1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com> 4 * 5 * Uses a block device as cache for other block devices; optimized for SSDs. 6 * All allocation is done in buckets, which should match the erase block size 7 * of the device. 8 * 9 * Buckets containing cached data are kept on a heap sorted by priority; 10 * bucket priority is increased on cache hit, and periodically all the buckets 11 * on the heap have their priority scaled down. This currently is just used as 12 * an LRU but in the future should allow for more intelligent heuristics. 13 * 14 * Buckets have an 8 bit counter; freeing is accomplished by incrementing the 15 * counter. Garbage collection is used to remove stale pointers. 16 * 17 * Indexing is done via a btree; nodes are not necessarily fully sorted, rather 18 * as keys are inserted we only sort the pages that have not yet been written. 19 * When garbage collection is run, we resort the entire node. 20 * 21 * All configuration is done via sysfs; see Documentation/bcache.txt. 22 */ 23 24 #include "bcache.h" 25 #include "btree.h" 26 #include "debug.h" 27 #include "extents.h" 28 29 #include <linux/slab.h> 30 #include <linux/bitops.h> 31 #include <linux/hash.h> 32 #include <linux/kthread.h> 33 #include <linux/prefetch.h> 34 #include <linux/random.h> 35 #include <linux/rcupdate.h> 36 #include <linux/sched/clock.h> 37 #include <linux/rculist.h> 38 39 #include <trace/events/bcache.h> 40 41 /* 42 * Todo: 43 * register_bcache: Return errors out to userspace correctly 44 * 45 * Writeback: don't undirty key until after a cache flush 46 * 47 * Create an iterator for key pointers 48 * 49 * On btree write error, mark bucket such that it won't be freed from the cache 50 * 51 * Journalling: 52 * Check for bad keys in replay 53 * Propagate barriers 54 * Refcount journal entries in journal_replay 55 * 56 * Garbage collection: 57 * Finish incremental gc 58 * Gc should free old UUIDs, data for invalid UUIDs 59 * 60 * Provide a way to list backing device UUIDs we have data cached for, and 61 * probably how long it's been since we've seen them, and a way to invalidate 62 * dirty data for devices that will never be attached again 63 * 64 * Keep 1 min/5 min/15 min statistics of how busy a block device has been, so 65 * that based on that and how much dirty data we have we can keep writeback 66 * from being starved 67 * 68 * Add a tracepoint or somesuch to watch for writeback starvation 69 * 70 * When btree depth > 1 and splitting an interior node, we have to make sure 71 * alloc_bucket() cannot fail. This should be true but is not completely 72 * obvious. 73 * 74 * Plugging? 75 * 76 * If data write is less than hard sector size of ssd, round up offset in open 77 * bucket to the next whole sector 78 * 79 * Superblock needs to be fleshed out for multiple cache devices 80 * 81 * Add a sysfs tunable for the number of writeback IOs in flight 82 * 83 * Add a sysfs tunable for the number of open data buckets 84 * 85 * IO tracking: Can we track when one process is doing io on behalf of another? 86 * IO tracking: Don't use just an average, weigh more recent stuff higher 87 * 88 * Test module load/unload 89 */ 90 91 #define MAX_NEED_GC 64 92 #define MAX_SAVE_PRIO 72 93 94 #define PTR_DIRTY_BIT (((uint64_t) 1 << 36)) 95 96 #define PTR_HASH(c, k) \ 97 (((k)->ptr[0] >> c->bucket_bits) | PTR_GEN(k, 0)) 98 99 #define insert_lock(s, b) ((b)->level <= (s)->lock) 100 101 /* 102 * These macros are for recursing down the btree - they handle the details of 103 * locking and looking up nodes in the cache for you. They're best treated as 104 * mere syntax when reading code that uses them. 105 * 106 * op->lock determines whether we take a read or a write lock at a given depth. 107 * If you've got a read lock and find that you need a write lock (i.e. you're 108 * going to have to split), set op->lock and return -EINTR; btree_root() will 109 * call you again and you'll have the correct lock. 110 */ 111 112 /** 113 * btree - recurse down the btree on a specified key 114 * @fn: function to call, which will be passed the child node 115 * @key: key to recurse on 116 * @b: parent btree node 117 * @op: pointer to struct btree_op 118 */ 119 #define btree(fn, key, b, op, ...) \ 120 ({ \ 121 int _r, l = (b)->level - 1; \ 122 bool _w = l <= (op)->lock; \ 123 struct btree *_child = bch_btree_node_get((b)->c, op, key, l, \ 124 _w, b); \ 125 if (!IS_ERR(_child)) { \ 126 _r = bch_btree_ ## fn(_child, op, ##__VA_ARGS__); \ 127 rw_unlock(_w, _child); \ 128 } else \ 129 _r = PTR_ERR(_child); \ 130 _r; \ 131 }) 132 133 /** 134 * btree_root - call a function on the root of the btree 135 * @fn: function to call, which will be passed the child node 136 * @c: cache set 137 * @op: pointer to struct btree_op 138 */ 139 #define btree_root(fn, c, op, ...) \ 140 ({ \ 141 int _r = -EINTR; \ 142 do { \ 143 struct btree *_b = (c)->root; \ 144 bool _w = insert_lock(op, _b); \ 145 rw_lock(_w, _b, _b->level); \ 146 if (_b == (c)->root && \ 147 _w == insert_lock(op, _b)) { \ 148 _r = bch_btree_ ## fn(_b, op, ##__VA_ARGS__); \ 149 } \ 150 rw_unlock(_w, _b); \ 151 bch_cannibalize_unlock(c); \ 152 if (_r == -EINTR) \ 153 schedule(); \ 154 } while (_r == -EINTR); \ 155 \ 156 finish_wait(&(c)->btree_cache_wait, &(op)->wait); \ 157 _r; \ 158 }) 159 160 static inline struct bset *write_block(struct btree *b) 161 { 162 return ((void *) btree_bset_first(b)) + b->written * block_bytes(b->c); 163 } 164 165 static void bch_btree_init_next(struct btree *b) 166 { 167 /* If not a leaf node, always sort */ 168 if (b->level && b->keys.nsets) 169 bch_btree_sort(&b->keys, &b->c->sort); 170 else 171 bch_btree_sort_lazy(&b->keys, &b->c->sort); 172 173 if (b->written < btree_blocks(b)) 174 bch_bset_init_next(&b->keys, write_block(b), 175 bset_magic(&b->c->sb)); 176 177 } 178 179 /* Btree key manipulation */ 180 181 void bkey_put(struct cache_set *c, struct bkey *k) 182 { 183 unsigned i; 184 185 for (i = 0; i < KEY_PTRS(k); i++) 186 if (ptr_available(c, k, i)) 187 atomic_dec_bug(&PTR_BUCKET(c, k, i)->pin); 188 } 189 190 /* Btree IO */ 191 192 static uint64_t btree_csum_set(struct btree *b, struct bset *i) 193 { 194 uint64_t crc = b->key.ptr[0]; 195 void *data = (void *) i + 8, *end = bset_bkey_last(i); 196 197 crc = bch_crc64_update(crc, data, end - data); 198 return crc ^ 0xffffffffffffffffULL; 199 } 200 201 void bch_btree_node_read_done(struct btree *b) 202 { 203 const char *err = "bad btree header"; 204 struct bset *i = btree_bset_first(b); 205 struct btree_iter *iter; 206 207 iter = mempool_alloc(b->c->fill_iter, GFP_NOIO); 208 iter->size = b->c->sb.bucket_size / b->c->sb.block_size; 209 iter->used = 0; 210 211 #ifdef CONFIG_BCACHE_DEBUG 212 iter->b = &b->keys; 213 #endif 214 215 if (!i->seq) 216 goto err; 217 218 for (; 219 b->written < btree_blocks(b) && i->seq == b->keys.set[0].data->seq; 220 i = write_block(b)) { 221 err = "unsupported bset version"; 222 if (i->version > BCACHE_BSET_VERSION) 223 goto err; 224 225 err = "bad btree header"; 226 if (b->written + set_blocks(i, block_bytes(b->c)) > 227 btree_blocks(b)) 228 goto err; 229 230 err = "bad magic"; 231 if (i->magic != bset_magic(&b->c->sb)) 232 goto err; 233 234 err = "bad checksum"; 235 switch (i->version) { 236 case 0: 237 if (i->csum != csum_set(i)) 238 goto err; 239 break; 240 case BCACHE_BSET_VERSION: 241 if (i->csum != btree_csum_set(b, i)) 242 goto err; 243 break; 244 } 245 246 err = "empty set"; 247 if (i != b->keys.set[0].data && !i->keys) 248 goto err; 249 250 bch_btree_iter_push(iter, i->start, bset_bkey_last(i)); 251 252 b->written += set_blocks(i, block_bytes(b->c)); 253 } 254 255 err = "corrupted btree"; 256 for (i = write_block(b); 257 bset_sector_offset(&b->keys, i) < KEY_SIZE(&b->key); 258 i = ((void *) i) + block_bytes(b->c)) 259 if (i->seq == b->keys.set[0].data->seq) 260 goto err; 261 262 bch_btree_sort_and_fix_extents(&b->keys, iter, &b->c->sort); 263 264 i = b->keys.set[0].data; 265 err = "short btree key"; 266 if (b->keys.set[0].size && 267 bkey_cmp(&b->key, &b->keys.set[0].end) < 0) 268 goto err; 269 270 if (b->written < btree_blocks(b)) 271 bch_bset_init_next(&b->keys, write_block(b), 272 bset_magic(&b->c->sb)); 273 out: 274 