;
841 
842 	rcu_read_lock();
843 	hlist_for_each_entry_rcu(b, mca_hash(c, k), hash)
844 		if (PTR_HASH(c, &b->key) == PTR_HASH(c, k))
845 			goto out;
846 	b = NULL;
847 out:
848 	rcu_read_unlock();
849 	return b;
850 }
851 
852 static int mca_cannibalize_lock(struct cache_set *c, struct btree_op *op)
853 {
854 	struct task_struct *old;
855 
856 	old = cmpxchg(&c->btree_cache_alloc_lock, NULL, current);
857 	if (old && old != current) {
858 		if (op)
859 			prepare_to_wait(&c->btree_cache_wait, &op->wait,
860 					TASK_UNINTERRUPTIBLE);
861 		return -EINTR;
862 	}
863 
864 	return 0;
865 }
866 
867 static struct btree *mca_cannibalize(struct cache_set *c, struct btree_op *op,
868 				     struct bkey *k)
869 {
870 	struct btree *b;
871 
872 	trace_bcache_btree_cache_cannibalize(c);
873 
874 	if (mca_cannibalize_lock(c, op))
875 		return ERR_PTR(-EINTR);
876 
877 	list_for_each_entry_reverse(b, &c->btree_cache, list)
878 		if (!mca_reap(b, btree_order(k), false))
879 			return b;
880 
881 	list_for_each_entry_reverse(b, &c->btree_cache, list)
882 		if (!mca_reap(b, btree_order(k), true))
883 			return b;
884 
885 	WARN(1, "btree cache cannibalize failed\n");
886 	return ERR_PTR(-ENOMEM);
887 }
888 
889 /*
890  * We can only have one thread cannibalizing other cached btree nodes at a time,
891  * or we'll deadlock. We use an open coded mutex to ensure that, which a
892  * cannibalize_bucket() will take. This means every time we unlock the root of
893  * the btree, we need to release this lock if we have it held.
894  */
895 static void bch_cannibalize_unlock(struct cache_set *c)
896 {
897 	if (c->btree_cache_alloc_lock == current) {
898 		c->btree_cache_alloc_lock = NULL;
899 		wake_up(&c->btree_cache_wait);
900 	}
901 }
902 
903 static struct btree *mca_alloc(struct cache_set *c, struct btree_op *op,
904 			       struct bkey *k, int level)
905 {
906 	struct btree *b;
907 
908 	BUG_ON(current->bio_list);
909 
910 	lockdep_assert_held(&c->bucket_lock);
911 
912 	if (mca_find(c, k))
913 		return NULL;
914 
915 	/* btree_free() doesn't free memory; it sticks the node on the end of
916 	 * the list. Check if there's any freed nodes there:
917 	 */
918 	list_for_each_entry(b, &c->btree_cache_freeable, list)
919 		if (!mca_reap(b, btree_order(k), false))
920 			goto out;
921 
922 	/* We never free struct btree itself, just the memory that holds the on
923 	 * disk node. Check the freed list before allocating a new one:
924 	 */
925 	list_for_each_entry(b, &c->btree_cache_freed, list)
926 		if (!mca_reap(b, 0, false)) {
927 			mca_data_alloc(b, k, __GFP_NOWARN|GFP_NOIO);
928 			if (!b->keys.set[0].data)
929 				goto err;
930 			else
931 				goto out;
932 		}
933 
934 	b = mca_bucket_alloc(c, k, __GFP_NOWARN|GFP_NOIO);
935 	if (!b)
936 		goto err;
937 
938 	BUG_ON(!down_write_trylock(&b->lock));
939 	if (!b->keys.set->data)
940 		goto err;
941 out:
942 	BUG_ON(b->io_mutex.count != 1);
943 
944 	bkey_copy(&b->key, k);
945 	list_move(&b->list, &c->btree_cache);
946 	hlist_del_init_rcu(&b->hash);
947 	hlist_add_head_rcu(&b->hash, mca_hash(c, k));
948 
949 	lock_set_subclass(&b->lock.dep_map, level + 1, _THIS_IP_);
950 	b->parent	= (void *) ~0UL;
951 	b->flags	= 0;
952 	b->written	= 0;
953 	b->level	= level;
954 
955 	if (!b->level)
956 		bch_btree_keys_init(&b->keys, &bch_extent_keys_ops,
957 				    &b->c->expensive_debug_checks);
958 	else
959 		bch_btree_keys_init(&b->keys, &bch_btree_keys_ops,
960 				    &b->c->expensive_debug_checks);
961 
962 	return b;
963 err:
964 	if (b)
965 		rw_unlock(true, b);
966 
967 	b = mca_cannibalize(c, op, k);
968 	if (!IS_ERR(b))
969 		goto out;
970 
971 	return b;
972 }
973 
974 /*
975  * bch_btree_node_get - find a btree node in the cache and lock it, reading it
976  * in from disk if necessary.
977  *
978  * If IO is necessary and running under generic_make_request, returns -EAGAIN.
979  *
980  * The btree node will have either a read or a write lock held, depending on
981  * level and op->lock.
982  */
983 struct btree *bch_btree_node_get(struct cache_set *c, struct btree_op *op,
984 				 struct bkey *k, int level, bool write,
985 				 struct btree *parent)
986 {
987 	int i = 0;
988 	struct btree *b;
989 
990 	BUG_ON(level < 0);
991 retry:
992 	b = mca_find(c, k);
993 
994 	if (!b) {
995 		if (current->bio_list)
996 			return ERR_PTR(-EAGAIN);
997 
998 		mutex_lock(&c->bucket_lock);
999 		b = mca_alloc(c, op, k, level);
1000 		mutex_unlock(&c->bucket_lock);
1001 
1002 		if (!b)
1003 			goto retry;
1004 		if (IS_ERR(b))
1005 			return b;
1006 
1007 		bch_btree_node_read(b);
1008 
1009 		if (!write)
1010 			downgrade_write(&b->lock);
1011 	} else {
1012 		rw_lock(write, b, level);
1013 		if (PTR_HASH(c, &b->key) != PTR_HASH(c, k)) {
1014 			rw_unlock(write, b);
1015 			goto retry;
1016 		}
1017 		BUG_ON(b->level != level);
1018 	}
1019 
1020 	if (btree_node_io_error(b)) {
1021 		rw_unlock(write, b);
1022 		return ERR_PTR(-EIO);
1023 	}
1024 
1025 	BUG_ON(!b->written);
1026 
1027 	b->parent = parent;
1028 	b->accessed = 1;
1029 
1030 	for (; i <= b->keys.nsets && b->keys.set[i].size; i++) {
1031 		prefetch(b->keys.set[i].tree);
1032 		prefetch(b->keys.set[i].data);
1033 	}
1034 
1035 	for (; i <= b->keys.nsets; i++)
1036 		prefetch(b->keys.set[i].data);
1037 
1038 	return b;
1039 }
1040 
1041 static void btree_node_prefetch(struct btree *parent, struct bkey *k)
1042 {
1043 	struct btree *b;
1044 
1045 	mutex_lock(&parent->c->bucket_lock);
1046 	b = mca_alloc(parent->c, NULL, k, parent->level - 1);
1047 	mutex_unlock(&parent->c->bucket_lock);
1048 
1049 	if (!IS_ERR_OR_NULL(b)) {
1050 		b->parent = parent;
1051 		bch_btree_node_read(b);
1052 		rw_unlock(true, b);
1053 	}
1054 }
1055 
1056 /* Btree alloc */
1057 
1058 static void btree_node_free(struct btree *b)
1059 {
1060 	trace_bcache_btree_node_free(b);
1061 
1062 	BUG_ON(b == b->c->root);
1063 
1064 	mutex_lock(&b->write_lock);
1065 
1066 	if (btree_node_dirty(b))
1067 		btree_complete_write(b, btree_current_write(b));
1068 	clear_bit(BTREE_NODE_dirty, &b->flags);
1069 
1070 	mutex_unlock(&b->write_lock);
1071 
1072 	cancel_delayed_work(&b->work);
1073 
1074 	mutex_lock(&b->c->bucket_lock);
1075 	bch_bucket_free(b->c, &b->key);
1076 	mca_bucket_free(b);
1077 	mutex_unlock(&b->c->bucket_lock);
1078 }
1079 
1080 struct btree *__bch_btree_node_alloc(struct cache_set *c, struct btree_op *op,
1081 				     int level, bool wait,
1082 				     struct btree *parent)
1083 {
1084 	BKEY_PADDED(key) k;