mempool_free(iter, b->c->fill_iter); 275 return; 276 err: 277 set_btree_node_io_error(b); 278 bch_cache_set_error(b->c, "%s at bucket %zu, block %u, %u keys", 279 err, PTR_BUCKET_NR(b->c, &b->key, 0), 280 bset_block_offset(b, i), i->keys); 281 goto out; 282 } 283 284 static void btree_node_read_endio(struct bio *bio) 285 { 286 struct closure *cl = bio->bi_private; 287 closure_put(cl); 288 } 289 290 static void bch_btree_node_read(struct btree *b) 291 { 292 uint64_t start_time = local_clock(); 293 struct closure cl; 294 struct bio *bio; 295 296 trace_bcache_btree_read(b); 297 298 closure_init_stack(&cl); 299 300 bio = bch_bbio_alloc(b->c); 301 bio->bi_iter.bi_size = KEY_SIZE(&b->key) << 9; 302 bio->bi_end_io = btree_node_read_endio; 303 bio->bi_private = &cl; 304 bio->bi_opf = REQ_OP_READ | REQ_META; 305 306 bch_bio_map(bio, b->keys.set[0].data); 307 308 bch_submit_bbio(bio, b->c, &b->key, 0); 309 closure_sync(&cl); 310 311 if (bio->bi_status) 312 set_btree_node_io_error(b); 313 314 bch_bbio_free(bio, b->c); 315 316 if (btree_node_io_error(b)) 317 goto err; 318 319 bch_btree_node_read_done(b); 320 bch_time_stats_update(&b->c->btree_read_time, start_time); 321 322 return; 323 err: 324 bch_cache_set_error(b->c, "io error reading bucket %zu", 325 PTR_BUCKET_NR(b->c, &b->key, 0)); 326 } 327 328 static void btree_complete_write(struct btree *b, struct btree_write *w) 329 { 330 if (w->prio_blocked && 331 !atomic_sub_return(w->prio_blocked, &b->c->prio_blocked)) 332 wake_up_allocators(b->c); 333 334 if (w->journal) { 335 atomic_dec_bug(w->journal); 336 __closure_wake_up(&b->c->journal.wait); 337 } 338 339 w->prio_blocked = 0; 340 w->journal = NULL; 341 } 342 343 static void btree_node_write_unlock(struct closure *cl) 344 { 345 struct btree *b = container_of(cl, struct btree, io); 346 347 up(&b->io_mutex); 348 } 349 350 static void __btree_node_write_done(struct closure *cl) 351 { 352 struct btree *b = container_of(cl, struct btree, io); 353 struct btree_write *w = btree_prev_write(b); 354 355 bch_bbio_free(b->bio, b->c); 356 b->bio = NULL; 357 btree_complete_write(b, w); 358 359 if (btree_node_dirty(b)) 360 schedule_delayed_work(&b->work, 30 * HZ); 361 362 closure_return_with_destructor(cl, btree_node_write_unlock); 363 } 364 365 static void btree_node_write_done(struct closure *cl) 366 { 367 struct btree *b = container_of(cl, struct btree, io); 368 369 bio_free_pages(b->bio); 370 __btree_node_write_done(cl); 371 } 372 373 static void btree_node_write_endio(struct bio *bio) 374 { 375 struct closure *cl = bio->bi_private; 376 struct btree *b = container_of(cl, struct btree, io); 377 378 if (bio->bi_status) 379 set_btree_node_io_error(b); 380 381 bch_bbio_count_io_errors(b->c, bio, bio->bi_status, "writing btree"); 382 closure_put(cl); 383 } 384 385 static void do_btree_node_write(struct btree *b) 386 { 387 struct closure *cl = &b->io; 388 struct bset *i = btree_bset_last(b); 389 BKEY_PADDED(key) k; 390 391 i->version = BCACHE_BSET_VERSION; 392 i->csum = btree_csum_set(b, i); 393 394 BUG_ON(b->bio); 395 b->bio = bch_bbio_alloc(b->c); 396 397 b->bio->bi_end_io = btree_node_write_endio; 398 b->bio->bi_private = cl; 399 b->bio->bi_iter.bi_size = roundup(set_bytes(i), block_bytes(b->c)); 400 b->bio->bi_opf = REQ_OP_WRITE | REQ_META | REQ_FUA; 401 bch_bio_map(b->bio, i); 402 403 /* 404 * If we're appending to a leaf node, we don't technically need FUA - 405 * this write just needs to be persisted before the next journal write, 406 * which will be marked FLUSH|FUA. 407 * 408 * Similarly if we're writing a new btree root - the pointer is going to 409 * be in the next journal entry. 410 * 411 * But if we're writing a new btree node (that isn't a root) or 412 * appending to a non leaf btree node, we need either FUA or a flush 413 * when we write the parent with the new pointer. FUA is cheaper than a 414 * flush, and writes appending to leaf nodes aren't blocking anything so 415 * just make all btree node writes FUA to keep things sane. 416 */ 417 418 bkey_copy(&k.key, &b->key); 419 SET_PTR_OFFSET(&k.key, 0, PTR_OFFSET(&k.key, 0) + 420 bset_sector_offset(&b->keys, i)); 421 422 if (!bio_alloc_pages(b->bio, __GFP_NOWARN|GFP_NOWAIT)) { 423 int j; 424 struct bio_vec *bv; 425 void *base = (void *) ((unsigned long) i & ~(PAGE_SIZE - 1)); 426 427 bio_for_each_segment_all(bv, b->bio, j) 428 memcpy(page_address(bv->bv_page), 429 base + j * PAGE_SIZE, PAGE_SIZE); 430 431 bch_submit_bbio(b->bio, b->c, &k.key, 0); 432 433 continue_at(cl, btree_node_write_done, NULL); 434 } else { 435 b->bio->bi_vcnt = 0; 436 bch_bio_map(b->bio, i); 437 438 bch_submit_bbio(b->bio, b->c, &k.key, 0); 439 440 closure_sync(cl); 441 continue_at_nobarrier(cl, __btree_node_write_done, NULL); 442 } 443 } 444 445 void __bch_btree_node_write(struct btree *b, struct closure *parent) 446 { 447 struct bset *i = btree_bset_last(b); 448 449 lockdep_assert_held(&b->write_lock); 450 451 trace_bcache_btree_write(b); 452 453 BUG_ON(current->bio_list); 454 BUG_ON(b->written >= btree_blocks(b)); 455 BUG_ON(b->written && !i->keys); 456 BUG_ON(btree_bset_first(b)->seq != i->seq); 457 bch_check_keys(&b->keys, "writing"); 458 459 cancel_delayed_work(&b->work); 460 461 /* If caller isn't waiting for write, parent refcount is cache set */ 462 down(&b->io_mutex); 463 closure_init(&b->io, parent ?: &b->c->cl); 464 465 clear_bit(BTREE_NODE_dirty, &b->flags); 466 change_bit(BTREE_NODE_write_idx, &b->flags); 467 468 do_btree_node_write(b); 469 470 atomic_long_add(set_blocks(i, block_bytes(b->c)) * b->c->sb.block_size, 471 &PTR_CACHE(b->c, &b->key, 0)->btree_sectors_written); 472 473 b->written += set_blocks(i, block_bytes(b->c)); 474 } 475 476 void bch_btree_node_write(struct btree *b, struct closure *parent) 477 { 478 unsigned nsets = b->keys.nsets; 479 480 lockdep_assert_held(&b->lock); 481 482 __bch_btree_node_write(b, parent); 483 484 /* 485 * do verify if there was more than one set initially (i.e. we did a 486 * sort) and we sorted down to a single set: 487 */ 488 if (nsets && !b->keys.nsets) 489 bch_btree_verify(b); 490 491 bch_btree_init_next(b); 492 } 493 494 static void bch_btree_node_write_sync(struct btree *b) 495 { 496 struct closure cl; 497 498 closure_init_stack(&cl); 499 500 mutex_lock(&b->write_lock); 501 bch_btree_node_write(b, &cl); 502 mutex_unlock(&b->write_lock); 503 504 closure_sync(&cl); 505 } 506 507 static void btree_node_write_work(struct work_struct *w) 508 { 509 struct btree *b = container_of(to_delayed_work(w), struct btree, work); 510 511 mutex_lock(&b->write_lock); 512 if (btree_node_dirty(b)) 513 __bch_btree_node_write(b, NULL); 514 mutex_unlock(&b->write_lock); 515 } 516 517 static void bch_btree_leaf_dirty(struct btree *b, atomic_t *journal_ref) 518 { 519 struct bset *i = btree_bset_last(b); 520 struct btree_write *w = btree_current_write(b); 521 522 lockdep_assert_held(&b->write_lock); 523 524 BUG_ON(!b->written); 525 BUG_ON(!i->keys); 526 527 if (!btree_node_dirty(b)) 528 schedule_delayed_work(&b->work, 30 * HZ); 529 530 set_btree_node_dirty(b); 531 532 if (journal_ref) { 533 if (w->journal && 534 journal_pin_cmp(b->c, w->journal, journal_ref)) { 535 atomic_dec_bug(w->journal); 536 w->journal = NULL; 537 } 538 539 if (!w->journal) { 540 w->journal = journal_ref; 541 atomic_inc(w->journal); 542 } 543 } 544 545 /* Force write if set is too big */ 546 if (set_bytes(i) > PAGE_SIZE - 48 && 547 !current->bio_list) 548 bch_btree_node_write(b, NULL); 549 } 550 551 /* 552 * Btree in memory cache - allocation/freeing 553 * mca -> memory cache 554 */ 555 556 #define mca_reserve(c) (((c->root && c->root->level) \ 557 ? c->root->level : 1) * 8 + 16) 558 #define mca_can_free(c) \ 559 max_t(int, 0, c->btree_cache_used - mca_reserve(c)) 560 561 static void mca_data_free(struct btree *b) 562 { 563 BUG_ON(b->io_mutex.count != 1); 564 565 bch_btree_keys_free(&b->keys); 566 567 b->c->btree_cache_used--; 568 list_move(&b->list, &b->c->btree_cache_freed); 569 } 570 571 static void mca_bucket_free(struct btree *b) 572 { 573 BUG_ON(btree_node_dirty(b)); 574 575 b->key.ptr[0] = 0; 576 hlist_del_init_rcu(&b->hash); 577 list_move(&b->list, &b->c->btree_cache_freeable); 578 } 579 580 static unsigned btree_order(struct bkey *k) 581 { 582 return ilog2(KEY_SIZE(k) / PAGE_SECTORS ?: 1); 583 } 584 585 static void mca_data_alloc(struct btree *b, struct bkey *k, gfp_t gfp) 586 { 587 if (!bch_btree_keys_alloc(&b->keys, 588 max_t(unsigned, 589 ilog2(b->c->btree_pages), 590 btree_order(k)), 591 gfp)) { 592 b->c->btree_cache_used++; 593 list_move(&b->list, &b->c->btree_cache); 594 } else { 595 list_move(&b->list, &b->c->btree_cache_freed); 596 } 597 } 598 599 static struct btree *mca_bucket_alloc(struct cache_set *c, 600 struct bkey *k, gfp_t gfp) 601 { 602 struct btree *b = kzalloc(sizeof(struct btree), gfp); 603 if (!b) 604 return NULL; 605 606 init_rwsem(&b->lock); 607 lockdep_set_novalidate_class(&b->lock); 608 mutex_init(&b->write_lock); 609 lockdep_set_novalidate_class(&b->write_lock); 610 INIT_LIST_HEAD(&b->list); 611 INIT_DELAYED_WORK(&b->work, btree_node_write_work); 612 b->c = c; 613 sema_init(&b->io_mutex, 1); 614 615 mca_data_alloc(b, k, gfp); 616 return b; 617 } 618 619 static int mca_reap(struct btree *b, unsigned min_order, bool flush) 620 { 621 struct closure cl; 622 623 closure_init_stack(&cl); 624 lockdep_assert_held(&b->c->bucket_lock); 625 626 if (!down_write_trylock(&b->lock)) 627 return -ENOMEM; 628 629 BUG_ON(btree_node_dirty(b) && !b->keys.set[0].data); 630 631 if (b->keys.page_order < min_order) 632 goto out_unlock; 633 634 if (!flush) { 635 if (btree_node_dirty(b)) 636 goto out_unlock; 637 638 if (down_trylock(&b->io_mutex)) 639 goto out_unlock; 640 up(&b->io_mutex); 641 } 642 643 mutex_lock(&b->write_lock); 644 if (btree_node_dirty(b)) 645 __bch_btree_node_write(b, &cl); 646 mutex_unlock(&b->write_lock); 647 648 closure_sync(&cl); 649 650 /* wait for any in flight btree write */ 651 down(&b->io_mutex); 652 up(&b->io_mutex); 653 654 return 0; 655 out_unlock: 656 rw_unlock(true, b); 657 return -ENOMEM; 658 } 659 660 static unsigned long bch_mca_scan(struct shrinker *shrink, 661 struct shrink_control *sc) 662 { 663 struct cache_set *c = container_of(shrink, struct cache_set, shrink); 664 struct btree *b, *t; 665 unsigned long i, nr = sc->nr_to_scan; 666 unsigned long freed = 0; 667 668 if (c->shrinker_disabled) 669 return SHRINK_STOP; 670 671 if (c->btree_cache_alloc_lock) 672 return SHRINK_STOP; 673 674 /* Return -1 if we can't do anything right now */ 675 if (sc->gfp_mask & __GFP_IO) 676 mutex_lock(&c->bucket_lock); 677 else if (!mutex_trylock(&c->bucket_lock)) 678 return -1; 679 680 /* 681 * It's _really_ critical that we don't free too many btree nodes - we 682 * have to always leave ourselves a reserve. The reserve is how we 683 * guarantee that allocating memory for a new btree node can always 684 * succeed, so that inserting keys into the btree can always succeed and 685 * IO can always make forward progress: 686 */ 687 nr /= c->btree_pages; 688 nr = min_t(unsigned long, nr, mca_can_free(c)); 689 690 i = 0; 691 list_for_each_entry_safe(b, t, &c->btree_cache_freeable, list) { 692 if (freed >= nr) 693 break; 694 695 if (++i > 3 && 696 !mca_reap(b, 0, false)) { 697 mca_data_free(b); 698 rw_unlock(true, b); 699 freed++; 700 } 701 } 702 703 for (i = 0; (nr--) && i < c->btree_cache_used; i++) { 704 if (list_empty(&c->btree_cache)) 705 goto out; 706 707 b = list_first_entry(&c->btree_cache, struct btree, list); 708 list_rotate_left(&c->btree_cache); 709 710 if (!b->accessed && 711 !mca_reap(b, 0, false)) { 712 mca_bucket_free(b); 713 mca_data_free(b); 714 rw_unlock(true, b); 715 freed++; 716 } else 717 b->accessed = 0; 718 } 719 out: 720 mutex_unlock(&c->bucket_lock); 721 return freed; 722 } 723 724 static unsigned long bch_mca_count(struct shrinker *shrink, 725 struct shrink_control *sc) 726 { 727 struct cache_set *c = container_of(shrink, struct cache_set, shrink); 728 729 if (c->shrinker_disabled) 730 return 0; 731 732 if (c->btree_cache_alloc_lock) 733 return 0; 734 735 return mca_can_free(c) * c->btree_pages; 736 } 737 738 void bch_btree_cache_free(struct cache_set *c) 739 { 740 struct btree *b; 741 struct closure cl; 742 closure_init_stack(&cl); 743 744 if (c->shrink.list.next) 745 unregister_shrinker(&c->shrink); 746 747 mutex_lock(&c->bucket_lock); 748 749 #ifdef CONFIG_BCACHE_DEBUG 750 if (c->verify_data) 751 list_move(&c->verify_data->list, &c->btree_cache); 752 753 free_pages((unsigned long) c->verify_ondisk, ilog2(bucket_pages(c))); 754 #endif 755 756 list_splice(&c->btree_cache_freeable, 757 &c->btree_cache); 758 759 while (!list_empty(&c->btree_cache)) { 760 b = list_first_entry(&c->btree_cache, struct btree, list); 761 762 if (btree_node_dirty(b)) 763 btree_complete_write(b, btree_current_write(b)); 764 clear_bit(BTREE_NODE_dirty, &b->flags); 765 766 mca_data_free(b); 767 } 768 769 while (!list_empty(&c->btree_cache_freed)) { 770 b = list_first_entry(&c->btree_cache_freed, 771 struct btree, list); 772 list_del(&b->list); 773 cancel_delayed_work_sync(&b->work); 774 kfree(b); 775 } 776 777 mutex_unlock(&c->bucket_lock); 778 } 779 780 int bch_btree_cache_alloc(struct cache_set *c) 781 { 782 unsigned i; 783 784 for (i = 0; i < mca_reserve(c); i++) 785 if (!mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL)) 786 return -ENOMEM; 787 788 list_splice_init(&c->btree_cache, 789 &c->btree_cache_freeable); 790 791 #ifdef CONFIG_BCACHE_DEBUG 792 mutex_init(&c->verify_lock); 793 794 c->verify_ondisk = (void *) 795 __get_free_pages(GFP_KERNEL, ilog2(bucket_pages(c))); 796 797 c->verify_data = mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL); 798 799 if (c->verify_data && 800 c->verify_data->keys.set->data) 801 list_del_init(&c->verify_data->list); 802 else 803 c->verify_data = NULL; 804 #endif 805 806 c->shrink.count_objects = bch_mca_count; 807 c->shrink.scan_objects = bch_mca_scan; 808 c->shrink.seeks = 4; 809 c->shrink.batch = c->btree_pages * 2; 810 register_shrinker(&c->shrink); 811 812 return 0; 813 } 814 815 /* Btree in memory cache - hash table */ 816 817 static struct hlist_head *mca_hash(struct cache_set *c, struct bkey *k) 818 { 819 return &c->bucket_hash[hash_32(PTR_HASH(c, k), BUCKET_HASH_BITS)]; 820 } 821 822 static struct btree *mca_find(struct cache_set *c, struct bkey *k) 823 { 824 struct btree *b; 825 826 rcu_read_lock(); 827 hlist_for_each_entry_rcu(b, mca_hash(c, k), hash) 828 if (PTR_HASH(c, &b->key) == PTR_HASH(c, k)) 829 goto out; 830 b = NULL; 831 out: 832 rcu_read_unlock(); 833 return b; 834 } 835 836 static int mca_cannibalize_lock(struct cache_set *c, struct btree_op *op) 837 { 838 struct task_struct *old; 839 840 old = cmpxchg(&c->btree_cache_alloc_lock, NULL, current); 841 if (old && old != current) { 842 if (op) 843 prepare_to_wait(&c->btree_cache_wait, &op->wait, 844 TASK_UNINTERRUPTIBLE); 845 return -EINTR; 846 } 847 848 return 0; 849 } 850 851 static struct btree *mca_cannibalize(struct cache_set *c, struct btree_op *op, 852 struct bkey *k) 853 { 854 struct btree *b; 855 856 trace_bcache_btree_cache_cannibalize(c); 857 858 if (mca_cannibalize_lock(c, op)) 859 return ERR_PTR(-EINTR); 860 861 list_for_each_entry_reverse(b, &c->btree_cache, list) 862 if (!mca_reap(b, btree_order(k), false)) 863 return b; 864 865 list_for_each_entry_reverse(b, &c->btree_cache, list) 866 if (!mca_reap(b, btree_order(k), true)) 867 return b; 868 869 WARN(1, "btree cache cannibalize failed\n"); 870 return ERR_PTR(-ENOMEM); 871 } 872 873 /* 874 * We can only have one thread cannibalizing other cached btree nodes at a time, 875 * or we'll deadlock. We use an open coded mutex to ensure that, which a 876 * cannibalize_bucket() will take. This means every time we unlock the root of 877 * the btree, we need to release this lock if we have it held. 878 */ 879 static void bch_cannibalize_unlock(struct cache_set *c) 880 { 881 if (c->btree_cache_alloc_lock == current) { 882 c->btree_cache_alloc_lock = NULL; 883 wake_up(&c->btree_cache_wait); 884 } 885 } 886 887 static struct btree *mca_alloc(struct cache_set *c, struct btree_op *op, 888 struct bkey *k, int level) 889 { 890 struct btree *b; 891 892 BUG_ON(current->bio_list); 893 894 lockdep_assert_held(&c->bucket_lock); 895 896 if (mca_find(c, k)) 897 return NULL; 898 899 /* btree_free() doesn't free memory; it sticks the node on the end of 900 * the list. Check if there's any freed