1085 	struct btree *b = ERR_PTR(-EAGAIN);
1086 
1087 	mutex_lock(&c->bucket_lock);
1088 retry:
1089 	if (__bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, 1, wait))
1090 		goto err;
1091 
1092 	bkey_put(c, &k.key);
1093 	SET_KEY_SIZE(&k.key, c->btree_pages * PAGE_SECTORS);
1094 
1095 	b = mca_alloc(c, op, &k.key, level);
1096 	if (IS_ERR(b))
1097 		goto err_free;
1098 
1099 	if (!b) {
1100 		cache_bug(c,
1101 			"Tried to allocate bucket that was in btree cache");
1102 		goto retry;
1103 	}
1104 
1105 	b->accessed = 1;
1106 	b->parent = parent;
1107 	bch_bset_init_next(&b->keys, b->keys.set->data, bset_magic(&b->c->sb));
1108 
1109 	mutex_unlock(&c->bucket_lock);
1110 
1111 	trace_bcache_btree_node_alloc(b);
1112 	return b;
1113 err_free:
1114 	bch_bucket_free(c, &k.key);
1115 err:
1116 	mutex_unlock(&c->bucket_lock);
1117 
1118 	trace_bcache_btree_node_alloc_fail(c);
1119 	return b;
1120 }
1121 
1122 static struct btree *bch_btree_node_alloc(struct cache_set *c,
1123 					  struct btree_op *op, int level,
1124 					  struct btree *parent)
1125 {
1126 	return __bch_btree_node_alloc(c, op, level, op != NULL, parent);
1127 }
1128 
1129 static struct btree *btree_node_alloc_replacement(struct btree *b,
1130 						  struct btree_op *op)
1131 {
1132 	struct btree *n = bch_btree_node_alloc(b->c, op, b->level, b->parent);
1133 
1134 	if (!IS_ERR_OR_NULL(n)) {
1135 		mutex_lock(&n->write_lock);
1136 		bch_btree_sort_into(&b->keys, &n->keys, &b->c->sort);
1137 		bkey_copy_key(&n->key, &b->key);
1138 		mutex_unlock(&n->write_lock);
1139 	}
1140 
1141 	return n;
1142 }
1143 
1144 static void make_btree_freeing_key(struct btree *b, struct bkey *k)
1145 {
1146 	unsigned int i;
1147 
1148 	mutex_lock(&b->c->bucket_lock);
1149 
1150 	atomic_inc(&b->c->prio_blocked);
1151 
1152 	bkey_copy(k, &b->key);
1153 	bkey_copy_key(k, &ZERO_KEY);
1154 
1155 	for (i = 0; i < KEY_PTRS(k); i++)
1156 		SET_PTR_GEN(k, i,
1157 			    bch_inc_gen(PTR_CACHE(b->c, &b->key, i),
1158 					PTR_BUCKET(b->c, &b->key, i)));
1159 
1160 	mutex_unlock(&b->c->bucket_lock);
1161 }
1162 
1163 static int btree_check_reserve(struct btree *b, struct btree_op *op)
1164 {
1165 	struct cache_set *c = b->c;
1166 	struct cache *ca;
1167 	unsigned int i, reserve = (c->root->level - b->level) * 2 + 1;
1168 
1169 	mutex_lock(&c->bucket_lock);
1170 
1171 	for_each_cache(ca, c, i)
1172 		if (fifo_used(&ca->free[RESERVE_BTREE]) < reserve) {
1173 			if (op)
1174 				prepare_to_wait(&c->btree_cache_wait, &op->wait,
1175 						TASK_UNINTERRUPTIBLE);
1176 			mutex_unlock(&c->bucket_lock);
1177 			return -EINTR;
1178 		}
1179 
1180 	mutex_unlock(&c->bucket_lock);
1181 
1182 	return mca_cannibalize_lock(b->c, op);
1183 }
1184 
1185 /* Garbage collection */
1186 
1187 static uint8_t __bch_btree_mark_key(struct cache_set *c, int level,
1188 				    struct bkey *k)
1189 {
1190 	uint8_t stale = 0;
1191 	unsigned int i;
1192 	struct bucket *g;
1193 
1194 	/*
1195 	 * ptr_invalid() can't return true for the keys that mark btree nodes as
1196 	 * freed, but since ptr_bad() returns true we'll never actually use them
1197 	 * for anything and thus we don't want mark their pointers here
1198 	 */
1199 	if (!bkey_cmp(k, &ZERO_KEY))
1200 		return stale;
1201 
1202 	for (i = 0; i < KEY_PTRS(k); i++) {
1203 		if (!ptr_available(c, k, i))
1204 			continue;
1205 
1206 		g = PTR_BUCKET(c, k, i);
1207 
1208 		if (gen_after(g->last_gc, PTR_GEN(k, i)))
1209 			g->last_gc = PTR_GEN(k, i);
1210 
1211 		if (ptr_stale(c, k, i)) {
1212 			stale = max(stale, ptr_stale(c, k, i));
1213 			continue;
1214 		}
1215 
1216 		cache_bug_on(GC_MARK(g) &&
1217 			     (GC_MARK(g) == GC_MARK_METADATA) != (level != 0),
1218 			     c, "inconsistent ptrs: mark = %llu, level = %i",
1219 			     GC_MARK(g), level);
1220 
1221 		if (level)
1222 			SET_GC_MARK(g, GC_MARK_METADATA);
1223 		else if (KEY_DIRTY(k))
1224 			SET_GC_MARK(g, GC_MARK_DIRTY);
1225 		else if (!GC_MARK(g))
1226 			SET_GC_MARK(g, GC_MARK_RECLAIMABLE);
1227 
1228 		/* guard against overflow */
1229 		SET_GC_SECTORS_USED(g, min_t(unsigned int,
1230 					     GC_SECTORS_USED(g) + KEY_SIZE(k),
1231 					     MAX_GC_SECTORS_USED));
1232 
1233 		BUG_ON(!GC_SECTORS_USED(g));
1234 	}
1235 
1236 	return stale;
1237 }
1238 
1239 #define btree_mark_key(b, k)	__bch_btree_mark_key(b->c, b->level, k)
1240 
1241 void bch_initial_mark_key(struct cache_set *c, int level, struct bkey *k)
1242 {
1243 	unsigned int i;
1244 
1245 	for (i = 0; i < KEY_PTRS(k); i++)
1246 		if (ptr_available(c, k, i) &&
1247 		    !ptr_stale(c, k, i)) {
1248 			struct bucket *b = PTR_BUCKET(c, k, i);
1249 
1250 			b->gen = PTR_GEN(k, i);
1251 
1252 			if (level && bkey_cmp(k, &ZERO_KEY))
1253 				b->prio = BTREE_PRIO;
1254 			else if (!level && b->prio == BTREE_PRIO)
1255 				b->prio = INITIAL_PRIO;
1256 		}
1257 
1258 	__bch_btree_mark_key(c, level, k);
1259 }
1260 
1261 void bch_update_bucket_in_use(struct cache_set *c, struct gc_stat *stats)
1262 {
1263 	stats->in_use = (c->nbuckets - c->avail_nbuckets) * 100 / c->nbuckets;
1264 }
1265 
1266 static bool btree_gc_mark_node(struct btree *b, struct gc_stat *gc)
1267 {
1268 	uint8_t stale = 0;
1269 	unsigned int keys = 0, good_keys = 0;
1270 	struct bkey *k;
1271 	struct btree_iter iter;
1272 	struct bset_tree *t;
1273 
1274 	gc->nodes++;
1275 
1276 	for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid) {
1277 		stale = max(stale, btree_mark_key(b, k));
1278 		keys++;
1279 
1280 		if (bch_ptr_bad(&b->keys, k))
1281 			continue;
1282 
1283 		gc->key_bytes += bkey_u64s(k);
1284 		gc->nkeys++;
1285 		good_keys++;
1286 
1287 		gc->data += KEY_SIZE(k);
1288 	}
1289 
1290 	for (t = b->keys.set; t <= &b->keys.set[b->keys.nsets]; t++)
1291 		btree_bug_on(t->size &&
1292 			     bset_written(&b->keys, t) &&
1293 			     bkey_cmp(&b->key, &t->end) < 0,
1294 			     b, "found short btree key in gc");
1295 
1296 	if (b->c->gc_always_rewrite)
1297 		return true;
1298 
1299 	if (stale > 10)
1300 		return true;
1301 
1302 	if ((keys - good_keys) * 2 > keys)
1303 		return true;
1304 
1305 	return false;
1306 }
1307 
1308 #define GC_MERGE_NODES	4U
1309 
1310 struct gc_merge_info {
1311 	struct btree	*b;
1312 	unsigned int	keys;
1313 };
1314 
1315 static int bch_btree_insert_node(struct btree *b, struct btree_op *op,
1316 				 struct keylist *insert_keys,
1317 				 atomic_t *journal_ref,
1318 				 struct bkey *replace_key);
1319 
1320 static int btree_gc_coalesce(struct btree *b, struct btree_op *op,