nodes there: 901 */ 902 list_for_each_entry(b, &c->btree_cache_freeable, list) 903 if (!mca_reap(b, btree_order(k), false)) 904 goto out; 905 906 /* We never free struct btree itself, just the memory that holds the on 907 * disk node. Check the freed list before allocating a new one: 908 */ 909 list_for_each_entry(b, &c->btree_cache_freed, list) 910 if (!mca_reap(b, 0, false)) { 911 mca_data_alloc(b, k, __GFP_NOWARN|GFP_NOIO); 912 if (!b->keys.set[0].data) 913 goto err; 914 else 915 goto out; 916 } 917 918 b = mca_bucket_alloc(c, k, __GFP_NOWARN|GFP_NOIO); 919 if (!b) 920 goto err; 921 922 BUG_ON(!down_write_trylock(&b->lock)); 923 if (!b->keys.set->data) 924 goto err; 925 out: 926 BUG_ON(b->io_mutex.count != 1); 927 928 bkey_copy(&b->key, k); 929 list_move(&b->list, &c->btree_cache); 930 hlist_del_init_rcu(&b->hash); 931 hlist_add_head_rcu(&b->hash, mca_hash(c, k)); 932 933 lock_set_subclass(&b->lock.dep_map, level + 1, _THIS_IP_); 934 b->parent = (void *) ~0UL; 935 b->flags = 0; 936 b->written = 0; 937 b->level = level; 938 939 if (!b->level) 940 bch_btree_keys_init(&b->keys, &bch_extent_keys_ops, 941 &b->c->expensive_debug_checks); 942 else 943 bch_btree_keys_init(&b->keys, &bch_btree_keys_ops, 944 &b->c->expensive_debug_checks); 945 946 return b; 947 err: 948 if (b) 949 rw_unlock(true, b); 950 951 b = mca_cannibalize(c, op, k); 952 if (!IS_ERR(b)) 953 goto out; 954 955 return b; 956 } 957 958 /** 959 * bch_btree_node_get - find a btree node in the cache and lock it, reading it 960 * in from disk if necessary. 961 * 962 * If IO is necessary and running under generic_make_request, returns -EAGAIN. 963 * 964 * The btree node will have either a read or a write lock held, depending on 965 * level and op->lock. 966 */ 967 struct btree *bch_btree_node_get(struct cache_set *c, struct btree_op *op, 968 struct bkey *k, int level, bool write, 969 struct btree *parent) 970 { 971 int i = 0; 972 struct btree *b; 973 974 BUG_ON(level < 0); 975 retry: 976 b = mca_find(c, k); 977 978 if (!b) { 979 if (current->bio_list) 980 return ERR_PTR(-EAGAIN); 981 982 mutex_lock(&c->bucket_lock); 983 b = mca_alloc(c, op, k, level); 984 mutex_unlock(&c->bucket_lock); 985 986 if (!b) 987 goto retry; 988 if (IS_ERR(b)) 989 return b; 990 991 bch_btree_node_read(b); 992 993 if (!write) 994 downgrade_write(&b->lock); 995 } else { 996 rw_lock(write, b, level); 997 if (PTR_HASH(c, &b->key) != PTR_HASH(c, k)) { 998 rw_unlock(write, b); 999 goto retry; 1000 } 1001 BUG_ON(b->level != level); 1002 } 1003 1004 b->parent = parent; 1005 b->accessed = 1; 1006 1007 for (; i <= b->keys.nsets && b->keys.set[i].size; i++) { 1008 prefetch(b->keys.set[i].tree); 1009 prefetch(b->keys.set[i].data); 1010 } 1011 1012 for (; i <= b->keys.nsets; i++) 1013 prefetch(b->keys.set[i].data); 1014 1015 if (btree_node_io_error(b)) { 1016 rw_unlock(write, b); 1017 return ERR_PTR(-EIO); 1018 } 1019 1020 BUG_ON(!b->written); 1021 1022 return b; 1023 } 1024 1025 static void btree_node_prefetch(struct btree *parent, struct bkey *k) 1026 { 1027 struct btree *b; 1028 1029 mutex_lock(&parent->c->bucket_lock); 1030 b = mca_alloc(parent->c, NULL, k, parent->level - 1); 1031 mutex_unlock(&parent->c->bucket_lock); 1032 1033 if (!IS_ERR_OR_NULL(b)) { 1034 b->parent = parent; 1035 bch_btree_node_read(b); 1036 rw_unlock(true, b); 1037 } 1038 } 1039 1040 /* Btree alloc */ 1041 1042 static void btree_node_free(struct btree *b) 1043 { 1044 trace_bcache_btree_node_free(b); 1045 1046 BUG_ON(b == b->c->root); 1047 1048 mutex_lock(&b->write_lock); 1049 1050 if (btree_node_dirty(b)) 1051 btree_complete_write(b, btree_current_write(b)); 1052 clear_bit(BTREE_NODE_dirty, &b->flags); 1053 1054 mutex_unlock(&b->write_lock); 1055 1056 cancel_delayed_work(&b->work); 1057 1058 mutex_lock(&b->c->bucket_lock); 1059 bch_bucket_free(b->c, &b->key); 1060 mca_bucket_free(b); 1061 mutex_unlock(&b->c->bucket_lock); 1062 } 1063 1064 struct btree *__bch_btree_node_alloc(struct cache_set *c, struct btree_op *op, 1065 int level, bool wait, 1066 struct btree *parent) 1067 { 1068 BKEY_PADDED(key) k; 1069 struct btree *b = ERR_PTR(-EAGAIN); 1070 1071 mutex_lock(&c->bucket_lock); 1072 retry: 1073 if (__bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, 1, wait)) 1074 goto err; 1075 1076 bkey_put(c, &k.key); 1077 SET_KEY_SIZE(&k.key, c->btree_pages * PAGE_SECTORS); 1078 1079 b = mca_alloc(c, op, &k.key, level); 1080 if (IS_ERR(b)) 1081 goto err_free; 1082 1083 if (!b) { 1084 cache_bug(c, 1085 "Tried to allocate bucket that was in btree cache"); 1086 goto retry; 1087 } 1088 1089 b->accessed = 1; 1090 b->parent = parent; 1091 bch_bset_init_next(&b->keys, b->keys.set->data, bset_magic(&b->c->sb)); 1092 1093 mutex_unlock(&c->bucket_lock); 1094 1095 trace_bcache_btree_node_alloc(b); 1096 return b; 1097 err_free: 1098 bch_bucket_free(c, &k.key); 1099 err: 1100 mutex_unlock(&c->bucket_lock); 1101 1102 trace_bcache_btree_node_alloc_fail(c); 1103 return b; 1104 } 1105 1106 static struct btree *bch_btree_node_alloc(struct cache_set *c, 1107 struct btree_op *op, int level, 1108 struct btree *parent) 1109 { 1110 return __bch_btree_node_alloc(c, op, level, op != NULL, parent); 1111 } 1112 1113 static struct btree *btree_node_alloc_replacement(struct btree *b, 1114 struct btree_op *op) 1115 { 1116 struct btree *n = bch_btree_node_alloc(b->c, op, b->level, b->parent); 1117 if (!IS_ERR_OR_NULL(n)) { 1118 mutex_lock(&n->write_lock); 1119 bch_btree_sort_into(&b->keys, &n->keys, &b->c->sort); 1120 bkey_copy_key(&n->key, &b->key); 1121 mutex_unlock(&n->write_lock); 1122 } 1123 1124 return n; 1125 } 1126 1127 static void make_btree_freeing_key(struct btree *b, struct bkey *k) 1128 { 1129 unsigned i; 1130 1131 mutex_lock(&b->c->bucket_lock); 1132 1133 atomic_inc(&b->c->prio_blocked); 1134 1135 bkey_copy(k, &b->key); 1136 bkey_copy_key(k, &ZERO_KEY); 1137 1138 for (i = 0; i < KEY_PTRS(k); i++) 1139 SET_PTR_GEN(k, i, 1140 bch_inc_gen(PTR_CACHE(b->c, &b->key, i), 1141 PTR_BUCKET(b->c, &b->key, i))); 1142 1143 mutex_unlock(&b->c->bucket_lock); 1144 } 1145 1146 static int btree_check_reserve(struct btree *b, struct btree_op *op) 1147 { 1148 struct cache_set *c = b->c; 1149 struct cache *ca; 1150 unsigned i, reserve = (c->root->level - b->level) * 2 + 1; 1151 1152 mutex_lock(&c->bucket_lock); 1153 1154 for_each_cache(ca, c, i) 1155 if (fifo_used(&ca->free[RESERVE_BTREE]) < reserve) { 1156 if (op) 1157 prepare_to_wait(&c->btree_cache_wait, &op->wait, 1158 TASK_UNINTERRUPTIBLE); 1159 mutex_unlock(&c->bucket_lock); 1160 return -EINTR; 1161 } 1162 1163 mutex_unlock(&c->bucket_lock); 1164 1165 return mca_cannibalize_lock(b->c, op); 1166 } 1167 1168 /* Garbage collection */ 1169 1170 static uint8_t __bch_btree_mark_key(struct cache_set *c, int level, 1171 struct bkey *k) 1172 { 1173 uint8_t stale = 0; 1174 unsigned i; 1175 struct bucket *g; 1176 1177 /* 1178 * ptr_invalid() can't return true for the keys that mark btree nodes as 1179 * freed, but since ptr_bad() returns true we'll never actually use them 1180 * for anything and thus we don't want mark their pointers here 1181 */ 1182 if (!bkey_cmp(k, &ZERO_KEY)) 1183 return stale; 1184 1185 for (i = 0; i < KEY_PTRS(k); i++) { 1186 if (!ptr_available(c, k, i)) 1187 continue; 1188 1189 g = PTR_BUCKET(c, k, i); 1190 1191 if (gen_after(g->last_gc, PTR_GEN(k, i))) 1192 g->last_gc = PTR_GEN(k, i); 1193 1194 if (ptr_stale(c, k, i)) { 1195 stale = max(stale, ptr_stale(c, k, i)); 1196 continue; 1197 } 1198 1199 cache_bug_on(GC_MARK(g) && 1200 (GC_MARK(g) == GC_MARK_METADATA) != (level != 0), 1201 c, "inconsistent ptrs: mark = %llu, level = %i", 1202 GC_MARK(g), level); 1203 1204 if (level) 1205 SET_GC_MARK(g, GC_MARK_METADATA); 1206 else if (KEY_DIRTY(k)) 1207 SET_GC_MARK(g, GC_MARK_DIRTY); 1208 else if (!GC_MARK(g)) 1209 SET_GC_MARK(g, GC_MARK_RECLAIMABLE); 1210 1211 /* guard against overflow */ 1212 SET_GC_SECTORS_USED(g, min_t(unsigned, 1213 GC_SECTORS_USED(g) + KEY_SIZE(k), 1214 MAX_GC_SECTORS_USED)); 1215 1216 BUG_ON(!GC_SECTORS_USED(g)); 1217 } 1218 1219 return stale; 1220 } 1221 1222 #define btree_mark_key(b, k) __bch_btree_mark_key(b->c, b->level, k) 1223 1224 void bch_initial_mark_key(struct cache_set *c, int level, struct bkey *k) 1225 { 1226 unsigned i; 1227 1228 for (i = 0; i < KEY_PTRS(k); i++) 1229 if (ptr_available(c, k, i) && 1230 !ptr_stale(c, k, i)) { 1231 struct bucket *b = PTR_BUCKET(c, k, i); 1232 1233 b->gen = PTR_GEN(k, i); 1234 1235 if (level && bkey_cmp(k, &ZERO_KEY)) 1236 b->prio = BTREE_PRIO; 1237 else if (!level && b->prio == BTREE_PRIO) 1238 b->prio = INITIAL_PRIO; 1239 } 1240 1241 __bch_btree_mark_key(c, level, k); 1242 } 1243 1244 void bch_update_bucket_in_use(struct cache_set *c, struct gc_stat *stats) 1245 { 1246 stats->in_use = (c->nbuckets - c->avail_nbuckets) * 100 / c->nbuckets; 1247 } 1248 1249 static bool btree_gc_mark_node(struct btree *b, struct gc_stat *gc) 1250 { 1251 uint8_t stale = 0; 1252 unsigned keys = 0, good_keys = 0; 1253 struct bkey *k; 1254 struct btree_iter iter; 1255 struct bset_tree *t; 1256 1257 gc->nodes++; 1258 1259 for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid) { 1260 stale = max(stale, btree_mark_key(b, k)); 1261 keys++; 1262 1263 if (bch_ptr_bad(&b->keys, k)) 1264 continue; 1265 1266 gc->key_bytes += bkey_u64s(k); 1267 gc->nkeys++; 1268 good_keys++; 1269 1270 gc->data += KEY_SIZE(k); 1271 } 1272 1273 for (t = b->keys.set; t <= &b->keys.set[b->keys.nsets]; t++) 1274 btree_bug_on(t->size && 1275 bset_written(&b->keys, t) && 1276 bkey_cmp(&b->key, &t->end) < 0, 1277 b, "found short btree key in gc"); 1278 1279 if (b->c->gc_always_rewrite) 1280 return true; 1281 1282 if (stale > 10) 1283 return true; 1284 1285 if ((keys - good_keys) * 2 > keys) 1286 return true; 1287 1288 return false; 1289 } 1290 1291 #define GC_MERGE_NODES 4U 1292 1293 struct gc_merge_info { 1294 struct btree *b; 1295 unsigned keys; 1296 }; 1297 1298 static int bch_btree_insert_node(struct btree *, struct btree_op *, 1299 struct keylist *, atomic_t *, struct bkey *); 1300 1301 static int btree_gc_coalesce(struct btree *b, struct btree_op *op, 1302 struct gc_stat *gc, struct gc_merge_info *r) 1303 { 1304 unsigned i, nodes = 0, keys = 0, blocks; 1305 struct btree *new_nodes[GC_MERGE_NODES]; 1306 struct keylist keylist; 1307 struct closure cl; 1308 struct bkey *k; 1309 1310 bch_keylist_init(&keylist); 1311 1312 if (btree_check_reserve(b, NULL)) 1313 return 0; 1314 1315 memset(new_nodes, 0, sizeof(new_nodes)); 1316 closure_init_stack(&cl); 1317 1318 while (nodes < GC_MERGE_NODES && !IS_ERR_OR_NULL(r[nodes].b)) 1319 keys += r[nodes++].keys; 1320 1321 blocks = btree_default_blocks(b->c) * 2 / 3; 1322 1323 if (nodes < 2 || 1324 __set_blocks(b->keys.set[0].data, keys, 1325 block_bytes(b->c)) > blocks * (nodes - 1)) 1326 return 0; 1327 1328 for (i = 0; i < nodes; i++) { 1329 new_nodes[i] = btree_node_alloc_replacement(r[i].b, NULL); 1330 if (IS_ERR_OR_NULL(new_nodes[i])) 1331 goto out_nocoalesce; 1332 } 1333 1334 /* 1335 * We have to check the reserve here, after we've allocated our new 1336 * nodes, to make sure the insert below will succeed - we also check 1337 * before as an optimization to potentially avoid a bunch of expensive 1338 * allocs/sorts 1339 */ 1340 if (btree_check_reserve(b, NULL)) 1341 goto out_nocoalesce; 1342 1343 for (i = 0; i < nodes; i++) 1344 mutex_lock(&new_nodes[i]->write_lock); 1345 1346 for (i = nodes - 1; i > 0; --i) { 1347 struct bset *n1 = btree_bset_first(new_nodes[i]); 1348 struct bset *n2 = btree_bset_first(new_nodes[i - 1]); 1349 struct bkey *k, *last = NULL; 1350 1351 keys = 0; 1352 1353 if (i > 1) { 1354 for (k = n2->start; 1355 k < bset_bkey_last(n2); 1356 k = bkey_next(k)) { 1357 if (__set_blocks(n1, n1->keys + keys + 1358 bkey_u64s(k), 1359 block_bytes(b->c)) > blocks) 1360 break; 1361 1362 last = k; 1363 keys += bkey_u64s(k); 1364 } 1365 } else { 1366 /* 1367 * Last node we're not getting rid of - we're getting 1368 * rid of the node at r[0]. Have to try and fit all of 1369 * the remaining keys into this node; we can't ensure 1370 * they will always fit due to rounding and variable 1371 * length keys (shouldn't be possible in practice, 1372 * though) 1373 */ 1374 if (__set_blocks(n1, n1->keys + n2->keys, 1375 block_bytes(b->c)) > 1376 btree_blocks(new_nodes[i])) 1377 goto out_nocoalesce; 1378 1379 keys = n2->keys; 1380 /* Take the key of the node we're getting rid of */ 1381 last = &r->b->key; 1382 } 1383 1384 BUG_ON(__set_blocks(n1, n1->keys + keys, block_bytes(b->c)) > 1385 btree_blocks(new_nodes[i])); 1386 1387 if (last) 1388 bkey_copy_key(&new_nodes[i]->key, last); 1389 1390 memcpy(bset_bkey_last(n1), 1391 n2->start, 1392 (void *) bset_bkey_idx(n2, keys) - (void *) n2->start); 1393 1394 n1->keys += keys; 1395 r[i].keys = n1->keys; 1396 1397 memmove(n2->start, 1398 bset_bkey_idx(n2, keys), 1399 (void *) bset_bkey_last(n2) - 1400 (void *) bset_bkey_idx(n2, keys)); 1401 1402 n2->keys -= keys; 1403 1404 if (__bch_keylist_realloc(&keylist, 1405 bkey_u64s(&new_nodes[i]->key))) 1406 goto out_nocoalesce; 1407 1408 bch_btree_node_write(new_nodes[i], &cl); 1409 bch_keylist_add(&keylist, &new_nodes[i]->key); 1410 } 1411 1412 for (i = 0; i < nodes; i++) 1413 mutex_unlock(&new_nodes[i]->write_lock); 1414 1415 closure_sync(&cl); 1416 1417 /* We emptied out this node */ 1418 BUG_ON(btree_bset_first(new_nodes[0])->keys); 1419 btree_node_free(new_nodes[0]); 1420 rw_unlock(true, new_nodes[0]); 1421 new_nodes[0] = NULL; 1422 1423 for (i = 0; i < nodes; i++) { 1424 if (__bch_keylist_realloc(&keylist, bkey_u64s(&r[i].b->key))) 1425 goto out_nocoalesce; 1426 1427 make_btree_freeing_key(r[i].b, keylist.top); 1428 bch_keylist_push(&keylist); 1429 } 1430 1431 bch_btree_insert_node(b, op, &keylist, NULL, NULL); 1432 BUG_ON(!bch_keylist_empty(&keylist)); 1433 1434 for (i = 0; i < nodes; i++) { 1435 btree_node_free(r[i].b); 1436 rw_unlock(true, r[i].b); 1437 1438 r[i].b = new_nodes[i]; 1439 } 1440 1441 memmove(r, r + 1, sizeof(r[0]) * (nodes - 1)); 1442 r[nodes - 1].b = ERR_PTR(-EINTR); 1443 1444 trace_bcache_btree_gc_coalesce(nodes); 1445 gc->nodes--; 1446 1447 bch_keylist_free(&keylist); 1448 1449 /* Invalidated our iterator */ 1450 return -EINTR; 1451 1452 out_nocoalesce: 1453 closure_sync(&cl); 1454 bch_keylist_free(&keylist); 1455 1456 while ((k = bch_keylist_pop(&keylist))) 1457 if (!bkey_cmp(k, &ZERO_KEY)) 1458 atomic_dec(&b->c->prio_blocked); 1459 1460 for (i = 0; i < nodes; i++) 1461 if (!IS_ERR_OR_NULL(new_nodes[i])) { 1462 btree_node_free(new_nodes[i]); 1463 rw_unlock(true, new_nodes[i]); 1464 } 1465 return 0; 1466 } 1467 1468 static int btree_gc_rewrite_node(struct btree *b, struct btree_op *op, 1469 struct btree *replace) 1470 { 1471 struct keylist keys; 1472 struct btree *n; 1473 1474 if (btree_check_reserve(b, NULL)) 1475 return 0; 1476 1477 n = btree_node_alloc_replacement(replace, NULL); 1478 1479 /* recheck reserve after allocating replacement node */ 1480 if (btree_check_reserve(b, NULL)) { 1481 btree_node_free(n); 1482 rw_unlock(true, n); 1483 return 0; 1484 } 1485 1486 bch_btree_node_write_sync(n); 1487 1488 bch_keylist_init(&keys); 1489 bch_keylist_add(&keys, &n->key); 1490 1491 make_btree_freeing_key(replace, keys.top); 1492 bch_keylist_push(&keys); 1493 1494 bch_btree_insert_node(b, op, &keys, NULL, NULL); 1495 BUG_ON(!bch_keylist_empty(&keys)); 1496 1497 btree_node_free(replace); 1498 rw_unlock(true, n); 1499 1500 /* Invalidated our iterator */ 1501 return -EINTR; 1502 } 1503 1504 static unsigned btree_gc_count_keys(struct btree *b) 1505 { 1506 struct bkey *k; 1507 struct btree_iter iter; 1508 unsigned ret = 0; 1509 1510 for_each_key_filter(&b->keys, k, &iter, bch_ptr_bad) 1511 ret += bkey_u64s(k); 1512 1513 return ret; 1514 } 1515 1516 static int btree_gc_recurse(struct btree *b, struct btree_op *op, 1517 struct closure *writes, struct gc_stat *gc) 1518 { 1519 int ret = 0; 1520 bool should_rewrite; 1521 struct bkey *k; 1522 struct btree_iter iter; 1523 struct gc_merge_info r[GC_MERGE_NODES]; 1524 struct gc_merge_info *i, *last = r + ARRAY_SIZE(r) - 1; 1525 1526 bch_btree_iter_init(&b->keys, &iter, &b->c->gc_done); 1527 1528 for (i = r; i < r + ARRAY_SIZE(r); i++) 1529 i->b = ERR_PTR(-EINTR); 1530 1531 while (1) { 1532 k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad); 1533 if (k) { 1534 r->b = bch_btree_node_get(b->c, op, k, b->level - 1, 1535 true, b); 1536 if (IS_ERR(r->b)) { 1537 ret = PTR_ERR(r->b); 