1321 			     struct gc_stat *gc, struct gc_merge_info *r)
1322 {
1323 	unsigned int i, nodes = 0, keys = 0, blocks;
1324 	struct btree *new_nodes[GC_MERGE_NODES];
1325 	struct keylist keylist;
1326 	struct closure cl;
1327 	struct bkey *k;
1328 
1329 	bch_keylist_init(&keylist);
1330 
1331 	if (btree_check_reserve(b, NULL))
1332 		return 0;
1333 
1334 	memset(new_nodes, 0, sizeof(new_nodes));
1335 	closure_init_stack(&cl);
1336 
1337 	while (nodes < GC_MERGE_NODES && !IS_ERR_OR_NULL(r[nodes].b))
1338 		keys += r[nodes++].keys;
1339 
1340 	blocks = btree_default_blocks(b->c) * 2 / 3;
1341 
1342 	if (nodes < 2 ||
1343 	    __set_blocks(b->keys.set[0].data, keys,
1344 			 block_bytes(b->c)) > blocks * (nodes - 1))
1345 		return 0;
1346 
1347 	for (i = 0; i < nodes; i++) {
1348 		new_nodes[i] = btree_node_alloc_replacement(r[i].b, NULL);
1349 		if (IS_ERR_OR_NULL(new_nodes[i]))
1350 			goto out_nocoalesce;
1351 	}
1352 
1353 	/*
1354 	 * We have to check the reserve here, after we've allocated our new
1355 	 * nodes, to make sure the insert below will succeed - we also check
1356 	 * before as an optimization to potentially avoid a bunch of expensive
1357 	 * allocs/sorts
1358 	 */
1359 	if (btree_check_reserve(b, NULL))
1360 		goto out_nocoalesce;
1361 
1362 	for (i = 0; i < nodes; i++)
1363 		mutex_lock(&new_nodes[i]->write_lock);
1364 
1365 	for (i = nodes - 1; i > 0; --i) {
1366 		struct bset *n1 = btree_bset_first(new_nodes[i]);
1367 		struct bset *n2 = btree_bset_first(new_nodes[i - 1]);
1368 		struct bkey *k, *last = NULL;
1369 
1370 		keys = 0;
1371 
1372 		if (i > 1) {
1373 			for (k = n2->start;
1374 			     k < bset_bkey_last(n2);
1375 			     k = bkey_next(k)) {
1376 				if (__set_blocks(n1, n1->keys + keys +
1377 						 bkey_u64s(k),
1378 						 block_bytes(b->c)) > blocks)
1379 					break;
1380 
1381 				last = k;
1382 				keys += bkey_u64s(k);
1383 			}
1384 		} else {
1385 			/*
1386 			 * Last node we're not getting rid of - we're getting
1387 			 * rid of the node at r[0]. Have to try and fit all of
1388 			 * the remaining keys into this node; we can't ensure
1389 			 * they will always fit due to rounding and variable
1390 			 * length keys (shouldn't be possible in practice,
1391 			 * though)
1392 			 */
1393 			if (__set_blocks(n1, n1->keys + n2->keys,
1394 					 block_bytes(b->c)) >
1395 			    btree_blocks(new_nodes[i]))
1396 				goto out_nocoalesce;
1397 
1398 			keys = n2->keys;
1399 			/* Take the key of the node we're getting rid of */
1400 			last = &r->b->key;
1401 		}
1402 
1403 		BUG_ON(__set_blocks(n1, n1->keys + keys, block_bytes(b->c)) >
1404 		       btree_blocks(new_nodes[i]));
1405 
1406 		if (last)
1407 			bkey_copy_key(&new_nodes[i]->key, last);
1408 
1409 		memcpy(bset_bkey_last(n1),
1410 		       n2->start,
1411 		       (void *) bset_bkey_idx(n2, keys) - (void *) n2->start);
1412 
1413 		n1->keys += keys;
1414 		r[i].keys = n1->keys;
1415 
1416 		memmove(n2->start,
1417 			bset_bkey_idx(n2, keys),
1418 			(void *) bset_bkey_last(n2) -
1419 			(void *) bset_bkey_idx(n2, keys));
1420 
1421 		n2->keys -= keys;
1422 
1423 		if (__bch_keylist_realloc(&keylist,
1424 					  bkey_u64s(&new_nodes[i]->key)))
1425 			goto out_nocoalesce;
1426 
1427 		bch_btree_node_write(new_nodes[i], &cl);
1428 		bch_keylist_add(&keylist, &new_nodes[i]->key);
1429 	}
1430 
1431 	for (i = 0; i < nodes; i++)
1432 		mutex_unlock(&new_nodes[i]->write_lock);
1433 
1434 	closure_sync(&cl);
1435 
1436 	/* We emptied out this node */
1437 	BUG_ON(btree_bset_first(new_nodes[0])->keys);
1438 	btree_node_free(new_nodes[0]);
1439 	rw_unlock(true, new_nodes[0]);
1440 	new_nodes[0] = NULL;
1441 
1442 	for (i = 0; i < nodes; i++) {
1443 		if (__bch_keylist_realloc(&keylist, bkey_u64s(&r[i].b->key)))
1444 			goto out_nocoalesce;
1445 
1446 		make_btree_freeing_key(r[i].b, keylist.top);
1447 		bch_keylist_push(&keylist);
1448 	}
1449 
1450 	bch_btree_insert_node(b, op, &keylist, NULL, NULL);
1451 	BUG_ON(!bch_keylist_empty(&keylist));
1452 
1453 	for (i = 0; i < nodes; i++) {
1454 		btree_node_free(r[i].b);
1455 		rw_unlock(true, r[i].b);
1456 
1457 		r[i].b = new_nodes[i];
1458 	}
1459 
1460 	memmove(r, r + 1, sizeof(r[0]) * (nodes - 1));
1461 	r[nodes - 1].b = ERR_PTR(-EINTR);
1462 
1463 	trace_bcache_btree_gc_coalesce(nodes);
1464 	gc->nodes--;
1465 
1466 	bch_keylist_free(&keylist);
1467 
1468 	/* Invalidated our iterator */
1469 	return -EINTR;
1470 
1471 out_nocoalesce:
1472 	closure_sync(&cl);
1473 	bch_keylist_free(&keylist);
1474 
1475 	while ((k = bch_keylist_pop(&keylist)))
1476 		if (!bkey_cmp(k, &ZERO_KEY))
1477 			atomic_dec(&b->c->prio_blocked);
1478 
1479 	for (i = 0; i < nodes; i++)
1480 		if (!IS_ERR_OR_NULL(new_nodes[i])) {
1481 			btree_node_free(new_nodes[i]);
1482 			rw_unlock(true, new_nodes[i]);
1483 		}
1484 	return 0;
1485 }
1486 
1487 static int btree_gc_rewrite_node(struct btree *b, struct btree_op *op,
1488 				 struct btree *replace)
1489 {
1490 	struct keylist keys;
1491 	struct btree *n;
1492 
1493 	if (btree_check_reserve(b, NULL))
1494 		return 0;
1495 
1496 	n = btree_node_alloc_replacement(replace, NULL);
1497 
1498 	/* recheck reserve after allocating replacement node */
1499 	if (btree_check_reserve(b, NULL)) {
1500 		btree_node_free(n);
1501 		rw_unlock(true, n);
1502 		return 0;
1503 	}
1504 
1505 	bch_btree_node_write_sync(n);
1506 
1507 	bch_keylist_init(&keys);
1508 	bch_keylist_add(&keys, &n->key);
1509 
1510 	make_btree_freeing_key(replace, keys.top);
1511 	bch_keylist_push(&keys);
1512 
1513 	bch_btree_insert_node(b, op, &keys, NULL, NULL);
1514 	BUG_ON(!bch_keylist_empty(&keys));
1515 
1516 	btree_node_free(replace);
1517 	rw_unlock(true, n);
1518 
1519 	/* Invalidated our iterator */
1520 	return -EINTR;
1521 }
1522 
1523 static unsigned int btree_gc_count_keys(struct btree *b)
1524 {
1525 	struct bkey *k;
1526 	struct btree_iter iter;
1527 	unsigned int ret = 0;
1528 
1529 	for_each_key_filter(&b->keys, k, &iter, bch_ptr_bad)
1530 		ret += bkey_u64s(k);
1531 
1532 	return ret;
1533 }
1534 
1535 static size_t btree_gc_min_nodes(struct cache_set *c)
1536 {
1537 	size_t min_nodes;
1538 
1539 	/*
1540 	 * Since incremental GC would stop 100ms when front
1541 	 * side I/O comes, so when there are many btree nodes,
1542 	 * if GC only processes constant (100) nodes each time,
1543 	 * GC would last a long time, and the front side I/Os
1544 	 * would run out of the buckets (since no new bucket
1545 	 * can be allocated during GC), and be blocked again.