1538 break; 1539 } 1540 1541 r->keys = btree_gc_count_keys(r->b); 1542 1543 ret = btree_gc_coalesce(b, op, gc, r); 1544 if (ret) 1545 break; 1546 } 1547 1548 if (!last->b) 1549 break; 1550 1551 if (!IS_ERR(last->b)) { 1552 should_rewrite = btree_gc_mark_node(last->b, gc); 1553 if (should_rewrite) { 1554 ret = btree_gc_rewrite_node(b, op, last->b); 1555 if (ret) 1556 break; 1557 } 1558 1559 if (last->b->level) { 1560 ret = btree_gc_recurse(last->b, op, writes, gc); 1561 if (ret) 1562 break; 1563 } 1564 1565 bkey_copy_key(&b->c->gc_done, &last->b->key); 1566 1567 /* 1568 * Must flush leaf nodes before gc ends, since replace 1569 * operations aren't journalled 1570 */ 1571 mutex_lock(&last->b->write_lock); 1572 if (btree_node_dirty(last->b)) 1573 bch_btree_node_write(last->b, writes); 1574 mutex_unlock(&last->b->write_lock); 1575 rw_unlock(true, last->b); 1576 } 1577 1578 memmove(r + 1, r, sizeof(r[0]) * (GC_MERGE_NODES - 1)); 1579 r->b = NULL; 1580 1581 if (need_resched()) { 1582 ret = -EAGAIN; 1583 break; 1584 } 1585 } 1586 1587 for (i = r; i < r + ARRAY_SIZE(r); i++) 1588 if (!IS_ERR_OR_NULL(i->b)) { 1589 mutex_lock(&i->b->write_lock); 1590 if (btree_node_dirty(i->b)) 1591 bch_btree_node_write(i->b, writes); 1592 mutex_unlock(&i->b->write_lock); 1593 rw_unlock(true, i->b); 1594 } 1595 1596 return ret; 1597 } 1598 1599 static int bch_btree_gc_root(struct btree *b, struct btree_op *op, 1600 struct closure *writes, struct gc_stat *gc) 1601 { 1602 struct btree *n = NULL; 1603 int ret = 0; 1604 bool should_rewrite; 1605 1606 should_rewrite = btree_gc_mark_node(b, gc); 1607 if (should_rewrite) { 1608 n = btree_node_alloc_replacement(b, NULL); 1609 1610 if (!IS_ERR_OR_NULL(n)) { 1611 bch_btree_node_write_sync(n); 1612 1613 bch_btree_set_root(n); 1614 btree_node_free(b); 1615 rw_unlock(true, n); 1616 1617 return -EINTR; 1618 } 1619 } 1620 1621 __bch_btree_mark_key(b->c, b->level + 1, &b->key); 1622 1623 if (b->level) { 1624 ret = btree_gc_recurse(b, op, writes, gc); 1625 if (ret) 1626 return ret; 1627 } 1628 1629 bkey_copy_key(&b->c->gc_done, &b->key); 1630 1631 return ret; 1632 } 1633 1634 static void btree_gc_start(struct cache_set *c) 1635 { 1636 struct cache *ca; 1637 struct bucket *b; 1638 unsigned i; 1639 1640 if (!c->gc_mark_valid) 1641 return; 1642 1643 mutex_lock(&c->bucket_lock); 1644 1645 c->gc_mark_valid = 0; 1646 c->gc_done = ZERO_KEY; 1647 1648 for_each_cache(ca, c, i) 1649 for_each_bucket(b, ca) { 1650 b->last_gc = b->gen; 1651 if (!atomic_read(&b->pin)) { 1652 SET_GC_MARK(b, 0); 1653 SET_GC_SECTORS_USED(b, 0); 1654 } 1655 } 1656 1657 mutex_unlock(&c->bucket_lock); 1658 } 1659 1660 static void bch_btree_gc_finish(struct cache_set *c) 1661 { 1662 struct bucket *b; 1663 struct cache *ca; 1664 unsigned i; 1665 1666 mutex_lock(&c->bucket_lock); 1667 1668 set_gc_sectors(c); 1669 c->gc_mark_valid = 1; 1670 c->need_gc = 0; 1671 1672 for (i = 0; i < KEY_PTRS(&c->uuid_bucket); i++) 1673 SET_GC_MARK(PTR_BUCKET(c, &c->uuid_bucket, i), 1674 GC_MARK_METADATA); 1675 1676 /* don't reclaim buckets to which writeback keys point */ 1677 rcu_read_lock(); 1678 for (i = 0; i < c->nr_uuids; i++) { 1679 struct bcache_device *d = c->devices[i]; 1680 struct cached_dev *dc; 1681 struct keybuf_key *w, *n; 1682 unsigned j; 1683 1684 if (!d || UUID_FLASH_ONLY(&c->uuids[i])) 1685 continue; 1686 dc = container_of(d, struct cached_dev, disk); 1687 1688 spin_lock(&dc->writeback_keys.lock); 1689 rbtree_postorder_for_each_entry_safe(w, n, 1690 &dc->writeback_keys.keys, node) 1691 for (j = 0; j < KEY_PTRS(&w->key); j++) 1692 SET_GC_MARK(PTR_BUCKET(c, &w->key, j), 1693 GC_MARK_DIRTY); 1694 spin_unlock(&dc->writeback_keys.lock); 1695 } 1696 rcu_read_unlock(); 1697 1698 c->avail_nbuckets = 0; 1699 for_each_cache(ca, c, i) { 1700 uint64_t *i; 1701 1702 ca->invalidate_needs_gc = 0; 1703 1704 for (i = ca->sb.d; i < ca->sb.d + ca->sb.keys; i++) 1705 SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA); 1706 1707 for (i = ca->prio_buckets; 1708 i < ca->prio_buckets + prio_buckets(ca) * 2; i++) 1709 SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA); 1710 1711 for_each_bucket(b, ca) { 1712 c->need_gc = max(c->need_gc, bucket_gc_gen(b)); 1713 1714 if (atomic_read(&b->pin)) 1715 continue; 1716 1717 BUG_ON(!GC_MARK(b) && GC_SECTORS_USED(b)); 1718 1719 if (!GC_MARK(b) || GC_MARK(b) == GC_MARK_RECLAIMABLE) 1720 c->avail_nbuckets++; 1721 } 1722 } 1723 1724 mutex_unlock(&c->bucket_lock); 1725 } 1726 1727 static void bch_btree_gc(struct cache_set *c) 1728 { 1729 int ret; 1730 struct gc_stat stats; 1731 struct closure writes; 1732 struct btree_op op; 1733 uint64_t start_time = local_clock(); 1734 1735 trace_bcache_gc_start(c); 1736 1737 memset(&stats, 0, sizeof(struct gc_stat)); 1738 closure_init_stack(&writes); 1739 bch_btree_op_init(&op, SHRT_MAX); 1740 1741 btree_gc_start(c); 1742 1743 do { 1744 ret = btree_root(gc_root, c, &op, &writes, &stats); 1745 closure_sync(&writes); 1746 cond_resched(); 1747 1748 if (ret && ret != -EAGAIN) 1749 pr_warn("gc failed!"); 1750 } while (ret); 1751 1752 bch_btree_gc_finish(c); 1753 wake_up_allocators(c); 1754 1755 bch_time_stats_update(&c->btree_gc_time, start_time); 1756 1757 stats.key_bytes *= sizeof(uint64_t); 1758 stats.data <<= 9; 1759 bch_update_bucket_in_use(c, &stats); 1760 memcpy(&c->gc_stats, &stats, sizeof(struct gc_stat)); 1761 1762 trace_bcache_gc_end(c); 1763 1764 bch_moving_gc(c); 1765 } 1766 1767 static bool gc_should_run(struct cache_set *c) 1768 { 1769 struct cache *ca; 1770 unsigned i; 1771 1772 for_each_cache(ca, c, i) 1773 if (ca->invalidate_needs_gc) 1774 return true; 1775 1776 if (atomic_read(&c->sectors_to_gc) < 0) 1777 return true; 1778 1779 return false; 1780 } 1781 1782 static int bch_gc_thread(void *arg) 1783 { 1784 struct cache_set *c = arg; 1785 1786 while (1) { 1787 wait_event_interruptible(c->gc_wait, 1788 kthread_should_stop() || gc_should_run(c)); 1789 1790 if (kthread_should_stop()) 1791 break; 1792 1793 set_gc_sectors(c); 1794 bch_btree_gc(c); 1795 } 1796 1797 return 0; 1798 } 1799 1800 int bch_gc_thread_start(struct cache_set *c) 1801 { 1802 c->gc_thread = kthread_run(bch_gc_thread, c, "bcache_gc"); 1803 if (IS_ERR(c->gc_thread)) 1804 return PTR_ERR(c->gc_thread); 1805 1806 return 0; 1807 } 1808 1809 /* Initial partial gc */ 1810 1811 static int bch_btree_check_recurse(struct btree *b, struct btree_op *op) 1812 { 1813 int ret = 0; 1814 struct bkey *k, *p = NULL; 1815 struct btree_iter iter; 1816 1817 for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid) 1818 bch_initial_mark_key(b->c, b->level, k); 1819 1820 bch_initial_mark_key(b->c, b->level + 1, &b->key); 1821 1822 if (b->level) { 1823 bch_btree_iter_init(&b->keys, &iter, NULL); 1824 1825 do { 1826 k = bch_btree_iter_next_filter(&iter, &b->keys, 1827 bch_ptr_bad); 1828 if (k) 1829 btree_node_prefetch(b, k); 1830 1831 if (p) 1832 ret = btree(check_recurse, p, b, op); 1833 1834 p = k; 1835 } while (p && !ret); 1836 } 1837 1838 return ret; 1839 } 1840 1841 int bch_btree_check(struct cache_set *c) 1842 { 1843 struct btree_op op; 1844 1845 bch_btree_op_init(&op, SHRT_MAX); 1846 1847 return btree_root(check_recurse, c, &op); 1848 } 1849 1850 void bch_initial_gc_finish(struct cache_set *c) 1851 { 1852 struct cache *ca; 1853 struct bucket *b; 1854 unsigned i; 1855 1856 bch_btree_gc_finish(c); 1857 1858 mutex_lock(&c->bucket_lock); 1859 1860 /* 1861 * We need to put some unused buckets directly on the prio freelist in 1862 * order to get the allocator thread started - it needs freed buckets in 1863 * order to rewrite the prios and gens, and it needs to rewrite prios 1864 * and gens in order to free buckets. 