1546 	 * So GC should not process constant nodes, but varied
1547 	 * nodes according to the number of btree nodes, which
1548 	 * realized by dividing GC into constant(100) times,
1549 	 * so when there are many btree nodes, GC can process
1550 	 * more nodes each time, otherwise, GC will process less
1551 	 * nodes each time (but no less than MIN_GC_NODES)
1552 	 */
1553 	min_nodes = c->gc_stats.nodes / MAX_GC_TIMES;
1554 	if (min_nodes < MIN_GC_NODES)
1555 		min_nodes = MIN_GC_NODES;
1556 
1557 	return min_nodes;
1558 }
1559 
1560 
1561 static int btree_gc_recurse(struct btree *b, struct btree_op *op,
1562 			    struct closure *writes, struct gc_stat *gc)
1563 {
1564 	int ret = 0;
1565 	bool should_rewrite;
1566 	struct bkey *k;
1567 	struct btree_iter iter;
1568 	struct gc_merge_info r[GC_MERGE_NODES];
1569 	struct gc_merge_info *i, *last = r + ARRAY_SIZE(r) - 1;
1570 
1571 	bch_btree_iter_init(&b->keys, &iter, &b->c->gc_done);
1572 
1573 	for (i = r; i < r + ARRAY_SIZE(r); i++)
1574 		i->b = ERR_PTR(-EINTR);
1575 
1576 	while (1) {
1577 		k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad);
1578 		if (k) {
1579 			r->b = bch_btree_node_get(b->c, op, k, b->level - 1,
1580 						  true, b);
1581 			if (IS_ERR(r->b)) {
1582 				ret = PTR_ERR(r->b);
1583 				break;
1584 			}
1585 
1586 			r->keys = btree_gc_count_keys(r->b);
1587 
1588 			ret = btree_gc_coalesce(b, op, gc, r);
1589 			if (ret)
1590 				break;
1591 		}
1592 
1593 		if (!last->b)
1594 			break;
1595 
1596 		if (!IS_ERR(last->b)) {
1597 			should_rewrite = btree_gc_mark_node(last->b, gc);
1598 			if (should_rewrite) {
1599 				ret = btree_gc_rewrite_node(b, op, last->b);
1600 				if (ret)
1601 					break;
1602 			}
1603 
1604 			if (last->b->level) {
1605 				ret = btree_gc_recurse(last->b, op, writes, gc);
1606 				if (ret)
1607 					break;
1608 			}
1609 
1610 			bkey_copy_key(&b->c->gc_done, &last->b->key);
1611 
1612 			/*
1613 			 * Must flush leaf nodes before gc ends, since replace
1614 			 * operations aren't journalled
1615 			 */
1616 			mutex_lock(&last->b->write_lock);
1617 			if (btree_node_dirty(last->b))
1618 				bch_btree_node_write(last->b, writes);
1619 			mutex_unlock(&last->b->write_lock);
1620 			rw_unlock(true, last->b);
1621 		}
1622 
1623 		memmove(r + 1, r, sizeof(r[0]) * (GC_MERGE_NODES - 1));
1624 		r->b = NULL;
1625 
1626 		if (atomic_read(&b->c->search_inflight) &&
1627 		    gc->nodes >= gc->nodes_pre + btree_gc_min_nodes(b->c)) {
1628 			gc->nodes_pre =  gc->nodes;
1629 			ret = -EAGAIN;
1630 			break;
1631 		}
1632 
1633 		if (need_resched()) {
1634 			ret = -EAGAIN;
1635 			break;
1636 		}
1637 	}
1638 
1639 	for (i = r; i < r + ARRAY_SIZE(r); i++)
1640 		if (!IS_ERR_OR_NULL(i->b)) {
1641 			mutex_lock(&i->b->write_lock);
1642 			if (btree_node_dirty(i->b))
1643 				bch_btree_node_write(i->b, writes);
1644 			mutex_unlock(&i->b->write_lock);
1645 			rw_unlock(true, i->b);
1646 		}
1647 
1648 	return ret;
1649 }
1650 
1651 static int bch_btree_gc_root(struct btree *b, struct btree_op *op,
1652 			     struct closure *writes, struct gc_stat *gc)
1653 {
1654 	struct btree *n = NULL;
1655 	int ret = 0;
1656 	bool should_rewrite;
1657 
1658 	should_rewrite = btree_gc_mark_node(b, gc);
1659 	if (should_rewrite) {
1660 		n = btree_node_alloc_replacement(b, NULL);
1661 
1662 		if (!IS_ERR_OR_NULL(n)) {
1663 			bch_btree_node_write_sync(n);
1664 
1665 			bch_btree_set_root(n);
1666 			btree_node_free(b);
1667 			rw_unlock(true, n);
1668 
1669 			return -EINTR;
1670 		}
1671 	}
1672 
1673 	__bch_btree_mark_key(b->c, b->level + 1, &b->key);
1674 
1675 	if (b->level) {
1676 		ret = btree_gc_recurse(b, op, writes, gc);
1677 		if (ret)
1678 			return ret;
1679 	}
1680 
1681 	bkey_copy_key(&b->c->gc_done, &b->key);
1682 
1683 	return ret;
1684 }
1685 
1686 static void btree_gc_start(struct cache_set *c)
1687 {
1688 	struct cache *ca;
1689 	struct bucket *b;
1690 	unsigned int i;
1691 
1692 	if (!c->gc_mark_valid)
1693 		return;
1694 
1695 	mutex_lock(&c->bucket_lock);
1696 
1697 	c->gc_mark_valid = 0;
1698 	c->gc_done = ZERO_KEY;
1699 
1700 	for_each_cache(ca, c, i)
1701 		for_each_bucket(b, ca) {
1702 			b->last_gc = b->gen;
1703 			if (!atomic_read(&b->pin)) {
1704 				SET_GC_MARK(b, 0);
1705 				SET_GC_SECTORS_USED(b, 0);
1706 			}
1707 		}
1708 
1709 	mutex_unlock(&c->bucket_lock);
1710 }
1711 
1712 static void bch_btree_gc_finish(struct cache_set *c)
1713 {
1714 	struct bucket *b;
1715 	struct cache *ca;
1716 	unsigned int i;
1717 
1718 	mutex_lock(&c->bucket_lock);
1719 
1720 	set_gc_sectors(c);
1721 	c->gc_mark_valid = 1;
1722 	c->need_gc	= 0;
1723 
1724 	for (i = 0; i < KEY_PTRS(&c->uuid_bucket); i++)
1725 		SET_GC_MARK(PTR_BUCKET(c, &c->uuid_bucket, i),
1726 			    GC_MARK_METADATA);
1727 
1728 	/* don't reclaim buckets to which writeback keys point */
1729 	rcu_read_lock();
1730 	for (i = 0; i < c->devices_max_used; i++) {
1731 		struct bcache_device *d = c->devices[i];
1732 		struct cached_dev *dc;
1733 		struct keybuf_key *w, *n;
1734 		unsigned int j;
1735 
1736 		if (!d || UUID_FLASH_ONLY(&c->uuids[i]))
1737 			continue;
1738 		dc = container_of(d, struct cached_dev, disk);
1739 
1740 		spin_lock(&dc->writeback_keys.lock);
1741 		rbtree_postorder_for_each_entry_safe(w, n,
1742 					&dc->writeback_keys.keys, node)
1743 			for (j = 0; j < KEY_PTRS(&w->key); j++)
1744 				SET_GC_MARK(PTR_BUCKET(c, &w->key, j),
1745 					    GC_MARK_DIRTY);
1746 		spin_unlock(&dc->writeback_keys.lock);
1747 	}
1748 	rcu_read_unlock();
1749 
1750 	c->avail_nbuckets = 0;
1751 	for_each_cache(ca, c, i) {
1752 		uint64_t *i;
1753 
1754 		ca->invalidate_needs_gc = 0;
1755 
1756 		for (i = ca->sb.d; i < ca->sb.d + ca->sb.keys; i++)
1757 			SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA);
1758 
1759 		for (i = ca->prio_buckets;
1760 		     i < ca->prio_buckets + prio_buckets(ca) * 2; i++)
1761 			SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA);
1762 
1763 		for_each_bucket(b, ca) {
1764 			c->need_gc	= max(c->need_gc, bucket_gc_gen(b));
1765 
1766 			if (atomic_read(&b->pin))
1767 				continue;
1768 
1769 			BUG_ON(!GC_MARK(b) && GC_SECTORS_USED(b));
1770 
1771 			if (!GC_MARK(b) || GC_MARK(b) == GC_MARK_RECLAIMABLE)
1772 				c->avail_nbuckets++;
1773 		}
1774 	}
1775 
1776 	mutex_unlock(&c->bucket_lock);
1777 }
1778 
1779 static void bch_btree_gc(struct cache_set *c)
1780 {
1781 	int ret;
1782 	struct gc_stat stats;
1783 	struct closure writes;
1784 	struct btree_op op;
1785 	uint64_t start_time = local_clock();
1786 
1787 	trace_bcache_gc_start(c);
1788 
1789 	memset(&stats, 0, sizeof(struct gc_stat));
1790 	closure_init_stack(&writes);
1791 	bch_btree_op_init(&op, SHRT_MAX);
1792 
1793 	btree_gc_start(c);
1794 
1795 	/* if CACHE_SET_IO_DISABLE set, gc thread should stop too */
1796 	do {
1797 		ret = btree_root(gc_root, c, &op, &writes, &stats);
1798 		closure_sync(&writes);
1799 		cond_resched();
1800 
1801 		if (ret == -EAGAIN)
1802 			schedule_timeout_interruptible(msecs_to_jiffies
1803 						       (GC_SLEEP_MS));
1804 		else if (ret)
1805 			pr_warn("gc failed!");
1806 	} while (ret && !test_bit(CACHE_SET_IO_DISABLE, &c->flags));
1807 
1808 	bch_btree_gc_finish(c);
1809 	wake_up_allocators(c);
1810 
1811 	bch_time_stats_update(&c->btree_gc_time, start_time);
1812 
1813 	stats.key_bytes *= sizeof(uint64_t);
1814 	stats.data	<<= 9;
1815 	bch_update_bucket_in_use(c, &stats);
1816 	memcpy(&c->gc_stats, &stats, sizeof(struct gc_stat));
1817 
1818 	trace_bcache_gc_end(c);
1819 
1820 	bch_moving_gc(c);
1821 }
1822 
1823 static bool gc_should_run(struct cache_set *c)
1824 {
1825 	struct cache *ca;
1826 	unsigned int i;
1827 
1828 	for_each_cache(ca, c, i)
1829 		if (ca->invalidate_needs_gc)
1830 			return true;
1831 
1832 	if (atomic_read(&c->sectors_to_gc) < 0)
1833 		return true;
1834 
1835 	return false;
1836 }
1837 
1838 static int bch_gc_thread(void *arg)
1839 {
1840 	struct cache_set *c = arg;
1841 
1842 	while (1) {
1843 		wait_event_interruptible(c->gc_wait,
1844 			   kthread_should_stop() ||
1845 			   test_bit(CACHE_SET_IO_DISABLE, &c->flags) ||
1846 			   gc_should_run(c));
1847 
1848 		if (kthread_should_stop() ||
1849 		    test_bit(CACHE_SET_IO_DISABLE, &c->flags))
1850 			break;
1851 
1852 		set_gc_sectors(c);
1853 		bch_btree_gc(c);
1854 	}
1855 
1856 	wait_for_kthread_stop();
1857 	return 0;
1858 }
1859 
1860 int bch_gc_thread_start(struct cache_set *c)
1861 {
1862 	c->gc_thread = kthread_run(bch_gc_thread, c, "bcache_gc");
1863 	return PTR_ERR_OR_ZERO(c->gc_thread);
1864 }
1865 
1866 /* Initial partial gc */
1867 
1868 static int bch_btree_check_recurse(struct btree *b, struct btree_op *op)
1869 {
1870 	int ret = 0;
1871 	struct bkey *k, *p = NULL;
1872 	struct btree_iter iter;
1873 
1874 	for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid)
1875 		bch_initial_mark_key(b->c, b->level, k);
1876 
1877 	bch_initial_mark_key(b->c, b->level + 1, &b->key);
1878 
1879 	if (b->level) {
1880 		bch_btree_iter_init(&b->keys, &iter, NULL);
1881 
1882 		do {
1883 			k = bch_btree_iter_next_filter(&iter, &b->keys,
1884 						       bch_ptr_bad);
1885 			if (k) {
1886 				btree_node_prefetch(b, k);
1887 				/*
1888 				 * initiallize c->gc_stats.nodes
1889 				 * for incremental GC
1890 				 */
1891 				b->c->gc_stats.nodes++;
1892 			}
1893 
1894 			if (p)
1895 				ret = btree(check_recurse, p, b, op);
1896 
1897 			p = k;
1898 		} while (p && !ret);
1899 	}
1900 
1901 	return ret;
1902 }
1903 
1904 int bch_btree_check(struct cache_set *c)
1905 {
1906 	struct btree_op op;
1907 
1908 	bch_btree_op_init(&op, SHRT_MAX);
1909 
1910 	return btree_root(check_recurse, c, &op);
1911 }
1912 
1913 void bch_initial_gc_finish(struct cache_set *c)
1914 {
1915 	struct cache *ca;
1916 	struct bucket *b;
1917 	unsigned int i;
1918 
1919 	bch_btree_gc_finish(c);
1920 
1921 	mutex_lock(&c->bucket_lock);
1922 
1923 	/*
1924 	 * We need to put some unused buckets directly on the prio freelist in
1925 	 * order to get the allocator thread started - it needs freed buckets in
1926 	 * order to rewrite the prios and gens, and it needs to rewrite prios
1927 	 * and gens in order to free buckets.
1928 	 *
1929 	 * This is only safe for buckets that have no live data in them, which
1930 	 * there should always be some of.