1865 * 1866 * This is only safe for buckets that have no live data in them, which 1867 * there should always be some of. 1868 */ 1869 for_each_cache(ca, c, i) { 1870 for_each_bucket(b, ca) { 1871 if (fifo_full(&ca->free[RESERVE_PRIO])) 1872 break; 1873 1874 if (bch_can_invalidate_bucket(ca, b) && 1875 !GC_MARK(b)) { 1876 __bch_invalidate_one_bucket(ca, b); 1877 fifo_push(&ca->free[RESERVE_PRIO], 1878 b - ca->buckets); 1879 } 1880 } 1881 } 1882 1883 mutex_unlock(&c->bucket_lock); 1884 } 1885 1886 /* Btree insertion */ 1887 1888 static bool btree_insert_key(struct btree *b, struct bkey *k, 1889 struct bkey *replace_key) 1890 { 1891 unsigned status; 1892 1893 BUG_ON(bkey_cmp(k, &b->key) > 0); 1894 1895 status = bch_btree_insert_key(&b->keys, k, replace_key); 1896 if (status != BTREE_INSERT_STATUS_NO_INSERT) { 1897 bch_check_keys(&b->keys, "%u for %s", status, 1898 replace_key ? "replace" : "insert"); 1899 1900 trace_bcache_btree_insert_key(b, k, replace_key != NULL, 1901 status); 1902 return true; 1903 } else 1904 return false; 1905 } 1906 1907 static size_t insert_u64s_remaining(struct btree *b) 1908 { 1909 long ret = bch_btree_keys_u64s_remaining(&b->keys); 1910 1911 /* 1912 * Might land in the middle of an existing extent and have to split it 1913 */ 1914 if (b->keys.ops->is_extents) 1915 ret -= KEY_MAX_U64S; 1916 1917 return max(ret, 0L); 1918 } 1919 1920 static bool bch_btree_insert_keys(struct btree *b, struct btree_op *op, 1921 struct keylist *insert_keys, 1922 struct bkey *replace_key) 1923 { 1924 bool ret = false; 1925 int oldsize = bch_count_data(&b->keys); 1926 1927 while (!bch_keylist_empty(insert_keys)) { 1928 struct bkey *k = insert_keys->keys; 1929 1930 if (bkey_u64s(k) > insert_u64s_remaining(b)) 1931 break; 1932 1933 if (bkey_cmp(k, &b->key) <= 0) { 1934 if (!b->level) 1935 bkey_put(b->c, k); 1936 1937 ret |= btree_insert_key(b, k, replace_key); 1938 bch_keylist_pop_front(insert_keys); 1939 } else if (bkey_cmp(&START_KEY(k), &b->key) < 0) { 1940 BKEY_PADDED(key) temp; 1941 bkey_copy(&temp.key, insert_keys->keys); 1942 1943 bch_cut_back(&b->key, &temp.key); 1944 bch_cut_front(&b->key, insert_keys->keys); 1945 1946 ret |= btree_insert_key(b, &temp.key, replace_key); 1947 break; 1948 } else { 1949 break; 1950 } 1951 } 1952 1953 if (!ret) 1954 op->insert_collision = true; 1955 1956 BUG_ON(!bch_keylist_empty(insert_keys) && b->level); 1957 1958 BUG_ON(bch_count_data(&b->keys) < oldsize); 1959 return ret; 1960 } 1961 1962 static int btree_split(struct btree *b, struct btree_op *op, 1963 struct keylist *insert_keys, 1964 struct bkey *replace_key) 1965 { 1966 bool split; 1967 struct btree *n1, *n2 = NULL, *n3 = NULL; 1968 uint64_t start_time = local_clock(); 1969 struct closure cl; 1970 struct keylist parent_keys; 1971 1972 closure_init_stack(&cl); 1973 bch_keylist_init(&parent_keys); 1974 1975 if (btree_check_reserve(b, op)) { 1976 if (!b->level) 1977 return -EINTR; 1978 else 1979 WARN(1, "insufficient reserve for split\n"); 1980 } 1981 1982 n1 = btree_node_alloc_replacement(b, op); 1983 if (IS_ERR(n1)) 1984 goto err; 1985 1986 split = set_blocks(btree_bset_first(n1), 1987 block_bytes(n1->c)) > (btree_blocks(b) * 4) / 5; 1988 1989 if (split) { 1990 unsigned keys = 0; 1991 1992 trace_bcache_btree_node_split(b, btree_bset_first(n1)->keys); 1993 1994 n2 = bch_btree_node_alloc(b->c, op, b->level, b->parent); 1995 if (IS_ERR(n2)) 1996 goto err_free1; 1997 1998 if (!b->parent) { 1999 n3 = bch_btree_node_alloc(b->c, op, b->level + 1, NULL); 2000 if (IS_ERR(n3)) 2001 goto err_free2; 2002 } 2003 2004 mutex_lock(&n1->write_lock); 2005 mutex_lock(&n2->write_lock); 2006 2007 bch_btree_insert_keys(n1, op, insert_keys, replace_key); 2008 2009 /* 2010 * Has to be a linear search because we don't have an auxiliary 2011 * search tree yet 2012 */ 2013 2014 while (keys < (btree_bset_first(n1)->keys * 3) / 5) 2015 keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1), 2016 keys)); 2017 2018 bkey_copy_key(&n1->key, 2019 bset_bkey_idx(btree_bset_first(n1), keys)); 2020 keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1), keys)); 2021 2022 btree_bset_first(n2)->keys = btree_bset_first(n1)->keys - keys; 2023 btree_bset_first(n1)->keys = keys; 2024 2025 memcpy(btree_bset_first(n2)->start, 2026 bset_bkey_last(btree_bset_first(n1)), 2027 btree_bset_first(n2)->keys * sizeof(uint64_t)); 2028 2029 bkey_copy_key(&n2->key, &b->key); 2030 2031 bch_keylist_add(&parent_keys, &n2->key); 2032 bch_btree_node_write(n2, &cl); 2033 mutex_unlock(&n2->write_lock); 2034 rw_unlock(true, n2); 2035 } else { 2036 trace_bcache_btree_node_compact(b, btree_bset_first(n1)->keys); 2037 2038 mutex_lock(&n1->write_lock); 2039 bch_btree_insert_keys(n1, op, insert_keys, replace_key); 2040 } 2041 2042 bch_keylist_add(&parent_keys, &n1->key); 2043 bch_btree_node_write(n1, &cl); 2044 mutex_unlock(&n1->write_lock); 2045 2046 if (n3) { 2047 /* Depth increases, make a new root */ 2048 mutex_lock(&n3->write_lock); 2049 bkey_copy_key(&n3->key, &MAX_KEY); 2050 bch_btree_insert_keys(n3, op, &parent_keys, NULL); 2051 bch_btree_node_write(n3, &cl); 2052 mutex_unlock(&n3->write_lock); 2053 2054 closure_sync(&cl); 2055 bch_btree_set_root(n3); 2056 rw_unlock(true, n3); 2057 } else if (!b->parent) { 2058 /* Root filled up but didn't need to be split */ 2059 closure_sync(&cl); 2060 bch_btree_set_root(n1); 2061 } else { 2062 /* Split a non root node */ 2063 closure_sync(&cl); 2064 make_btree_freeing_key(b, parent_keys.top); 2065 bch_keylist_push(&parent_keys); 2066 2067 bch_btree_insert_node(b->parent, op, &parent_keys, NULL, NULL); 2068 BUG_ON(!bch_keylist_empty(&parent_keys)); 2069 } 2070 2071 btree_node_free(b); 2072 rw_unlock(true, n1); 2073 2074 bch_time_stats_update(&b->c->btree_split_time, start_time); 2075 2076 return 0; 2077 err_free2: 2078 bkey_put(b->c, &n2->key); 2079 btree_node_free(n2); 2080 rw_unlock(true, n2); 2081 err_free1: 2082 bkey_put(b->c, &n1->key); 2083 btree_node_free(n1); 2084 rw_unlock(true, n1); 2085 err: 2086 WARN(1, "bcache: btree split failed (level %u)", b->level); 2087 2088 if (n3 == ERR_PTR(-EAGAIN) || 2089 n2 == ERR_PTR(-EAGAIN) || 2090 n1 == ERR_PTR(-EAGAIN)) 2091 return -EAGAIN; 2092 2093 return -ENOMEM; 2094 } 2095 2096 static int bch_btree_insert_node(struct btree *b, struct btree_op *op, 2097 struct keylist *insert_keys, 2098 atomic_t *journal_ref, 2099 struct bkey *replace_key) 2100 { 2101 struct closure cl; 2102 2103 BUG_ON(b->level && replace_key); 2104 2105 closure_init_stack(&cl); 2106 2107 mutex_lock(&b->write_lock); 2108 2109 if (write_block(b) != btree_bset_last(b) && 2110 b->keys.last_set_unwritten) 2111 bch_btree_init_next(b); /* just wrote a set */ 2112 2113 if (bch_keylist_nkeys(insert_keys) > insert_u64s_remaining(b)) { 2114 mutex_unlock(&b->write_lock); 2115 goto split; 2116 } 2117 2118 BUG_ON(write_block(b) != btree_bset_last(b)); 2119 2120 if (bch_btree_insert_keys(b, op, insert_keys, replace_key)) { 2121 if (!b->level) 2122 bch_btree_leaf_dirty(b, journal_ref); 2123 else 2124 bch_btree_node_write(b, &cl); 2125 } 2126 2127 mutex_unlock(&b->write_lock); 2128 2129 /* wait for btree node write if necessary, after unlock */ 2130 closure_sync(&cl); 2131 2132 return 0; 2133 split: 2134 if (current->bio_list) { 2135 op->lock = b->c->root->level + 1; 2136 return -EAGAIN; 2137 } else if (op->lock <= b->c->root->level) { 2138 op->lock = b->c->root->level + 1; 2139 return -EINTR; 2140 } else { 2141 /* Invalidated all iterators */ 2142 int ret = btree_split(b, op, insert_keys, replace_key); 2143 2144 if (bch_keylist_empty(insert_keys)) 2145 return 0; 2146 else if (!ret) 2147 return -EINTR; 2148 return ret; 2149 } 2150 } 2151 2152 int bch_btree_insert_check_key(struct btree *b, struct btree_op *op, 2153 struct bkey *check_key) 2154 { 2155 int ret = -EINTR; 2156 uint64_t btree_ptr = b->key.ptr[0]; 2157 unsigned long seq = b->seq; 2158 struct keylist insert; 2159 bool upgrade = op->lock == -1; 2160 2161 bch_keylist_init(&insert); 2162 2163 if (upgrade) { 2164 rw_unlock(false, b); 2165 rw_lock(true, b, b->level); 2166 2167 if (b->key.ptr[0] != btree_ptr || 2168 b->seq != seq + 1) { 2169 op->lock = b->level; 2170 goto out; 2171 } 2172 } 2173 2174 SET_KEY_PTRS(check_key, 1); 2175 get_random_bytes(&check_key->ptr[0], sizeof(uint64_t)); 2176 2177 SET_PTR_DEV(check_key, 0, PTR_CHECK_DEV); 2178 2179 bch_keylist_add(&insert, check_key); 2180 2181 ret = bch_btree_insert_node(b, op, &insert, NULL, NULL); 2182 2183 BUG_ON(!ret && !bch_keylist_empty(&insert)); 2184 out: 2185 if (upgrade) 2186 downgrade_write(&b->lock); 2187 return ret; 2188 } 2189 2190 struct btree_insert_op { 2191 struct btree_op op; 2192 struct keylist *keys; 2193 atomic_t *journal_ref; 2194 struct bkey *replace_key; 2195 }; 2196 2197 static