1931 	 */
1932 	for_each_cache(ca, c, i) {
1933 		for_each_bucket(b, ca) {
1934 			if (fifo_full(&ca->free[RESERVE_PRIO]) &&
1935 			    fifo_full(&ca->free[RESERVE_BTREE]))
1936 				break;
1937 
1938 			if (bch_can_invalidate_bucket(ca, b) &&
1939 			    !GC_MARK(b)) {
1940 				__bch_invalidate_one_bucket(ca, b);
1941 				if (!fifo_push(&ca->free[RESERVE_PRIO],
1942 				   b - ca->buckets))
1943 					fifo_push(&ca->free[RESERVE_BTREE],
1944 						  b - ca->buckets);
1945 			}
1946 		}
1947 	}
1948 
1949 	mutex_unlock(&c->bucket_lock);
1950 }
1951 
1952 /* Btree insertion */
1953 
1954 static bool btree_insert_key(struct btree *b, struct bkey *k,
1955 			     struct bkey *replace_key)
1956 {
1957 	unsigned int status;
1958 
1959 	BUG_ON(bkey_cmp(k, &b->key) > 0);
1960 
1961 	status = bch_btree_insert_key(&b->keys, k, replace_key);
1962 	if (status != BTREE_INSERT_STATUS_NO_INSERT) {
1963 		bch_check_keys(&b->keys, "%u for %s", status,
1964 			       replace_key ? "replace" : "insert");
1965 
1966 		trace_bcache_btree_insert_key(b, k, replace_key != NULL,
1967 					      status);
1968 		return true;
1969 	} else
1970 		return false;
1971 }
1972 
1973 static size_t insert_u64s_remaining(struct btree *b)
1974 {
1975 	long ret = bch_btree_keys_u64s_remaining(&b->keys);
1976 
1977 	/*
1978 	 * Might land in the middle of an existing extent and have to split it
1979 	 */
1980 	if (b->keys.ops->is_extents)
1981 		ret -= KEY_MAX_U64S;
1982 
1983 	return max(ret, 0L);
1984 }
1985 
1986 static bool bch_btree_insert_keys(struct btree *b, struct btree_op *op,
1987 				  struct keylist *insert_keys,
1988 				  struct bkey *replace_key)
1989 {
1990 	bool ret = false;
1991 	int oldsize = bch_count_data(&b->keys);
1992 
1993 	while (!bch_keylist_empty(insert_keys)) {
1994 		struct bkey *k = insert_keys->keys;
1995 
1996 		if (bkey_u64s(k) > insert_u64s_remaining(b))
1997 			break;
1998 
1999 		if (bkey_cmp(k, &b->key) <= 0) {
2000 			if (!b->level)
2001 				bkey_put(b->c, k);
2002 
2003 			ret |= btree_insert_key(b, k, replace_key);
2004 			bch_keylist_pop_front(insert_keys);
2005 		} else if (bkey_cmp(&START_KEY(k), &b->key) < 0) {
2006 			BKEY_PADDED(key) temp;
2007 			bkey_copy(&temp.key, insert_keys->keys);
2008 
2009 			bch_cut_back(&b->key, &temp.key);
2010 			bch_cut_front(&b->key, insert_keys->keys);
2011 
2012 			ret |= btree_insert_key(b, &temp.key, replace_key);
2013 			break;
2014 		} else {
2015 			break;
2016 		}
2017 	}
2018 
2019 	if (!ret)
2020 		op->insert_collision = true;
2021 
2022 	BUG_ON(!bch_keylist_empty(insert_keys) && b->level);
2023 
2024 	BUG_ON(bch_count_data(&b->keys) < oldsize);
2025 	return ret;
2026 }
2027 
2028 static int btree_split(struct btree *b, struct btree_op *op,
2029 		       struct keylist *insert_keys,
2030 		       struct bkey *replace_key)
2031 {
2032 	bool split;
2033 	struct btree *n1, *n2 = NULL, *n3 = NULL;
2034 	uint64_t start_time = local_clock();
2035 	struct closure cl;
2036 	struct keylist parent_keys;
2037 
2038 	closure_init_stack(&cl);
2039 	bch_keylist_init(&parent_keys);
2040 
2041 	if (btree_check_reserve(b, op)) {
2042 		if (!b->level)
2043 			return -EINTR;
2044 		else
2045 			WARN(1, "insufficient reserve for split\n");
2046 	}
2047 
2048 	n1 = btree_node_alloc_replacement(b, op);
2049 	if (IS_ERR(n1))
2050 		goto err;
2051 
2052 	split = set_blocks(btree_bset_first(n1),
2053 			   block_bytes(n1->c)) > (btree_blocks(b) * 4) / 5;
2054 
2055 	if (split) {
2056 		unsigned int keys = 0;
2057 
2058 		trace_bcache_btree_node_split(b, btree_bset_first(n1)->keys);
2059 
2060 		n2 = bch_btree_node_alloc(b->c, op, b->level, b->parent);
2061 		if (IS_ERR(n2))
2062 			goto err_free1;
2063 
2064 		if (!b->parent) {
2065 			n3 = bch_btree_node_alloc(b->c, op, b->level + 1, NULL);
2066 			if (IS_ERR(n3))
2067 				goto err_free2;
2068 		}
2069 
2070 		mutex_lock(&n1->write_lock);
2071 		mutex_lock(&n2->write_lock);
2072 
2073 		bch_btree_insert_keys(n1, op, insert_keys, replace_key);
2074 
2075 		/*
2076 		 * Has to be a linear search because we don't have an auxiliary
2077 		 * search tree yet
2078 		 */
2079 
2080 		while (keys < (btree_bset_first(n1)->keys * 3) / 5)
2081 			keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1),
2082 							keys));
2083 
2084 		bkey_copy_key(&n1->key,
2085 			      bset_bkey_idx(btree_bset_first(n1), keys));
2086 		keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1), keys));
2087 
2088 		btree_bset_first(n2)->keys = btree_bset_first(n1)->keys - keys;
2089 		btree_bset_first(n1)->keys = keys;
2090 
2091 		memcpy(btree_bset_first(n2)->start,
2092 		       bset_bkey_last(btree_bset_first(n1)),
2093 		       btree_bset_first(n2)->keys * sizeof(uint64_t));
2094 
2095 		bkey_copy_key(&n2->key, &b->key);
2096 
2097 		bch_keylist_add(&parent_keys, &n2->key);
2098 		bch_btree_node_write(n2, &cl);
2099 		mutex_unlock(&n2->write_lock);
2100 		rw_unlock(true, n2);
2101 	} else {
2102 		trace_bcache_btree_node_compact(b, btree_bset_first(n1)->keys);
2103 
2104 		mutex_lock(&n1->write_lock);
2105 		bch_btree_insert_keys(n1, op, insert_keys, replace_key);
2106 	}
2107 
2108 	bch_keylist_add(&parent_keys, &n1->key);
2109 	bch_btree_node_write(n1, &cl);
2110 	mutex_unlock(&n1->write_lock);
2111 
2112 	if (n3) {
2113 		/* Depth increases, make a new root */
2114 		mutex_lock(&n3->write_lock);
2115 		bkey_copy_key(&n3->key, &MAX_KEY);
2116 		bch_btree_insert_keys(n3, op, &parent_keys, NULL);
2117 		bch_btree_node_write(n3, &cl);
2118 		mutex_unlock(&n3->write_lock);
2119 
2120 		closure_sync(&cl);
2121 		bch_btree_set_root(n3);
2122 		rw_unlock(true, n3);
2123 	} else if (!b->parent) {
2124 		/* Root filled up but didn't need to be split */
2125 		closure_sync(&cl);
2126 		bch_btree_set_root(n1);
2127 	} else {
2128 		/* Split a non root node */
2129 		closure_sync(&cl);
2130 		make_btree_freeing_key(b, parent_keys.top);
2131 		bch_keylist_push(&parent_keys);
2132 
2133 		bch_btree_insert_node(b->parent, op, &parent_keys, NULL, NULL);
2134 		BUG_ON(!bch_keylist_empty(&parent_keys));