int btree_insert_fn(struct btree_op *b_op, struct btree *b) 2198 { 2199 struct btree_insert_op *op = container_of(b_op, 2200 struct btree_insert_op, op); 2201 2202 int ret = bch_btree_insert_node(b, &op->op, op->keys, 2203 op->journal_ref, op->replace_key); 2204 if (ret && !bch_keylist_empty(op->keys)) 2205 return ret; 2206 else 2207 return MAP_DONE; 2208 } 2209 2210 int bch_btree_insert(struct cache_set *c, struct keylist *keys, 2211 atomic_t *journal_ref, struct bkey *replace_key) 2212 { 2213 struct btree_insert_op op; 2214 int ret = 0; 2215 2216 BUG_ON(current->bio_list); 2217 BUG_ON(bch_keylist_empty(keys)); 2218 2219 bch_btree_op_init(&op.op, 0); 2220 op.keys = keys; 2221 op.journal_ref = journal_ref; 2222 op.replace_key = replace_key; 2223 2224 while (!ret && !bch_keylist_empty(keys)) { 2225 op.op.lock = 0; 2226 ret = bch_btree_map_leaf_nodes(&op.op, c, 2227 &START_KEY(keys->keys), 2228 btree_insert_fn); 2229 } 2230 2231 if (ret) { 2232 struct bkey *k; 2233 2234 pr_err("error %i", ret); 2235 2236 while ((k = bch_keylist_pop(keys))) 2237 bkey_put(c, k); 2238 } else if (op.op.insert_collision) 2239 ret = -ESRCH; 2240 2241 return ret; 2242 } 2243 2244 void bch_btree_set_root(struct btree *b) 2245 { 2246 unsigned i; 2247 struct closure cl; 2248 2249 closure_init_stack(&cl); 2250 2251 trace_bcache_btree_set_root(b); 2252 2253 BUG_ON(!b->written); 2254 2255 for (i = 0; i < KEY_PTRS(&b->key); i++) 2256 BUG_ON(PTR_BUCKET(b->c, &b->key, i)->prio != BTREE_PRIO); 2257 2258 mutex_lock(&b->c->bucket_lock); 2259 list_del_init(&b->list); 2260 mutex_unlock(&b->c->bucket_lock); 2261 2262 b->c->root = b; 2263 2264 bch_journal_meta(b->c, &cl); 2265 closure_sync(&cl); 2266 } 2267 2268 /* Map across nodes or keys */ 2269 2270 static int bch_btree_map_nodes_recurse(struct btree *b, struct btree_op *op, 2271 struct bkey *from, 2272 btree_map_nodes_fn *fn, int flags) 2273 { 2274 int ret = MAP_CONTINUE; 2275 2276 if (b->level) { 2277 struct bkey *k; 2278 struct btree_iter iter; 2279 2280 bch_btree_iter_init(&b->keys, &iter, from); 2281 2282 while ((k = bch_btree_iter_next_filter(&iter, &b->keys, 2283 bch_ptr_bad))) { 2284 ret = btree(map_nodes_recurse, k, b, 2285 op, from, fn, flags); 2286 from = NULL; 2287 2288 if (ret != MAP_CONTINUE) 2289 return ret; 2290 } 2291 } 2292 2293 if (!b->level || flags == MAP_ALL_NODES) 2294 ret = fn(op, b); 2295 2296 return ret; 2297 } 2298 2299 int __bch_btree_map_nodes(struct btree_op *op, struct cache_set *c, 2300 struct bkey *from, btree_map_nodes_fn *fn, int flags) 2301 { 2302 return btree_root(map_nodes_recurse, c, op, from, fn, flags); 2303 } 2304 2305 static int bch_btree_map_keys_recurse(struct btree *b, struct btree_op *op, 2306 struct bkey *from, btree_map_keys_fn *fn, 2307 int flags) 2308 { 2309 int ret = MAP_CONTINUE; 2310 struct bkey *k; 2311 struct btree_iter iter; 2312 2313 bch_btree_iter_init(&b->keys, &iter, from); 2314 2315 while ((k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad))) { 2316 ret = !b->level 2317 ? fn(op, b, k) 2318 : btree(map_keys_recurse, k, b, op, from, fn, flags); 2319 from = NULL; 2320 2321 if (ret != MAP_CONTINUE) 2322 return ret; 2323 } 2324 2325 if (!b->level && (flags & MAP_END_KEY)) 2326 ret = fn(op, b, &KEY(KEY_INODE(&b->key), 2327 KEY_OFFSET(&b->key), 0)); 2328 2329 return ret; 2330 } 2331 2332 int bch_btree_map_keys(struct btree_op *op, struct cache_set *c, 2333 struct bkey *from, btree_map_keys_fn *fn, int flags) 2334 { 2335 return btree_root(map_keys_recurse, c, op, from, fn, flags); 2336 } 2337 2338 /* Keybuf code */ 2339 2340 static inline int keybuf_cmp(struct keybuf_key *l, struct keybuf_key *r) 2341 { 2342 /* Overlapping keys compare equal */ 2343 if (bkey_cmp(&l->key, &START_KEY(&r->key)) <= 0) 2344 return -1; 2345 if (bkey_cmp(&START_KEY(&l->key), &r->key) >= 0) 2346 return 1; 2347 return 0; 2348 } 2349 2350 static inline int keybuf_nonoverlapping_cmp(struct keybuf_key *l, 2351 struct keybuf_key *r) 2352 { 2353 return clamp_t(int64_t, bkey_cmp(&l->key, &r->key), -1, 1); 2354 } 2355 2356 struct refill { 2357 struct btree_op op; 2358 unsigned nr_found; 2359 struct keybuf *buf; 2360 struct bkey *end; 2361 keybuf_pred_fn *pred; 2362 }; 2363 2364 static int refill_keybuf_fn(struct btree_op *op, struct btree *b, 2365 struct bkey *k) 2366 { 2367 struct refill *refill = container_of(op, struct refill, op); 2368 struct keybuf *buf = refill->buf; 2369 int ret = MAP_CONTINUE; 2370 2371 if (bkey_cmp(k, refill->end) >= 0) { 2372 ret = MAP_DONE; 2373 goto out; 2374 } 2375 2376 if (!KEY_SIZE(k)) /* end key */ 2377 goto out; 2378 2379 if (refill->pred(buf, k)) { 2380 struct keybuf_key *w; 2381 2382 spin_lock(&buf->lock); 2383 2384 w = array_alloc(&buf->freelist); 2385 if (!w) { 2386 spin_unlock(&buf->lock); 2387 return MAP_DONE; 2388 } 2389 2390 w->private = NULL; 2391 bkey_copy(&w->key, k); 2392 2393 if (RB_INSERT(&buf->keys, w, node, keybuf_cmp)) 2394 array_free(&buf->freelist, w); 2395 else 2396 refill->nr_found++; 2397 2398 if (array_freelist_empty(&buf->freelist)) 2399 ret = MAP_DONE; 2400 2401 spin_unlock(&buf->lock); 2402 } 2403 out: 2404 buf->last_scanned = *k; 2405 return ret; 2406 } 2407 2408 void bch_refill_keybuf(struct cache_set *c, struct keybuf *buf, 2409 struct bkey *end, keybuf_pred_fn *pred) 2410 { 2411 struct bkey start = buf->last_scanned; 2412 struct refill refill; 2413 2414 cond_resched(); 2415 2416 bch_btree_op_init(&refill.op, -1); 2417 refill.nr_found = 0; 2418 refill.buf = buf; 2419 refill.end = end; 2420 refill.pred = pred; 2421 2422 bch_btree_map_keys(&refill.op, c, &buf->last_scanned, 2423 refill_keybuf_fn, MAP_END_KEY); 2424 2425 trace_bcache_keyscan(refill.nr_found, 2426 KEY_INODE(&start), KEY_OFFSET(&start), 2427 KEY_INODE(&buf->last_scanned), 2428 KEY_OFFSET(&buf->last_scanned)); 2429 2430 spin_lock(&buf->lock); 2431 2432 if (!RB_EMPTY_ROOT(&buf->keys)) { 2433 struct keybuf_key *w; 2434 w = RB_FIRST(&buf->keys, struct keybuf_key, node); 2435 buf->start = START_KEY(&w->key); 2436 2437 w = RB_LAST(&buf->keys, struct keybuf_key, node); 2438 buf->end = w->key; 2439 } else { 2440 buf->start = MAX_KEY; 2441 buf->end = MAX_KEY; 2442 } 2443 2444 spin_unlock(&buf->lock); 2445 } 2446 2447 static void __bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w) 2448 { 2449 rb_erase(&w->node, &buf->keys); 2450 array_free(&buf->freelist, w); 2451 } 2452 2453 void bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w) 2454 { 2455 spin_lock(&buf->lock); 2456 __bch_keybuf_del(buf, w); 2457 spin_unlock(&buf->lock); 2458 } 2459 2460 bool bch_keybuf_check_overlapping(struct keybuf *buf, struct bkey *start, 2461 struct bkey *end) 2462 { 2463 bool ret = false; 2464 struct keybuf_key *p, *w, s; 2465 s.key = *start; 2466 2467 if (bkey_cmp(end, &buf->start) <= 0 || 2468 bkey_cmp(start, &buf->end) >= 0) 2469 return false; 2470 2471 spin_lock(&buf->lock); 2472 w = RB_GREATER(&buf->keys, s, node, keybuf_nonoverlapping_cmp); 2473 2474 while (w && bkey_cmp(&START_KEY(&w->key), end) < 0) { 2475 p = w; 2476 w = RB_NEXT(w, node); 2477 2478 if (p->private) 2479 ret = true; 2480 else 2481 __bch_keybuf_del(buf, p); 2482 } 2483 2484 spin_unlock(&buf->lock); 2485 return ret; 2486 } 2487 2488 struct keybuf_key *bch_keybuf_next(struct keybuf *buf) 2489 { 2490 struct keybuf_key *w; 2491 spin_lock(&buf->lock); 2492 2493 w = RB_FIRST(&buf->keys, struct keybuf_key, node); 2494 2495 while (w && w->private) 2496 w = RB_NEXT(w, node); 2497 2498 if (w) 2499 w->private = ERR_PTR(-EINTR); 2500 2501 spin_unlock(&buf->lock); 2502 return w; 2503 } 2504 2505 struct keybuf_key *bch_keybuf_next_rescan(struct cache_set *c, 2506 struct keybuf *buf, 2507 struct bkey *end, 2508 keybuf_pred_fn *pred) 2509 { 2510 struct keybuf_key *ret; 2511 2512 while (1) { 2513 ret = bch_keybuf_next(buf); 2514 if (ret) 2515 break; 2516 2517 if (bkey_cmp(&buf->last_scanned, end) >= 0) { 2518 pr_debug("scan finished"); 2519 break; 2520 } 2521 2522 bch_refill_keybuf(c, buf, end, pred); 2523 } 2524 2525 return ret; 2526 } 2527 2528 void bch_keybuf_init(struct keybuf *buf) 2529 { 2530 buf->last_scanned = MAX_KEY; 2531 buf->keys = RB_ROOT; 2532 2533 spin_lock_init(&buf->lock); 2534 array_allocator_init(&buf->freelist); 2535 } 2536