2135 	}
2136 
2137 	btree_node_free(b);
2138 	rw_unlock(true, n1);
2139 
2140 	bch_time_stats_update(&b->c->btree_split_time, start_time);
2141 
2142 	return 0;
2143 err_free2:
2144 	bkey_put(b->c, &n2->key);
2145 	btree_node_free(n2);
2146 	rw_unlock(true, n2);
2147 err_free1:
2148 	bkey_put(b->c, &n1->key);
2149 	btree_node_free(n1);
2150 	rw_unlock(true, n1);
2151 err:
2152 	WARN(1, "bcache: btree split failed (level %u)", b->level);
2153 
2154 	if (n3 == ERR_PTR(-EAGAIN) ||
2155 	    n2 == ERR_PTR(-EAGAIN) ||
2156 	    n1 == ERR_PTR(-EAGAIN))
2157 		return -EAGAIN;
2158 
2159 	return -ENOMEM;
2160 }
2161 
2162 static int bch_btree_insert_node(struct btree *b, struct btree_op *op,
2163 				 struct keylist *insert_keys,
2164 				 atomic_t *journal_ref,
2165 				 struct bkey *replace_key)
2166 {
2167 	struct closure cl;
2168 
2169 	BUG_ON(b->level && replace_key);
2170 
2171 	closure_init_stack(&cl);
2172 
2173 	mutex_lock(&b->write_lock);
2174 
2175 	if (write_block(b) != btree_bset_last(b) &&
2176 	    b->keys.last_set_unwritten)
2177 		bch_btree_init_next(b); /* just wrote a set */
2178 
2179 	if (bch_keylist_nkeys(insert_keys) > insert_u64s_remaining(b)) {
2180 		mutex_unlock(&b->write_lock);
2181 		goto split;
2182 	}
2183 
2184 	BUG_ON(write_block(b) != btree_bset_last(b));
2185 
2186 	if (bch_btree_insert_keys(b, op, insert_keys, replace_key)) {
2187 		if (!b->level)
2188 			bch_btree_leaf_dirty(b, journal_ref);
2189 		else
2190 			bch_btree_node_write(b, &cl);
2191 	}
2192 
2193 	mutex_unlock(&b->write_lock);
2194 
2195 	/* wait for btree node write if necessary, after unlock */
2196 	closure_sync(&cl);
2197 
2198 	return 0;
2199 split:
2200 	if (current->bio_list) {
2201 		op->lock = b->c->root->level + 1;
2202 		return -EAGAIN;
2203 	} else if (op->lock <= b->c->root->level) {
2204 		op->lock = b->c->root->level + 1;
2205 		return -EINTR;
2206 	} else {
2207 		/* Invalidated all iterators */
2208 		int ret = btree_split(b, op, insert_keys, replace_key);
2209 
2210 		if (bch_keylist_empty(insert_keys))
2211 			return 0;
2212 		else if (!ret)
2213 			return -EINTR;
2214 		return ret;
2215 	}
2216 }
2217 
2218 int bch_btree_insert_check_key(struct btree *b, struct btree_op *op,
2219 			       struct bkey *check_key)
2220 {
2221 	int ret = -EINTR;
2222 	uint64_t btree_ptr = b->key.ptr[0];
2223 	unsigned long seq = b->seq;
2224 	struct keylist insert;
2225 	bool upgrade = op->lock == -1;
2226 
2227 	bch_keylist_init(&insert);
2228 
2229 	if (upgrade) {
2230 		rw_unlock(false, b);
2231 		rw_lock(true, b, b->level);
2232 
2233 		if (b->key.ptr[0] != btree_ptr ||
2234 		    b->seq != seq + 1) {
2235 			op->lock = b->level;
2236 			goto out;
2237 		}
2238 	}
2239 
2240 	SET_KEY_PTRS(check_key, 1);
2241 	get_random_bytes(&check_key->ptr[0], sizeof(uint64_t));
2242 
2243 	SET_PTR_DEV(check_key, 0, PTR_CHECK_DEV);
2244 
2245 	bch_keylist_add(&insert, check_key);
2246 
2247 	ret = bch_btree_insert_node(b, op, &insert, NULL, NULL);
2248 
2249 	BUG_ON(!ret && !bch_keylist_empty(&insert));
2250 out:
2251 	if (upgrade)
2252 		downgrade_write(&b->lock);
2253 	return ret;
2254 }
2255 
2256 struct btree_insert_op {
2257 	struct btree_op	op;
2258 	struct keylist	*keys;
2259 	atomic_t	*journal_ref;
2260 	struct bkey	*replace_key;
2261 };
2262 
2263 static int btree_insert_fn(struct btree_op *b_op, struct btree *b)
2264 {
2265 	struct btree_insert_op *op = container_of(b_op,
2266 					struct btree_insert_op, op);
2267 
2268 	int ret = bch_btree_insert_node(b, &op->op, op->keys,
2269 					op->journal_ref, op->replace_key);
2270 	if (ret && !bch_keylist_empty(op->keys))
2271 		return ret;
2272 	else
2273 		return MAP_DONE;
2274 }
2275 
2276 int bch_btree_insert(struct cache_set *c, struct keylist *keys,
2277 		     atomic_t *journal_ref, struct bkey *replace_key)
2278 {
2279 	struct btree_insert_op op;
2280 	int ret = 0;
2281 
2282 	BUG_ON(current->bio_list);
2283 	BUG_ON(bch_keylist_empty(keys));
2284 
2285 	bch_btree_op_init(&op.op, 0);
2286 	op.keys		= keys;
2287 	op.journal_ref	= journal_ref;
2288 	op.replace_key	= replace_key;
2289 
2290 	while (!ret && !bch_keylist_empty(keys)) {
2291 		op.op.lock = 0;
2292 		ret = bch_btree_map_leaf_nodes(&op.op, c,
2293 					       &START_KEY(keys->keys),
2294 					       btree_insert_fn);
2295 	}
2296 
2297 	if (ret) {
2298 		struct bkey *k;
2299 
2300 		pr_err("error %i", ret);
2301 
2302 		while ((k = bch_keylist_pop(keys)))
2303 			bkey_put(c, k);
2304 	} else if (op.op.insert_collision)
2305 		ret = -ESRCH;
2306 
2307 	return ret;
2308 }
2309 
2310 void bch_btree_set_root(struct btree *b)
2311 {
2312 	unsigned int i;
2313 	struct closure cl;
2314 
2315 	closure_init_stack(&cl);
2316 
2317 	trace_bcache_btree_set_root(b);
2318 
2319 	BUG_ON(!b->written);
2320 
2321 	for (i = 0; i < KEY_PTRS(&b->key); i++)
2322 		BUG_ON(PTR_BUCKET(b->c, &b->key, i)->prio != BTREE_PRIO);
2323 
2324 	mutex_lock(&b->c->bucket_lock);
2325 	list_del_init(&b->list);
2326 	mutex_unlock(&b->c->bucket_lock);
2327 
2328 	b->c->root = b;
2329 
2330 	bch_journal_meta(b->c, &cl);
2331 	closure_sync(&cl);
2332 }
2333 
2334 /* Map across nodes or keys */
2335 
2336 static int bch_btree_map_nodes_recurse(struct btree *b, struct btree_op *op,
2337 				       struct bkey *from,
2338 				       btree_map_nodes_fn *fn, int flags)
2339 {
2340 	int ret = MAP_CONTINUE;
2341 
2342 	if (b->level) {
2343 		struct bkey *k;
2344 		struct btree_iter iter;
2345 
2346 		bch_btree_iter_init(&b->keys, &iter, from);
2347 
2348 		while ((k = bch_btree_iter_next_filter(&iter, &b->keys,
2349 						       bch_ptr_bad))) {
2350 			ret = btree(map_nodes_recurse, k, b,
2351 				    op, from, fn, flags);
2352 			from = NULL;
2353 
2354 			if (ret != MAP_CONTINUE)
2355 				return ret;
2356 		}
2357 	}
2358 
2359 	if (!b->level || flags == MAP_ALL_NODES)
2360 		ret = fn(op, b);
2361 
2362 	return ret;
2363 }
2364 
2365 int __bch_btree_map_nodes(struct btree_op *op, struct cache_set *c,
2366 			  struct bkey *from, btree_map_nodes_fn *fn, int flags)
2367 {
2368 	return btree_root(map_nodes_recurse, c, op, from, fn, flags);
2369 }
2370 
2371 static int bch_btree_map_keys_recurse(struct btree *b, struct btree_op *op,
2372 				      struct bkey *from, btree_map_keys_fn *fn,
2373 				      int flags)
2374 {
2375 	int ret = MAP_CONTINUE;
2376 	struct bkey *k;
2377 	struct btree_iter iter;
2378 
2379 	bch_btree_iter_init(&b->keys, &iter, from);
2380 
2381 	while ((k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad))) {
2382 		ret = !b->level
2383 			? fn(op, b, k)
2384 			: btree(map_keys_recurse, k, b, op, from, fn, flags);
2385 		from = NULL;
2386 
2387 		if (ret != MAP_CONTINUE)
2388 			return ret;
2389 	}
2390 
2391 	if (!b->level && (flags & MAP_END_KEY))
2392 		ret = fn(op, b, &KEY(KEY_INODE(&b->key),
2393 				     KEY_OFFSET(&b->key), 0));
2394 
2395 	return ret;
2396 }
2397 
2398 int bch_btree_map_keys(struct btree_op *op, struct cache_set *c,
2399 		       struct bkey *from, btree_map_keys_fn *fn, int flags)
2400 {
2401 	return btree_root(map_keys_recurse, c, op, from, fn, flags);
2402 }
2403 
2404 /* Keybuf code */
2405 
2406 static inline int keybuf_cmp(struct keybuf_key *l, struct keybuf_key *r)
2407 {
2408 	/* Overlapping keys compare equal */
2409 	if (bkey_cmp(&l->key, &START_KEY(&r->key)) <= 0)
2410 		return -1;
2411 	if (bkey_cmp(&START_KEY(&l->key), &r->key) >= 0)
2412 		return 1;
2413 	return 0;
2414 }
2415 
2416 static inline int keybuf_nonoverlapping_cmp(struct keybuf_key *l,
2417 					    struct keybuf_key *r)
2418 {
2419 	return clamp_t(int64_t, bkey_cmp(&l->key, &r->key), -1, 1);
2420 }
2421 
2422 struct refill {
2423 	struct btree_op	op;
2424 	unsigned int	nr_found;
2425 	struct keybuf	*buf;
2426 	struct bkey	*end;
2427 	keybuf_pred_fn	*pred;
2428 };
2429 
2430 static int refill_keybuf_fn(struct btree_op *op, struct btree *b,
2431 			    struct bkey *k)
2432 {
2433 	struct refill *refill = container_of(op, struct refill, op);
2434 	struct keybuf *buf = refill->buf;
2435 	int ret = MAP_CONTINUE;
2436 
2437 	if (bkey_cmp(k, refill->end) > 0) {
2438 		ret = MAP_DONE;
2439 		goto out;
2440 	}
2441 
2442 	if (!KEY_SIZE(k)) /* end key */
2443 		goto out;
2444 
2445 	if (refill->pred(buf, k)) {
2446 		struct keybuf_key *w;
2447 
2448 		spin_lock(&buf->lock);
2449 
2450 		w = array_alloc(&buf->freelist);
2451 		if (!w) {
2452 			spin_unlock(&buf->lock);
2453 			return MAP_DONE;
2454 		}
2455 
2456 		w->private = NULL;
2457 		bkey_copy(&w->key, k);
2458 
2459 		if (RB_INSERT(&buf->keys, w, node, keybuf_cmp))
2460 			array_free(&buf->freelist, w);
2461 		else
2462 			refill->nr_found++;
2463 
2464 		if (array_freelist_empty(&buf->freelist))
2465 			ret = MAP_DONE;
2466 
2467 		spin_unlock(&buf->lock);
2468 	}
2469 out:
2470 	buf->last_scanned = *k;
2471 	return ret;
2472 }
2473 
2474 void bch_refill_keybuf(struct cache_set *c, struct keybuf *buf,
2475 		       struct bkey *end, keybuf_pred_fn *pred)
2476 {
2477 	struct bkey start = buf->last_scanned;
2478 	struct refill refill;
2479 
2480 	cond_resched();
2481 
2482 	bch_btree_op_init(&refill.op, -1);
2483 	refill.nr_found	= 0;
2484 	refill.buf	= buf;
2485 	refill.end	= end;
2486 	refill.pred	= pred;
2487 
2488 	bch_btree_map_keys(&refill.op, c, &buf->last_scanned,
2489 			   refill_keybuf_fn, MAP_END_KEY);
2490 
2491 	trace_bcache_keyscan(refill.nr_found,
2492 			     KEY_INODE(&start), KEY_OFFSET(&start),
2493 			     KEY_INODE(&buf->last_scanned),
2494 			     KEY_OFFSET(&buf->last_scanned));
2495 
2496 	spin_lock(&buf->lock);
2497 
2498 	if (!RB_EMPTY_ROOT(&buf->keys)) {
2499 		struct keybuf_key *w;
2500 
2501 		w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2502 		buf->start	= START_KEY(&w->key);
2503 
2504 		w = RB_LAST(&buf->keys, struct keybuf_key, node);
2505 		buf->end	= w->key;
2506 	} else {
2507 		buf->start	= MAX_KEY;
2508 		buf->end	= MAX_KEY;
2509 	}
2510 
2511 	spin_unlock(&buf->lock);
2512 }
2513 
2514 static void __bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2515 {
2516 	rb_erase(&w->node, &buf->keys);
2517 	array_free(&buf->freelist, w);
2518 }
2519 
2520 void bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2521 {
2522 	spin_lock(&buf->lock);
2523 	__bch_keybuf_del(buf, w);
2524 	spin_unlock(&buf->lock);
2525 }
2526 
2527 bool bch_keybuf_check_overlapping(struct keybuf *buf, struct bkey *start,
2528 				  struct bkey *end)
2529 {
2530 	bool ret = false;
2531 	struct keybuf_key *p, *w, s;
2532 
2533 	s.key = *start;
2534 
2535 	if (bkey_cmp(end, &buf->start) <= 0 ||
2536 	    bkey_cmp(start, &buf->end) >= 0)
2537 		return false;
2538 
2539 	spin_lock(&buf->lock);
2540 	w = RB_GREATER(&buf->keys, s, node, keybuf_nonoverlapping_cmp);
2541 
2542 	while (w && bkey_cmp(&START_KEY(&w->key), end) < 0) {
2543 		p = w;
2544 		w = RB_NEXT(w, node);
2545 
2546 		if (p->private)
2547 			ret = true;
2548 		else
2549 			__bch_keybuf_del(buf, p);
2550 	}
2551 
2552 	spin_unlock(&buf->lock);
2553 	return ret;
2554 }
2555 
2556 struct keybuf_key *bch_keybuf_next(struct keybuf *buf)
2557 {
2558 	struct keybuf_key *w;
2559 
2560 	spin_lock(&buf->lock);
2561 
2562 	w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2563 
2564 	while (w && w->private)
2565 		w = RB_NEXT(w, node);
2566 
2567 	if (w)
2568 		w->private = ERR_PTR(-EINTR);
2569 
2570 	spin_unlock(&buf->lock);
2571 	return w;
2572 }
2573 
2574 struct keybuf_key *bch_keybuf_next_rescan(struct cache_set *c,
2575 					  struct keybuf *buf,
2576 					  struct bkey *end,
2577 					  keybuf_pred_fn *pred)
2578 {
2579 	struct keybuf_key *ret;
2580 
2581 	while (1) {
2582 		ret = bch_keybuf_next(buf);
2583 		if (ret)
2584 			break;
2585 
2586 		if (bkey_cmp(&buf->last_scanned, end) >= 0) {
2587 			pr_debug("scan finished");
2588 			break;
2589 		}
2590 
2591 		bch_refill_keybuf(c, buf, end, pred);
2592 	}
2593 
2594 	return ret;
2595 }
2596 
2597 void bch_keybuf_init(struct keybuf *buf)
2598 {
2599 	buf->last_scanned	= MAX_KEY;
2600 	buf->keys		= RB_ROOT;
2601 
2602 	spin_lock_init(&buf->lock);
2603 	array_allocator_init(&buf->freelist);
2604 }
2605